

Welcome to InfrasCloudy Flask-Base’s documentation!

Contents:

	Home
	Source Code

	Purpose

	Synopsis

	What’s Included?

	Formatting code

	Contributing

	License

	Setting up
	Clone the repo

	Initialize a virtualenv

	(If you’re on a mac) Make sure xcode tools are installed

	Add Environment Variables

	Install the dependencies

	Other dependencies for running locally

	Create the database

	Other setup (e.g. creating roles in database)

	[Optional] Add fake data to the database

	[Optional. Only valid on gulp-static-watcher branch] Use gulp to live compile your files

	Running the app

	Manage.py and Commands
	python manage.py runserver

	.env

	Config and create_app

	Make Shell Context

	Recreate DB

	Run Worker + Redis

	Misc

	Configuration Commands and config.py

	__init__.py
	CSRF Protection

	Flask-Login

	init_app(app)

	Set up Asset Pipeline

	Blueprints

	Assets
	Decorators

	@admin_required

	Models
	Permission class

	Role class

	User Model

	Other User Class Variables and Methods

	AnonymousUser

	Routing (Account Routes)
	Login

	Logout

	Templating
	Base.html

	Macros: Password Strength (check_password.html)

	Macros: Form rendering (render_form)

	Macros: Start Form (begin_form)

	Macros: Flash message to Form (form_message)

	Macros: Render a form field (render_form_field)

	Partials: _flashes

	Partials: _head

	Deployment
	What is Heroku and Why are we using it?

	Basic Setup: Heroku Account and CLI Installation

	Heroku Dyno Creation and Initial Setup

	Configuration

	Database Creation & Launching

	Domain Name + HTTPS Setup

	Debugging

	Heroku considerations, scaling and pricing

Home

Source Code

See the Github repo [https://github.com/infrascloudy/flask-base]

Purpose

Getting a decent flask base / boilerplate up and running quickly with
some sane defaults

Synopsis

A Flask application template with the boilerplate code already done for
you.

What’s Included?

	Blueprints

	User and permissions management

	Flask-SQLAlchemy for databases

	Flask-WTF for forms

	Flask-Assets for asset management and SCSS compilation

	Flask-Mail for sending emails

	gzip compression

	gulp autoreload for quick static page debugging

Formatting code

Before you submit changes to flask-base, you may want to auto format
your code with python manage.py format.

Contributing

See the Github repository [http://github.com/infrascloudy/flask-base]

License

MIT License [http://github.com/infrascloudy/flask-base/blob/master/LICENSE.md]

Setting up

Clone the repo

$ git clone https://github.com/infrascloudy/flask-base.git
$ cd flask-base

Initialize a virtualenv

$ pip install virtualenv
$ virtualenv env
$ source env/bin/activate

(If you’re on a mac) Make sure xcode tools are installed

$ xcode-select --install

Add Environment Variables

Create a file called .env that contains environment variables in
the following syntax: ENVIRONMENT_VARIABLE=value. For example,

the mailing environment variables can be set as the following

MAIL_NAME = 'My Visible Name'
MAIL_ADDRESS = 'no-reply@example.com'
SECRET_KEY=SuperRandomStringToBeUsedForEncryption

Note: do not include the ``.env`` file in any commits. This should
remain private.

Install the dependencies

$ pip install -r requirements/common.txt
$ pip install -r requirements/dev.txt

Other dependencies for running locally

You need to install Foreman [https://ddollar.github.io/foreman/] and Redis [http://redis.io/]. Chances are, these commands
will work:

$ gem install foreman

Mac (using homebrew [http://brew.sh/]):

$ brew install redis

Linux:

$ sudo apt-get install redis-server

Create the database

$ python manage.py recreate_db

Other setup (e.g. creating roles in database)

$ python manage.py setup_dev

Note that this will create an admin user with email and password
specified by the ADMIN_EMAIL and ADMIN_PASSWORD config
variables. If not specified, they are both
flask-base-admin@example.com and password respectively.

[Optional] Add fake data to the database

$ python manage.py add_fake_data

[Optional. Only valid on gulp-static-watcher branch] Use gulp to live compile your files

	Install the Live Reload browser plugin from here [http://livereload.com/]

	Run npm install

	Run gulp

Running the app

$ source env/bin/activate
$ foreman start -f Local

Manage.py and Commands

python manage.py runserver

A note about python manage.py runserver.
Runserver is actually located in flask_script.
Since we have not specified a runserver command, it defaults to
flask_script’s Server() method which calls the native
flask method app.run().
You can pass in some arguemnts such
as changing the port on which the server is run.

.env

The following code block will look for a ‘.env’ file which
contains environment variables for things like email address
and any other env vars. The .env file will be parsed and
santized.
Each line contains some “NAME=VALUE” pair.
Split this and then store var[0] = “NAME” and var[1] = “VALUE”.
Then formally set the environment variable in the last line of
this block.
Per our running example, os.environ[“NAME”] = “VALUE”
These environment variables can be accessed with “os.getenv(‘KEY’)”

if os.path.exists('.env'):
 print('Importing environment from .env file')
 for line in open('.env'):
 var = line.strip().split('=')
 if len(var) == 2:
 os.environ[var[0]] = var[1]

Config and create_app

Refer to manage.py for more details

app = create_app(os.getenv('FLASK_CONFIG') or 'default')
manager = Manager(app)
migrate = Migrate(app, db)

Currently the application will
look for an environment variable called FLASK_CONFIG or it will
move to the ‘default’ configuration which is the DevelopmentConfig
(again see manage.py for full details). Next it will call the
create_app method found in app/__init__.py. This method takes in a
name of a configuration and finds the configuration settings in
config.py. In heroku this will be set to ‘production’ i.e.
ProductionConfig.

