

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

FlatList React

A helpful utility component to handle lists in react like a champ. It handles filtering, sorting,
grouping, searching, styling and more.

Table of Content

	Table of Content [https://github.com/ECorreia45/flatlist-react/tree/documentation#table-of-content]

	Installing [https://github.com/ECorreia45/flatlist-react/tree/documentation#installing]

	Documentation (How to use it) [https://github.com/ECorreia45/flatlist-react/tree/documentation#documentation-how-to-use-it]

	Rendering list [https://github.com/ECorreia45/flatlist-react/tree/documentation#rendering-list]

	list prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#list-prop]

	renderItem prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#renderitem-prop]

	renderWhenEmpty prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#render-when-list-is-empty]

	limit prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#limit-prop]

	Dot Notation for string [https://github.com/ECorreia45/flatlist-react/tree/documentation#dot-notation-for-string]

	Filtering Items [https://github.com/ECorreia45/flatlist-react/tree/documentation#filteringsearching-items]

	filterBy prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#filterby-prop]

	Searching Items [https://github.com/ECorreia45/flatlist-react/tree/documentation#searching-items]

	searchTerm prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#searchterm-prop]

	searchBy prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#searchby-prop]

	Searching on multiple keys [https://github.com/ECorreia45/flatlist-react/tree/documentation#searching-on-multiple-keys]

	searchCaseInsensitive prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#searchcaseinsensitive-prop]

	searchOnEveryWord prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#searchoneveryword-prop]

	Sorting Items [https://github.com/ECorreia45/flatlist-react/tree/documentation#sorting-items]

	sort prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#sort-prop]

	sortBy prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#sortby-prop]

	sortDesc prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#sortdesc-prop]

	sortGroupBy prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#sortgroupdesc-prop]

	sortGroupDesc prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#sortgroupdesc-prop]

	sortCaseInsensitive prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#sortcaseinsensitive-prop]

	Grouping Items [https://github.com/ECorreia45/flatlist-react/tree/documentation#grouping-items]

	groupBy prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#groupby-prop]

	groupOf prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#groupof-prop]

	Custom Group Separator [https://github.com/ECorreia45/flatlist-react/tree/documentation#custom-group-separator]

	groupSeparator prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#groupseparator-prop]

	showGroupSeparatorAtTheBottom prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#showgroupseparatoratthebottom-prop]

	Styling (Grid and Row) [https://github.com/ECorreia45/flatlist-react/tree/documentation#styling-grid-and-row]

	displayGrid prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#displaygrid-prop]

	gridGap prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#gridgap-prop]

	minColumnWidth prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#mincolumnwidth-prop]

	displayRow prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#displaygrid-row]

	rowGap prop [https://github.com/ECorreia45/flatlist-react/tree/documentation#rowgap-prop]

	Author [https://github.com/ECorreia45/flatlist-react/tree/documentation#author]

Installing

This is a react utility component and that means it will only work on your react project/environment.

In your React project run the following command:

npm install flatlist-react

Documentation (How to use it)

This utility component was built with ease of use in mind so please report or contribute anything that could be
improved in later releases.

Please feel free to suggest features as well by getting in touch with Elson Correia.

Rendering list

The component has two required props, list and renderItem.

We will use the following object as an example for this documentation. This will be the list we will pass to it.

people = [
 {firstName: 'Elson', lastName: 'Correia', info: {age: 24}},
 {firstName: 'John', lastName: 'Doe', info: {age: 18}},
 {firstName: 'Jane', lastName: 'Doe', info: {age: 34}},
 {firstName: 'Maria', lastName: 'Carvalho', info: {age: 22}},
 {firstName: 'Kelly', lastName: 'Correia', info:{age: 23}},
 {firstName: 'Don', lastName: 'Quichote', info: {age: 39}},
 {firstName: 'Marcus', lastName: 'Correia', info: {age: 0}},
 {firstName: 'Bruno', lastName: 'Gonzales', info: {age: 25}},
 {firstName: 'Alonzo', lastName: 'Correia', info: {age: 44}}
]

Now inside your component file, we create a function renderPerson that will be passed to renderItem:

import FlatList from 'flatlist-react';

...

renderPerson = (person, idx) => {
 return (
 <li key={`${person.firstName}-${idx}`}>
 {person.firstName} {person.lastName} ({person.info.age})

);
}

return (

 <FlatList list={this.props.people} renderItem={this.renderPerson}/>

)

list prop

list should be an array of strings, numbers, arrays or objects.
Other things like Set, WeakSets, Map, WeakMaps and others are not yet supported.

The list can be empty as long as it is an empty array.

renderItem prop

renderItem prop takes a function that should return a component. The function will be called for every item on the
list with the item as the first argument and index of the item as second argument. Use this function to do everything
related to rendering the item component.

In our example above we are simply returning a li tag with person’s full name and age.

