

Warning

This is the documentation for a development version of flagman.

Documentation for the Most Recent Stable Version [http://flagman.readthedocs.io/en/stable/]

Welcome to flagman!

[image: Supports Python 3.7] [https://www.youtube.com/watch?v=p33CVV29OG8&t=59m30s] [image: MIT License] [image: Development Docs Build Status] [https://flagman.readthedocs.io/] [image: Development Build Status] [https://travis-ci.com/scolby33/flagman] [image: Development Test Coverage Status] [https://codecov.io/gh/scolby33/flagman/branch/develop]

Perform arbitrary actions on signals.

$ flagman --usr1 print 'a fun message' --usr1 print 'another message' --usr2 print_once 'will be printed once' &
INFO:flagman.cli:PID: 49220
INFO:flagman.cli:Setting loglevel to WARNING
init # the set_up phase of the three actions
init
init
$ kill -usr1 49220 # actions are called in the order they're passed in the arguments
a fun message
another message
$ kill -usr2 49220 # actions can remove themselves when no longer useful
will be printed once
cleanup # the tear_down phase of the `print_once` action
WARNING:flagman.core:Received `ActionClosed`; removing action `PrintOnceAction`
snip traceback
flagman.exceptions.ActionClosed: Only print once
$ kill -usr1 49220 # other actions are still here, though
a fun message
another message
$ kill 49220 # responds gracefully to shutdown requests
cleanup # the tear_down phase of the two remaining actions
cleanup

On this page:

	Features

	Use Cases

	The Anatomy of an Action

	Overlapping Signals

	A Real-World Use

	CLI Reference

	API Reference

	Installation

	Changelog

	Contributing

	License

	Indices and tables

Features

	Safe execution of code upon receiving
SIGHUP, SIGUSR1, or SIGUSR2

	Optional systemd integration–sends READY=1 message when startup is complete

	Complete mypy [http://mypy-lang.org/] type annotations

Use Cases

The use cases are endless!
But specifically, flagman is useful to adapt services that do not handle
signals in a convenient way for your infrastructure.

I wrote flagman to solve a specific problem, examined in
A Real-World Use.

The Anatomy of an Action

Learn how to create your own Actions!

	The Anatomy of an Action
	The Action Class

	“Closing” an Action

	Registering an Action

Overlapping Signals

flagman attempts to handle overlapping signals in an intelligent manner.
This algorithm is explained here:

	Overlapping Signals

A Real-World Use

An examination of the problem I built flagman to solve.

	A Real-World Use

CLI Reference

The CLI options for flagman are documented here.

	CLI Reference
	Notes

API Reference

Information about the interfaces flagman exposes are here.

	API Reference
	The Action Class

	The Core Module

	Errors and Exceptions

	Built-in Actions

	Types

	The CLI Module

	Systemd Notify Utilities

Installation

flagman has no required dependencies outside the Python Standard Library.

At the moment, installation must be performed via GitHub:

$ pip install git+https://github.com/scolby33/flagman.git

For prettier output for flagman --list, install the color extra:

$ pip install git+https://github.com/scolby33/flagman.git[color]

flagman targets Python 3 and tests with Python 3.7.
Versions earlier than 3.7 are not guaranteed to work.

Changelog

flagman adheres to the Semantic Versioning (“Semver”) 2.0.0 versioning standard.
Details about this versioning scheme can be found on the Semver website [http://semver.org/spec/v2.0.0.html].
Versions postfixed with ‘-dev’ are currently under development and those without a
postfix are stable releases.

You are reading the documents for version 0.1.0-dev of flagman.

Changes as of 18 July 2018

	Initial implementation of the flagman functionality.

Contributing

There are many ways to contribute to an open-source project,
but the two most common are reporting bugs and contributing code.

If you have a bug or issue to report, please visit the
issues page on GitHub [https://github.com/scolby33/flagman/issues] and open an issue there.

If you want to make a code contribution, feel free to open a pull request!

License

The systemd notification portion of flagman is originally
Copyright © 2016 Brett Bethke and is provided under the MIT license.
The original source is found at https://github.com/bb4242/sdnotify.

The remainder of flagman is Copyright © 2018 Scott Colby and is available
under the MIT license.

See the LICENSE.rst [https://github.com/scolby33/flagman/blob/develop/LICENSE.rst]
file in the root of the source code repository for the full text of the license.