Next a Manager instance is created. Manager
is basically an extention that will allow us to get some useful
feedback when we call manage.py from the command line. It also handles
all the manage.py commands. The @manager.command and @manager.option(…)
decorators are used to determine what the help output should be
on the terminal. Migrate is used to make migration between db instances
really easy. Additionally @manager.command creates an application
context for use of plugins that are usually tied to the app.

Make Shell Context

def make_shell_contect():
 return dict(app=app, db=db, User=User, Role=Role)

manager.add_command('shell', Shell(make_context=make_shell_context))
manager.add_command('db', MigrateCommand)

Make shell context doesn’t really serve a ton of purpose in most of our
development at InfrasCloudy. However, it is entirely possible to explore the database
from the command line with this as seen in the lines above.

It is possible to create a general app shell or database specific shell.
For example doing ‘python manage.py shell’

$ me = User()
$ db.sesion.add(me) && db.session.commit()
$ me.id

This basically creates a new user object, commits it to the database gives
it a id. The db specific shell exposes the native MigrateCommands…
honestly you won’t have to worry about these and future info can
be found the Flask-Migrate documentation.

Recreate DB

@manager.command
def recreate_db():
 """
 Recreates the local database.
 YOU SHOULD NOT USE THIS IN PRODUCTION.
 """
 db.drop_all()
 db.create_all()
 db.session.commit()

So this will clear out all the user data (drop_all), will create a new
database but with all the tables and columns set up per your models.
create_all() and drop_all() rely upon the fact that you have imported
** ALL YOUR DATABASE MODELS **. If you are seeing some table not being
created this is the most likely culprit.

Run Worker + Redis

The run_worker command will initialize a task queue. This is basically a
list of operations stored in memory that the server will get around to doing
eventually. This is great for doing asynchronous tasks. The memory store
used for holding these tasks is called Redis. We set up a default redis
password and then open a connection to the redis DB. We instantiate a worker
and add a queue of items that needs to be processed on that worker.

@manager.command
def run_worker():
 """
 Initializes a slim rq task queue.
 """
 listen = ['default']
 conn = Redis(
 host=app.config['RQ_DEFAULT_HOST'],
 port=app.config['RQ_DEFAULT_PORT'],
 db=0,
 password=app.config['RQ_DEFAULT_PASSWORD']
)

 with Connection(conn):
 worker = Worker(map(Queue, listen))
 worker.work()

Misc

You may/may not know this but the whole
if __name__ == ‘__main__’ check is to see if this file is being executed
directly rather than indirectly (by being imported through another file).
So when we execute this file directly (by running python manage.py SOMECMD)
we get the option of instantiating the manager instance
These methods should be accessible from other files though if imported.
But you would have a tough time executing these commands from cmd line
without the Manager init (otherwise you have to deal with argvs and
stuff that is frankly tedious).

Configuration Commands and config.py

So lets go through each of the configuring variables.

APP_NAME is the name of the app. This is used in templating
to make sure that all the pages at least have the same html
title

SECRET_KEY is a alpha-numeric string that is used for crypto
related things in some parts of the application. Set it as an
environment variable or default to our insecure one. This is
used in password hashing see app/models/user.py for more info.
YOU SHOULD SET THIS AS A CONFIG VAR IN PRODUCTION!!!!

SQLALCHEMY_COMMIT_ON_TEARDOWN is used to auto-commit any sessions
that are open at the end of the ‘app context’ or basically the
current request on the application. But it is best practice
to go ahead and commit after any db.session is created

SSL_DISABLE is a boolean to used to enable adhoc ssl certificates (Self-signed) within the application.
The next version of the flask base would accomodate specificying certificates as files

MAIL… is used for sending emails using MailGun. This is further described in email.py.

__init__.py

CSRF Protection

Note about CSRF protection. This basically prevents hackers
from being able to post to our POST routes without having actually
loaded a form on our website. E.g. they could potentially create
users if they found out the URL for our register routes and
the params we expect (its fairly easy to do). But with
CSRF protection, all forms have a hidden field that is verified on
our end. This is a bit low level, but there is a SESSION object
stored on the flask server in memory. Each user has their
own session containing things like their username, user id, etc
When a form created, a random string called a CSRF token is
created and is sent along with the form in a hidden field.
Simultaneously, this string is added to the user session
stored on the server. When the user submits a form, then
the server will check to see if the hidden form field with the
CSRF token matches the CSRF token stored in the user’s session
on the server. If it does, then everything is fine and the
POST request can proceed normally. If not, then the POST request
is aborted as a 403 (i think) error is thrown…basically
the user is not able to POST. This is great for forms, but
if you want to create a public API that does not require a session,
then you’ll want to include a decorator on your route @csrf.exempt

Flask-Login

login_manager = LoginManager()
login_manager.session_protection = 'strong'
login_manager.login_view = 'account.login'

Flask-login provides us with a bunch of easy ways to do secure and
simple login techniques. LoginManager() is the main class that
will handle all of this. Session protection makes sure the
user session is very secure and login_manager.login_view
is the view that a non-authenticated user will get redirected
to. Otherwise it is a 401 error.

init_app(app)

mail.init_app(app)
db.init_app(app)
login_manager.init_app(app)
csrf.init_app(app)
compress.init_app(app)
RQ(app)

init_app(app) are methods in each of these packages.
It binds each instance of the respective application to the
flask app. However, we do need to specify an application
context while using things like db, mail, login_manager,
and compress since they are not bound to our application _exclusively_.

