
FIWARE-PaaS
Release

October 04, 2016

Contents

1 Introduction 1

i

ii

CHAPTER 1

Introduction

Pegasus is a Java implementation of the PaaS Manager GE developed as a part of the FIWARE platform.

Pegasus orchestrates the provisioning of the required virtual resources at IaaS level and the installation and configura-
tion of the whole software stack of the application, taking into account the underlying virtual infrastructure. It provides
a flexible mechanism to perform the deployment, enabling multiple deployment architectures: everything in a single
server, several servers, or elastic architectures based on load balancers and different software tiers. Pegasus is a easy
way to deploy your applications in the FIWARE Cloud.

The PaaS Manager source code can be found here

This documentation offers deeper information on PaaS Manager.

Documentation

1.1 FIWARE PaaS Manager | Pegasus

• Introduction
• GEi overall description
• Why to get it
• Build and Install

– Requirements
– Installation

* Using FIWARE package repository (recommended)
– Upgrading from a previous version

* Upgrading database
* Using installation script

• Running
– Configuration file
– Checking status

• API Overview
– API Reference Documentation

• Testing
– Unit tests
– Acceptance tests
– End to End testing

• Advanced topics
• Support
• License

1

https://github.com/telefonicaid/fiware-paas.git

FIWARE-PaaS, Release

1.1.1 Introduction

This is the code repository for FIWARE Pegasus, the reference implementation of the PaaS Manager GE.

This project is part of FIWARE. Check also the FIWARE Catalogue - PaaS Manager GE.

Any feedback on this documentation is highly welcome, including bugs, typos or things you think should be included
but aren’t. You can use FIWARE PaaS Manager - GitHub issues to provide feedback.

For documentation previous to release 4.4.2 please check the manuals at FIWARE public wiki:

• FIWARE PaaS Manager - Installation and Administration Guide

• FIWARE PaaS Manager - User and Programmers Guide

Top

1.1.2 GEi overall description

The PaaS Manager GE provides a new layer over the IaaS layer (Openstack) in the aim of easing the task of deploying
applications on a Cloud infrastructure. Therefore, it orchestrates the provisioning of the required virtual resources at
IaaS level, and then, the installation and configuration of the whole software stack of the application by the SDC GE
((see FIWARE SDC), taking into account the underlying virtual infrastructure. It provides a flexible mechanism to
perform the deployment, enabling multiple deployment architectures: everything in a single VM or server, several
VMs or servers, or elastic architectures based on load balancers and different software tiers.

Top

1.1.3 Why to get it

PaaS Manager GE is the orchestration platform to be used in the FIWARE Cloud ecosystem to deploy not just insfras-
tructure but also software on top of that.

• Full Openstack integrated solution The PaaS Manager is fully integrated with the Opesntack services (nova
for computation, neutron for networking and glance for image catalog.

• Asynchronous interface

Asynchronous interface with polling mechanism to obtain information about the deployment status.

• Decoupling the management and provisioning

Decoupling the management of the catalogue (specifications of what can be deployed) and the management
of the inventory (instances of what has been already deployed). In addition, decoupling the management of
environments from the management of applications, since there could be uses cases where the users of those
functionalities could be different ones.

Top

1.1.4 Build and Install

The recommended procedure is to install using RPM packages in CentOS 6.x as it is explained in the following
document . If you are interested in building from sources, check this document.

2 Chapter 1. Introduction

http://www.fiware.org
http://catalogue.fiware.org/enablers/paas-manager-pegasus
https://github.com/telefonicaid/fiware-paas/issues/new
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/PaaS_Manager_-_Installation_and_Administration_Guide
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/PaaS_Manager_-_User_and_Programmers_Guide
https://github.com/telefonicaid/fiware-sdc

FIWARE-PaaS, Release

Requirements

• System resources: see these recommendations.

• Operating systems: CentOS (RedHat), being CentOS 6.5 the reference operating system.

Installation

Using FIWARE package repository (recommended)

Refer to the documentation of your Linux distribution to set up the URL of the repository where FIWARE packages
are available (and update cache, if needed)

http://repositories.testbed.fiware.org/repo/rpm/x86_64

Then, use the proper tool to install the packages

$ sudo yum install fiware-paas

and the latest version will be installed. In order to install a specific version

$ sudo yum install fiware-paas-{version}-1.noarch

where {version} being the specific version to be installed

Upgrading from a previous version

Unless explicitly stated, no migration steps are required to upgrade to a newer version of the PaaS Manager compo-
nents:

• When using the package repositories, just follow the same directions described in the Installation section (the
install subcommand also performs upgrades).

• When upgrading from downloaded package files, use rpm -U in CentOS

Upgrading database

In case the database needs to be upgrade, the script db-changelog.sql should be execute. To do that, it just needed to
execute

psql -U postgres -d $db_name << EOF
\i db-changelog.sql

Using installation script

The installation of fiware-paas can be done in the easiest way by executing the script

scripts/bootstrap/centos.sh

The script will ask you the following data to configure the configuration properties:

• The database name for the fiware-paas

• The postgres password of the database

• the keystone url to connect fiware-paas for the authentication process

1.1. FIWARE PaaS Manager | Pegasus 3

FIWARE-PaaS, Release

• the admin keystone user for the authentication process

• the admin password for the authentication process

Top

1.1.5 Running

As explained in the GEi overall description section, there are a variety of elements involved in the PaaS Manager
architecture, apart from those components provided by this PaaS Manager GE as the Software Deployment and Con-
figuration and OpenStack services. Please refer to their respective documentation for instructions to run them.

