

 Navigation

 	
 index

 	
 next |

 	FIWARE-PaaS documentation

Welcome to Pegasus - PaaS Manager

Introduction

Pegasus is a Java implementation of the PaaS Manager GE developed as a part of the FIWARE platform.

Pegasus orchestrates the provisioning of the required virtual resources at IaaS level and the installation and
configuration of the whole software stack of the application, taking into account the underlying virtual
infrastructure. It provides a flexible mechanism to perform the deployment, enabling multiple deployment
architectures: everything in a single server, several servers, or elastic architectures based on load balancers
and different software tiers. Pegasus is a easy way to deploy your applications in the FIWARE Cloud.

The PaaS Manager source code can be found here [https://github.com/telefonicaid/fiware-paas.git]

This documentation offers deeper information on PaaS Manager.

Documentation

	FIWARE PaaS Manager | Pegasus

	PaaS Manager - User and Programmers Guide

	PaaS Manager - Installation and Administration Guide

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE-PaaS documentation

FIWARE PaaS Manager | Pegasus

[image: Build Status] [https://travis-ci.org/telefonicaid/fiware-paas] [image: Coverage Status] [https://coveralls.io/r/telefonicaid/fiware-paas] [image: StackOverflow] [https://stackoverflow.com/questions/tagged/fiware-pegasus]

	Introduction

	GEi overall description

	Why to get it

	Build and Install
	Requirements

	Installation
	Using FIWARE package repository (recommended)

	Upgrading from a previous version
	Upgrading database

	Using installation script

	Running
	Configuration file

	Checking status

	API Overview
	API Reference Documentation

	Testing
	Unit tests

	Acceptance tests

	End to End testing

	Advanced topics

	Support

	License

Introduction

This is the code repository for FIWARE Pegasus, the reference implementation
of the PaaS Manager GE.

This project is part of FIWARE [http://www.fiware.org]. Check also the
FIWARE Catalogue - PaaS Manager GE [http://catalogue.fiware.org/enablers/paas-manager-pegasus].

Any feedback on this documentation is highly welcome, including bugs, typos
or things you think should be included but aren’t. You can use FIWARE PaaS Manager - GitHub issues [https://github.com/telefonicaid/fiware-paas/issues/new]
to provide feedback.

For documentation previous to release 4.4.2 please check the manuals at FIWARE
public wiki:

	FIWARE PaaS Manager - Installation and Administration Guide [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/PaaS_Manager_-_Installation_and_Administration_Guide]

	FIWARE PaaS Manager - User and Programmers Guide [https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/PaaS_Manager_-_User_and_Programmers_Guide]

Top

GEi overall description

The PaaS Manager GE provides a
new layer over the IaaS layer (Openstack) in the aim of easing the task of deploying applications on a Cloud infrastructure.
Therefore, it orchestrates the provisioning of the required virtual resources at IaaS level, and then, the installation and configuration
of the whole software stack of the application by the SDC GE ((see FIWARE SDC [https://github.com/telefonicaid/fiware-sdc]), taking into account the underlying virtual infrastructure.
It provides a flexible mechanism to perform the deployment, enabling multiple deployment architectures:
everything in a single VM or server, several VMs or servers, or elastic architectures based on load balancers and different software tiers.

Top

Why to get it

PaaS Manager GE is the orchestration platform to be used in the
FIWARE Cloud ecosystem to deploy not just insfrastructure but also software on top
of that.

	Full Openstack integrated solution
The PaaS Manager is fully integrated with the Opesntack services (nova for computation, neutron for networking and glance
for image catalog.

	Asynchronous interface

Asynchronous interface with polling mechanism to obtain information about the deployment status.

	Decoupling the management and provisioning

Decoupling the management of the catalogue (specifications of what can be deployed)
and the management of the inventory (instances of what has been already deployed).
In addition, decoupling the management of environments from the management of applications,
since there could be uses cases where the users of those functionalities could be different ones.

Top

Build and Install

The recommended procedure is to install using RPM packages in CentOS 6.x as it is explained in
the following document
. If you are interested in building
from sources, check this document.

Requirements

	System resources: see these recommendations.

	Operating systems: CentOS (RedHat), being CentOS 6.5 the
reference operating system.

Installation

Using FIWARE package repository (recommended)

Refer to the documentation of your Linux distribution to set up the URL of the
repository where FIWARE packages are available (and update cache, if needed):

http://repositories.testbed.fiware.org/repo/rpm/x86_64

Then, use the proper tool to install the packages:

$ sudo yum install fiware-paas

and the latest version will be installed. In order to install a specific version:

$ sudo yum install fiware-paas-{version}-1.noarch

where {version} being the specific version to be installed

Upgrading from a previous version

Unless explicitly stated, no migration steps are required to upgrade to a
newer version of the PaaS Manager components:

	When using the package repositories, just follow the same directions
described in the Installation section (the install subcommand also
performs upgrades).

	When upgrading from downloaded package files, use rpm -U in CentOS

Upgrading database

In case the database needs to be upgrade, the script db-changelog.sql should
be execute. To do that, it just needed to execute:

psql -U postgres -d $db_name << EOF
\i db-changelog.sql

Using installation script

The installation of fiware-paas can be done in the easiest way by executing the script:

scripts/bootstrap/centos.sh

The script will ask you the following data to configure the configuration properties:

	The database name for the fiware-paas

	The postgres password of the database

	the keystone url to connect fiware-paas for the authentication process

	the admin keystone user for the authentication process

	the admin password for the authentication process

Top

Running

As explained in the GEi overall description section, there are a variety of
elements involved in the PaaS Manager architecture, apart from those components
provided by this PaaS Manager GE as the Software Deployment and Configuration and
OpenStack services. Please
refer to their respective documentation for instructions to run them.

In order to start the PaaS Manager service, as it is based on a
web application on top of jetty, just you should run:

$ service fiware-paas start

Then, to stop the service, run:

$ service fiware-paas stop

We can also force a service restart:

$ service fiware-paas restart

Configuration file

The configuration of PaaS Manager is in configuration_properties table in the database.
There, it is required to configure:

$ openstack-tcloud.keystone.url: This is the url where the keystone-proxy is deployed
$ openstack-tcloud.keystone.user: the admin user
$ openstack-tcloud.keystone.password: the admin password
$ openstack-tcloud.keystone.tenant: the admin tenant
$ paas_manager_url: the final url, mainly https://paas-ip:8443/paasmanager

In addition, to configue the PaaS Manager application inside the webserver, it is needed to change the context file.
To do that, change paasmanager.xml found in distribution file and store it in folder $PAASMANAGER_HOME/webapps/:

<New id="sdc" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>jdbc/paasmanager</Arg>
 <Arg>
 <New class="org.postgresql.ds.PGSimpleDataSource">
 <Set name="User"> <database user> </Set>
 <Set name="Password"> <database password> </Set>
 <Set name="DatabaseName"> <database name> </Set>
 <Set name="ServerName"> <IP/hostname> </Set>
 <Set name="PortNumber">5432</Set>
 </New>
 </Arg>
</New>

Checking status

In order to check the status of the service, use the following command
(no special privileges required):

$ service fiware-paas status

Top

API Overview

The PaaS Manager offers a REST API, which can be used for both
managing deploying virtual infrastructure and install software
on top of it.

