
FIWARE-SDC
Release

September 30, 2016

Contents

1 Introduction 1

i

ii

CHAPTER 1

Introduction

Sagitta is a Java implementation of the SDC Manager GE developed as a part of the FIWARE platform.

Sagitta (the Software Deployment and Configuration -SDC- GE), which is the key enabler used to support automated
deployment (installation and configuration) of software on running virtual machines. As part of the complete process
of deployment of applications, the aim of Sagitta is to deploy software product instances upon request of the user using
the API or through the Cloud Portal.

The SDC Manager source code can be found here

This documentation offers deeper information on SDC Manager.

Documentation

1.1 FIWARE SDC | Sagitta

• Introduction
• GEi overall description
• Build and Install

– Requirements
– Installation

* Using FIWARE package repository (recommended)
– Upgrading from a previous version

* Upgrading database
* Using installation script

• Running
– Configuration file
– Checking status

• API Overview
– API Reference Documentation

• Testing
– Unit tests
– Acceptance tests
– End to End testing

• Advanced topics
• Support
• License

1

https://github.com/telefonicaid/fiware-sdc.git

FIWARE-SDC, Release

1.1.1 Introduction

This is the code repository for FIWARE Sagitta, the reference implementation of the Software Deployment and Con-
figuration GE.

This project is part of FIWARE. Check also the FIWARE Catalogue - Software Deployment and Configuration GE.

Any feedback on this documentation is highly welcome, including bugs, typos or things you think should be included
but aren’t. You can use FIWARE SDC - GitHub issues to provide feedback.

For documentation previous to release 4.4.2 please check the manuals at FIWARE public wiki:

• FIWARE SDC - Installation and Administration Guide

• FIWARE SDC - User and Programmers Guide

Top

1.1.2 GEi overall description

The FIWARE Software Deployment and Configuration (SDC) GE is is the key enabler used to support automated
deployment (installation and configuration) of software on running virtual machines. As part of the complete process
of deployment of applications, the aim of SDC GE is to deploy software product instances upon request of the using
the SDC API or through the Cloud Portal, which in turn uses the PaaS Manager GE (see FIWARE PaaS Manager).

After that, users will be able to deploy artifacts, that are part of the application, on top of the deployed product
instances.

Top

1.1.3 Build and Install

The recommended procedure is to install using RPM packages in CentOS 6.x as it is explained in the following
document . If you are interested in building from sources, check this document.

Requirements

• System resources: see these recommendations.

• Operating systems: CentOS (RedHat), being CentOS 6.5 the reference operating system.

Installation

Using FIWARE package repository (recommended)

Refer to the documentation of your Linux distribution to set up the URL of the repository where FIWARE packages
are available (and update cache, if needed):

http://repositories.testbed.fiware.org/repo/rpm/x86_64

Then, use the proper tool to install the packages:

$ sudo yum install fiware-sdc

and the latest version will be installed. In order to install a specific version:

2 Chapter 1. Introduction

http://www.fiware.org
http://catalogue.fiware.org/enablers/software-deployment-configuration-sagitta
https://github.com/telefonicaid/fiware-sdc/issues/new
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Software_Deployment_%26_Configuration_-_Installation_and_Administration_Guide
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Software_Deployment_%26_Configuration_-_User_and_Programmers_Guide
https://github.com/telefonicaid/fiware-paas

FIWARE-SDC, Release

$ sudo yum install fiware-sdc-{version}-1.noarch

where {version} being the specific version to be installed

Upgrading from a previous version

Unless explicitly stated, no migration steps are required to upgrade to a newer version of the Software Deployment
and Configuration components:

• When using the package repositories, just follow the same directions described in the Installation section (the
install subcommand also performs upgrades).

• When upgrading from downloaded package files, use rpm -U in CentOS

Upgrading database

In case the database needs to be upgrade, the script db-changelog.sql should be execute. To do that, it just needed to
execute:

psql -U postgres -d $db_name << EOF
\i db-changelog.sql

Using installation script

The installation of fiware-sdc can be done in the easiest way by executing the script:

scripts/bootstrap/centos.sh

The script will ask you the following data to configure the configuration properties:

• The database name for the fiware-sdc

• The postgres password of the database

• the keystone url to connect fiware-sdc for the authentication process

• the admin keystone user for the authentication process

• the admin password for the authentication process

Top

1.1.4 Running

As explained in the GEi overall description section, there are a variety of elements involved in the Software Delivery
and Configuration architecture, apart from those components provided by this Software Delivery and Configuration
GE (at least, an instance of configuration engine like Chef server of Puppet master). Please refer to their respective
documentation for instructions to run them.

In order to start the software deployment and configuration service, as it is based on a web applicatin on top of jetty,
just you should run:

$ service fiware-sdc start

Then, to stop the service, run:

1.1. FIWARE SDC | Sagitta 3

FIWARE-SDC, Release

$ service fiware-sdc stop

We can also force a service restart:

$ service fiware-sdc restart

Configuration file

The configuration of SDC is in configuration_properties table in the database. There, it is required to configure:

$ openstack-tcloud.keystone.url: This is the url where the keystone-proxy is deployed
$ openstack-tcloud.keystone.user: the admin user
$ openstack-tcloud.keystone.password: the admin password
$ openstack-tcloud.keystone.tenant: the admin tenant
$ sdc_manager_url: the final url, mainly https://sdc-ip:8443/sdc

In addition, to configue the SDC application inside the webserver, it is needed to change the context file. To do that,
change sdc.xml found in distribution file and store it in folder $SDC_HOME/webapps/:

<New id="sdc" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jdbc/sdc</Arg>
<Arg>

<New class="org.postgresql.ds.PGSimpleDataSource">
<Set name="User"> <database user> </Set>
<Set name="Password"> <database password> </Set>
<Set name="DatabaseName"> <database name> </Set>
<Set name="ServerName"> <IP/hostname> </Set>
<Set name="PortNumber">5432</Set>

</New>
</Arg>

</New>

Checking status

In order to check the status of the service, use the following command (no special privileges required):

$ service fiware-sdc status

Top

1.1.5 API Overview

The Software Deployment and Configuration offers a REST API, which it can be used for both managing the software
catalogue and the installation of software in virtual machines.