In order to start the PaaS Manager service, as it is based on a web application on top of jetty, just you should run

$ service fiware-paas start

Then, to stop the service, run

$ service fiware-paas stop

We can also force a service restart

$ service fiware-paas restart

Configuration file

The configuration of PaaS Manager is in configuration_properties table in the database. There, it is required to config-
ure

$ openstack-tcloud.keystone.url: This is the url where the keystone-proxy is deployed
$ openstack-tcloud.keystone.user: the admin user
$ openstack-tcloud.keystone.password: the admin password
$ openstack-tcloud.keystone.tenant: the admin tenant
$ paas_manager_url: the final url, mainly https://paas-ip:8443/paasmanager

In addition, to configue the PaaS Manager application inside the webserver, it is needed to change the context file. To
do that, change paasmanager.xml found in distribution file and store it in folder $PAASMANAGER_HOME/webapps/

<New id="sdc" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jdbc/paasmanager</Arg>
<Arg>

<New class="org.postgresql.ds.PGSimpleDataSource">
<Set name="User"> <database user> </Set>
<Set name="Password"> <database password> </Set>
<Set name="DatabaseName"> <database name> </Set>
<Set name="ServerName"> <IP/hostname> </Set>
<Set name="PortNumber">5432</Set>

</New>
</Arg>

</New>

Checking status

In order to check the status of the service, use the following command (no special privileges required):

4 Chapter 1. Introduction

FIWARE-PaaS, Release

$ service fiware-paas status

Top

1.1.6 API Overview

The PaaS Manager offers a REST API, which can be used for both managing deploying virtual infrastructure and
install software on top of it.

For instance, it is possible to obtain the template list in the catalogue

Source code:

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml"
-H "X-Auth-Token: your-token-id" -H "Tenant-Id: your-tenant-id" -X GET
"https://pegasus.lab.fi-ware.org:8443/paasmanager/rest/catalog/org/FIWARE/environment"

Please have a look at the API Reference Documentation section bellow and at the programmer guide.

API Reference Documentation

• FIWARE PaaS Manager v1 (Apiary)

Top

1.1.7 Testing

Unit tests

The test target for each module in the PaaS Manager is used for running the unit tests in both components of PaaS
Manager GE. To execute the unit tests you just need to execute

mvn test

Please have a look at the section building from source code in order to get more information about how to prepare the
environment to run the unit tests.

Acceptance tests

In the following path you will find a set of tests related to the end-to-end funtionalities.

• PaaS Manager Aceptance Tests

To execute the acceptance tests, go to the test/acceptance folder of the project and run

lettuce_tools --tags=-skip.

This command will execute all acceptance tests (see available params with the -h option)

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check
that everything is up and running. It involves to obtain the product information storaged in the catalogue. With it, we
test that the service is running and the database configure correctly

1.1. FIWARE PaaS Manager | Pegasus 5

https://jsapi.apiary.io/apis/fiwarepaas/reference.html
https://github.com/telefonicaid/fiware-paas/tree/develop/test

FIWARE-PaaS, Release

https://{PaaS Manager_IP}:{port}/paasmanager/rest

The request to test it in the testbed should be

curl -v -k -H 'Access-Control-Request-Method: GET' -H 'Content-Type: application xml'
-H 'Accept: application/xml' -H 'X-Auth-Token: 5d035c3a29be41e0b7007383bdbbec57'
-H 'Tenant-Id: 60b4125450fc4a109f50357894ba2e28'
-X GET 'https://localhost:8443/paasmanager/rest/catalog/org/FIWARE/environment'

the option -k should be included in the case you have not changed the security configuration of PaaS Manager. The
result should be the product catalog.

If you obtain a 401 as a response, please check the admin credentials and the connectivity from the PaaS Manager
machine to the keystone (openstack-tcloud.keystone.url in configuration_properties table)

Top

1.1.8 Advanced topics

• Installation and administration

– Software requirements

– Building from sources

– Resources & I/O Flows

• User and programmers guide

Top

1.1.9 Support

Ask your thorough programming questions using stackoverflow and your general questions on FIWARE Q&A. In both
cases please use the tag fiware-pegasus

Top

1.1.10 License

(c) 2013-2015 Telefónica I+D, Apache License 2.0

Top

1.2 PaaS Manager - User and Programmers Guide

1.2.1 Introduction

Welcome the User and Programmer Guide for the PaaS Manager GE. This generic enabler is built on a proprietary
solution using standard interface to communicate with and so where possible this guide points to the appropriate
online content that has been created for this specific API. The online documents are being continuously updated and
improved, and so will be the most appropriate place to get the most up to date information on using this interface.

6 Chapter 1. Introduction

http://stackoverflow.com/questions/ask
https://ask.fiware.org

FIWARE-PaaS, Release

1.2.2 Accessing PaaS Manager from the CLI

The access through the CLI is made using the curl program. Curl [http://curl.haxx.se/] is a client to get documents/files
from or send documents to a server, using any of the supported protocols (HTTP, HTTPS, FTP, GOPHER, DICT,
TELNET, LDAP or FILE) and therefore is also usable for OpenStack Compute API. Use the curl command line tool
or use libcurl from within your own programs in C. Curl is free and open software that compiles and runs under a wide
variety of operating systems.

The normal operations sequence to deploying an environment and an application on top of it could be summarized in
the following list:

API Authentication

All the operations in the PaaS Manager API needs to have a valid token to access it. To obtain the token, you need to
have an account in FIWARE Lab (account.lab.fi-ware.org). With the credentials (username, password and tenantName)
you can obtain a valid token. From now on, we asume that the value of your tenant-id is “your-tenant-id”

Source code:

$ curl -v -H "Content-Type: application/json" -H "Accept: application/json" -X
POST "http://cloud.lab.fi-ware.org:4731/v2.0/tokens" -d '{"auth":{"tenantName":
"your-tenant-id","passwordCredentials":{"username":"youruser",
"password":"yourpassword"}}}'

You will receive the following answer, with a valid token (id).

Source code:

{
access: {

token: {
expires: "2015-07-09T15:16:07Z"
id: "756cfb31e062216544215f54447e2716"
tenant: {
...

}

For all the PaaS manager request, you will need to include the following header:

Source code:

X-Auth-Token: 756cfb31e062216544215f54447e2716
Tenant-Id: your-tenant-id

For the rest of the explanation, we are going to configure a set of variables:

Source code:

export PAAS_MANAGER_IP = pegasus.lab.fi-ware.org

Abstract Environment API

Next we detail some operations that can be done in the catalogue managemente api regarding the Abstract Environ-
ments. Abstract Environments are environments defined by the administrator. They are available for all FIWARE
users.