Indices and tables

	Index

	Module Index

	Search Page

Warning

This is the documentation for a development version of flagman.

Documentation for the Most Recent Stable Version [http://flagman.readthedocs.io/en/stable/]

The Anatomy of an Action

Actions are the primary workhorse of flagman.
Writing your own actions allows for infinite possible uses of the tool!

The Action Class

Actions are instances of the abstract base class flagman.Action.
Let’s look at the included PrintAction as an illustrative example.

class PrintAction(Action):
 """A simple Action that prints messages at the various stages of execution.

 (message: str)
 """

 def set_up(self, msg: str) -> None: # type: ignore
 """Store the message to be printed and print the "init" message.

 :param msg: the message
 """
 self_msg = msg
 print('init')

 def run(self) -> None:
 """Print the message."""
 print(self._msg)

 def tear_down(self) -> None:
 """Print "cleanup" message."""
 print('cleanup')

We start with a standard class definition and docstring:

class PrintAction(Action):
 """A simple Action that prints messages at the various stages of execution.

 (message: str)
 """

We inherit from Action.
The docstring is parsed and becomes the documentation for the action in the CLI output:

$ flagman --list
name - description [(argument: type, ...)]
--
print - A simple Action that prints messages at the various stages of execution.
 (message: str)

If the Action takes arguments, it is wise to document them here.
The name of the action is defined in an entry point–see Registering an Action below.

Next is the set_up() method.

def set_up(self, msg: str) -> None: # type: ignore
 """Store the message to be printed and print the "init" message.

 :param msg: the message
 """
 self_msg = msg
 print('init')

All arguments will be passed to this method as strings. If other types are expected,
do the conversion in set_up() and raise errors as necessary.
If mypy [http://mypy-lang.org/] is being used, the # type: ignore
comment is required since the parent implementation takes *args.

Do any required set up in this method: parsing arguments, reading external data, etc.
If you want values from the environment
(e.g. if API tokens or other values that should not be passed on the command line are
needed), you can get them here.
flagman itself does not provide facilities for parsing the environment,
configuration files, etc.

Next we have the most important method, run(). This is the only abstract method
on Action and as such it must be implemented.

def run(self) -> None:
 """Print the message."""
 print(self._msg)

Perform whatever action you wish here.
This method is called once for each time flagman is signaled with the proper
signal, assuming low enough rates of incoming signals.
See below in the Overlapping Signals section for more information.

Because of flagman’s architecture, it is safe to do anything inside the
run() method.
It is not actually called from the signal handler, but in the main execution loop
of the program.
Therefore, normally “risky” things to do in signal handlers involving locks, etc.
(including using the logging [https://docs.python.org/3/library/logging.html#module-logging] module, for example) are completely safe.

Finally, there is the tear_down() method.

def tear_down(self) -> None:
 """Print "cleanup" message."""
 print('cleanup')

Here you can perform any needed cleanup for your action like closing connections,
writing out statistics, etc.

This method will be called when the action is “closed” (see below),
during garbage collection of the action, and before flagman shuts down.

“Closing” an Action

If an Action has fulfilled its purpose or otherwise no longer needs to be called,
it can be “closed” by calling its _close() method.
This method takes no arguments and always returns None.

Calling this method does two things: it calls the action’s tear_down() method
and it sets a flag that prevents further calls to the internal _run() method
that flagman uses to actually run Actions.

Further calls to _run() will raise a flagman.ActionClosed exception
and will cause the removal of the action from the internal list of actions to be run.
If there are no longer any non-closed actions, flagman will exit with
code 1, unless it was originally called with the --successful-empty
option, in which case it will exit with 0.

If you want to close your own action in its run() method, a construction like
so is advised:

def run(self) -> None:
 if some_condition:
 self._close()
 raise ActionClosed('Closing because of some_condition')
 else:
 ...

This will print your argument to ActionClosed to the log and will result in the
immediate removal of the action from the list of actions to be run.
If ActionClosed is not raised, flagman will not realize the action has
been closed and will not remove it from the list of actions to be run until the next
time run() would be called,
i.e. the next time the signal is delivered for the action.