For instance, it is possible to obtain the software list in the catalogue with the following curl

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml"
-H "X-Auth-Token: your-token-id" -H "Tenant-Id: your-tenant-id"
-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog/product"

Please have a look at the API Reference Documentation section bellow and at the programmer guide.

4 Chapter 1. Introduction

FIWARE-SDC, Release

API Reference Documentation

• FIWARE SDC v1 (Apiary)

Top

1.1.6 Testing

Unit tests

The test target for each module in the SDC is used for running the unit tests in both components of SDC GE. To
execute the unit tests you just need to execute:

mvn test

Please have a look at the section building from source code in order to get more information about how to prepare the
environment to run the unit tests.

Acceptance tests

In the following path you will find a set of tests related to the end-to-end funtionalities.

• SDC Aceptance Tests

To execute the acceptance tests, go to the test/acceptance folder of the project and run:

lettuce_tools --tags=-skip.

This command will execute all acceptance tests (see available params with the -h option)

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check
that everything is up and running. It involves to obtain the product information storaged in the catalogue. With it, we
test that the service is running and the database configure correctly:

https://{SDC_IP}:{port}/sdc/rest

The request to test it in the testbed should be:

curl -v -k -H 'Access-Control-Request-Method: GET' -H 'Content-Type: application xml'
-H 'Accept: application/xml' -H 'X-Auth-Token: 5d035c3a29be41e0b7007383bdbbec57'
-H 'Tenant-Id: 60b4125450fc4a109f50357894ba2e28' -X GET
'https://localhost:8443/sdc/rest/catalog/product'

the option -k should be included in the case you have not changed the security configuration of SDC. The result should
be the product catalog.

If you obtain a 401 as a response, please check the admin credentials and the connectivity from the sdc machine to the
keystone (openstack-tcloud.keystone.url in configuration_properties table)

Top

1.1. FIWARE SDC | Sagitta 5

https://jsapi.apiary.io/apis/fiwaresdc/reference.html
https://github.com/telefonicaid/fiware-sdc/tree/develop/test

FIWARE-SDC, Release

1.1.7 Advanced topics

• Installation and administration

– Software requirements

– Building from sources

– Resources & I/O Flows

• User and programmers guide

Top

1.1.8 Support

Ask your thorough programming questions using ‘stackoverflow‘_ and your general questions on ‘FIWARE Q&A‘_.
In both cases please use the tag fiware-sagitta

Top

1.1.9 License

(c) 2013-2015 Telefónica I+D, Apache License 2.0

Top

1.2 SDC - User and Programmers Guide

1.2.1 Introduction

Welcome the User and Programmer Guide for Software Deployment and Configuration.

1.2.2 Accessing SDC from the CLI

The access through the CLI is made using the curl program. Curl [http://curl.haxx.se/] is a client to get documents/files
from or send documents to a server, using any of the supported protocols (HTTP, HTTPS, FTP, GOPHER, DICT,
TELNET, LDAP or FILE) and therefore is also usable for OpenStack Compute API. Use the curl command line tool
or use libcurl from within your own programs in C. Curl is free and open software that compiles and runs under a wide
variety of operating systems.

The normal operations sequence to deploying an environment and an application on top of it could be summarized in
the following list:

API Authentication

All the operations in the SDC API needs to have a valid token to access it. To obtain the token, you need to have an
account in FIWARE Lab (account.lab.fi-ware.org). With the credentials (username, password and tenantName) you
can obtain a valid token. From now on, we asume that the value of your tenant-id is “your-tenant-id”

6 Chapter 1. Introduction

http://curl.haxx.se/

FIWARE-SDC, Release

$ curl -v -H "Content-Type: application json" -H "Accept: application/json" -X
POST "http://cloud.lab.fi-ware.org:4731/v2.0/tokens" -d '{"auth":{"tenantName":
"your-tenant-id","passwordCredentials":{"username":"youruser",
"password":"yourpassword"}}}'

You will receive the following answer, with a valid token (id).

{
access: {

token: {
expires: "2015-07-09T15:16:07Z"
id: "756cfb31e062216544215f54447e2716"
tenant: {
..

}

For all the SDC request, you will need to include the following header:

X-Auth-Token: 756cfb31e062216544215f54447e2716
Tenant-Id: your-tenant-id

For the rest of the explanation, we are going to configure a set of variables:

export SDC_IP = saggita.lab.fi-ware.org

Catalogue Management API

Next we detail some operations that can be done in the catalogue management api

Product API

Get the Product List from the catalogue

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog/product"

This operation lists all the products stored in the catalogue. The following example shows an XML response for the
Product List API operation.

<products>
<product>

<name>tomcat</name>
<description>tomcat J2EE container</description>

</product>
...
<product>

<name>mysql</name>
<description>mysql</description>
<attributes>

<key>key1</key>
<value>value1<value/>
<description>description1</description>

</attributes>
</metadatas>
<metadatas>

<key>installator</key>

1.2. SDC - User and Programmers Guide 7

FIWARE-SDC, Release

<value>chef</value>
<description>mysql installator</description>

</metadatas>
</product>

<products>

Get the Details of a particular Product List

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}"

This operation lists the environments stored in the catalogue. The following example shows an XML response for the
list Environment API operation. It is possible to see it contains a list of tiers including products to be installed.