For instance, it is possible to obtain the template list in the catalogue:

$ curl -v -H "Content-Type: application/json" -H "Accept: application/xml" -H "X-Auth-Token: your-token-id" -H "Tenant-Id: your-tenant-id"
 -X GET "https://pegasus.lab.fi-ware.org:8443/paasmanager/rest/catalog/org/FIWARE/environment"

Please have a look at the API Reference Documentation section bellow and at the programmer guide.

API Reference Documentation

	FIWARE PaaS Manager v1 (Apiary) [https://jsapi.apiary.io/apis/fiwarepaas/reference.html]

Top

Testing

Unit tests

The test target for each module in the PaaS Manager is used for running the unit tests in both components of
PaaS Manager GE. To execute the unit tests you just need to execute:

mvn test

Please have a look at the section building from source code in order to get more
information about how to prepare the environment to run the
unit tests.

Acceptance tests

In the following path you will find a set of tests related to the
end-to-end funtionalities.

	PaaS Manager Aceptance Tests [https://github.com/telefonicaid/fiware-paas/tree/develop/test]

To execute the acceptance tests, go to the test/acceptance folder of the project and run:

lettuce_tools --tags=-skip.

This command will execute all acceptance tests (see available params with the -h option)

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show
here a quick testing to check that everything is up and running. It involves to obtain
the product information storaged in the catalogue. With it, we test that the service
is running and the database configure correctly:

https://{PaaS Manager_IP}:{port}/paasmanager/rest

The request to test it in the testbed should be:

curl -v -k -H 'Access-Control-Request-Method: GET' -H 'Content-Type: application xml' -H 'Accept: application/xml'
-H 'X-Auth-Token: 5d035c3a29be41e0b7007383bdbbec57' -H 'Tenant-Id: 60b4125450fc4a109f50357894ba2e28'
-X GET 'https://localhost:8443/paasmanager/rest/catalog/org/FIWARE/environment'

the option -k should be included in the case you have not changed the security configuration of PaaS Manager. The result should be the product catalog.

If you obtain a 401 as a response, please check the admin credentials and the connectivity from the PaaS Manager machine
to the keystone (openstack-tcloud.keystone.url in configuration_properties table)

Top

Advanced topics

	Installation and administration
	Software requirements

	Building from sources

	Resources & I/O Flows

	User and programmers guide

Top

Support

Ask your thorough programming questions using stackoverflow [http://stackoverflow.com/questions/ask] and your general questions on FIWARE Q&A [https://ask.fiware.org].
In both cases please use the tag fiware-pegasus

Top

License

(c) 2013-2015 Telefónica I+D, Apache License 2.0

Top

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	FIWARE-PaaS documentation

PaaS Manager - User and Programmers Guide

Introduction

Welcome the User and Programmer Guide for the PaaS Manager GE.
This generic enabler is built on a proprietary solution using standard
interface to communicate with and so where possible this guide points to
the appropriate online content that has been created for this specific API.
The online documents are being continuously updated and improved, and so
will be the most appropriate place to get the most up to date information on using this interface.

Accessing PaaS Manager from the CLI

The access through the CLI is made using the curl program. Curl [http://curl.haxx.se/] is a client to get documents/files from or send documents to a server, using any of the supported protocols (HTTP, HTTPS, FTP, GOPHER, DICT, TELNET, LDAP or FILE) and therefore is also usable for OpenStack Compute API. Use the curl command line tool or use libcurl from within your own programs in C. Curl is free and open software that compiles and runs under a wide variety of operating systems.

The normal operations sequence to deploying an environment and an application on top of it could be summarized in the following list:

API Authentication

All the operations in the PaaS Manager API needs to have a valid token to access it. To obtain the token, you need to have an account in FIWARE Lab (account.lab.fi-ware.org).
With the credentials (username, password and tenantName) you can obtain a valid token. From now on, we asume that the value of your tenant-id is “your-tenant-id”

$ curl -v -H "Content-Type: application/json" -H "Accept: application/json" -X
POST "http://cloud.lab.fi-ware.org:4731/v2.0/tokens" -d '{"auth":{"tenantName":
"your-tenant-id","passwordCredentials":{"username":"youruser","password":"yourpassword"}}}'

You will receive the following answer, with a valid token (id).

{
access: {
 token: {
 expires: "2015-07-09T15:16:07Z"
 id: "756cfb31e062216544215f54447e2716"
 tenant: {
 ..
}

For all the PaaS manager request, you will need to include the following header:

X-Auth-Token: 756cfb31e062216544215f54447e2716
Tenant-Id: your-tenant-id

For the rest of the explanation, we are going to configure a set of variables:

export PAAS_MANAGER_IP = pegasus.lab.fi-ware.org

Abstract Environment API

Next we detail some operations that can be done in the catalogue managemente api regarding the Abstract Environments.
Abstract Environments are environments defined by the administrator. They are available for all FIWARE users.

Get the Abstract Environment list from the catalogue

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment"

This operation lists the abstract environments stored in the catalogue. The following example shows an XML response for the list Abstract Environment API operation.

 <environmentDtoes>
 <environmentDto>
 <tierDtos>
 <name>orion</name>
 <flavour>2</flavour>
 
 <maximumNumberInstances>1</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <productReleaseDtos>
 <productName>orion</productName>
 <version>0.13.0</version>
 </productReleaseDtos>
 <icono />
 <securityGroup />
 <keypair />
 <floatingip>false</floatingip>
 <affinity>None</affinity>
 <region>Spain</region>
 </tierDtos>
 <name>orion</name>
 <description>Environment orion</description>
 </environmentDto>
 ...
</environmentDtoes>

Get a particular Abstract Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}"

This operation lists the abstract environments stored in the catalogue. The following example shows an XML response for the list Abstract Environment API operation.