Get the Abstract Environment list from the catalogue

Source code:

1.2. PaaS Manager - User and Programmers Guide 7

http://curl.haxx.se/

FIWARE-PaaS, Release

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment"

This operation lists the abstract environments stored in the catalogue. The following example shows an XML response
for the list Abstract Environment API operation.

<environmentDtoes>
<environmentDto>

<tierDtos>
<name>orion</name>
<flavour>2</flavour>

<maximumNumberInstances>1</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<productReleaseDtos>

<productName>orion</productName>
<version>0.13.0</version>

</productReleaseDtos>
<icono />
<securityGroup />
<keypair />
<floatingip>false</floatingip>
<affinity>None</affinity>
<region>Spain</region>

</tierDtos>
<name>orion</name>
<description>Environment orion</description>

</environmentDto>
...

</environmentDtoes>

Get a particular Abstract Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}"

This operation lists the abstract environments stored in the catalogue. The following example shows an XML response
for the list Abstract Environment API operation.

<environmentDtoes>
<environmentDto>

<tierDtos>
<name>{abstract-environment-name}</name>
<flavour>2</flavour>

<maximumNumberInstances>1</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<productReleaseDtos>

<productName>orion</productName>
<version>0.13.0</version>

</productReleaseDtos>
<icono />

8 Chapter 1. Introduction

FIWARE-PaaS, Release

<securityGroup />
<keypair />
<floatingip>false</floatingip>
<affinity>None</affinity>
<region>Spain</region>

</tierDtos>
<name>orion</name>
<description>Environment orion</description>

</environmentDto>
</environmentDtoes>

Add an Abstract Environment to the catalogue

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment"

with the following payload

<?xml version="1.0" encoding="UTF-8"?>
<environmentDto>

<name>{abstract-environment-name}</name>
<description>description</description>

</environmentDto>

Delete an abstract template for the catalogue

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X DELETE "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}"

Abstract Tier API

Add an Tier to an existing Abstract Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}/tier"

with the following payload

<tierDto>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<maximumNumberInstances>1</maximumNumberInstances>
<name>{tier-name}</name>

<flavour>2</flavour>
<keypair>jesusmmovilla57</keypair>
<floatingip>false</floatingip>
<region>Trento</region>

</tierDto>

1.2. PaaS Manager - User and Programmers Guide 9

FIWARE-PaaS, Release

Get All Tiers associated to a Abstract Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}/tier"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDtoes>

<tierDto>
<name>{tier-name}</name>
<flavour>2</flavour>

<maximumNumberInstances>3</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<productReleaseDtos>

<productName>mongodbshard</productName>
<productDescription>mongodb shard 2.2.3</productDescription>
<version>2.2.3</version>

</productReleaseDtos>
<icono>

http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png
</icono>
<securityGroup />
<keypair />
<floatingip>false</floatingip>
<affinity>None</affinity>
<region>Spain</region>

</tierDto>
</tierDtoes>

Get a particular Tier associated to an Abstract Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}/tier/{tier-name}"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDto>

<name>{tier-name}</name>
<flavour>2</flavour>

<maximumNumberInstances>3</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<productReleaseDtos>

<productName>mongodbshard</productName>
<productDescription>mongodb shard 2.2.3</productDescription>
<version>2.2.3</version>

</productReleaseDtos>
<icono>

10 Chapter 1. Introduction

FIWARE-PaaS, Release

http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png
</icono>
<securityGroup />
<keypair />
<floatingip>false</floatingip>
<affinity>None</affinity>
<region>Spain</region>

</tierDto>

Update a Tier of an existing Abstract Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X PUT "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}/tier"

with the following payload

<tierDto>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<maximumNumberInstances>1</maximumNumberInstances>
<name>{tier-name}</name>

<flavour>2</flavour>
<keypair>jesusmmovilla57</keypair>
<floatingip>false</floatingip>
<region>Spain</region>

</tierDto>

Delete a particular Tier associated to a Abstract Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment
/{abstract-environment-name}/tier/{tier-name}"

Blueprint Template/Environment API

Next we detail some operations that can be done in the catalogue managemente api

Get the blueprint template list from the catalogue

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment"

This operation lists the environments stored in the catalogue. The following example shows an XML response for the
list Environment API operation. It is possible to see it contains a list of tiers including products to be installed.

<environmentDtoes>
<environment>

<name>{emvironment-name}</name>

1.2. PaaS Manager - User and Programmers Guide 11

FIWARE-PaaS, Release

<tiers>
<tier>

<initial_number_instances>1</initial_number_instances>
<maximum_number_instances>1</maximum_number_instances>
<minimum_number_instances>1</minimum_number_instances>
<name>{tier-id}</name>
<networkDto>

<networkName>Internet</networkName>
<subNetworkDto>

<subnetName>sub-net-Internet</subnetName>
</subNetworkDto>

</networkDto>
<productReleases>

<product>postgresql</product>
<version>0.0.3</version>
<withArtifact>true</withArtifact>
<productType>

<id>5</id>
<name>Database</name>

</productType>
</productReleases>
...

</tier>
</tiers>

</environment>
<environment>

<name>{emvironment-name}</name>
<tiers>

<tier>
...
</tier>

</tiers>
</environment>

</environmentDtoes>

Add a blueprint template to the catalogue

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment"

with the following payload

<?xml version="1.0" encoding="UTF-8"?>
<environmentDto>

<name>{environment-name}</name>
<description>{description of environment}</description>
<tierDtos>

<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<maximumNumberInstances>1</maximumNumberInstances>
<name>{tier-name}</name>
<networkDto>

<networkName>{network-name}</networkName>
<subNetworkDto>

<subnetName>{subnetwork-name}</subnetName>

12 Chapter 1. Introduction

FIWARE-PaaS, Release

</subNetworkDto>
</networkDto>

<flavour>{flavour of VM in number}</flavour>
<keypair>{keypair-name}</keypair>
<floatingip>{false/true}</floatingip>
<region>{region-name}</region>
<productReleaseDtos>

<productName>{product-name}</productName>
<version>{product-version}</version>

</productReleaseDtos>
</tierDtos>

</environmentDto>

The network and region information are including also in the payload of the environment. The following lines show a
example.