<product>
<name>mysql</name>
<description>mysql</description>
<attributes>

<key>key1</key>
<value>value1<value/>
<description>description1</description>

</attributes>
</metadatas>
<metadatas>

<key>installator</key>
<value>chef</value>
<description>mysql installator</description>

</metadatas>
</product>

Add a New Product to the catalogue

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X POST "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}"

with the following payload (with metadatas and attributes)

<product>
<name>{product-name}</name>
<description>Description</description>
<attributes>

<key>key1</key>
<value>value1<value/>
<description>description1</description>

</attributes>
<metadatas>

<key>installator</key>
<value>chef</value>
<description>mysql installator</description>

</metadatas>
</product>

Delete a Product from the catalogue

8 Chapter 1. Introduction

FIWARE-SDC, Release

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X DELETE "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}"

Product Release API

Get the Releases List of a particular Product

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}/release"

This operation lists the product releases of {product-name} stored in the catalogue. The following example shows an
XML response for the list of ProductRelease API operation.

<productReleases>
<productRelease>

<releaseNotes>{product-name} 0.6.15</releaseNotes>
<version>0.6.15</version>
<product>

<name>{product-name}</name>
<description>desc</description>

</product>
<supportedOOSS>

<id>1</id>
<v>0</v>
<osType>94</osType>
<name>Ubuntu</name>
<description>Ubuntu 10.04</description>
<version>10.04</version>

</supportedOOSS>
</productRelease>
<productRelease>

<version>0.9.0</version>
<product>

<name>{product-name}</name>
<description>{product-name} 0.6.15</description>

</product>
<supportedOOSS>

<id>1</id>
<v>0</v>
<osType>94</osType>
<name>Ubuntu</name>
<description>Ubuntu 10.04</description>
<version>10.04</version>

</supportedOOSS>
</productRelease>

</productReleases>

Get the Details of a Particular Product Release

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}/release/{version}"

1.2. SDC - User and Programmers Guide 9

FIWARE-SDC, Release

This operation lists the details of a Product Release.

<productReleases>
<productRelease>

<releaseNotes>{product-name} 0.6.15</releaseNotes>
<version>0.6.15</version>
<product>

<name>{product-name}</name>
<description>desc</description>

</product>
<supportedOOSS>

<id>1</id>
<v>0</v>
<osType>94</osType>
<name>Ubuntu</name>
<description>Ubuntu 10.04</description>
<version>10.04</version>

</supportedOOSS>
</productRelease>

</productReleases>

Add a New Release to a Product into the catalogue

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X POST "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}/release"

with the following payload

<productReleaseDto>
<productName>{product-name}</productName>
<version>{version}</version>
<productDescription>description of {product-name}-{version}/productDescription>

</productReleaseDto>

Delete the Release of a Product

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X DELETE "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog
/product/{product-name}/release"

Get All Product and Releases of the catalogue

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/catalog/productandrelease"

This operation lists all product releases stored in the Catalogue and available for users.

<productAndReleaseDtoes>
<productAndReleaseDto>

<product>
<name>tomcat</name>
<description>tomcat J2EE container</description>

</product>
<version>6</version>

</productAndReleaseDto>
...

10 Chapter 1. Introduction

FIWARE-SDC, Release

<productAndReleaseDto>
<product>

<name>nodejs</name>
<description>nodejs</description>

</product>
<version>0.6.15</version>

</productAndReleaseDto>
</productAndReleaseDtoes>

Product Instance Provisioning API

Install a Product in a Virtual Machine

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X POST "http://saggita.lab.fi-ware.org:8080/sdc/rest/vdc
/{your-tenant-id}/productInstance"

where {your-tenant-id} is the tenant-id in this guide. The payload of this request can be as follows:

<productInstanceDto>
<vm>
<ip>{ip}</ip>
<fqn>{fqn}</fqn>
<hostname>{hostname}</hostname>
</vm>
<product>
<productDescription/>
<name>{product-name}</name>
<version>{product-version}</version>
</product>
<attributes>

<key>custom_att_02</key>
<value>default_value_plain</value>
<type>Plain</type>

</attributes>
</productInstanceDto>

The response obatined should be:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:13:18.311+01:00"
status="RUNNING">
<description>Install product {product-name} in VM {vm}</description>
<vdc>your-tenant-id</vdc>

</task>

Given the URL obtained in the href in the Task, it is possible to monitor the operation status (you can check Task
Management). Once the environment has been deployed, the task status should be SUCCESS.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:13:28.311+01:00"
status="SUCCESS">

<description>Install product {product-name} in VM {vm}</description>
<vdc>your-tenant-id</vdc>

</task>

1.2. SDC - User and Programmers Guide 11

FIWARE-SDC, Release

Get the list of Product Instances deployed

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/productInstance"

The Response obtained includes all the blueprint instances deployed

<productInstances>
<productInstance>

<id>8790</id>
<date>2014-10-30T12:49:35.528+01:00</date>
<name>{productInstance-name}</name>
<status>INSTALLED</status>
<vm>
<ip>{ip}</ip>
<fqn>{fqn}</fqn>
<hostname>{hostname}</hostname>
</vm>
<vdc>{your-tenant-id}</vdc>
<productRelease>

<version>{product-version}</version>
<product>

<name>{product-name}</name>
<metadatas>

<key>key1</key>
<value>value1</value>
<description>desc</description>

</metadatas>
</product>

</productRelease>
</productInstance>
...
<productInstance>

...
</productInstance>

</productInstances>

Get details of a certain Product Instance

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/productInstance/{productInstance-name}"

This operation does not require any payload in the request and provides a BlueprintInstance XML response.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<productInstance>

<id>8790</id>
<date>2014-10-30T12:49:35.528+01:00</date>
<name>mykurentoinstance-kurento-1-003237_kurento_5.0.3</name>
<status>INSTALLED</status>
<vm>