 <environmentDtoes>
 <environmentDto>
 <tierDtos>
 <name>{abstract-environment-name}</name>
 <flavour>2</flavour>
 
 <maximumNumberInstances>1</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <productReleaseDtos>
 <productName>orion</productName>
 <version>0.13.0</version>
 </productReleaseDtos>
 <icono />
 <securityGroup />
 <keypair />
 <floatingip>false</floatingip>
 <affinity>None</affinity>
 <region>Spain</region>
 </tierDtos>
 <name>orion</name>
 <description>Environment orion</description>
 </environmentDto>
</environmentDtoes>

Add an Abstract Environment to the catalogue

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment"

with the following payload

<?xml version="1.0" encoding="UTF-8"?>
<environmentDto>
 <name>{abstract-environment-name}</name>
 <description>description</description>
</environmentDto>

Delete an abstract template for the catalogue

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X DELETE "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}"

Abstract Tier API

Add an Tier to an existing Abstract Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}/tier"

with the following payload

<tierDto>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <maximumNumberInstances>1</maximumNumberInstances>
 <name>{tier-name}</name>
 
 <flavour>2</flavour>
 <keypair>jesusmmovilla57</keypair>
 <floatingip>false</floatingip>
 <region>Trento</region>
</tierDto>

Get All Tiers associated to a Abstract Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}/tier"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDtoes>
 <tierDto>
 <name>{tier-name}</name>
 <flavour>2</flavour>
 
 <maximumNumberInstances>3</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <productReleaseDtos>
 <productName>mongodbshard</productName>
 <productDescription>mongodb shard 2.2.3</productDescription>
 <version>2.2.3</version>
 </productReleaseDtos>
 <icono>http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png</icono>
 <securityGroup />
 <keypair />
 <floatingip>false</floatingip>
 <affinity>None</affinity>
 <region>Spain</region>
 </tierDto>
</tierDtoes>

Get a particular Tier associated to a Abstract Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}/tier/{tier-name}"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDto>
 <name>{tier-name}</name>
 <flavour>2</flavour>
 
 <maximumNumberInstances>3</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <productReleaseDtos>
 <productName>mongodbshard</productName>
 <productDescription>mongodb shard 2.2.3</productDescription>
 <version>2.2.3</version>
 </productReleaseDtos>
 <icono>http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png</icono>
 <securityGroup />
 <keypair />
 <floatingip>false</floatingip>
 <affinity>None</affinity>
 <region>Spain</region>
</tierDto>

Update a Tier of an existing Abstract Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X PUT "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}/tier"

with the following payload

<tierDto>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <maximumNumberInstances>1</maximumNumberInstances>
 <name>{tier-name}</name>
 
 <flavour>2</flavour>
 <keypair>jesusmmovilla57</keypair>
 <floatingip>false</floatingip>
 <region>Spain</region>
</tierDto>

Delete a particular Tier associated to a Abstract Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/environment/{abstract-environment-name}/tier/{tier-name}"

Blueprint Template/Environment API

Next we detail some operations that can be done in the catalogue managemente api

Get the blueprint template list from the catalogue

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment"

This operation lists the environments stored in the catalogue. The following example shows an XML response for the list Environment API operation. It is possible to see it contains a list of tiers including products to be installed.

 <environmentDtoes>
 <environment>
 <name>{emvironment-name}</name>
 <tiers>
 <tier>
 <initial_number_instances>1</initial_number_instances>
 <maximum_number_instances>1</maximum_number_instances>
 <minimum_number_instances>1</minimum_number_instances>
 <name>{tier-id}</name>
 <networkDto>
 <networkName>Internet</networkName>
 <subNetworkDto>
 <subnetName>sub-net-Internet</subnetName>
 </subNetworkDto>
 </networkDto>
 <productReleases>
 <product>postgresql</product>
 <version>0.0.3</version>
 <withArtifact>true</withArtifact>
 <productType>
 <id>5</id>
 <name>Database</name>
 </productType>
 </productReleases>
 ...
 </tier>
 </tiers>
 </environment>
 <environment>
 <name>{emvironment-name}</name>
 <tiers>
 <tier>
 ...
 </tier>
 </tiers>
 </environment>
</environmentDtoes>

Add a blueprint template to the catalogue

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment"

with the following payload

<?xml version="1.0" encoding="UTF-8"?>
<environmentDto>
 <name>{environment-name}</name>
 <description>{description of environment}</description>
 <tierDtos>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <maximumNumberInstances>1</maximumNumberInstances>
 <name>{tier-name}</name>
 <networkDto>
 <networkName>{network-name}</networkName>
 <subNetworkDto>
 <subnetName>{subnetwork-name}</subnetName>
 </subNetworkDto>
 </networkDto>
 
 <flavour>{flavour of VM in number}</flavour>
 <keypair>{keypair-name}</keypair>
 <floatingip>{false/true}</floatingip>
 <region>{region-name}</region>
 <productReleaseDtos>
 <productName>{product-name}</productName>
 <version>{product-version}</version>
 </productReleaseDtos>
 </tierDtos>
</environmentDto>

The network and region information are including also in the payload of the environment. The following lines show a example.

<tierDtos>
 ...
 <name>{tier-name}</name>
 <networkDto>
 <networkName>{network-name}</networkName>
 <subNetworkDto>
 <subnetName>{subnetwork-name}</subnetName>
 </subNetworkDto>
 </networkDto>
 
 <flavour>{flavour of VM in number}</flavour>
 <keypair>{keypair-name}</keypair>
 <floatingip>{false/true}</floatingip>
 <region>{region-name}</region>
 <productReleaseDtos>
 <productName>{product-name}</productName>
 <version>{product-version}</version>
 </productReleaseDtos>
 ...
</tierDtos>

Delete a blueprint template from the catalogue

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X DELETE "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment/{environment-id}"

Tier API

Add a Tier to an existing Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment/{environment-name}/tier"

with the following payload

<tierDto>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <maximumNumberInstances>1</maximumNumberInstances>
 <networkDto>
 <networkName>Internet</networkName>
 <subNetworkDto>
 <subnetName>sub-net-Internet</subnetName>
 </subNetworkDto>
 </networkDto>
 <name>{tier-name}</name>
 
 <flavour>2</flavour>
 <keypair>jesusmmovilla57</keypair>
 <floatingip>false</floatingip>
 <region>Trento</region>
</tierDto>

Get All Tiers associated to an Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment/{environment-name}/tier"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDtoes>
 <tierDto>
 <name>{tier-name}</name>
 <flavour>2</flavour>
 
 <maximumNumberInstances>3</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <networkDto>
 <networkName>Internet</networkName>
 <subNetworkDto>
 <subnetName>sub-net-Internet</subnetName>
 </subNetworkDto>
 </networkDto>
 <productReleaseDtos>
 <productName>mongodbshard</productName>
 <productDescription>mongodb shard 2.2.3</productDescription>
 <version>2.2.3</version>
 </productReleaseDtos>
 <icono>http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png</icono>
 <securityGroup />
 <keypair />
 <floatingip>false</floatingip>
 <affinity>None</affinity>
 <region>Spain</region>
 </tierDto>
</tierDtoes>

Get a particular Tier associated to an Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment/{environment-name}/tier/{tier-name}"

This operation obtains a response with the following format:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<tierDto>
 <name>{tier-name}</name>
 <flavour>2</flavour>
 