<tierDtos>
...
<name>{tier-name}</name>

<networkDto>
<networkName>{network-name}</networkName>

<subNetworkDto>
<subnetName>{subnetwork-name}</subnetName>

</subNetworkDto>
</networkDto>

<flavour>{flavour of VM in number}</flavour>
<keypair>{keypair-name}</keypair>
<floatingip>{false/true}</floatingip>
<region>{region-name}</region>
<productReleaseDtos>

<productName>{product-name}</productName>
<version>{product-version}</version>

</productReleaseDtos>
...

</tierDtos>

Delete a blueprint template from the catalogue

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X DELETE "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment/{environment-id}"

Tier API

Add a Tier to an existing Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment/{environment-name}/tier"

with the following payload

1.2. PaaS Manager - User and Programmers Guide 13

FIWARE-PaaS, Release

<tierDto>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<maximumNumberInstances>1</maximumNumberInstances>
<networkDto>

<networkName>Internet</networkName>
<subNetworkDto>

<subnetName>sub-net-Internet</subnetName>
</subNetworkDto>

</networkDto>
<name>{tier-name}</name>

<flavour>2</flavour>
<keypair>jesusmmovilla57</keypair>
<floatingip>false</floatingip>
<region>Trento</region>

</tierDto>

Get All Tiers associated to an Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment/{environment-name}/tier"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDtoes>

<tierDto>
<name>{tier-name}</name>
<flavour>2</flavour>

<maximumNumberInstances>3</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<networkDto>

<networkName>Internet</networkName>
<subNetworkDto>

<subnetName>sub-net-Internet</subnetName>
</subNetworkDto>

</networkDto>
<productReleaseDtos>

<productName>mongodbshard</productName>
<productDescription>mongodb shard 2.2.3</productDescription>
<version>2.2.3</version>

</productReleaseDtos>
<icono>
http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png

</icono>
<securityGroup />
<keypair />
<floatingip>false</floatingip>
<affinity>None</affinity>
<region>Spain</region>

</tierDto>
</tierDtoes>

14 Chapter 1. Introduction

FIWARE-PaaS, Release

Get a particular Tier associated to an Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment/{environment-name}/tier/{tier-name}"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDto>

<name>{tier-name}</name>
<flavour>2</flavour>

<maximumNumberInstances>3</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<networkDto>

<networkName>Internet</networkName>
<subNetworkDto>

<subnetName>sub-net-Internet</subnetName>
</subNetworkDto>

</networkDto>
<productReleaseDtos>

<productName>mongodbshard</productName>
<productDescription>mongodb shard 2.2.3</productDescription>
<version>2.2.3</version>

</productReleaseDtos>
<icono>

http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png
</icono>
<securityGroup />
<keypair />
<floatingip>false</floatingip>
<affinity>None</affinity>
<region>Spain</region>

</tierDto>

Update a Tier of an existing Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X PUT "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment/{environment-name}/tier"

with the following payload

<tierDto>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<maximumNumberInstances>1</maximumNumberInstances>
<name>{tier-name}</name>
<networkDto>

<networkName>Internet</networkName>
<subNetworkDto>

<subnetName>sub-net-Internet</subnetName>
</subNetworkDto>

1.2. PaaS Manager - User and Programmers Guide 15

FIWARE-PaaS, Release

</networkDto>

<flavour>2</flavour>
<keypair>jesusmmovilla57</keypair>
<floatingip>false</floatingip>
<region>Spain</region>

</tierDto>

Delete a particular Tier associated to an Environment

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/{your-tenant-id}/environment/{environment-name}/tier/{tier-name}"

BluePrint/Environment Instance Provisioning API

Deploy a Blueprint Instance

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc
/{your-tenant-id}/environmentInstance"

where “your-tenant-id” is the tenant-id in this guide. The payload of this request can be as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<environmentInstanceDto>

<blueprintName>{environmentinstance-name}</blueprintName>
<description>{description of environmentinstance}</description>
<environmentDto>

<name>{environment-name}</name>
<description>{description of environmet}</description>
<tierDtos>

<name>{tier-name}</name>
<flavour>{flavour of the VM}</flavour>

<maximumNumberInstances>1</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>
<networkDto>

<networkName>{network-name}</networkName>
</networkDto>
<icono></icono>
<securityGroup>{security-group-name}</securityGroup>
<keypair>{keypair-name}</keypair>
<floatingip>{true/false}</floatingip>
<affinity>None</affinity>
<region>{region-name where to deploy}</region>

</tierDtos>
</environmentDto>

</environmentInstanceDto>

The response obatined should be:

16 Chapter 1. Introduction

FIWARE-PaaS, Release

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/your-tenant-id/task/{task-id}" startTime="2012-11-08T09:13:18.311+01:00"
status="RUNNING">

<description>Deploy environment {environment-name}</description>
<vdc>your-tenant-id</vdc>

</task>

Given the URL obtained in the href in the Task, it is possible to monitor the operation status (you can check Task
Management). Once the environment has been deployed, the task status should be SUCCESS.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc
/your-tenant-id/task/{task-id}" startTime="2012-11-08T09:13:19.567+01:00"
status="SUCCESS">

<description>Deploy environment {environment-name}</description>
<vdc>your-tenant-id</vdc>

</task>

Get information about Blueprint Instances deployed

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc
/your-tenant-id/environmentInstance"

The Response obtained includes all the blueprint instances deployed

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<environmentInstanceDtoes>

<environmentInstance>
<environmentInstanceName>{environmentInstance-id</environmentInstanceName>
<vdc>your-tenant-id</vdc>
<environment>