Set up Asset Pipeline

This one is a bit complex. First an Environment instance is created
that holds references to a single path to the ‘static’ folder. We don’t
really care about that since the url_for() method allows us to specify
access to resources in the static/ directory. But we then append all the
folders and files within the ‘dirs’ array to the environment. This
action provides context for the subsequence set of register actions.
Looking in app/assets.py there are some Bundle instances created with
3 parameters mainly: what type of file(s) to bundle, a type of filter/
transpiler to apply, and then a final output file. E.g. for the
app_css bundle, it looks within assets/styles, assets/scripts for any
*.scss files, converts them to css with the scss transpiler and then
outputs it to the styles/app.css file.
See the templates/partials/_head.html
file for more information on how to actually include the file.

Blueprints

from account import account as account_blueprint
from admin import admin as admin_blueprint
from main import main as main_blueprint

app.register_blueprint(main_blueprint)
app.register_blueprint(account_blueprint, url_prefix='/account')
app.register_blueprint(admin_blueprint, url_prefix='/admin')

Blueprints allow us to set up url prefixes for routes contained
within the views file of each of the divisions we specify to be
registered with a blueprint. Blueprints are meant to distinguish between
the variable different bodies within a large application.
In the case of flask-base, we have ‘main’, ‘account’, and ‘admin’
sections. The ‘main’ section contains error handling and views.
The other sections contain mainly just views. The folders for each of
these sections also contain an __init__ file which actually creates the
Blueprint itself with a name and a default __name__ param as well.
After that, the views file and any other files that depend upon the
blueprint are imported and can use the variable name assigned to the
blueprint to reference things like decorators for routes. e.g. if my
blueprint is name ‘first_component’, I would use the following as
a decorator for my routes ‘@first_component.route’. By specifying
the url_prefix, all of the functions and routes etc of the blueprint
will be read with the base url_prefix specified. E.g. if I wanted
to access the ‘/blah’ route within the ‘acount’ blueprint, I need only
specify @account.router(‘/blah’) def … as my method in views.py under
the account/ directory. But I would be able to access it in the
browser with yourdomain.com/accounts/blah

A note on why we are importing here: Because stuff will break…and for
a good reason! The account import in turn imports the views.py file under
the account/ directory. The views.py in turn references db
db is the database instance which was created after the import statements
If we had included these import statements at the very top, views.py
under account would have refered to a db instance which was not created!
hence errors…all the errors (at least in files relying upon a created
db instance…and any instance created beyond that.

Assets

(refer to flask-base/app/assets.py)

See app/__init__.py for details on this

context is set as the assets/styles and
assetts/scripts folders

filter = scss -> convers .scss to css
filter = jsmin -> converts to minified

javascript

Bundle is just the plugin that helps us
do this task.

Decorators

def permission_required(permission):
 """Restrict a view to users with the given permission."""
 def decorator(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 if not current_user.can(permission):
 abort(403)
 return f(*args, **kwargs)
 return decorated_function
 return decorator

This is a rather complicated function, but the general idea
is that it will allow is to create a decorator that will
kick users to a 403 page if they dont have a certain permission
or let them continue. First there is a permission_required
method which takes in a permission e.g. Permission.ADMINISTER
Then it create a function called ‘decorator’ which performs
the check in a separate function itself decorates called
‘decorated_function’. It returns the result from
‘decorate_function’ as well as the results from a specified
parameter f that serves as an extra function call. The
@wraps(f) decorator is itself used to give context for the
decorated function and actually point that context towards
the fully decorated function when the permission_required()
decorator is invoked. Tl;dr it does some complicated stuff
you don’t really need to know about

@admin_required

def admin_required(f):
 return permission_required(Permission.ADMINISTER)(f)

This is a decorator created by the permission required decorator
It checks if the current_user is an admin or not. It takes in a
function f as the next action to occur after the check happens
however in practice, we only use the decorator @admin_required
on routes.

Models

Permission class

GENERAL = 0x01
ADMINISTER = 0xff

Okay so here is a seemingly simple piece of code I really think is

really cool! First of all we are setting up two enums here.

But they are set to weird hexadecimal numbers 0x01 and 0xff.

If you stick these into a hexadecimal -> decimal converter

you’ll find that they represent 1 and 255 respectively. But

in binary they come out to 00000001 and 11111111 (8 ones).

If we do a binary and (&) on these two numbers, we can

actually get some unique properties from these.

So if we do GENERAL & ADMINSTER, it will come out to the following

 00000001
& 11111111

 00000001

We get back the exact same value as GENERAL! Similarly if we do

ADMINSTER & GENERAL we get back GENERAL. This is useful for

checking user roles and who is exactly who in this system.

So we can create a method ‘check(input, checker)’ that will

take an input hex to test and one to text against. We only need

to do ‘(input & checker) == checker’. But there are some more

interesting applications for this. Let us define, for example,

a set of enums CAN_LIKE = 0x01, CAN_POST = 0x02, CAN_EDIT = 0x04

and CAN_REMOVE = 0x08. These are respectively in binary 00000001,

00000010, 00000100, 00001000. We can use binary OR (|) to create

composite user permissions e.g. CAN_LIKE | CAN_POST | CAN_EDIT =

0x07 = 00000111 -> NEW_ROLE. We can run ‘check(NEW_ROLE, CAN_LIKE)’

or ‘check(NEW_ROLE, CAN_POST)’ or ‘check(NEW_ROLE, CAN_EDIT)’ and

all of these will return True.

For example NEW_ROLE & CAN_EDIT

 00000111
& 00000001

 00000001 <- equivalent to CAN_EDIT enum

A function similar to the check described above can be found in

as the ‘can’ method below in the User class. Moving on!