 <maximumNumberInstances>3</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <networkDto>
 <networkName>Internet</networkName>
 <subNetworkDto>
 <subnetName>sub-net-Internet</subnetName>
 </subNetworkDto>
 </networkDto>
 <productReleaseDtos>
 <productName>mongodbshard</productName>
 <productDescription>mongodb shard 2.2.3</productDescription>
 <version>2.2.3</version>
 </productReleaseDtos>
 <icono>http://blog.theinit.com/wp-content/uploads/2012/03/bc358_MongoDB.png</icono>
 <securityGroup />
 <keypair />
 <floatingip>false</floatingip>
 <affinity>None</affinity>
 <region>Spain</region>
</tierDto>

Update a Tier of an existing Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X PUT "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment/{environment-name}/tier"

with the following payload

<tierDto>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <maximumNumberInstances>1</maximumNumberInstances>
 <name>{tier-name}</name>
 <networkDto>
 <networkName>Internet</networkName>
 <subNetworkDto>
 <subnetName>sub-net-Internet</subnetName>
 </subNetworkDto>
 </networkDto>
 
 <flavour>2</flavour>
 <keypair>jesusmmovilla57</keypair>
 <floatingip>false</floatingip>
 <region>Spain</region>
</tierDto>

Delete a particular Tier associated to an Environment

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/{your-tenant-id}/environment/{environment-name}/tier/{tier-name}"

BluePrint/Environment Instance Provisioning API

Deploy a Blueprint Instance

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X POST "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc/{your-tenant-id}/environmentInstance"

where “your-tenant-id” is the tenant-id in this guide. The payload of this request can be as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<environmentInstanceDto>
 <blueprintName>{environmentinstance-name}</blueprintName>
 <description>{description of environmentinstance}</description>
 <environmentDto>
 <name>{environment-name}</name>
 <description>{description of environmet}</description>
 <tierDtos>
 <name>{tier-name}</name>
 <flavour>{flavour of the VM}</flavour>
 
 <maximumNumberInstances>1</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <networkDto>
 <networkName>{network-name}</networkName>
 </networkDto>
 <icono></icono>
 <securityGroup>{security-group-name}</securityGroup>
 <keypair>{keypair-name}</keypair>
 <floatingip>{true/false}</floatingip>
 <affinity>None</affinity>
 <region>{region-name where to deploy}</region>
 </tierDtos>
 </environmentDto>
</environmentInstanceDto>

The response obatined should be:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/your-tenant-id/task/{task-id}" startTime="2012-11-08T09:13:18.311+01:00" status="RUNNING">
 <description>Deploy environment {emvironment-name}</description>
 <vdc>your-tenant-id</vdc>
</task>

Given the URL obtained in the href in the Task, it is possible to monitor the operation status (you can check Task Management). Once the environment has been deployed,
the task status should be SUCCESS.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/catalog/org/FIWARE/vdc/your-tenant-id/task/{task-id}" startTime="2012-11-08T09:13:19.567+01:00" status="SUCCESS">
 <description>Deploy environment {emvironment-name}</description>
 <vdc>your-tenant-id</vdc>
</task>

Get information about Blueprint Instances deployed

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc/your-tenant-id/environmentInstance"

The Response obtained includes all the blueprint instances deployed

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <environmentInstanceDtoes>
 <environmentInstance>
 <environmentInstanceName>{environmentInstance-id</environmentInstanceName>
 <vdc>your-tenant-id</vdc>
 <environment>
 <name>{environment-name}</name>
 <tiers>
 <tier>
 <initial_number_instances>1</initial_number_instances>
 <maximum_number_instances>1</maximum_number_instances>
 <minimum_number_instances>1</minimum_number_instances>
 <name>{tier-id}</name>
 <productReleases>
 <product>postgresql</product>
 <version>0.0.3</version>
 <withArtifact>true</withArtifact>
 <productType>
 <id>5</id>
 <name>Database</name>
 </productType>
 </productReleases> ...
 </tier>
 </tiers>
 </environment>
 <tierInstances>
 <id>35</id>
 <date>2012-10-31T09:24:45.298Z</date>
 <name>tomcat-</name>
 <status>INSTALLED</status>
 <vdc>your-tenant-id</vdc>
 <tier>
 <name>{tier-id}</name>
 </tier>
 <productInstances>
 <id>33</id>
 <date>2012-10-31T09:14:33.192Z</date>
 <name>postgresql</name>
 <status>INSTALLED</status>
 <vdc>your-tenant-id</vdc>
 <productRelease>
 <product>postgresql</product>
 <version>0.0.3</version>
 </productRelase>
 <vm>
 <fqn>vmfqn</fqn>
 <hostname>rehos456544</hostname>
 <ip>109.231.70.77</ip>
 </vm>
 </tierInstances>
 </environmentInstance>
</environmentInstanceDtoes>

Get details of a certain Blueprint Instance

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X GET "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc/your-tenant-id/environmentInstance/{BlueprintInstance-id}"

This operation does not require any payload in the request and provides a BlueprintInstance XML response.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<environmentInstancePDto>
 <environmentInstanceName>{environmentinstance-name}</environmentInstanceName>
 <vdc>{tenant-id}</vdc>
 <description>{description of environmentinstance}</description>
 <status>{status of the environment installation}</status>
 <blueprintName>{blueprint-name}</blueprintName>
 <taskId>{task-id of the execution}</taskId>
 <tierDto>
 <name>{tier-name}</name>
 <flavour>{flavour of the vm}</flavour>
 
 <maximumNumberInstances>1</maximumNumberInstances>
 <minimumNumberInstances>1</minimumNumberInstances>
 <initialNumberInstances>1</initialNumberInstances>
 <productReleaseDtos>
 <productName>{product-name}</productName>
 <version>{product-version}</version>
 </productReleaseDtos>
 <icono />
 <securityGroup>{securityGroup-name}</securityGroup>
 <keypair>{keypair-name}</keypair>
 <floatingip>{true/false}</floatingip>
 <region>{region-name}</region>
 <tierInstancePDto>
 <tierInstanceName>{tierinstance-name}</tierInstanceName>
 <status>{status of the tierinstallation}</status>
 <taskId>{task id of tier installation execution}</taskId>
 <productInstanceDtos>
 <productReleaseDto>
 <productName>{product-name}</productName>
 <version>{product-version}</version>
 </productReleaseDto>
 <name>{productInstance-name}</name>
 <taskId>{task id of product installation}</taskId>
 </productInstanceDtos>
 <vm>
 <domain>{domain of vm}</domain>
 <fqn>{fqn of vm}</fqn>
 <hostname>{hostname}</hostname>
 <ip>{ip}</ip>
 <id>{nova-host-id}</id>
 </vm>
 </tierInstancePDto>
 </tierDto>
 </environmentInstancePDto>

Undeploy a Blueprint Instance

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
-X DELETE "https://PAAS_MANAGER_IP:8443/paasmanager/rest/envInst/org/FIWARE/vdc/{your-tenant-id}/environmentInstance/{BlueprintInstance-id}"