<name>{environment-name}</name>
<tiers>

<tier>
<initial_number_instances>1</initial_number_instances>
<maximum_number_instances>1</maximum_number_instances>
<minimum_number_instances>1</minimum_number_instances>
<name>{tier-id}</name>
<productReleases>

<product>postgresql</product>
<version>0.0.3</version>
<withArtifact>true</withArtifact>
<productType>

<id>5</id>
<name>Database</name>

</productType>
</productReleases> ...
</tier>

</tiers>
</environment>
<tierInstances>

<id>35</id>
<date>2012-10-31T09:24:45.298Z</date>
<name>tomcat-</name>
<status>INSTALLED</status>

1.2. PaaS Manager - User and Programmers Guide 17

FIWARE-PaaS, Release

<vdc>your-tenant-id</vdc>
<tier>

<name>{tier-id}</name>
</tier>
<productInstances>

<id>33</id>
<date>2012-10-31T09:14:33.192Z</date>
<name>postgresql</name>
<status>INSTALLED</status>
<vdc>your-tenant-id</vdc>
<productRelease>

<product>postgresql</product>
<version>0.0.3</version>

</productRelase>
<vm>

<fqn>vmfqn</fqn>
<hostname>rehos456544</hostname>
<ip>109.231.70.77</ip>

</vm>
</tierInstances>

</environmentInstance>
</environmentInstanceDtoes>

Get details of a certain Blueprint Instance

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc
/your-tenant-id/environmentInstance/{BlueprintInstance-id}"

This operation does not require any payload in the request and provides a BlueprintInstance XML response.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<environmentInstancePDto>

<environmentInstanceName>{environmentinstance-name}</environmentInstanceName>
<vdc>{tenant-id}</vdc>
<description>{description of environmentinstance}</description>
<status>{status of the environment installation}</status>
<blueprintName>{blueprint-name}</blueprintName>
<taskId>{task-id of the execution}</taskId>
<tierDto>

<name>{tier-name}</name>
<flavour>{flavour of the vm}</flavour>

<maximumNumberInstances>1</maximumNumberInstances>
<minimumNumberInstances>1</minimumNumberInstances>
<initialNumberInstances>1</initialNumberInstances>

<productReleaseDtos>
<productName>{product-name}</productName>
<version>{product-version}</version>

</productReleaseDtos>
<icono />
<securityGroup>{securityGroup-name}</securityGroup>
<keypair>{keypair-name}</keypair>
<floatingip>{true/false}</floatingip>
<region>{region-name}</region>
<tierInstancePDto>

18 Chapter 1. Introduction

FIWARE-PaaS, Release

<tierInstanceName>{tierinstance-name}</tierInstanceName>
<status>{status of the tierinstallation}</status>
<taskId>{task id of tier installation execution}</taskId>
<productInstanceDtos>

<productReleaseDto>
<productName>{product-name}</productName>
<version>{product-version}</version>

</productReleaseDto>
<name>{productInstance-name}</name>
<taskId>{task id of product installation}</taskId>

</productInstanceDtos>
<vm>

<domain>{domain of vm}</domain>
<fqn>{fqn of vm}</fqn>
<hostname>{hostname}</hostname>
<ip>{ip}</ip>
<id>{nova-host-id}</id>

</vm>
</tierInstancePDto>

</tierDto>
</environmentInstancePDto>

Undeploy a Blueprint Instance

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X DELETE "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc
/{your-tenant-id}/environmentInstance/{BlueprintInstance-id}"

This operation does not require a request body and returns the details of a generated task.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/vdc/{your-tenant-id}
/task/{task-id}" startTime="2012-11-08T09:45:44.020+01:00" status="RUNNING">

<description>Uninstall environment</description>
<vdc>your-tenant-id</vdc>

</task>

With the URL obtained in the href in the Task, it is possible to monitor the operation status (you can checkTask
Management). Once the environment has been undeployed, the task status should be SUCCESS.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/vdc/{your-tenant-id}
/task/{task-id}" startTime="2012-11-08T09:13:19.567+01:00" status="SUCCESS">

<description>Undeploy environment {emvironment-name}</description>
<vdc>your-tenant-id</vdc>

</task>

Task Management

Get a specific task

Source code:

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"

1.2. PaaS Manager - User and Programmers Guide 19

FIWARE-PaaS, Release

-X DELETE "http://pegasus.lab.fi-ware.org:8080/paasmanager/rest/vdc
/your-tenant-id/task/{task-id}"

This operation recovers the status of a task created previously. It does not need any request body and the response
body in XML would be the following.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task
href="http:/130.206.80.112:8080/sdc/rest/vdc/{your-tenant-id}/task/{task-id}"
startTime="2012-11-08T09:13:18.311+01:00" status="SUCCESS">
<description>Install product tomcat in VM rhel-5200ee66c6</description>
<vdc>your-tenant-id</vdc>

</task>

The value of the status attribute could be one of the following:

Value Description
QUEUED The task is queued for execution.
PENDING The task is pending for approval.
RUNNING The task is currently running.
SUCCESS The task is completed successfully.
ERROR The task is finished but it failed.
CANCELLED The task has been cancelled by user.

1.3 PaaS Manager - Installation and Administration Guide

1.3.1 Introduction

This guide defines the procedure to install the different components that build up the PaaS Manager GE, including
its requirements and possible troubleshooting. The guide includes two different ways of installing PaaS Manager:
Installation from rpm or installation from source (building previously the rpm).

1.3.2 Requirements

In order to execute the PaaS Manager, it is needed to have previously installed the following software:

• PostgreSQL.

You can find a small guide to install PostgresSQL in the next section. If you find some problems installing PostgreSQL,
please refer to the postgres official site.

PaaS Manager should be installed in a host with 2Gb RAM.

1.3.3 Installation from script

The installation of fiware-paas can be done in the easiest way by executing the script

scripts/bootstrap/centos.sh

that is in the github repository of the project.