Role class

The Role class instatiates Role model. This is used for the

creation of users such as a general user and an administrator

COLUMN DEFINITIONS:

id serves as the primary key (expects int).

name is the name of the role itself (expects unique String len 64)

index is the name of the index route for the route

default is a T/F value that determines whether a new user created

has that permission or note (ref insert_roles()). This is indexed

meaning that a separate table has been created with default as the

first column and id as the second column. Default in this table

is sorted and a query for default performs a binary search rather

than a linear search (reduces search time complexity from O(N) to

O(log n)

permissions contains the permissions enum (see Permissions class)

users is not a column but it sets up a database relation. This
case

is a one-to-many relationship in that for ONE Role record, there are

MANY associated User objects. The backref param specifies a

bi-directional relationship between the two tables in that there is

a new property on both a given Role and User object. E.g. Role.users

will refer to the User object (i.e. the user table). and User.role

(role being the string specified with backref) will refer to the

Role object. Lazy = dynamic specifies to return a Query object

instead of actually asking the relationship to load all of its child

elements upon creating the relationship. It is best practice to

include lazy=dynamic upon the establishment of a relationship.

Sub-note on lazy-dynamic and backref:

Currently, lazy-dynamic will

make the User collection to be loaded in as a Query object (so not

everything is loaded at once). Simiarly (as mentioned above), the

User object can reference the Role object by doing User.role however,

this uses the default collection loading behavior (i.e. load the
entire

collection at once). It is fine in this case since the amount of

Roles in the Role collection will be much less than the amount of

entries in the User collection. However, we can specify that User.role

uses the lazy-dynamic loading scheme. Simply redefine users here to

users = db.relationship('User', backref=db.backref('role',
 lazy='dynamic'), lazy='dynamic')

insert_roles() and SQLAlchemy Sessions

The staticmethod decorator specifies that insert_roles() must be

be called with a instance of the Role class. E.g.
role_obj.insert_roles()

This method is fairly self-explanatory. It specifies a ‘roles’ dict

This is then iterated through and foreach role in the ‘roles’ dict

we check to see if it already exists (by name) in the Role object

i.e. the Roles table. If not, then a new Role object is instantiated

After that, the perms, index, default props are set and the the

role object is now added to the db session and then committed.

A note about sqlalchemy if you haven’t noticed already: All changes

are added to a Session object (handled by SQLAlchemy). Unless
specified

otherwise, the session object has a merge operation that finds the
difs

between the new object (that was created and added to the session
object)

and the currently existing (corresponding) object existing in the
table

right now. Then a commit() propegates these changes into the database

making as little changes as possible (i.e. every time we update a

record, the record’s attribute is changed ‘in place’ rather than being

deleted and then replaced. Neat :)

__repr__

def __repr__(self):
 return '<Role \'%s\'>' % self.name

this repr method is pretty much optional, but it is helpful in
that

it will allow the program to pretty print the user object when you
come

across an error

User Model

The class User represents users… it extends db.Model and

UserMixin. Per the flask-login documentation, the User class

needs to implement is_authenticated (returns True if the user is

authenticated and in turn fulfill login_required), is_active

(returns True if the user has been activated i.e. confirmed by

email in our case), is_anonymous (returns if a user is Anonymous

i.e. is_active = is_authenticated = False, is_anonymous = True,

and get_id() = None), get_id() (returns a UNICODE that has the

id of the user NOT an int).

Column Descriptions:

id - primary key for the table. Id of the user. i.e. the

unique identifier for the collection

confirmed - boolean val (default value = False) that is

an indication of whether the user has confirmed their

account via email.

first_name - … string self explanatory

last_name - … string self explanatory

email - string self explanatory. But we impose the uniqueness

constraint on this column. It is necessary to check for this

on the backend before entering an email into the table,

else there will be some nasty errors produced when the user

tries to add an existing email into the table.

Note: first_name, last_name, email form an index table for easy
lookup. See Role for more info

password_hash is a 128 char long string containing the hashed

password. As always, it is best practice to never include the

plaintext password on the server. This hashed password is

checked against when authenticating users.

role_id is the id of the role the user is. It is a foreign key

and relates to the id’s in the Role collection. By default

the general user is role.id = 1, and role.id = 2 is the

admin. Also note that we refer to the Role collection with

‘roles’ rather than the assigned backref ‘role’ since we

are referring to an individual column.

Other User Class Variables and Methods

Note that the following methods are actually available in your Jinja

templates since they are attached to the user instance.

full_name provides the full name of the user given a first and
last

name

can provides a really cool way of determining whether a user has

given permissions. See the Permissions class for more info.

is_admin is an implementation of can to test a user against

admin permissions.

password This does not give a password if a user just

calls the method and throws an AttributeError. However

if someone chooses to set a password e.g.

u = User(password = test) the second definition of

password method is run, taking the keyword arg (kwarg) as the

password to then call the generate_password_hash method and

set the password_hash property of the user to the generated

password.

verify_password well…verifies a provided user plaintext password

against the password_hash in the user record. Uses the

check_password_hash method.

generate_confirmation_token returns a cryptographically signed

string with encrypted user id under key confirm. This will

expire in 7 days. Note that Serializer is actually

TimedJSONWebSerializer when looking for documentation.

generate_changed_email_token also returns a cryptographically

signed string with encrypted user id under key change_email

and a encrypted new_email parameter password into the method

containing the desired new email the user wants to replace the

old email with.

generate_password_reset_token operates similarly to
generate_ confirmation_token. Generates token for password reset

NOTE: For context, the generate_…_token methods are used to create

a random string that will be later added to an email (usually) to the

requesting user.

confirm_account

The confirm_account method will take in a token (which was presumably

generated from the generate_confirmation_token method) and then
return

True if the provided token is valid (and can be decrypted with the

SECRET_KEY and has not expired) AND the decrypted token has the key

‘confirm’ with the id of the requesting user. If so, it flips the

‘confirmed’ attribute of the requesting user to True.