Note

FlatList will not wrap the list items in any html component. Expect your items to be direct
child of their parent container element.

In the example above, will show up directly under in the DOM.

Render When List is Empty

You are required to pass an array to the list prop, it does not mean the array needs to contain anything. Because
when doing so nothing will be displayed, there is another prop called renderWhenEmpty that you can use to tell the
component what to display when no item is displaying. This is ideal for blanks, telling the user their filtering matched
no item.

renderWhenEmpty prop

renderWhenEmpty can be a component or a function that returns a component. The function is
not called with any argument.

...

renderBlank = () => {
 return <p>Nothing to display yet...</p>;
}

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 renderWhenEmpty={this.renderBlank}
 />

)

In the above example renderWhenEmpty is taking a function that simply returns a <p/> saying "Nothing to display yet...".
Function here can be useful in cases you have different blank message to show, for example, if user typed a search
keyword you could check that and say "Nothing matched your search" or if the user applied a filter you can show another
one saying "Nothing matched your filtering criteria". We will see those examples when we reach filtering session on
this documentation.

limit prop

This prop will make sure that the number of items to render is up to a number you indicate here. There is also
groupOf [https://github.com/ECorreia45/flatlist-react/tree/documentation#groupof-prop]
if you want to limit the size of the groups.

Dot Notation for string

The FlatList component takes some props like filterBy, sortBy and groupBy which can be strings and you can use
Dot Notation for string [https://github.com/ECorreia45/flatlist-react/tree/documentation#dot-notation-for-string]
to deep match a key in an object. for example, I can pass info.age to group or sort our list of people by
age. If i had an array of children in info i could say info.children.0.age where 0(zero) is the index of the array.

This is to make it easy to reach deep into your objects without having to change them to work with filtering, sorting or
grouping. All these props also take functions for power, read more below.

Filtering Items

To filter the list you can use the filterBy prop which narrows down your list to be more specific.

filterBy prop

filterBy can be a string or a function. The function must return true or false where false means the item will be
not displayed. The function is called with two arguments, the item and its index. If you pass a string, you can use
Dot Notation for string [https://github.com/ECorreia45/flatlist-react/tree/documentation#dot-notation-for-string].

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 filterBy="info.age"
 />

)

The above filter will only remove Marcus Correia from the view since his age is zero and filterBy will check for
truthy, falsy values in that key.

For more power we can use a function to include only people above 20 years old and lastName is Correia like this.

handleFilter = (person, index) => {
 return person.info.age >= 20 && person.lastName === 'Correia';
}
...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 filterBy={this.handleFilter}
 />

)

Searching Items

FlatList allows you to search the list with full control on your search using the props searchTerm, searchBy,
searchCaseInsensitive and searchOnEveryWord.

searchTerm prop

The searchTerm prop is your way of telling FlatList that you want it to handle the search. This prop by itself does
not do anything. To initialize the search functionality you need to also provide the searchBy prop.

Note

SearchTerm must be at least 3 characters long to trigger a search. If searchOnEveryWord prop is specified, same rule
applies to every word. Each word should be at least 3 characters long to be considered.

searchBy prop

The searchBy can be either a string or a function. Similar to
filterBy [https://github.com/ECorreia45/flatlist-react/tree/documentation#filterby-prop] the function must return
true or false where false means the item will not be displayed. The function is called with two arguments,
the item and its index. If you pass a string know that it should represent the key you want to search on. You can use
Dot Notation for string [https://github.com/ECorreia45/flatlist-react/tree/documentation#dot-notation-for-string] here.

state = {
 searchTerm: ''
}

handleSearchInput = (event) => {
 this.setState({searchTerm: event.target.value});
}

...

return (
 <>
 <input value={this.state.searchTerm} onChange={this.handleSearchInput}/>

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 searchTerm={this.state.searchTerm}
 searchBy="firstName"
 />

 </>
)

Searching on multiple keys

For now if you want to search on multiple keys you need to use searchBy as function. The function is called with the
item, the term (if searchOnEveryWord is off) or the word (if searchOnEveryWord is on). To have case insensitive
functionality you need to toLowerCase() each key value. You can have a function like this to pass it to:

matchSearchTerm = (person, term, idx) => {
 return person.firstName.toLowerCase().search(term) >= 0 || person.lastName.toLowerCase().search(term) >= 0;
}

searchOnEveryWord prop

This prop will allow you to look into every word type to find a match. By default the whole searchTerm is used to find
a match. For example person in blue will not match people in blue but with the searchOnEveryWord prop it will
because it will try to find person and not find then try blue which will match.

searchCaseInsensitive prop

This prop will make sure that no matter the casing of the searchTerm it will try to find a match. So words like
people and People will match each other.