In order to perform the installation via script, git should be installed (yum install git). Just clone the github repository:

20 Chapter 1. Introduction

FIWARE-PaaS, Release

git clone https://github.com/telefonicaid/fiware-paas

and go to the folder

cd fiware-paas/scripts/bootstrap

Assign the corresponding permissions to the script centos.sh and execute under root user

./centos.sh

The script will ask you the following data:

• The database name for the fiware-paas

• The postgres password of the database

• the keytone url to connect fiware-paas for the uthentication process

• the admin keystone user for the autentication process

• the admin password for the autentication process

Once the script is finished, you will have fiware-paas installed under /opt/fiware-paas/ . Please go to the Sanity Check
section in order to test the installation. This script does not insert the fiware-paas data into the keystone, so this action
has to be done manually. In order to complete the installation please refer to Configuring the PaaS Manager in the
kesytone section.

1.3.4 Manual Installation

Requirements: Install PostgreSQL

The first thing is to install and configure the requirements, in this case, the postgresql

yum install postgresql postgresql-server postgresql-contrib

Type the following commands to install the postgresql as service and start it

chkconfig --add postgresql
chkconfig postgresql on
service postgresql initdb
service postgresql start

Install PaaS Manager from RPM

The PaaS Manager is packaged as RPM and stored in the rpm repository. Thus, the first thing to do is to create a file
in /etc/yum.repos.d/fiware.repo, with the following content.

[Fiware]
name=FIWARE repository
baseurl=http://repositories.testbed.fi-ware.eu/repo/rpm/x86_64/
gpgcheck=0
enabled=1

After that, you can install the PaaS Manager just doing:

yum install fiware-paas

or specifying the version

1.3. PaaS Manager - Installation and Administration Guide 21

FIWARE-PaaS, Release

yum install fiware-paas-{version}-1.noarch

where {version} could 1.5.0

Install PaaS Manager from source

Requirements: To install Paas Manager from source it is required to have the following software installed in your host
previously:

• git

• java 1.7

• maven

Here we include a small guide to install the required software. If you find any problem in the installation process,
please refer to the official site:

Install git

sudo yum install git

Install java 1.7

sudo yum install java-1.7.0-openjdk-devel

Install maven 2.5

Source code:

sudo yum install wget
wget http://mirrors.gigenet.com/apache/maven/maven-3/3.2.5/binaries
/apache-maven-3.2.5-bin.tar.gz

su -c "tar -zxvf apache-maven-3.2.5-bin.tar.gz -C /usr/local"
cd /usr/local
sudo ln -s apache-maven-3.2.5 maven

Add the following lines to the file /etc/profile.d/maven.sh

Source code:

Add the following lines to maven.sh
export M2_HOME=/usr/local/maven
export M2=$M2_HOME/bin
PATH=$M2:$PATH

In order to check that your maven installation is OK, you shluld exit your current session with “exit” command, enter
again and type

Source code:

mvn -version

if the system shows the current maven version installed in your host, you are ready to continue with this guide.

Now we are ready to build the PaaS Manager rpm and finally install it

The PaaS Manager is a maven application so, we should follow following instructions:

• Download PaaS Manager code from github

Source code:

22 Chapter 1. Introduction

FIWARE-PaaS, Release

git clone -b develop https://github.com/telefonicaid/fiware-paas

• Go to fiware-paas folder and compile, launch test and build all modules

Source code:

cd fiware-paas/
mvn clean install

• Create a zip with distribution in target/paas-manager-server-dist.zip

Source code:

mvn assembly:assembly -DskipTests

• You can generate a rpm o debian packages (using profiles in pom) for debian/ubuntu:

Source code:

mvn install -Pdebian -DskipTests
(created target/paas-manager-server-XXXXX.deb)

• for centOS (you need to have installed rpm-bluid. If not, please type “yum install rpm-build”)

Source code:

mvn install -Prpm -DskipTests
(created target/rpm/paasmanager/RPMS/noarch/paasmanager-XXXX.noarch.rpm)

Finally go to the folder where the rpm has been created (target/rpm/fiware-paas/RPMS/noarch) and execute

Source code:

cd target/rpm/fiware-paas/RPMS/noarch
rpm -i <rpm-name>.rpm

Please, be aware that the supported installation method is the RPM package. If you use other method, some extra steps
may be required. For example you would need to generate manually the certificate (See the section about “Configuring
the HTTPS certificate” for more information):

Source code:

fiware-paas/bin/generateselfsigned.sh

Configuring the database

We need to create the paasmanager database. To do that we need to connect as postgres user to the PostgreSQL server
and set the password for user postgres using alter user as below:

Source code:

su - postgres
postgres$ psql postgres postgres;
psql (8.4.13)
Type "help" for help.
postgres=# alter user postgres with password 'postgres';
postgres=# create database paasmanager;
postgres=# grant all privileges on database paasmanager to postgres;
postgres=#\q
exit

1.3. PaaS Manager - Installation and Administration Guide 23

FIWARE-PaaS, Release

Edit file /var/lib/pgsql/data/pg_hba.conf and set authentication method to md5:

Source code:

TYPE DATABASE USER CIDR-ADDRESS METHOD
"local" is for Unix domain socket connections only
local all all md5
local all postgres md5

IPv4 local connections:
host all all 0.0.0.0/0 md5

Edit file /var/lib/pgsql/data/postgresql.conf and set listen addresses to 0.0.0.0:

Source code:

listen_addresses = '0.0.0.0'

Reload configuration

Source code:

service postgresql reload

To create the tables in the databases, just go to

Source code:

su - potgres
cd /opt/fiware-paas/resources
postgres$ psql -U postgres -d paasmanager
Password for user postgres: <postgres-password-previously-chosen>
postgres=# \i db-initial.sql
postgres=# \i db-changelog.sql
exit

Update the following columns in the table configuration_properties:

Source code:

openstack-tcloud.keystone.url=<keystone.url>
paas_manager_url=https://{ip}:8443/paasmanager/rest
openstack-tcloud.keystone.user= <keystone.user>
openstack-tcloud.keystone.pass= <keystone.password>
openstack-tcloud.keystone.tenant=<keystone.tenant>
user_data_path=/opt/fiware-paas/resources/userdata

where the values between bracket <> should be found out depending on the openstack installation. The updates of the
columns are done in the following way