Registering an Action

flagman detects available actions in the flagman.action entry point
group.
Actions must be distributed in packages with this entry point defined.
For instance, here is how the built-in actions are referenced in flagman’s
setup.cfg:

[options.entry_points]
flagman.action =
 print = flagman.actions:PrintAction
 delay_print = flagman.actions:DelayedPrintAction
 print_once = flagman.actions:PrintOnceAction

The name to the left of the = is how the action will be referenced in the CLI.
The entry point specifier to the right of the = points to the class implementing
the action.
See the Setuptools documentation [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins] for more information about using entry points.

Warning

This is the documentation for a development version of flagman.

Documentation for the Most Recent Stable Version [http://flagman.readthedocs.io/en/stable/]

Overlapping Signals

flagman attempts to handle overlapping signals in an intelligent manner.
A signal is “overlapping” if it arrives while actions for previously-arrived signals
are still running.

flagman handles overlapping signals of the same identity by coalescing and of
different identities by handling them serially but in a non-guaranteed order.

For example, take the following sequence of events.

	flagman is sleeping awaiting a signal to arrive

	SIGUSR1 arrives

	a long-running action for SIGUSR1 starts

	SIGUSR2 arrives

	the long-running action for SIGUSR1 finishes

	a long-running action for SIGUSR2 starts

	SIGUSR1 arrives

	SIGUSR2 arrives; it is ignored since the SIGUSR2 actions are
currently running

	SIGHUP arrives

	the long-running action for SIGUSR2 finishes

	a short-running action for SIGUSR2 starts and finishes

	a short-running action for SIGHUP starts and finishes; note that
SIGHUP arrived after the most recent SIGUSR1–
only intra-signal action ordering is guaranteed

	a long-running action for SIGUSR1 starts

	the long-running action for SIGUSR1 finishes

	flagman returns to sleep until the next handled signal arrives

Warning

This is the documentation for a development version of flagman.

Documentation for the Most Recent Stable Version [http://flagman.readthedocs.io/en/stable/]

A Real-World Use

I have a multi-layered DNS setup that involves ALIAS records that are only resolved on
a hidden master and are passed as A or AAAA records to the authoritative slaves.

I wanted to check if the resolved value of the ALIAS records have changed and send out
DNS NOTIFYs to the slaves when they do, but I didn’t want to store state in a file
on disk.

Enter flagman. I wrote an action that queries the hidden master and saves the
values of the records I’m interested in as member variables. If the values have changed
since the last run, the hidden master’s REST API is called for force the sending of a
NOTIFY out to its slaves.

This is integrated with three systemd units:

flagman.service
[Unit]
Description=Run flagman

[Service]
Type=notify
NotifyAccess=main
ExecStart=/path/to/flagman --usr1 dnscheck

flagman-notify.service
[Unit]
Description=Send SIGUSR1 to flagman

[Service]
Type=oneshot
ExecStart=/bin/systemctl kill -s SIGUSR1 flagman.service

flagman-notify.timer
[Unit]
Description=Run flagman-notify hourly

[Timer]
OnCalendar=hourly
RandomizedDelaySec=300
Persistent=true

[Install]
WantedBy=timers.target

Simple? Not quite. But quite extensible and useful in a variety of situations.

Warning

This is the documentation for a development version of flagman.

Documentation for the Most Recent Stable Version [http://flagman.readthedocs.io/en/stable/]

CLI Reference

	-h, --help

	show this help message and exit

	--list, -l

	list known actions and exit

	--hup ACTION

	add an action for SIGHUP

	--usr1 ACTION

	add an action for SIGUSR1

	--usr2 ACTION

	add an action for SIGUSR2

	--successful-empty

	if all actions are removed, exit with 0 instead of the default 1

	--no-systemd

	do not notify systemd about status

	--quiet, -q

	only output critial messages; overrides –verbose

	--verbose, -v

	increase the loglevel; pass multiple times for more verbosity

Notes

	Options to add actions take the argument ACTION, the action name as shown in
flagman --list, followed by an action-defined number of arguments, which are
also documented in flagman --list.
See the output of flagman --help for a more complete view of this.

	All options to add actions for signals may be passed multiple times.

	When a signal with multiple actions is handled, the actions are guaranteed to
be taken in the order they were passed on the command line.

	Calling with no actions set is a critical error and will cause an immediate
exit with code 2.

Warning

This is the documentation for a development version of flagman.