This operation does not require a request body and returns the details of a generated task.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/vdc/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:45:44.020+01:00" status="RUNNING">
 <description>Uninstall environment</description>
 <vdc>your-tenant-id</vdc>
</task>

With the URL obtained in the href in the Task, it is possible to monitor the operation status (you can checkTask Management). Once the environment has been undeployed, the task status should be SUCCESS.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task href="https://PAAS_MANAGER_IP:8443/paasmanager/rest/vdc/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:13:19.567+01:00" status="SUCCESS">
 <description>Undeploy environment {emvironment-name}</description>
 <vdc>your-tenant-id</vdc>
</task>

Task Management

Get a specific task

$ curl -v -H "Content-Type: application/xml" -H "Accept: application/xml" -H
"X-Auth-Token: 756cfb31e062216544215f54447e2716" -H "Tenant-Id: your-tenant-id"
 -X DELETE "http://pegasus.lab.fi-ware.org:8080/paasmanager/rest/vdc/your-tenant-id/task/{task-id}"

This operation recovers the status of a task created previously. It does not need any request body and the response body in XML would be the following.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <task href="http:/130.206.80.112:8080/sdc/rest/vdc/{your-tenant-id}/task/{task-id}" startTime="2012-11-08T09:13:18.311+01:00" status="SUCCESS">
 <description>Install product tomcat in VM rhel-5200ee66c6</description>
 <vdc>your-tenant-id</vdc>
</task>

The value of the status attribute could be one of the following:

	Value
	Description

	QUEUED
	The task is queued for execution.

	PENDING
	The task is pending for approval.

	RUNNING
	The task is currently running.

	SUCCESS
	The task is completed successfully.

	ERROR
	The task is finished but it failed.

	CANCELLED
	The task has been cancelled by user.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	FIWARE-PaaS documentation

PaaS Manager - Installation and Administration Guide

Introduction

This guide defines the procedure to install the different components that build
up the PaaS Manager GE, including its requirements and possible troubleshooting. The guide includes two different
ways of installing PaaS Manager: Installation from rpm or installation from source (building previously the rpm).

Requirements

In order to execute the PaaS Manager, it is needed to have previously installed the following software:

	PostgreSQL.

You can find a small guide to install PostgresSQL in the next section. If you find some problems installing PostgreSQL,
please refer to the postgres official site.

PaaS Manager should be installed in a host with 2Gb RAM.

Installation from script

The installation of fiware-paas can be done in the easiest way by executing the script

scripts/bootstrap/centos.sh

that is in the github repository of the project.

In order to perform the installation via script, git should be installed (yum install git).
Just clone the github repository:

git clone https://github.com/telefonicaid/fiware-paas

and go to the folder

cd fiware-paas/scripts/bootstrap

Assign the corresponding permissions to the script centos.sh and execute under root user

./centos.sh

The script will ask you the following data:

	The database name for the fiware-paas

	The postgres password of the database

	the keytone url to connect fiware-paas for the uthentication process

	the admin keystone user for the autentication process

	the admin password for the autentication process

Once the script is finished, you will have fiware-paas installed under /opt/fiware-paas/ . Please go to the Sanity Check
section in order to test the installation. This script does not insert the fiware-paas data into the keystone, so this
action has to be done manually. In order to complete the installation please refer to Configuring the PaaS Manager
in the kesytone section.

Manual Installation

Requirements: Install PostgreSQL

The first thing is to install and configure the requirements, in this case, the postgresql

yum install postgresql postgresql-server postgresql-contrib

Type the following commands to install the postgresql as service and start it

chkconfig --add postgresql
chkconfig postgresql on
service postgresql initdb
service postgresql start

Install PaaS Manager from RPM

The PaaS Manager is packaged as RPM and stored in the rpm repository. Thus, the first thing to do is to create a file
in /etc/yum.repos.d/fiware.repo, with the following content.

[Fiware]
name=FIWARE repository
baseurl=http://repositories.testbed.fi-ware.eu/repo/rpm/x86_64/
gpgcheck=0
enabled=1

After that, you can install the PaaS Manager just doing:

yum install fiware-paas

or specifying the version

yum install fiware-paas-{version}-1.noarch

where {version} could 1.5.0

Install PaaS Manager from source

Requirements: To install Paas Manager from source it is required to have the following software installed in your host
previously:

	git

	java 1.7

	maven

Here we include a small guide to install the required software. If you find any problem in the installation process,
please refer to the official site:

Install git

sudo yum install git

Install java 1.7

sudo yum install java-1.7.0-openjdk-devel

Install maven 2.5

sudo yum install wget
wget http://mirrors.gigenet.com/apache/maven/maven-3/3.2.5/binaries/apache-maven-3.2.5-bin.tar.gz
su -c "tar -zxvf apache-maven-3.2.5-bin.tar.gz -C /usr/local"
cd /usr/local
sudo ln -s apache-maven-3.2.5 maven

Add the following lines to the file /etc/profile.d/maven.sh

Add the following lines to maven.sh
export M2_HOME=/usr/local/maven
export M2=$M2_HOME/bin
PATH=$M2:$PATH

In order to check that your maven installation is OK, you shluld exit your current session with “exit” command, enter again
and type

mvn -version

if the system shows the current maven version installed in your host, you are ready to continue with this guide.

Now we are ready to build the PaaS Manager rpm and finally install it

The PaaS Manager is a maven application so, we should follow following instructions:

	Download PaaS Manager code from github

git clone -b develop https://github.com/telefonicaid/fiware-paas

	Go to fiware-paas folder and compile, launch test and build all modules

cd fiware-paas/
mvn clean install

	Create a zip with distribution in target/paas-manager-server-dist.zip

mvn assembly:assembly -DskipTests

	You can generate a rpm o debian packages (using profiles in pom) for debian/ubuntu:

mvn install -Pdebian -DskipTests
 (created target/paas-manager-server-XXXXX.deb)

	for centOS (you need to have installed rpm-bluid. If not, please type “yum install rpm-build”)

mvn install -Prpm -DskipTests
 (created target/rpm/paasmanager/RPMS/noarch/paasmanager-XXXX.noarch.rpm)

Finally go to the folder where the rpm has been created (target/rpm/fiware-paas/RPMS/noarch) and execute

cd target/rpm/fiware-paas/RPMS/noarch
rpm -i <rpm-name>.rpm

Please, be aware that the supported installation method is the RPM package. If you use other method, some extra steps may be required. For example you would need to generate manually the certificate (See the section about “Configuring the HTTPS certificate” for more information):

fiware-paas/bin/generateselfsigned.sh

Configuring the database

We need to create the paasmanager database. To do that we need to connect as postgres user to the PostgreSQL
server and set the password for user postgres using alter user as below:

su - postgres
postgres$ psql postgres postgres;
psql (8.4.13)
Type "help" for help.
postgres=# alter user postgres with password 'postgres';
postgres=# create database paasmanager;
postgres=# grant all privileges on database paasmanager to postgres;
postgres=#\q
exit