Source code:

su - potgres

postgres$ psql -U postgres -d paasmanager
Password for user postgres: <postgres-password-previously-chosen>

postgres=# UPDATE configuration_properties SET
value='/opt/fiware-paas/resources/userdata' where key='user_data_path';

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='paas_manager_url';

postgres=# UPDATE configuration_properties SET value='<the value>'

24 Chapter 1. Introduction

FIWARE-PaaS, Release

where key='openstack-tcloud.keystone.user';

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='openstack-tcloud.keystone.pass';

postgres=# UPDATE configuration_properties SET value='<the value>'
where key='openstack-tcloud.keystone.tenant';

Configure PaaS Manager application

Once the prerequisites are satisfied, you shall modify the context file at /opt/fiware-paas/webapps/paasmanager.xml

See the snipet bellow to know how it works:

<New id="paasmanager" class="org.eclipse.jetty.plus.jndi.Resource">
<Arg>jdbc/paasmanager</Arg>
<Arg>

<New class="org.postgresql.ds.PGSimpleDataSource">
<Set name="User"> {database user} </Set>
<Set name="Password"> {database password} </Set>
<Set name="DatabaseName"> {database name} </Set>
<Set name="ServerName"> {IP database hostname - localhost default} </Set>
<Set name="PortNumber"> {port database - 5432 default} </Set>

</New>
</Arg>

</New>

Configuring the PaaS Manager as service

Once we have installed and configured the PaaS Manager, the next step is to configure it as a service. To do that just
create a file in /etc/init.d/fiware-paas with the following content

Source code:

#!/bin/bash
chkconfig: 2345 20 80
description: Description comes here....
Source function library.
. /etc/init.d/functions
start() {

/opt/fiware-paas/bin/jetty.sh start
}
stop() {

/opt/fiware-paas/bin/jetty.sh stop
}
case "$1" in

start)
start

;;
stop)

stop
;;
restart)

stop
start

;;

1.3. PaaS Manager - Installation and Administration Guide 25

FIWARE-PaaS, Release

status)
/opt/fiware-paas/bin/jetty.sh status

;;

*)
echo "Usage: $0 {start|stop|status|restart}"

esac
exit 0

Now you need to execute:

Source code:

chkconfig --add fiware-paas
chkconfig fiware-paas on
service fiware-paas start

Configuring the HTTPS certificate

The service is configured to use HTTPS to secure the communication between clients and the server. One central point
in HTTPS security is the certificate which guarantee the server identity.

Quickest solution: using a self-signed certificate

The service works “out of the box” against passive attacks (e.g. a sniffer) because a self-signed certificated is generated
automatically when the RPM is installed. Any certificate includes a special field call “CN” (Common name) with the
identity of the host: the generated certificate uses as identity the IP of the host.

The IP used in the certificate should be the public IP (i.e. the floating IP). The script which generates the certificate
knows the public IP asking to an Internet service (http://ifconfig.me/ip). Usually this obtains the floating IP of the
server, but of course it wont work without a direct connection to Internet.

If you need to regenerate a self-signed certificate with a different IP address (or better, a convenient configured host-
name), please run:

Source code:

/opt/fiware-paas/bin/generateselfsigned.sh myhost.mydomain.org

By the way, the self-signed certificate is at /etc/keystorejetty. This file wont be overwritten although you reinstall the
package. The same way, it wont be removed automatically if you uninstall de package.

Advanced solution: using certificates signed by a CA

Although a self-signed certificate works against passive attack, it is not enough by itself to prevent active attacks,
specifically a “man in the middle attack” where an attacker try to impersonate the server. Indeed, any browser warns
user against self-signed certificates. To avoid these problems, a certificate conveniently signed by a CA may be used.

If you need a certificate signed by a CA, the more cost effective and less intrusive practice when an organization has
several services is to use a wildcard certificate, that is, a common certificate among all the servers of a DNS domain.
Instead of using an IP or hostname in the CN, an expression as ”.fiware.org ” is used.

This solution implies:

• The service must have a DNS name in the domain specified in the wildcard certificate. For example, if the
domain is ”.fiware.org” a valid name may be “paasmanager.fiware.org”.

• The clients should use this hostname instead of the IP

26 Chapter 1. Introduction

http://ifconfig.me/ip

FIWARE-PaaS, Release

• The file /etc/keystorejetty must be replaced with another one generated from the wildcard certificate, the corre-
sponding private key and other certificates signing the wild certificate.

It’s possible that you already have a wild certificate securing your portal, but Apache server uses a different file format.
A tool is provided to import a wildcard certificate, a private key and a chain of certificates, into /etc/keystorejetty:

Source code:

usually, on an Apache installation, the certificate files are at /etc/ssl/private
/opt/fiware-paas/bin/importcert.sh key.pem cert.crt chain.crt

If you have a different configuration, for example your organization has got its own PKI, please refer to:
http://docs.codehaus.org/display/JETTY/How%2bto%2bconfigure%2bSSL

Configuring the PaaS Manager in the keystone

The FIWARE keystone is a endpoint catalogue which collects all the endpoint of the different services

1.3.5 Sanity check procedures

Sanity check procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that an installation is ready
to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before
proceeding to unit tests, integration tests and user validation.

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check
that everything is up and running. It involves to obtain the product information storaged in the catalogue. With it, we
test that the service is running and the database configure correctly.

Source code:

http://{PaaSManagerIP}:{port}/paasmanager/rest

The request to test it in the testbed should be

Source code:

curl -v -k -H 'Access-Control-Request-Method: GET'
-H 'Content-Type: application xml'
-H 'Accept: application/xml' -H 'X-Auth-Token: 5d035c3a29be41e0b7007383bdbbec57'
-H 'Tenant-Id: 60b4125450fc4a109f50357894ba2e28' -X GET
'https://{PaaSManagerIP}:8443/paasmanager/rest/catalog/org/FIWARE/environment'

the option -k should be included in the case you have not changed the security configuration of PaaS Manager.