<ip>130.206.126.23</ip>
<hostname>mykurentoinstance-kurento-1-003237</hostname>
<domain />
<fqn>mykurentoinstance-kurento-1-003237</fqn>
<osType />

12 Chapter 1. Introduction

FIWARE-SDC, Release

</vm>
<vdc>{your-tenant-id}</vdc>
<productRelease>

<version>{product-version}</version>
<product>

<name>{product-name}</name>
<metadatas>

<key>key1</key>
<value>value1</value>
<description>desc</description>

</metadatas>
</product>

</productRelease>
</productInstance>

Uninstall a Product Instance

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X DELETE "https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/productInstance/{productInstance-name}"

This operation does not require a request body and returns the details of a generated task.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:45:44.020+01:00"
status="RUNNING">

<description>Uninstall Product</description>
<vdc>your-tenant-id</vdc>

</task>

With the URL obtained in the href in the Task, it is possible to monitor the operation status (you can checkTask
Management). Once the environment has been undeployed, the task status should be SUCCESS.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://saggita.lab.fi-ware.org:8443/sdc/rest//vdc
/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:13:19.567+01:00"
status="SUCCESS">

<description>Unistall product {product-name}</description>
<vdc>your-tenant-id</vdc>

</task>

Node Management API

Load a particular node

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/chefClient/{node-name}"

This operation lists information of a specific node.

Delete a particular node

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

1.2. SDC - User and Programmers Guide 13

FIWARE-SDC, Release

-X DELETE "https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/chefClient/{node-name}"

Task Management

Get a specific task

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

-X GET "https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/task/{task-id}"

This operation recovers the status of a task created previously. It does not need any request body and the response
body in XML would be the following.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://saggita.lab.fi-ware.org:8443/sdc/rest/vdc
/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:13:18.311+01:00"
status="SUCCESS">

<description>Install product {product-name} in VM {vm}</description>
<vdc>your-tenant-id</vdc>

</task>

The value of the status attribute could be one of the following:

Value Description
QUEUED The task is queued for execution.
PENDING The task is pending for approval.
RUNNING The task is currently running.
SUCCESS The task is completed successfully.
ERROR The task is finished but it failed.
CANCELLED The task has been cancelled by user.

1.3 SDC Manager - Installation and Administration Guide

1.3.1 Introduction

This guide defines the procedure to install the different components that build up the SDC Manager GE, including
its requirements and possible troubleshooting. The guide includes two different ways of installing SDC Manager:
Installation from rpm or installation from source (building previously the rpm).

1.3.2 Requirements

In order to execute the SDC, it is needed to have previously installed the following software:

• Chef node

• Chef server [http://wiki.opscode.com/display/chef/Installing+Chef+Server]. For CentOS it is possible
to follow the following instructions[http://blog.frameos.org/2011/05/19/installing-chef-server-0-10-in-rhel-6-
scientificlinux-6/]

• SDC node

• open jdk 7

14 Chapter 1. Introduction

http://wiki.opscode.com/display/chef/Installing+Chef+Server
http://blog.frameos.org/2011/05/19/installing-chef-server-0-10-in-rhel-6-scientificlinux-6/
http://blog.frameos.org/2011/05/19/installing-chef-server-0-10-in-rhel-6-scientificlinux-6/

FIWARE-SDC, Release

• PostgreSQL [http://www.postgresql.org/]

SDC should be installed in a host with at least 2Gb RAM.

1.3.3 Installation via script (for CentOS)

The installation of fiware-sdc can be done in the easiest way by executing the script

scripts/bootstrap/centos.sh

that is in the github repository of the project.

In order to perform the installation via script, git should be installed (yum install git). Just clone the github repository:

git clone https://github.com/telefonicaid/fiware-sdc

and go to the folder

cd fiware-sdc/scripts/bootstrap

Assign the corresponding permissions to the script centos.sh and execute under root user

./centos.sh

The script will ask you the following data:

• The database name for the fiware-sdc

• The postgres password of the database

• the keystone url to connect fiware-sdc for the authentication process

• the admin keystone user for the authentication process

• the admin password for the authentication process

Once the script is finished, you will have fiware-sdc installed under /opt/fiware-sdc/ . Please go to the Sanity Check
section in order to test the installation. This script does not insert the fiware-sdc data into the keystone, so this action
has to be done manually. In order to complete the installation please refer to Register SDC application into keystone
section.

The SDC installation via script does not include either Chef server installation nor the Puppet installation. To perform
these installations please refer to the corresponding sections included in this guide.

1.3.4 Manual Installation (for CentOS)

Install SDC from RPM

The SDC is packaged as RPM and stored in the rpm repository. Thus, the first thing to do is to create a file in
/etc/yum.repos.d/fiware.repo, with the following content.

[Fiware]
name=FIWARE repository
baseurl=http://repositories.testbed.fi-ware.org/repo/rpm/x86_64/
gpgcheck=0
enabled=1

After that, you can install the SDC just doing:

1.3. SDC Manager - Installation and Administration Guide 15

http://www.postgresql.org/

FIWARE-SDC, Release

yum install fiware-sdc

and the latest version will be installed. In order to install a specific version

yum install fiware-sdc-{version}-1.noarch

where {version} being the specific version to be installed

Install SDC from source

Requirements: To install SDC from source it is required to have the following software installed in your host previ-
ously:

• git

• java 1.7

• maven

Here we include a small guide to install the required software. If you find any problem in the installation process,
please refer to the official sites:

Install git

sudo yum install git

Install java 1.7

sudo yum install java-1.7.0-openjdk-devel

Install maven 2.5

sudo yum install wget
wget http://mirrors.gigenet.com/apache/maven/maven-3/3.2.5/binaries
/apache-maven-3.2.5-bin.tar.gz

su -c "tar -zxvf apache-maven-3.2.5-bin.tar.gz -C /usr/local"
cd /usr/local
sudo ln -s apache-maven-3.2.5 maven

Add the following lines to the file /etc/profile.d/maven.sh

Add the following lines to maven.sh
export M2_HOME=/usr/local/maven
export M2=$M2_HOME/bin
PATH=$M2:$PATH

In order to check that your maven installation is OK, you should exit your current session with “exit” command, enter
again and type

mvn -version

if the system shows the current maven version installed in your host, you are ready to continue with this guide.