Edit file /var/lib/pgsql/data/pg_hba.conf and set authentication method to md5:

TYPE DATABASE USER CIDR-ADDRESS METHOD
 "local" is for Unix domain socket connections only
 local all all md5
 local all postgres md5
IPv4 local connections:
 host all all 0.0.0.0/0 md5

Edit file /var/lib/pgsql/data/postgresql.conf and set listen addresses to 0.0.0.0:

listen_addresses = '0.0.0.0'

Reload configuration

service postgresql reload

To create the tables in the databases, just go to

su - potgres
cd /opt/fiware-paas/resources
postgres$ psql -U postgres -d paasmanager
Password for user postgres: <postgres-password-previously-chosen>
postgres=# \i db-initial.sql
postgres=# \i db-changelog.sql
exit

Update the following columns in the table configuration_properties:

openstack-tcloud.keystone.url=<keystone.url>
paas_manager_url=https://{ip}:8443/paasmanager/rest
openstack-tcloud.keystone.user= <keystone.user>
openstack-tcloud.keystone.pass= <keystone.password>
openstack-tcloud.keystone.tenant=<keystone.tenant>
user_data_path=/opt/fiware-paas/resources/userdata

where the values between bracket <> should be found out depending on the openstack installation.
The updates of the columns are done in the following way

su - potgres
postgres$ psql -U postgres -d paasmanager
Password for user postgres: <postgres-password-previously-chosen>
postgres=# UPDATE configuration_properties SET value='/opt/fiware-paas/resources/userdata' where key='user_data_path';
postgres=# UPDATE configuration_properties SET value='<the value>' where key='paas_manager_url';
postgres=# UPDATE configuration_properties SET value='<the value>' where key='openstack-tcloud.keystone.user';
postgres=# UPDATE configuration_properties SET value='<the value>' where key='openstack-tcloud.keystone.pass';
postgres=# UPDATE configuration_properties SET value='<the value>' where key='openstack-tcloud.keystone.tenant';

Configure PaaS Manager application

Once the prerequisites are satisfied, you shall modify the context file at /opt/fiware-paas/webapps/paasmanager.xml

See the snipet bellow to know how it works:

<New id="paasmanager" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg>jdbc/paasmanager</Arg>
 <Arg>
 <New class="org.postgresql.ds.PGSimpleDataSource">
 <Set name="User"> {database user} </Set>
 <Set name="Password"> {database password} </Set>
 <Set name="DatabaseName"> {database name} </Set>
 <Set name="ServerName"> {IP database hostname - localhost default} </Set>
 <Set name="PortNumber"> {port database - 5432 default}</Set>
 </New>

 </Arg>
</New>

Configuring the PaaS Manager as service

Once we have installed and configured the PaaS Manager, the next step is to configure it as a service. To do that just create a file in /etc/init.d/fiware-paas
with the following content

#!/bin/bash
chkconfig: 2345 20 80
description: Description comes here....
Source function library.
. /etc/init.d/functions
start() {
 /opt/fiware-paas/bin/jetty.sh start
}
stop() {
 /opt/fiware-paas/bin/jetty.sh stop
}
case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 stop
 start
 ;;
 status)
 /opt/fiware-paas/bin/jetty.sh status
 ;;
 *)
 echo "Usage: $0 {start|stop|status|restart}"
esac
exit 0

Now you need to execute:

chkconfig --add fiware-paas
chkconfig fiware-paas on
service fiware-paas start

Configuring the HTTPS certificate

The service is configured to use HTTPS to secure the communication between clients and the server. One central point in HTTPS security is the certificate which guarantee the server identity.

Quickest solution: using a self-signed certificate

The service works “out of the box” against passive attacks (e.g. a sniffer) because a self-signed certificated is generated automatically when the RPM is installed. Any certificate includes a special field call “CN” (Common name) with the identity of the host: the generated certificate uses as identity the IP of the host.

The IP used in the certificate should be the public IP (i.e. the floating IP). The script which generates the certificate knows the public IP asking to an Internet service (http://ifconfig.me/ip). Usually this obtains the floating IP of the server, but of course it wont work without a direct connection to Internet.

If you need to regenerate a self-signed certificate with a different IP address (or better, a convenient configured hostname), please run:

/opt/fiware-paas/bin/generateselfsigned.sh myhost.mydomain.org

By the way, the self-signed certificate is at /etc/keystorejetty. This file wont be overwritten although you reinstall the package. The same way, it wont be removed automatically if you uninstall de package.

Advanced solution: using certificates signed by a CA

Although a self-signed certificate works against passive attack, it is not enough by itself to prevent active attacks,
specifically a “man in the middle attack” where an attacker try to impersonate the server. Indeed, any browser warns
user against self-signed certificates. To avoid these problems, a certificate conveniently signed by a CA may be used.

If you need a certificate signed by a CA, the more cost effective and less intrusive practice when an organization has
several services is to use a wildcard certificate, that is, a common certificate among all the servers of a DNS domain.
Instead of using an IP or hostname in the CN, an expression as ”.fiware.org ” is used.

This solution implies:

	The service must have a DNS name in the domain specified in the wildcard certificate. For example, if the domain is ”.fiware.org” a valid name may be “paasmanager.fiware.org”.

	The clients should use this hostname instead of the IP

	The file /etc/keystorejetty must be replaced with another one generated from the wildcard certificate, the corresponding private key and other certificates signing the wild certificate.

It’s possible that you already have a wild certificate securing your portal, but Apache server uses a different file format. A tool is provided to import a wildcard certificate, a private key and a chain of certificates, into /etc/keystorejetty:

usually, on an Apache installation, the certificate files are at /etc/ssl/private
/opt/fiware-paas/bin/importcert.sh key.pem cert.crt chain.crt

If you have a different configuration, for example your organization has got its own PKI, please refer to: http://docs.codehaus.org/display/JETTY/How%2bto%2bconfigure%2bSSL

Configuring the PaaS Manager in the keystone

The FIWARE keystone is a endpoint catalogue which collects all the endpoint of the different services

Sanity check procedures

Sanity check procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that an installation is ready to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before proceeding to unit tests, integration tests and user validation.

End to End testing

Although one End to End testing must be associated to the Integration Test, we can show here a quick testing to check that everything is up and running. It involves to obtain the product information storaged in the catalogue. With it, we test that the service is running and the database configure correctly.

http://{PaaSManagerIP}:{port}/paasmanager/rest

The request to test it in the testbed should be

curl -v -k -H 'Access-Control-Request-Method: GET' -H 'Content-Type: application xml'
 -H 'Accept: application/xml' -H 'X-Auth-Token: 5d035c3a29be41e0b7007383bdbbec57'
 -H 'Tenant-Id: 60b4125450fc4a109f50357894ba2e28'
 -X GET 'https://{PaaSManagerIP}:8443/paasmanager/rest/catalog/org/FIWARE/environment'

the option -k should be included in the case you have not changed the security configuration of PaaS Manager.