Whose result is the PaaS Manager API documentation.

List of Running Processes

Due to the PaaS Manager basically is running over the Tomcat, the list of processes must be only the Jetty and
PostgreSQL. If we execute the following command:

Source code:

1.3. PaaS Manager - Installation and Administration Guide 27

http://docs.codehaus.org/display/JETTY/How%2bto%2bconfigure%2bSSL

FIWARE-PaaS, Release

ps -ewF | grep 'postgres\|jetty' | grep -v grep

It should show something similar to the following:

Source code:

postgres 1327 1 0 58141 9256 0 08:26 ? 00:00:00 /usr/bin/postgres
-D /var/lib/pgsql/data -p 5432
postgres 1328 1327 0 48078 1696 0 08:26 ? 00:00:00 postgres:
logger process
postgres 1330 1327 0 58166 3980 0 08:26 ? 00:00:00 postgres:
checkpointer process
postgres 1331 1327 0 58141 2068 0 08:26 ? 00:00:00 postgres:
writer process
postgres 1332 1327 0 58141 1808 0 08:26 ? 00:00:00 postgres:
wal writer process
postgres 1333 1327 0 58349 3172 0 08:26 ? 00:00:00 postgres:
autovacuum launcher process
postgres 1334 1327 0 48110 2052 0 08:26 ? 00:00:00 postgres:
stats collector process
root 14054 1 4 598402 811464 0 09:35 ? 00:00:22 java -Xmx1024m
-Xms1024m -Djetty.state=/opt/fiware-paas/jetty.state -Djetty.home=/opt/fiware-paas
-Djetty.base=/opt/fiware-paas -Djava.io.tmpdir=/tmp -jar /opt/fiware-paas/start.jar
jetty-logging.xml jetty-started.xml
postgres 14114 1327 0 58414 3956 0 09:36 ? 00:00:00 postgres:
postgres paasmanager 127.0.0.1(48012) idle
postgres 14117 1327 0 58449 3772 0 09:36 ? 00:00:00 postgres:
postgres paasmanager 127.0.0.1(48013) idle
postgres 14118 1327 0 58449 3776 0 09:36 ? 00:00:00 postgres:
postgres paasmanager 127.0.0.1(48014) idle

Network interfaces Up & Open

Taking into account the results of the ps commands in the previous section, we take the PID in order to know the
information about the network interfaces up & open. To check the ports in use and listening, execute the command:

Source code:

netstat -p -a | grep $PID

Where $PID is the PID of Java process obtained at the ps command described before, in the previous case 14054 jetty
and 1327 (postgresql). The expected results for the postgres process must be something like this output:

Source code:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp6 0 0 [::]:pcsync-https [::]:* LISTEN 14054/java
tcp6 0 0 localhost:48017 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48015 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48027 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48016 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48022 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48023 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48029 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48013 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48012 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48019 localhost:postgres ESTABLISHED 14054/java

28 Chapter 1. Introduction

FIWARE-PaaS, Release

tcp6 0 0 localhost:48028 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48014 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48020 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48024 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48031 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48021 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48018 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48026 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48030 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48025 localhost:postgres ESTABLISHED 14054/java
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [] STREAM CONNECTED 71542 14054/java
unix 3 [] STREAM CONNECTED 71480 14054/java

and the following output for the jetty process:

Source code:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 localhost:postgres 0.0.0.0:* LISTEN 1327/postgres
tcp6 0 0 localhost:postgres [::]:* LISTEN 1327/postgres
udp6 0 0 localhost:53966 localhost:53966 ESTABLISHED 1327/postgres
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 19508 1327/postgres
/tmp/.s.PGSQL.5432
unix 2 [ACC] STREAM LISTENING 19506 1327/postgres
/var/run/postgresql/.s.PGSQL.5432

Databases

The last step in the sanity check, once that we have identified the processes and ports is to check the different databases
that have to be up and accept queries. Fort he first one, if we execute the following commands:

Source code:

psql -U postgres -d paasmanager

For obtaining the tables in the database, just use

Source code:

paasmanager=# \dt

Schema | Name | Type | Owner
--------+---------------------------------------+-------+----------
public | applicationinstance | tabla | postgres
public | applicationrelease | tabla | postgres
public | applicationrelease_applicationrelease | tabla | postgres
public | applicationrelease_artifact | tabla | postgres
...

1.3. PaaS Manager - Installation and Administration Guide 29

FIWARE-PaaS, Release

1.3.6 Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will take to locate the source of an error in a
GE. Once the nature of the error is identified with these tests, the system admin will very often have to resort to more
concrete and specific testing to pinpoint the exact point of error and a possible solution. Such specific testing is out of
the scope of this section.

Resource availability

The resource availability should be at least 1Gb of RAM and 6GB of Hard disk in order to prevent enabler’s bad
performance. This means that bellow these thresholds the enabler is likely to experience problems or bad performance.

Resource consumption

State the amount of resources that are abnormally high or low. This applies to RAM, CPU and I/O. For this purpose
we have differentiated between:

• Low usage, in which we check the resources that the Tomcat requires in order to load the PaaS Manager.

• High usage, in which we send 100 concurrent accesses to the PaaS Manager.

The results were obtained with a top command execution over the following machine configuration:

Table 1.1: Resource capacities

Characteristic Value
Type Machine Virtual Machine
CPU 1 core @ 2,4Ghz
RAM 1,4GB
HDD 9,25GB
Operating System CentOS 6.3

The results of requirements both RAM, CPU and I/O to HDD is shown in the following table:

Table 1.2: Resource Consumption

Resource Consumption Low Usage Type High Usage Type
RAM 1GB ~ 63% 3GB ~ 78%
CPU 0,8% of a 2400MHz 90% of a 2400MHZ
I/O HDD 6GB 6GB

30 Chapter 1. Introduction

	Introduction