Will throw BadSignature of the token is invalid, will throw

SignatureExpired if the token is past the expiration time.

change_email

The change_email method will take in a token (which was presumably

generated from the generate_email_token method) and then return True

True if the token is valid (see above method for explanation of
‘valid’)

and contains the key ‘change_email’ with value = user id in addition
to

the key ‘new_email’ with the new email address the user wants to
change

their email to. Before the new_email is committed to the session, a

query is performed on the User collection on all the emails to
maintain

the unique constraint on the email columns. Then the user’s ‘email’

attribute is set to the ‘new_email’ specified in the decrypted token.

will throw BadSignature if invalid token and SignatureExpired if the

token is expired.

AnonymousUser

We define a custom AnonymousUser class that represents a non-logged

user. It extends the AnonymousUserMixing provided by
flask-loginmanager

we deny all permissions and affirm that this user is not an admin

class AnonymousUser(AnonymousUserMixin):
 def can(self, _):
 return False

 def is_admin(self):
 return False

login_manager.anonymous_user = AnonymousUser

We then register our custom AnonymousUser class as the default
login_manager

anonymous user class

@login_manager.user_loader
def load_user(user_id):
 return User.query.get(int(user_id))

This is the default user_loader method for login_manager. This
method

defines how to query for a user given a user_id from the user SESSION
object.

It is pretty straightforward, it will query the User table and find
the user

with ID equal to the user_id provided in the user SESSION

Routing (Account Routes)

This guide will be explaining the concept of routing by going through a file. We will be using app/account/views.py

Login

@account.route('/login', methods=['GET', 'POST'])
def login():
 """Log in an existing user."""
 form = LoginForm()
 if form.validate_on_submit():
 user = User.query.filter_by(email=form.email.data).first()
 if user is not None and user.password_hash is not None and \
 user.verify_password(form.password.data):
 login_user(user, form.remember_me.data)
 flash('You are now logged in. Welcome back!', 'success')
 return redirect(request.args.get('next') or url_for('main.index'))
 else:
 flash('Invalid email or password.', 'form-error')
 return render_template('account/login.html', form=form)

All routes are decorated with the name of the associated Blueprint along
with the .route prop with attributes of (name, methods=[]). For example
@account.route(‘/login’, method=[‘GET’, ‘POST’]) creates a route accessible
at yourdomain.com/account/login.

This route can accept either POST or GET
requests which is appropriate since there is a form associated with the
login process. This form is loaded from the forms.py file (in this case
the LoginForm() is loaded) and we then check if the form is valid
(validate_on_submit) in that it is a valid POST request.
We grab the form field named ‘email’ and query the User database for the
user that has that email. Then we call the verify_password method
from the User class for this specific user instance and check the hashed
password in the database against the password provided by the user which
is hashed with the SECRET_KEY. If everything is fine, the Flask-login
extendion performs a login_user action and sets the SESSION[‘user_id’]
equivalent to the user id provided from the user instance. If the
form has remember_me set to True (ie checked) then that is passed along
as a parameter in login_user.

If it was redirected to this /login page, their URL will have a parameter
called next containing the URL they need to be directed to after they
login. Otherwise, they will just be sent to the main.index route
This is true for the admin as well. It is best to edit this functionality
since index pages should differ by user type. There is a flash sent as well
if the request is successful.

If there is an error in the user checking process, then the user is kicked
back to the account/login page with a flashed form error.

If this is a GET request, only the account/login page is rendered

Logout

@account.route('/logout')
@login_required
def logout():
 logout_user()
 flash('You have been logged out.', 'info')
 return redirect(url_for('main.index'))

The Flask-login Manager has a built in logout_user function that
removes the SESSION variables from the user’s browser and logs out
the user completely

Templating

This will cover various methods used in our jinja templates.

Base.html

{% import ‘macros/nav_macros.html’ as nav %}

<!DOCTYPE html>
<html>
 <head>
 {% include 'partials/_head.html' %}
 {# Any templates that extend this template can set custom_head_tags to add scripts to their page #}
 {% block custom_head_tags %}{% endblock %}
 </head>
 <body>
 {# Example dropdown menu setup. Uncomment lines to view
 {% set dropdown =
 [
 ('account stuff',
 [
 ('account.login', 'login', 'sign in'),
 ('account.logout', 'logout', 'sign out'),
 ('2nd drop', [
 ('account.login', 'login 2', ''),
 ('3rd drop', [
 ('main.index', 'home 2', '')
])
])
]
),
 ('main.index', 'home 1', 'home')
]
 %}
 #}

 {% block nav %}
 {# add dropdown variable here to the render_nav method to render dropdowns #}
 {{ nav.render_nav(current_user) }}
 {% endblock %}

 {% include 'partials/_flashes.html' %}
 {# When extended, the content block contains all the html of the webpage #}
 {% block content %}
 {% endblock %}

 {# Implement CSRF protection for site #}
 {% if csrf_token() %}
 <div style="visibility: hidden; display: none">
 <input type="hidden" name="csrf_token" value="{{ csrf_token() }}">
 </div>
 {% endif %}
 </body>
</html>

Macros: Password Strength (check_password.html)

Refer to app/templates/macros/check_password.html

This uses the zcvbn password checker to check the entropy of the
password provided in the password field.