Whose result is the PaaS Manager API documentation.

List of Running Processes

Due to the PaaS Manager basically is running over the Tomcat, the list of processes must be only the Jetty and PostgreSQL. If we execute the following command:

ps -ewF | grep 'postgres\|jetty' | grep -v grep

It should show something similar to the following:

postgres 1327 1 0 58141 9256 0 08:26 ? 00:00:00 /usr/bin/postgres -D /var/lib/pgsql/data -p 5432
postgres 1328 1327 0 48078 1696 0 08:26 ? 00:00:00 postgres: logger process
postgres 1330 1327 0 58166 3980 0 08:26 ? 00:00:00 postgres: checkpointer process
postgres 1331 1327 0 58141 2068 0 08:26 ? 00:00:00 postgres: writer process
postgres 1332 1327 0 58141 1808 0 08:26 ? 00:00:00 postgres: wal writer process
postgres 1333 1327 0 58349 3172 0 08:26 ? 00:00:00 postgres: autovacuum launcher process
postgres 1334 1327 0 48110 2052 0 08:26 ? 00:00:00 postgres: stats collector process
root 14054 1 4 598402 811464 0 09:35 ? 00:00:22 java -Xmx1024m -Xms1024m -Djetty.state=/opt/fiware-paas/jetty.state -Djetty.home=/opt/fiware-paas -Djetty.base=/opt/fiware-paas -Djava.io.tmpdir=/tmp -jar /opt/fiware-paas/start.jar jetty-logging.xml jetty-started.xml
postgres 14114 1327 0 58414 3956 0 09:36 ? 00:00:00 postgres: postgres paasmanager 127.0.0.1(48012) idle
postgres 14117 1327 0 58449 3772 0 09:36 ? 00:00:00 postgres: postgres paasmanager 127.0.0.1(48013) idle
postgres 14118 1327 0 58449 3776 0 09:36 ? 00:00:00 postgres: postgres paasmanager 127.0.0.1(48014) idle

Network interfaces Up & Open

Taking into account the results of the ps commands in the previous section, we take the PID in order to know the information about the network interfaces up & open. To check the ports in use and listening, execute the command:

netstat -p -a | grep $PID

Where $PID is the PID of Java process obtained at the ps command described before, in the previous case 14054 jetty and 1327 (postgresql).
The expected results for the postgres process must be something like this output:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp6 0 0 [::]:pcsync-https [::]:* LISTEN 14054/java
tcp6 0 0 localhost:48017 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48015 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48027 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48016 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48022 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48023 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48029 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48013 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48012 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48019 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48028 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48014 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48020 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48024 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48031 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48021 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48018 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48026 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48030 localhost:postgres ESTABLISHED 14054/java
tcp6 0 0 localhost:48025 localhost:postgres ESTABLISHED 14054/java
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [] STREAM CONNECTED 71542 14054/java
unix 3 [] STREAM CONNECTED 71480 14054/java

and the following output for the jetty process:

Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 localhost:postgres 0.0.0.0:* LISTEN 1327/postgres
tcp6 0 0 localhost:postgres [::]:* LISTEN 1327/postgres
udp6 0 0 localhost:53966 localhost:53966 ESTABLISHED 1327/postgres
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 2 [ACC] STREAM LISTENING 19508 1327/postgres /tmp/.s.PGSQL.5432
unix 2 [ACC] STREAM LISTENING 19506 1327/postgres /var/run/postgresql/.s.PGSQL.5432

Databases

The last step in the sanity check, once that we have identified the processes and ports is to check the different databases that have to be up and accept queries. Fort he first one, if we execute the following commands:

psql -U postgres -d paasmanager

For obtaining the tables in the database, just use

paasmanager=# \dt

 Schema | Name | Type | Owner
--------+---------------------------------------+-------+----------
public | applicationinstance | tabla | postgres
public | applicationrelease | tabla | postgres
public | applicationrelease_applicationrelease | tabla | postgres
public | applicationrelease_artifact | tabla | postgres
...

Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will take to locate the source of an error in a GE.
Once the nature of the error is identified with these tests, the system admin will very often have to resort to more
concrete and specific testing to pinpoint the exact point of error and a possible solution. Such specific testing is out of the scope of this section.

Resource availability

The resource availability should be at least 1Gb of RAM and 6GB of Hard disk in order to prevent enabler’s bad performance.
This means that bellow these thresholds the enabler is likely to experience problems or bad performance.

Resource consumption

State the amount of resources that are abnormally high or low. This applies to RAM,
CPU and I/O. For this purpose we have differentiated between:

	Low usage, in which we check the resources that the Tomcat requires in order to load the PaaS Manager.

	High usage, in which we send 100 concurrent accesses to the PaaS Manager.

The results were obtained with a top command execution over the following machine configuration:

| Name | Type |
----------------------+----------------------
Type Machine	Virtual Machine
CPU	1 core @ 2,4Ghz
RAM	1,4GB
HDD	9,25GB
Operating System	CentOS 6.3

The results of requirements both RAM, CPU and I/O to HDD is shown in the following table:

| Resource Consumption | Low UsageType | High Usage |
-------------------------+---------------------------------------
RAM	1GB ~ 63%	3GB ~ 78%
CPU	0,8% of a 2400MHz	90% of a 2400MHZ
I/O HDD	6GB	6GB

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	FIWARE-PaaS documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/up.png

test/acceptance/README.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

Pegasus API - Acceptance Tests

This project contains the Pegasus (PaaS Manager) acceptance tests (component, integration and E2E testing).
All test cases have been defined using Gherkin that it is a Business Readable, Domain Specific Language that lets you
describe software’s behaviour without detailing how that behaviour is implemented.
Gherkin has the purpose of serving documentation of test cases.

Test case implementation has been performed using Python [http://www.python.org/] and
Lettuce [http://lettuce.it/].

Test environment

Prerequisites

		Python 2.7 or newer (2.x) (https://www.python.org/downloads/)

		pip (https://pypi.python.org/pypi/pip)

		virtualenv (https://pypi.python.org/pypi/virtualenv)

		Pegasus (Download Pegasus (PaaS Manager) [http://catalogue.fi-ware.org/enablers/paas-manager-pegasus/downloads])

Test case execution using virtualenv

		Create a virtual environment somewhere (virtualenv ~/venv)

		Activate the virtual environment (source ~/venv/bin/activate)

		Go to test/acceptance folder in the project

		Install the requirements for the acceptance tests in the virtual environment (pip install -r requirements.txt –allow-all-external)

Test structure and prerequisites

Pegasus (PaaS Manager) will need to be deployed in a FIWARE environment to be tested.

Acceptance tests have two type of test cases:

		Catalog test cases: They try to test Pegasus catalog and they do not need additional prerequisites.