Now we are ready to build the SDC rpm and finally install it

The SDC is a maven application so, we should continue with the following instructions:

• Download SDC code from github

git clone https://github.com/telefonicaid/fiware-sdc

16 Chapter 1. Introduction

FIWARE-SDC, Release

• Go to fiware-sdc folder and compile, launch test and build all modules

cd fiware-sdc/
mvn clean install

• Create a zip with distribution in target/sdc-server-dist.zip

$ mvn assembly:assembly -DskipTests

#$ cp target/distribution/sdc-server-dist {folder}
#$ {folder}/sdc-server-dist/bin/generateselfsigned.sh start
#$ cd {folder}/sdc-server-dist/bin ; ./jetty.sh start

• You can generate a rpm o debian packages (using profiles in pom)

for debian/ubuntu:

$ mvn install -Pdebian -DskipTests
(created target/sdc-server-XXXXX.deb)

for centOS (you need to have installed rpm-bluid. If not, please type “yum install rpm-build”):

$ mvn package -P rpm -DskipTests
(created ./target/rpm/sdc/RPMS/noarch/fiware-sdc-XXXX.noarch.rpm)

Finally go to the folder where the rpm has been created (./target/rpm/sdc/RPMS/noarch) and execute

cd target/rpm/fiware-sdc/RPMS/noarch
rpm -i <rpm-name>.rpm

Please, be aware that the supported installation method is the RPM package. If you use other method, some extra steps
may be required. For example, you would need to generate manually the certificate (see the section about “Configuring
the HTTPS certificate” for more details):

fiware-sdc/bin/generateselfsigned.sh

Requirements: Installation instructions

Chef server

Chef server installation (Centos 6.5) The SDC installation involves also to install the chef-server package, which
can be obtained in [http://www.getchef.com/chef/install/]. If you find any problem in the chef-server installation
process, please refer to the chef-serve official site. This small guide has been tested on Centos6.5

Go to this url and select the chef-server version you are interested in, depending also on your own operating system.
Copy the url to download the selected chef-server version and type

wget <chef-server-url>

in this example we have

chef-server-url = https://opscode-omnibus-packages.s3.amazonaws.com
/el/6/x86_64/chef-server-11.1.6-1.el6.x86_64.rpm

In case you do not have wget installed on your system, please type ‘yum install wget’ to install it. We can just execute

mv chef-server-11.1.6-1.el6.x86_64.rpm chef-server-package.rpm
rpm -Uvh chef-server-package.rpm

1.3. SDC Manager - Installation and Administration Guide 17

http://www.getchef.com/chef/install/

FIWARE-SDC, Release

Verify the the hostname for the Chef server by running the ‘hostname’command. The hostname for the Chef server
must be a FQDN. This means hostaname.domainame. In case it is not configure, you can do it

hostname chef-server.localdomain

and include it in the /etc/hosts

After that, it is required to configure the certificates and other staff in the chef-server, with chef-server-ctl. This
command will set up all of the required components, including Erchef, RabbitMQ, and PostgreSQL.

sudo chef-server-ctl reconfigure

In order to test verify the installation of Chef Server 11.x by running the following command:

sudo chef-server-ctl test

After that, you can obtain the different certificates for the different clients in /etc/chef-server. There you can find a
chef-validator.pem (needed for all the nodes), the chef-server-gui for the GUI. You can copy them in order to use them
later.

Chef server cookbook repository The FIWARE cookbook repository is in FIWARE SVN repository. To upload
the recipes into the chef server you need:

• To dowload the svn repository (‘yum install svn’ if not installed):

svn checkout https://forge.fiware.org/scmrepos/svn/testbed/trunk/cookbooks

• Inside the cookbooks folder, create a file update with the following content. It will update the repository and
upload into the chef-server

svn update
knife cookbook upload --all -o BaseRecipes/
knife cookbook upload --all -o BaseSoftware/
knife cookbook upload --all -o GESoftware/

Chef-client installation and configuration The next step is to configure a client in the chef-server so that you can
execute the chef-server CLI. To do that, you need to install the chef-client

curl -L https://www.opscode.com/chef/install.sh | sudo bash

Before you configure the chef-client you should add the admin.pem and chef-validator.pem to the directory where
chef-client finds its configuration (By default should be $HOME/.chef), the admin.pem and chef-validator.pem files
should be placed in this directory before starting the chef-client configuration.

To configure chef-client, type the following command. You can accept all the default

knife configure --initial

The script will ask the following parameters:

• Please enter the chef server URL: use the FQDN (type “hostname” to find out) for the Chef server

• A name for the new user: use “station1”

• A name for the admin user [admin]: keep the default option

• location of the existing admin’s private key: type the new location given

• the validation clientname: [chef-validator]: keep the default option

• location of the validation key: [/etc/chef-server/chef-validator.pem]: type the new location given

18 Chapter 1. Introduction

FIWARE-SDC, Release

• the path to a chef repository (or leave blank): type the location chosen in the previous section

• password for the new user: type the password you have in mind

It is possible that the first time you got an error due to the autosigned-certificate of the chef-server. If this is the case,
please follow the instructions you have in the screen and type ‘knife ssl fetch’ to accept this certificate.