Given a specified field, the password checker will check the entropy
of the field and disable the submit

button until the give ‘level’ is surpassed

Macros: Form rendering (render_form)

{% macro render_form(form, method='POST', extra_classes='', enctype=None) %}
 {% set flashes = {
 'error': get_flashed_messages(category_filter=['form-error']),
 'warning': get_flashed_messages(category_filter=['form-check-email']),
 'info': get_flashed_messages(category_filter=['form-info']),
 'success': get_flashed_messages(category_filter=['form-success'])
 } %}

 {{ begin_form(form, flashes, method=method, extra_classes=extra_classes, enctype=enctype) }}
 {% for field in form if not (is_hidden_field(field) or field.type == 'SubmitField') %}
 {{ render_form_field(field) }}
 {% endfor %}

 {{ form_message(flashes['error'], header='Something went wrong.', class='error') }}
 {{ form_message(flashes['warning'], header='Check your email.', class='warning') }}
 {{ form_message(flashes['info'], header='Information', class='info') }}
 {{ form_message(flashes['success'], header='Success!', class='success') }}

 {% for field in form | selectattr('type', 'equalto', 'SubmitField') %}
 {{ render_form_field(field) }}
 {% endfor %}
 {{ end_form(form) }}
{% endmacro %}

Render a flask.ext.wtforms.Form object.

Parameters:
 form – The form to output.
 method – <form> method attribute (default 'POST')
 extra_classes – The classes to add to the <form>.
 enctype – <form> enctype attribute. If None, will automatically be set to
 multipart/form-data if a FileField is present in the form.

Render Form renders a form object. It calls the begin form macro.
Initially

a ‘flashes’ variable is set with ‘error’, ‘warning’, ‘info’, ‘success’
which

have values gathered from the get_flashed_messages method from
flask. Note

that all flashes are stored in SESSIOn with a category type. For most
of our

purposes, we only have form-error and form-success as our flash types
(the

second parameter in the flash function call seen in the views.

Then the begin_form macro is called and for each form field in the
provided

form render_form_field macro is called with the field.

All hidden fields (i.e. the CSRF field) and all submit fields is not
rendered

at this fime in render_form_field. In the render_form_field

method, render_form_input is called for each input in the form
field.

After that, the form_message macro is called with each of the flash
types.

Lastly, the submit field is rendered. And the form is closed with the
end_form

macro

Macros: Start Form (begin_form)

Set up the form, including hidden fields and error states.

begin_form is called from render_form. First a check is performed to
check

if there exists a field within the form with type equal to FileField.
This

check is performed via filter (“|”) in Jinja. This initial check
produces a

filtered object, the ‘list’ filter creates a iterable list which we
can then

check the length of with ‘length > 0’. So if this check passes, then
the enctype

must be set to multipart/form-data to accomodate a file upload.
Otherwise, there

is no enctype.

Then the form tag is created with a method default of POST, enctype
decided by the

check explained above. If there are errors (by field specific
validator errors or

if the flashes.error, flashes.warning, flashes.info, flashes.success
is not None,

then that class is added to the overall class of the form (along with
any specified

extra_classes, default = ‘’).

Lastly the hidden_tags are rendered. WTForms includes in this method
the rendering of

the hidden CSRF field. We don’t have to worry about that.

Example output:

<form action="" method="POST" enctype="multipart/form-data" class="ui form">
 <div style="display:none;">
 <input id="csrf_token" name="csrf_token" type="hidden" value="SOME_CSRF_TOKEN_HERE">

Macros: Flash message to Form (form_message)

Render a message for the form. This is called from the render_form
macro.

Recall the get_flashed_messages method. It will get the flash
message from

the SESSION object with a given cateogory_filter. Within the
render_form

macro, the flashes variable is set with attributes ‘errors’,
‘success’,

‘info’, and ‘warning’. The messages parameter for form_message
contains the

flash messages for the respective attribute specified in
flashes[‘some_attr’].

The form_message macro is called after all form fields have been
rendered,

except for the Submit field. A div is created with class= ‘ui CLASS
message’

class being either error, success, info, or warning. This div is only
created

if there are messages for a given flashes type! For each of the
messages in

the flashes type, the message is filtered to only contain escaped HTML
chars

and appended within the div ul as a list element.

Example Output:

<div class="ui error message">
 <div class="header">Something went wrong.</div>
 <ul class="list">
 Invalid email or password.

</div>

Macros: Render a form field (render_form_field)

Render a field for the form. This is rather self explanatory.

If the field is

a radio field (RadioField WTForms object) extra_classes has an added
class of

‘grouped fields’ since all the options of a Radio Field must be styled
in this

way to display together.

If there is a validation error on the form field, a error class is
added to the

field div (to make the field colored red). Then the
render_form_input macro is

called with field object itself as a parameter. Any validation errors
are then

added with a sub-dev with content field.errors (we only show the first
validation

error for the given error for simplicity) and filter for HTML safe
chars.

Partials: _flashes

See the macros/form_macros for extended explanation of the

get_flashed_messages(category_filter) method. This macro renders

general flash methods that appear at the top of the page. We render

by flash type and create a separate ‘ui {{ class }} message’ div

for each message within a specific flash type. Error = red,

warning = yellow, info = blue, success = green.

Partials: _head

This method contains all the assett imports (i.e. imports for scripts
and styles for the app)

Note that the asssets will be contained in the
static/webassets-external folder when the app

is in debug mode.

Deployment

The aim of this guide is to walk you through launching our basic flask-base repository found [here](https://github.com/infrascloudy/flask-base) and will also
cover some common situations and issues encountered from previous projects.

What is Heroku and Why are we using it?

To get started we are going to cover what heroku is and how to set it up.

Just a little bit of background. Currently, when you run your app with python manage.py runserver or foreman start -f Local you are running on your computer
only (on something like localhost:5000). Of course this means that if anyone tries to access your application, they will be stuck with a 404 not found error.
Thus we must put your application onto a publicly accessible computer that is constantly running. This is exactly what a server does. When you type in something
like linaccess.za.net, a request is first sent to a Domain Name Server or _DNS_ which then maps the domain name linaccess.za.net to an IP Address which
points to the server which then renders pages and serves them over to you, the client. Seems simple. But how do you get a server?