Documentation for the Most Recent Stable Version [http://flagman.readthedocs.io/en/stable/]

API Reference

This part of the documentation covers all of the interfaces exposed by flagman.

The Action Class

This class is the abstract class you should inherit from to write your own actions.

	
class flagman.Action(*args)

	The base Action class.

	
_close()

	Close the action, preventing future runs and executing tear down logic.

	Return type

	None

	
set_up(*args)

	Perform any required set up for the Action.

	Return type

	None

	
run()

	Run the Action.

	Return type

	None

	
tear_down()

	Perform any required clean up for the Action.

	Return type

	None

The Core Module

These functions and members are imported from the flagman.core module to be used
if using flagman as a library instead of a standalone tool.

	
flagman.HANDLED_SIGNALS List[signal.Signals]

	Signals in this list are handled by flagman.
The CLI module auto-generates the appropriate CLI option for each signal.

	
flagman.KNOWN_ACTIONS Mapping[ActionName, Type[Action]]

	Mapping of action entry point names to Action classes.
Populated from the pkg_resources flagman.action entry point group.

	
flagman.create_action_bundles(args_dict)

	Parse the enabled actions and insert them into the global ACTION_BUNDLES mapping.

The input dictionary should be like:

{'usr1': [['action1', 'arg1a', 'arg2a'], ['action2', 'arg2a']],
 'usr2': [['action3'], ['action4', 'arg4a', 'arg4b']]}

	Parameters

	args_dict (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – a mapping of strings to an Iterable of Action names

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The number of configured actions

	
flagman.run()

	Run the flagman “event loop”.

Waits for a signal to be raised and dispatches to the user-defined handlers
as appropriate.

	Return type

	None

	
flagman.set_handlers()

	Register handlers for the signals we’re interested in.

Uses the global HANDLED_SIGNALS to decide what signals to register for.

Danger starts here!

	Return type

	None

Errors and Exceptions

	
exception flagman.ActionClosed

	The Action is closed and no longer will do anything on a call to run().

Built-in Actions

Print Actions

Print actions for flagman.

Most likely only useful for debugging.

	
class flagman.actions.PrintAction(*args)

	Bases: flagman.actions.action.Action

A simple Action that prints messages at the various stages of execution.

(message: str)

	
set_up(msg)

	Store the message to be printed and print “init” message.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the message

	Return type

	None

	
run()

	Print the message.

	Return type

	None

	
tear_down()

	Print “cleanup” message.

	Return type

	None

	
class flagman.actions.DelayedPrintAction(*args)

	Bases: flagman.actions.print.PrintAction

An Action that prints messages at the various stages of execution and has a configurable delay in the run stage.

(message: str, delay: int)

	
set_up(msg, delay)

	Store the message and the delay.

	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the message

	delay (str [https://docs.python.org/3/library/stdtypes.html#str]) – the delay in seconds

	Return type

	None

	
run()

	Print the message, delay, and print a finished message.

	Return type

	None

	
class flagman.actions.PrintOnceAction(*args)

	Bases: flagman.actions.print.PrintAction

An Action that prints a message once and then cleans up after itself.

(message: str)

	
set_up(msg)

	Store the message.

	Parameters

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – the message

	Return type

	None

	
run()

	Print the message and close the action.

	Return type

	None

Types

Type aliases used throughout flagman.

	
flagman.types.ActionName

	Type alias for the name of an Action.

alias of builtins.str

	
flagman.types.ActionArgument

	Type alias for the the argument to an Action.

alias of builtins.str

	
flagman.types.SignalNumber

	Type alias for a signal number.

alias of builtins.int

The CLI Module

Module that contains the command line for flagman.

Why does this file exist, and why not put this in __main__?
You might be tempted to import things from __main__ later, but that will cause
problems–the code will get executed twice:

	When you run python -m flagman python will execute
__main__.py as a script. That means there won’t be any
flagman.__main__ in sys.modules.

	When you import __main__ it will get executed again (as a module)
because there’s no flagman.__main__ in sys.modules.

Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration

	
class flagman.cli.AllAttrEmptyString

	Return ‘’ for any attribute.

	
flagman.cli._sigterm_handler(signum, _frame)

	Raise SystemExit on SIGTERM.

	Return type

	None

	
flagman.cli.parse_args(argv)

	Parse the arguments for the flagman CLI.