Once you have a configured client, you can run the CLI. Just one:

knife client list

knife user list

Puppet

To install Puppet component, please refer to the following Puppet Installation Guide at
[https://github.com/telefonicaid/fiware-puppetwrapper/blob/develop/doc/installation-guide.rst]

Requirements: Install PostgreSQL

The SDC node needs to have PostgreSQL installed in service mode and a database called SDC. For CentOS, these are
the instructions:

Firstly, it is required to install the PostgreSQL [http://wiki.postgresql.org/wiki/YUM_Installation].

yum install postgresql postgresql-server postgresql-contrib

Start Postgresql

Type the following commands to install the postgresql as service and restarted

chkconfig --add postgresql
chkconfig postgresql on
service postgresql initdb
service postgresql start

Then, you need to configure postgresql to allow for accessing. In /var/lib/pgsql/data/postgresql.conf

listen_addresses = '0.0.0.0'

We need to create the sdc database. To do that we need to connect as postgres user to the PostgreSQL server and set
the password for user ‘postgres’ using alter user as below:

su - postgres
postgres$ psql postgres postgres;
psql (8.4.13)
Type "help" for help.
postgres=# alter user postgres with password '<postgres-password>';
postgres=# create database sdc;
postgres=# grant all privileges on database sdc to postgres;
postgres=#\q
exit

where <postgres-password> is the passowrd for postgres user.

In /var/lib/pgsql/data/pg_hba.conf, change the table at the end of the file to look like:

1.3. SDC Manager - Installation and Administration Guide 19

https://github.com/telefonicaid/fiware-puppetwrapper/blob/develop/doc/installation-guide.rst
http://wiki.postgresql.org/wiki/YUM_Installation

FIWARE-SDC, Release

#TYPE DATABASE USER CIDR-ADDRESS METHOD
#"local" is for Unix domain socket connections only
local all all ident
IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

Restart the postgres

service postgresql restart

Check that the database has been created correctly:

$ su - postgres
postgres$ cd /opt/fiware/sdc-/resources
$ psql postgres postgres
postgres=#\c sdc
postgres=# \i db-initial.sql
postgres=# \i db-changelog.sql
exit

Then we need to create the database tables for the sdc. To do that obtain the files from
[https://github.com/telefonicaid/fiware-sdc/blob/develop/migrations/src/main/resources] and execute

$ psql -d sdc -a -f db-initial.sql
$ psql -d sdc -a -f db-changelog.sql

Configure SDC application Once the prerequisites are satisfied, you change the context file. To do that, change
sdc.xml found in distribution file and store it in folder $SDC_HOME/webapps/.

See the snipet bellow to know how it works:

<New id="sdc" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jdbc/sdc</Arg>
<Arg>

<New class="org.postgresql.ds.PGSimpleDataSource">
<Set name="User"> <database user> </Set>
<Set name="Password"> <database password> </Set>
<Set name="DatabaseName"> <database name> </Set>
<Set name="ServerName"> <IP/hostname> </Set>
<Set name="PortNumber">5432</Set>

</New>

</Arg>
</New>

Configuring the SDC as service Once we have installed and configured the SDC, the next step is to configure it as
a service. To do that just create a file in /etc/init.d/fiware-sdc with the following content

#!/bin/bash
chkconfig: 2345 20 80
description: Description comes here....
Source function library.
. /etc/init.d/functions
start() {

20 Chapter 1. Introduction

https://github.com/telefonicaid/fiware-sdc/blob/develop/migrations/src/main/resources

FIWARE-SDC, Release

/opt/fiware-sdc/bin/jetty.sh start
}
stop() {

/opt/fiware-sdc/bin/jetty.sh stop
}
case "$1" in

start)
start

;;
stop)

stop
;;
restart)

stop
start

;;
status)

/opt/fiware-sdc/bin/jetty.sh status
;;

*)
echo "Usage: $0 {start|stop|status|restart}"

esac
exit 0

Now you need to execute:

chkconfig --add fiware-sdc
chkconfig fiware-sdc on
service fiware-sdc start

The configuration of SDC is in configuration_properties table. There, it is required to configure:

• openstack-tcloud.keystone.url: This is the url where the keystone-proxy is deployed

• openstack-tcloud.keystone.user: the admin user

• openstack-tcloud.keystone.password: the admin password

• openstack-tcloud.keystone.tenant: the admin tenant

• sdc_manager_url: the final url, mainly http://sdc-ip:8080/sdc

The updates of the columns are done in the following way

su - potgres

postgres$ psql -U postgres -d sdc
Password for user postgres: <postgres-password-previously-chosen>

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='sdc_manager_url';

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='openstack-tcloud.keystone.user';

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='openstack-tcloud.keystone.pass';

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='openstack-tcloud.keystone.tenant';

1.3. SDC Manager - Installation and Administration Guide 21

http://sdc-ip:8080/sdc

FIWARE-SDC, Release

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='openstack-tcloud.keystone.url';

The last step is to create a sdc client in the chef-server, so that, the SDC can communicate with the chef-server. To do
that, we can use the chef-server-web-ui, which is usually deployed on https://chef-server-ip, go to https://chef-server-
ip/clients and create a sdc client as administrator. Then, it is required to copy the private key.