Heroku is the answer. The heroku platform is a cloud platform that runs your apps in containers called dynos and hosts these apps for free (…ish, we’ll
get to pricing later). These dynos can host apps and allow you to scale the applications infinitely (at a cost of course) to handle more traffic.
Additionally, the heroku dynos contain all the code you need to run a python app from the get go and will install any pip dependencies.
Your app lives in a remote git repository on heroku’s servers. When you push to the remote heroku repository, heroku will merge the changes, reset your server,
and run the new version of your app. Heroku makes this entire process seamless, so its super easy to maintain your app well after it has been launched.

Now that we have a good understanding of what heroku is and why we want to use it. Let’s get started with launching the application to heroku!

Basic Setup: Heroku Account and CLI Installation

Head over to https://signup.heroku.com to set up an account. Once you are set up, confirm your email and set up your password.

Next, install the heroku command line interface (CLI) for your operating system at
https://devcenter.heroku.com/articles/heroku-cli.

Heroku Dyno Creation and Initial Setup

Go to the directory containing the application you wish to launch. For demo purposes, we will be using the flask-base repository which you can clone from
https://github.com/infrascloudy/flask-base.
This is a python application that has a SQLite database and a Redis Task Queue.

Go to your terminal and type in heroku login. If you have set up everything correctly with the CLI installation in the previous section, you should be prompted for your Heroku account credentials (from the previous section as well).

$ heroku login
Enter your Heroku credentials.
Email: admin@example.com
Password (typing will be hidden):
Authentication successful.

Before creating a heroku dyno, make sure you are at the root directory of your application. Next make sure your application is a git repository (you can do git init to make it one), and make sure the current git branch you are on is master since heroku only pushes changes from that branch. Also make sure that your requirements.txt file contains all the pip modules to work (you can do pip freeze > requirements.txt to place all your installed pip modules in requirements.txt).

To create the dyno, run in the terminal heroku create <app-name>.

Note that I use ``<variable>`` to indicate that the variable is
optional and the carats should be excluded. E.g. a valid interpretation
of the above would be ``heroku create`` or ``heroku create myappname``
but NOT ``heroku create <myappname>``.

Heroku will create an empty dyno with name you specified with
app-name or a random name which it will output to the terminal.

$ heroku create flask-base-demo
Creating ⬢ flask-base-demo... done
https://flask-base-demo.herokuapp.com/ | https://git.heroku.com/flask-base-demo.git

Your application will be accessible at
https://flask-base-demo.herokuapp.com (per the example above) and
the remote github repository you push your code to is at
https://git.heroku.com/flask-base-demo.git.

Next we can run git push heroku master. This will push all your
existing code to the heroku repository. Additionally, heroku will run
commands found in your Procfile which has the following contents:

This specifies that there is will be a web dyno (a server that
serves pages to clients) and a worker dyno (in the case of
flask-base, a server that handles methods equeued to the Redis task
queue).

If all goes well, you should see an output something similar to this:

Counting objects: 822, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (339/339), done.
Writing objects: 100% (822/822), 1.12 MiB | 914.00 KiB/s, done.
Total 822 (delta 457), reused 822 (delta 457)
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Python app detected
remote: -----> Installing python-2.7.13
remote: $ pip install -r requirements.txt
remote: Collecting Flask==0.10.1 (from -r /tmp/.../requirements.txt (line 1))
...
...
...
remote: Successfully installed Faker-0.7.3 Flask-0.10.1 Flask-Assets-0.10 Flask-Compress-1.2.1 Flask-Login-0.2.11 Flask-Mail-0.9.1 Flask-Migrate-1.4.0 Flask-RQ-0.2 Flask-SQLAlchemy-2.0 Flask-SSLify-0.1.5 Flask-Script-2.0.5 Flask-WTF-0.11 Jinja2-2.7.3 Mako-1.0.1 MarkupSafe-0.23 SQLAlchemy-1.0.6 WTForms-2.0.2 Werkzeug-0.10.4 alembic-0.7.6 blinker-1.3 click-6.6 gunicorn-19.3.0 ipaddress-1.0.17 itsdangerous-0.24 jsmin-2.1.6 jsonpickle-0.9.2 psycopg2-2.6.1 python-dateutil-2.6.0 raygun4py-3.0.2 redis-2.10.5 rq-0.5.6 six-1.10.0 webassets-0.10.1
remote:
remote: -----> Discovering process types
remote: Procfile declares types -> web, worker
remote:
remote: -----> Compressing...
remote: Done: 43.7M
remote: -----> Launching...
remote: Released v4
remote: https://flask-base-demo.herokuapp.com/ deployed to Heroku
remote:
remote: Verifying deploy... done.
To https://git.heroku.com/flask-base-demo.git
 * [new branch] master -> master

Configuration

Next we have to set up some configuration variables to ensure that the
application will be in production mode.

From the command line run

heroku config:set FLASK_CONFIG=production

Also set your Mailgun credentials as configuration variables as well (if you want the application to send email)
The MAIL_DOMAIN is the last segment of the MailGun API Base URL
Ex: If API Base URL is https://api.mailgun.net/v3/mg.example.com then MAIL_DOMAIN would be mg.example.com

MAIL_KEY is your MailGun Api Key

heroku config:set MAIL_NAME=yourVisableName MAIL_ADDRESS=no-reply@example.com MAIL_DOMAIN=mg.example.com MAIL_KEY=key-d3adb33fd3adb33f

Next you should add a SECRET_KEY

heroku config:set SECRET_KEY=SuperRandomLongStringToPreventDecryptionWithNumbers123456789

And also set, SSL_DISABLE to False

heroku config:set SSL_DISABLE=False

If you plan to use redis, go to
https://elements.heroku.com/addons/redistogo?app=flask-base-demo and
follow the onscreen steps to provision a redis instance.