Sorting Items

There are two ways to sort the list. You can sort the entire list by using props sort and sortBy or sort the groups
by using prop sortGroupBy. You also can control the direction of the sort by using props sortDesc and sortGroupDesc.
By default, everything is sorted ascending.

sort prop

sort prop simple tells FlatList to sort items and this works great for list that contains string or numbers.
It has no effect on list of arrays or objects.

Below example will sort the numbers from -1(negative one) to 7(seven):

...

return (

 <FlatList
 list={[3, 7, -1, 2, 0]}
 renderItem={(number, index) => {index + 1} - {number}}
 sort
 />

)

sortBy prop

sortBy should be a string representing the key of the object or array and can use
Dot Notation for string [https://github.com/ECorreia45/flatlist-react/tree/documentation#dot-notation-for-string].
This is great when the lists that are not made of string or numbers.

sortDesc prop

sortDesc will affect the whole list and changes sorting from ascending to descending.

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 sortBy="info.age"
 sortDesc
 />

)

sortGroupBy prop

sortGroupBy is the equivalent of sortBy but for groups. It helps you use a different sorting criteria withing the
group.

sortGroupDesc prop

sortGroupDesc is similar to sortDesc but will only affect groups. This should be used along with grouping props.

sortCaseInsensitive prop

sortCaseInsensitive is another sorting control that simply forces FlatList to ignore casing. This is great for
when you don’t care about exact match on casing and can be used with searching.

Grouping Items

Grouping is a powerful feature and by default FlatList will add a <hr/> in between groups but you can override this
as well by using groupSeparator props. You can control list grouping with props groupBy and groupOf.

groupBy prop

groupBy can either be a string using
Dot Notation for string [https://github.com/ECorreia45/flatlist-react/tree/documentation#dot-notation-for-string]
or a function for more control. The function will be called with
two arguments, the item and its index on the list and should return a string to identify the group.

The example below will group everybody with same last name.

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 groupBy="lastName"
 />

)

The example below will create two groups, one for those under 30(thirty) and another for those over 30(thirty)

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 groupBy={(item, index) => item.info.age > 30 ? 'over' : 'under' }
 />

)

groupOf prop

groupOf prop is a simple one and it takes a number. This is great when you want to make groups of certain count of
items.
The example below will create three groups containing three members each.

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 groupOf={3}
 />

)

All the group examples so far render separated by a <hr/> in the DOM and it should be nice to provide a label so we
know whats going on and for that we should look into our custom group separator on the next session.

Custom Group Separator

To create your own group separator you should use groupSeparator prop and If you don’t want any separator at all you
can simply pass null like this groupSeparator={null}.

groupSeparator prop

groupSeparator should be a element or a function that returns an element. When you use a function, the function is
called with the group array and the index of the group.

showGroupSeparatorAtTheBottom prop

By default, group separators show up at the top of each group on the DOM. To change that use showGroupSeparatorAtTheBottom
flag to make it appear on the bottom of the groups.

The example below will create two groups, one for those under 30(thirty) and another for those over 30(thirty) in
descending order and it will also render the label to identify each group by using the third paramater passed to
groupSeparator callback.

...

return (

 <FlatList
 list={this.props.people}
 renderItem={this.renderPerson}
 groupBy={(person, index) => person.info.age > 30 ? 'Over' : 'Under' }
 sortDesc
 sortGroupDesc
 groupSeparator={(group, index, groupLabel) => (<h3>{groupLabel}</h3>)}
 />

)

Styling (Grid and Row)

The component also lets you style how the list is display and you have 2(two) options, display everything in a
grid layout or rows like a table. By default no styling is applied and once you choose to go with these, some of your
style may get overwritten.

displayGrid prop

displayGrid will turn your items container into a grid container and your items in grid items. By default every item
will be spaced 20px from each other with column width of 200px. You can override these as you want as well. The
container will become responsive and adapt with browser resizing adjusting every item on the list.

gridGap prop

gridGap prop takes a string and allows you to determine how far apart the items stay from each other. This is the same as
CSS grid-gap [https://developer.mozilla.org/en-US/docs/Web/CSS/gap]
and you have to specify the unit, for example: 35px 10px, 1vw, 5% 20px’

minColumnWidth prop

minColumnWidth prop takes a string and allows you to control the column minimum width when adapting to resizing. You
must specify the unit, for example: 300px, 20%, 15vw.

displayRow prop

displayRow will make the items and items container full width adding 20px between items. You can override these
as you want as well.

rowGap prop

rowGap prop takes a string and allows you to control the spacing between items. The spacing is added to the bottom of
every item. You must specify the unit, for example: 30px, 1vh.

Note

Styling will only affect position and size of the items, you can choose to style your items however you like.

Author

Elson Correia Portfolio [https://elsoncorreia.com/]

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to ‘…’

	Click on ‘….’

	Scroll down to ‘….’

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

Smartphone (please complete the following information):

	Device: [e.g. iPhone6]

	OS: [e.g. iOS8.1]

	Browser [e.g. stock browser, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here. Share code or screenshots

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