In the sdc machine, it is required to copy this private key in /etc/chef/sdc.pem (you can configure the path also in the
properties)

Register SDC application into keystone The last step involves to regiter the SDC, chef-server, puppetwrapper and
puppetmaster endpoints into the keystone endpoint catalogue. To do that, you should write into the config.js in the
keystone-proxy the following lines:

{"endpoints": [
{"adminURL": "sdc-base-url",
"region": "myregion",
"internalURL": "sdc-base-url",
"publicURL": "sdc-base-url"
}
],
"endpoints_links": [],
"type": "sdc",
"name": "sdc"

},
{"endpoints": [

{"adminURL": "chef-server-url",
"region": "myregion",
"internalURL": "chef-server-url",
"publicURL": "chef-server-url"
}
],
"endpoints_links": [],
"type": "chef-server",
"name": "chef-server"

},
{"endpoints": [

{"adminURL": "puppet-wrapper-url"
"region": "myregion"
"internalURL": "puppet-wrapper-url"
"publicURL": "puppet-wrapper-url"

}
],
"endpoints_links": [],
"type": "puppetwrapper",
"name": "puppetwrapper"

},
{"endpoints": [

{"adminURL": "puppet-master-url"
"region": "myregion"
"internalURL": "puppet-master-url"
"publicURL": "puppet-master-url"

}
],
"endpoints_links": [],
"type": "puppetmaster",
"name": "puppetmaster"

},

22 Chapter 1. Introduction

https://chef-server-ip
https://chef-server-ip/clients
https://chef-server-ip/clients

FIWARE-SDC, Release

where myregion should be the name of the openstack region defined and puppet-wrapper-url, chef-server-url, sdc-
base-url are typically urls of the form:

puppet-wrapper-url = https://puppetwrapper-ip:port/puppetwrapper/
sdc-base-url = https://sdc-ip:port/sdc/rest
chef-server-url = http://chef-server-ip:port

Creating images sdc-aware

The images to be deployed by the SDC, should have some features, like to have the chef-client installed and configured
correctly with the chef-server. In the roadmap, it is considered to avoid all this process and to make possible any image
to be SDC-aware, installing and configuring everything in booting status.

mkdir /etc/chef
mkdir /var/log/chef
curl -L https://www.opscode.com/chef/install.sh | bash

You should copy the chef-validator.pem from the chef-server into /etc/chef

Then, it is required to create a file called client.rb in /etc/chef. The validation.pem should be obtained from the chef-
server in the folder /etc/chef-server and its called chef-validator.pem and rename to validation.pem in the /etc/chef
folder of the image

log_location "/var/log/chef/client.log"
ssl_verify_mode :verify_none
validation_client_name "chef-validator"
validation_key "/etc/chef/validation.pem"
client_key "/etc/chef/client.pem"
chef_server_url "https://cher-server-ip"

Finally, to start chef-client in boot time

chef-client -i 60 -s 6

Configuring the HTTPS certificate

The service is configured to use HTTPS to secure the communication between clients and the server. One central point
in HTTPS security is the certificate which guarantee the server identity.

Quickest solution: using a self-signed certificate

The service works “out of the box” against passive attacks (e.g. a sniffer) because a self-signed certificated is generated
automatically when the RPM is installed. Any certificate includes a special field call “CN” (Common Name) with the
identity of the host: the generated certificate uses the host IP as identity .

The IP used in the certificate should be the public IP (i.e. the floating IP). The script, which generates the certificate,
knows the public IP asking to an Internet service (http://ifconfig.me/ip). Usually this obtains the floating IP of the
server, but of course it will not work without a direct connection to Internet.

If you need to regenerate a self-signed certificate with a different IP address (or better, a convenient configured host-
name), please run:

/opt/fiware-sdc/bin/generateselfsigned.sh myhost.mydomain.org

1.3. SDC Manager - Installation and Administration Guide 23

http://ifconfig.me/ip

FIWARE-SDC, Release

By the way, the self-signed certificate is at /etc/keystorejetty. This file will not be overwritten although you reinstall
the package. The same way, it will not be removed automatically if you uninstall the package.

Advanced solution: using certificates signed by a CA

Although a self-signed certificate works against passive attack, it is not enough by itself to prevent active attacks,
specifically a “man in the middle attack” where an attacker try to impersonate the server. Indeed, any browser warns
user against self-signed certificates. To avoid these problems, a certificate conveniently signed by a CA may be used.

If you need a certificate signed by a CA, the more cost effective and less intrusive practice when an organization has
several services is to use a wildcard certificate, that is, a common certificate among all the servers of a DNS domain.
Instead of using an IP or hostname in the CN, an expression as ”.fiware.org” is used.

This solution implies:

• The service must have a DNS name in the domain specified in the wildcard certificate. For example, if the
domain is ”.fiware.org” a valid name may be “sdc.fiware.org”.

• The clients should use this hostname instead of the IP

• The file /etc/keystorejetty must be replaced with another one generated from the wildcard certificate, the corre-
sponding private key and other certificates signing the wild certificate.

It is possible that you already have a wild certificate securing your portal, but Apache server uses a different file format.
A tool is provided to import a wildcard certificate, a private key and a chain of certificates, into /etc/keystorejetty:

usually, on an Apache installation, the certificate files are at /etc/ssl/private
/opt/fiware-sdc/bin/importcert.sh key.pem cert.crt chain.crt

If you have a different configuration, for example your organization has got its own PKI, please refer to:
http://docs.codehaus.org/display/JETTY/How%2bto%2bconfigure%2bSSL

1.3.5 Sanity Check procedures

Sanity Check procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that an installation is ready
to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before
proceeding to unit tests, integration tests and user validation.

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check
that everything is up and running. It involves to obtain the product information storaged in the catalogue. With it, we
test that the service is running and the database configure correctly.

https://{SDC_IP}:{port}/sdc/rest

The request to test it in the testbed should be

curl -v -k -H 'Access-Control-Request-Method: GET'
-H 'Content-Type: application xml' -H 'Accept: application/xml'
-H 'X-Auth-Token: 5d035c3a29be41e0b7007383bdbbec57'
-H 'Tenant-Id: 60b4125450fc4a109f50357894ba2e28' -X GET
'https://localhost:8443/sdc/rest/catalog/product'

24 Chapter 1. Introduction

http://docs.codehaus.org/display/JETTY/How%2bto%2bconfigure%2bSSL

FIWARE-SDC, Release

the option -k should be included in the case you have not changed the security configuration of SDC. The result should
be the product catalog.