Also if you have a Raygun API Key, add the config variable
RAYGUN_APIKEY in a similar fashion to above. This will enable error
reporting.
See https://raygun.com for more details

Database Creation & Launching

First run heroku ps:scale web=1 worker=1. You may need to add a
credit card for this to work (it will notify you on the command line to
do that).

Next run heroku run python manage.py recreate_db to create your
database.

Lastly, run the command to add an admin user for you app. In flask base
it will be the following heroku run python manage.py setup_dev.

In general if you want to run a command on the app it will be in the
format of heroku run <full command here>. Additionally you can
access the file system with heroku run bash.

You can now access your app at the URL from earlier and log in with the
default user.

Domain Name + HTTPS Setup

This guide encompasses all you need to get set up with SSL
https://support.cloudflare.com/hc/en-us/articles/205893698-Configure-CloudFlare-and-Heroku-over-HTTPS.

Debugging

heroku logs --tail will open up a running log of anything that
happens on your heroku dyno.

Additionally, if you have Raygun configured, you’ll get error reports
(otherwise, you can look at older versions of flask base where we sent
errors to the main administrator email).

Lastly, you can use an application like
`Postico <https://eggerapps.at/postico/>`__ to actually look at your
database in production. To get the credentials for the application to
work with Postico, do the following:

	Run heroku config to print out all configuration variables.

	Find the DATABASE_URL variable, it should look something like
postgres://blahblahblah:morerandomstuff123456@ec2-12-345-678-9.compute-1.amazonaws.com:5432/foobar

	In Postico, click “New Favorite”.

	For the fields use the following reference to interpret the parts of
the DATABASE_URL variable:
postgres://User:Password@Host:Port/Database

	If you want to view your redis queue, use the following web interface
https://www.redsmin.com/ or the command line.

Heroku considerations, scaling and pricing

If your application uses file uploads, Heroku does not have a
persistent file system, thus you need to set up a Amazon S3 Bucket to
upload your file to. This heroku guide has a nice way to upload files
with AJAX on the frontend https://devcenter.heroku.com/articles/s3. You
can also view the Reading Terminal
Market [https://github.com/hack4impact/reading-terminal-market] Repo
for an example of how to use file uploads

Heroku has a limit of 30 seconds on processing a request. This means
that once a user submits a request to a URL Endpoint, a response must be
sent back in 30 seconds, otherwise the request will abort and the user
will get a timeout error. You should explore using a Redis queue to
process requests in the background if they require more than a few
seconds to run. Or you can issue AJAX requests on the frontend to a URL
(at least this will just silently fail).

Heroku postgresQL has a limit of about 10k rows. If your application
will use more than that, then you should follow this
guide [https://devcenter.heroku.com/articles/upgrading-heroku-postgres-databases].

Also you should upgrade your heroku instance to the hobby tier to
ensure that it will be working 24 hrs. The free tier will only work 18
hrs a day and will sleep the application after 5 minutes if inactive
(meaning that it will take a while to start up again from a sleep
state). You can change this on the heroku dashboard
https://dashboard.heroku.com/apps/.

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to InfrasCloudy Flask-Base’s documentation!

 		
 Home

 		
 Source Code

 		
 Purpose

 		
 Synopsis

 		
 What’s Included?

 		
 Formatting code

 		
 Contributing

 		
 License

 		
 Setting up

 		
 Clone the repo

 		
 Initialize a virtualenv

 		
 (If you’re on a mac) Make sure xcode tools are installed

 		
 Add Environment Variables

 		
 Install the dependencies

 		
 Other dependencies for running locally

 		
 Create the database

 		
 Other setup (e.g. creating roles in database)

 		
 [Optional] Add fake data to the database

 		
 [Optional. Only valid on gulp-static-watcher branch] Use gulp to live compile your files

 		
 Running the app

 		
 Manage.py and Commands

 		
 python manage.py runserver

 		
 .env

 		
 Config and create_app

 		
 Make Shell Context

 		
 Recreate DB

 		
 Run Worker + Redis

 		
 Misc

 		
 Configuration Commands and config.py

 		
 __init__.py

 		
 CSRF Protection

 		
 Flask-Login

 		
 init_app(app)

 		
 Set up Asset Pipeline

 		
 Blueprints

 		
 Assets

 		
 Decorators

 		
 @admin_required

 		
 Models

 		
 Permission class

 		
 Role class

 		
 COLUMN DEFINITIONS:

 		
 Sub-note on lazy-dynamic and backref:

 		
 insert_roles() and SQLAlchemy Sessions

 		
 __repr__

 		
 User Model

 		
 Column Descriptions:

 		
 Other User Class Variables and Methods

 		
 confirm_account

 		
 change_email

 		
 AnonymousUser

 		
 Routing (Account Routes)

 		
 Login

 		
 Logout

 		
 Templating

 		
 Base.html

 		
 Macros: Password Strength (check_password.html)

 		
 Macros: Form rendering (render_form)

 		
 Macros: Start Form (begin_form)

 		
 Macros: Flash message to Form (form_message)

 		
 Macros: Render a form field (render_form_field)

 		
 Partials: _flashes

 		
 Partials: _head

 		
 Deployment

 		
 What is Heroku and Why are we using it?

 		
 Basic Setup: Heroku Account and CLI Installation

 		
 Heroku Dyno Creation and Initial Setup

 		
 Configuration

 		
 Database Creation & Launching

 		
 Domain Name + HTTPS Setup

 		
 Debugging

 		
 Heroku considerations, scaling and pricing

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