	Parameters

	argv (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) – a Squence of argument strings

	Return type

	Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	Returns

	the parsed arguments as an argparse Namespace

	
flagman.cli.list_actions()

	Pretty-print the list of available actions to stdout.

	Return type

	None

	
flagman.cli.main()

	The main function of the flagman CLI.

Don’t call this from library code, use your own version implenting analogous logic.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]

	Returns

	An exit code or None

	
flagman.cli.main_wrapper()

	Main wrapper that handles graceful exiting on KeyboardInterrupt.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]

	Returns

	An exit code or None

Systemd Notify Utilities

Systemd notification protocol implementation.

	
class flagman.sd_notify.SystemdNotifier(debug=False)

	This class holds a connection to the systemd notification socket.

It can be used to send messages to systemd using its notify method.

	
__init__(debug=False)

	Instantiate a new notifier object.

This will initiate a connection to the systemd notification socket.

Normally this method silently ignores exceptions (for example, if the
systemd notification socket is not available) to allow applications to
function on non-systemd based systems. However, setting debug=True will
cause this method to raise any exceptions generated to the caller, to
aid in debugging.

	Return type

	None

	
notify(state)

	Send a notification to systemd.

State is a string; see the man page of sd_notify
(http://www.freedesktop.org/software/systemd/man/sd_notify.html)
for a description of the allowable values.

Normally this method silently ignores exceptions (for example, if the
systemd notification socket is not available) to allow applications to
function on non-systemd based systems. However, setting debug=True will
cause this method to raise any exceptions generated to the caller, to
aid in debugging.

	Return type

	None

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flagman	

 	
 	
 flagman.actions.print	

 	
 	
 flagman.cli	

 	
 	
 flagman.sd_notify	

 	
 	
 flagman.types	

Index

 _
 | A
 | C
 | D
 | F
 | H
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T

_

 	
 	__init__() (flagman.sd_notify.SystemdNotifier method)

 	
 	_close() (flagman.Action method)

 	_sigterm_handler() (in module flagman.cli)

A

 	
 	Action (class in flagman)

 	ActionArgument (in module flagman.types)

 	
 	ActionClosed

 	ActionName (in module flagman.types)

 	AllAttrEmptyString (class in flagman.cli)

C

 	
 	create_action_bundles() (in module flagman)

D

 	
 	DelayedPrintAction (class in flagman.actions)

F

 	
 	flagman (module)

 	flagman.actions.print (module)

 	
 	flagman.cli (module)

 	flagman.sd_notify (module)

 	flagman.types (module)

H

 	
 	HANDLED_SIGNALS (in module flagman)

K

 	
 	KNOWN_ACTIONS (in module flagman)

L

 	
 	list_actions() (in module flagman.cli)

M

 	
 	main() (in module flagman.cli)

 	
 	main_wrapper() (in module flagman.cli)

N

 	
 	notify() (flagman.sd_notify.SystemdNotifier method)

P

 	
 	parse_args() (in module flagman.cli)

 	
 	PrintAction (class in flagman.actions)

 	PrintOnceAction (class in flagman.actions)

R

 	
 	run() (flagman.Action method)

 	(flagman.actions.DelayedPrintAction method)

 	(flagman.actions.PrintAction method)

 	(flagman.actions.PrintOnceAction method)

 	(in module flagman)

S

 	
 	set_handlers() (in module flagman)

 	set_up() (flagman.Action method)

 	(flagman.actions.DelayedPrintAction method)

 	(flagman.actions.PrintAction method)

 	(flagman.actions.PrintOnceAction method)

 	
 	SignalNumber (in module flagman.types)

 	SystemdNotifier (class in flagman.sd_notify)

T

 	
 	tear_down() (flagman.Action method)

 	(flagman.actions.PrintAction method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to flagman!

 		
 The Anatomy of an Action

 		
 The Action Class

 		
 “Closing” an Action

 		
 Registering an Action

 		
 Overlapping Signals

 		
 A Real-World Use

 		
 CLI Reference

 		
 Notes

 		
 API Reference

 		
 The Action Class

 		
 The Core Module

 		
 Errors and Exceptions

 		
 Built-in Actions

 		
 Print Actions

 		
 Types

 		
 The CLI Module

 		
 Systemd Notify Utilities

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