If you obtain a 401 as a response, please check the admin credentials and the connectivity from the sdc machine to the
keystone (openstack-tcloud.keystone.url in configuration_properties table)

List of Running Processes

Due to the SDC basically is running over jetty, the list of processes must be only the Jetty and PostgreSQL. If we
execute the following command:

ps -ewF | grep 'postgres\|jetty' | grep -v grep

It should show something similar to the following:

postgres 2396 1 0 58141 9228 0 11:51 ? 00:00:00 /usr/bin/postgres
-D /var/lib/pgsql/data -p 5432
postgres 2397 2396 0 47554 1224 0 11:51 ? 00:00:00 postgres:
logger process
postgres 2399 2396 0 58167 4400 0 11:51 ? 00:00:00 postgres:
checkpointer process
postgres 2400 2396 0 58141 1652 0 11:51 ? 00:00:00 postgres:
writer process
postgres 2401 2396 0 58141 1416 0 11:51 ? 00:00:00 postgres:
wal writer process
postgres 2402 2396 0 58349 2944 0 11:51 ? 00:00:00 postgres:
autovacuum launcher process
postgres 2403 2396 0 48110 1720 0 11:51 ? 00:00:00 postgres:
stats collector process
root 2859 1 0 599252 884004 0 11:59 ? 00:00:29 java
-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=8585
-Dspring.profiles.active=fiware -Xmx1024m -Xms1024m
-Djetty.state=/opt/fiware-sdc/jetty.state -Djetty.logs=/opt/fiware-sdc/logs
-Djetty.home=/opt/fiware-sdc -Djetty.base=/opt/fiware-sdc -Djava.io.tmpdir=/tmp
-jar /opt/fiware-sdc/start.jar jetty-logging.xml jetty-started.xml

Network interfaces Up & Open

Taking into account the results of the ps commands in the previous section, we take the PID in order to know the
information about the network interfaces up & open. To check the ports in use and listening, execute the command:

netstat -p -a | grep $PID

Where $PID is the PID of Java process obtained at the ps command described before, in the previous case 2396 (jetty)
and 2859 (postgresql). The expected results for the postgres process must be something like this output:

tcp 0 0 0.0.0.0:postgres 0.0.0.0:* LISTEN 2396/postgres
udp6 0 0 localhost:59289 localhost:59289 ESTABLISHED 2396/postgres
unix 2 [ACC] STREAM LISTENING 35218 2396/postgres
/var/run/postgresql/.s.PGSQL.5432
unix 2 [ACC] STREAM LISTENING 35220 2396/postgres
/tmp/.s.PGSQL.5432

and the following output for the jetty process:

1.3. SDC Manager - Installation and Administration Guide 25

FIWARE-SDC, Release

tcp 0 0 0.0.0.0:8585 0.0.0.0:* LISTEN 2859/java
tcp6 0 0 [::]:pcsync-https [::]:* LISTEN 2859/java
unix 2 [] STREAM CONNECTED 48445 2859/java
unix 2 [] STREAM CONNECTED 62299 2859/java
unix 3 [] STREAM CONNECTED 48380 2859/java

Databases

The last step in the sanity check, once that we have identified the processes and ports is to check the different databases
that have to be up and accept queries. For he first one, if we execute the following commands:

psql -U postgres -d sdc

For obtaining the tables in the database, just use

sdc=# \dt

List of relations
Schema | Name | Type | Owner

--------+-------------------------------+-------+----------
public | artifact | table | postgres
public | artifact_attribute | table | postgres
public | attribute | table | postgres
public | configuration_properties | table | postgres
public | installableinstance | table | postgres
public | installableinstance_attribute | table | postgres
public | installablerelease | table | postgres
public | metadata | table | postgres
public | nodecommand | table | postgres
public | os | table | postgres
public | product | table | postgres
public | product_attribute | table | postgres
public | product_metadata | table | postgres
public | productinstance | table | postgres
public | productrelease | table | postgres
public | productrelease_os | table | postgres
public | productrelease_productrelease | table | postgres
public | task | table | postgres

(18 rows)

1.3.6 Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will take to locate the source of an error in a
GE. Once the nature of the error is identified with these tests, the system admin will very often have to resort to more
concrete and specific testing to pinpoint the exact point of error and a possible solution. Such specific testing is out of
the scope of this section.

Resource availability

The resource availability should be at least 1Gb of RAM and 6GB of Hard disk in order to prevent enabler’s bad
performance. This means that bellow these thresholds the enabler is likely to experience problems or bad performance.

26 Chapter 1. Introduction

FIWARE-SDC, Release

Resource consumption

State the amount of resources that are abnormally high or low. This applies to RAM, CPU and I/O. For this purpose
we have differentiated between:

• Low usage, in which we check the resources that the Tomcat requires in order to load the PaaS Manager.

• High usage, in which we send 100 concurrent accesses to the PaaS Manager.

The results were obtained with a top command execution over the following machine configuration:

| Name | Type |
----------------------+----------------------
Type Machine	Virtual Machine
CPU	1 core @ 2,4Ghz
RAM	1,4GB
HDD	9,25GB
Operating System	CentOS 6.3

The results of requirements both RAM, CPU and I/O to HDD is shown in the following table:

| Resource Consumption | Low UsageType | High Usage |
-------------------------+---------------------------------------
RAM	1GB ~ 63%	3GB ~ 78%
CPU	0,8% of a 2400MHz	90% of a 2400MHZ
I/O HDD	6GB	6GB

1.3. SDC Manager - Installation and Administration Guide 27

	Introduction