		Instance test cases: Those test cases try to test the Blueprint deployment.

NOTE: For launching blueprints you will need the full OpenStack architecture available, the product releases
registered in (Sagitta [http://catalogue.fi-ware.org/enablers/software-deployment-configuration-sagitta])
and Chef-Server/Puppet-Master must be ready to install the software requested.

Configuration file

Some configuration is needed before test case execution. This configuration is set in the properties.json file.

All configuration values will be ‘strings’.

Environment configuration example

"paas": {
 "keystone_url": "http://130.206.80.57:4731/v2.0",
 "sdc_url": "https://130.206.81.126:8443/sdc/rest",
 "paasmanager_url": "https://130.206.81.133:8443/paasmanager/rest",
 "glance_url": "",
 "nova_url": "http://130.206.80.57:8774/v2/***************",
 "vdc": "***************",
 "tenant": "***************",
 "user": "***************",
 "password": "***************",
 "tier_image": "422128fe-02a2-44ca-b9a7-67ec69809e5e",
 "tier_num_min": "1",
 "tier_num_max": "1",
 "tier_num_initial": "1",
 "tier_flavour": "2",
 "tier_keypair": "default",
 "tier_floatingip": "false",
 "tier_region": "Spain"
}

You will need setup a valid configuration properties for the environment (keystone_url) and region (tier_region)
you are going to use.

		You need a valid FIWARE credentials for the configured keystone_url: User, Password and TenantId.

		You can get the public endpoints configuration (_url) requesting for that to the Service Catalog service (Keystone).

		You can find and create the Tier configuration values using the FIWARE Portal:

Images (to set a valid tier_image id), Flavors (to set a valid tier_flavor id),
Security/Keypairs (to set a tier_keypair)
- You do not need change tier_num_ and tier_floatingip) values.

Tests execution

		Go to the test/acceptance folder of the project if not already on it or.

		Run lettuce_tools –tags=-skip. This command will execute all acceptance tests (see available params with the -h option)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/comment-close.png

_static/minus.png

_static/comment-bright.png

_static/file.png

test/README.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

 Folder for automated functional tests of the Pegasus API

Acceptance tests

		Test project

		HowTo execute Pegasus acceptance tests

		“Unit” Testing Plan

 © Copyright .
 Created using Sphinx 1.3.1.

doc/README.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

FIWARE PaaS Manager - Overview

What you get

The PaaS Manager GE provides a
new layer over the IaaS layer (OpenStack) in the aim of easing the task of deploying applications on a Cloud infrastructure.
Therefore, it orchestrates the provisioning of the required virtual resources at IaaS level, and then, the installation and configuration
of the whole software stack of the application by the SDC Manager GE ((see FIWARE SDC [https://github.com/telefonicaid/fiware-sdc]), taking into account the underlying virtual infrastructure.
It provides a flexible mechanism to perform the deployment, enabling multiple deployment architectures:
everything in a single VM or server, several VMs or servers, or elastic architectures based on load balancers and different software tiers.

Documentation

		User and Programmers Guide

		Installation and Administration Guide

 © Copyright .
 Created using Sphinx 1.3.1.

test/doc/roadmap_unit_testing_plan.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

Pegasus Test Plan

This section describes the Test Plan designed for the new Pegasus (PaaS Manager) features in order to test
its functionality.

Test Plan for previous features can be found in the Fiware Wiki [https://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/PaaS_Management_-_Unit_Testing_Plan]

Release 4.1

The features involved in this release are:

		Features

		FIWARE.Feature.Cloud.PaaSManager.BlueprintValidation [http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Feature.Cloud.PaaSManager.BlueprintValidation]
FIWARE.Feature.Cloud.PaaSManager.ConfigurationManagement [http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Feature.Cloud.PaaSManager.ConfigurationManagement]
FIWARE.Feature.Cloud.PaaSManager.GEIdentification [http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Feature.Cloud.PaaSManager.GEIdentification]
FIWARE.Feature.Cloud.PaaSManager.MuranoMigration [http://forge.fi-ware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Feature.Cloud.PaaSManager.MuranoMigration]

Catalog Test Cases

You can execute component test cases for this release executing this command:

$ lettuce_tools -ft add_abstract_tier.feature,create_abstract_environment_with_tiers.feature,add_tier.feature,create_environment_with_tiers.feature --tags=release_4_1

Test results:

		add_abstract_tier.feature

1 feature (1 passed)
17 scenarios (17 passed)

		create_abstract_environment_with_tiers.feature

1 feature (1 passed)
18 scenarios (18 passed)

		add_tier.feature

1 feature (1 passed)
17 scenarios (17 passed)

		create_environment_with_tiers.feature

1 feature (1 passed)
18 scenarios (18 passed)

Provisioning Test Cases

You can execute E2E test cases for this release executing this command:

$ lettuce_tools -ft create_instance_nid.feature,create_instance_attribute.feature --tags=release_4_1

Test results:

		create_instance_nid.feature

1 feature (1 passed)
11 scenarios (11 passed)

		create_instance_attribute.feature

1 feature (1 passed)
3 scenarios (3 passed)

FIWARE.Feature.Cloud.PaaSManager.GEIdentification

The VM should contain a metadata section with the GE Id. This is needed for some
GEs in order to manage the GEs deployed in the Cloud. The GE identification
is called NID.

Test Cases involved in this feature should validate that Pegasus is creating a NID metadata in each VM when blueprint
is deployed.
They are defined in:

> instances/create_instance/create_instance_nid.feature:

		Scenario: Create instance of an environment with one tier without products

		Scenario: Create instance of an environment with several tiers without products

		Scenario: Create instance of an environment with one tier and one product (without nid metadata)

		Scenario Outline: Create instance of an environment with one tier and one product (with invalid nid metadata)

		Scenario: Create instance of an environment with one tier and one product (with valid nid metadata)

		Scenario: Create instance of an environment with several tiers with the same product (with valid nid metadata)

		Scenario: Create instance of an environment with several tiers and different products (with valid nid metadata)

		Scenario: Create instance of an environment with several tiers and only one product in the first tier (with valid nid metadata)

		Scenario: Create instance of an environment with one tier and two different products (with valid nid metadata)

FIWARE.Feature.Cloud.PaaSManager.ConfigurationManagement

Complex Blueprint templates have software attributes dependences.
PaaS Manager should be able to resolve this complex configuration and translate it
to recipes. Concretely, it means to resolve macros introduced by the user
or the portal. Some example can be IP VM, or a software attribute.

Test Cases involved in this feature should validate that Pegasus is managing IP translation regarding type of the
product attribute (Plain, IP, IPALL) and the name of the tier.

> catalog/add_abstract_tier/add_abstract_tier.feature:

		Scenario Outline: Add tier to an abstract environment with valid product attributes

		Scenario Outline: Add tier to an abstract environment. Products with invalid attribute type

		Scenario Outline: Add tier to an abstract environment. Products with invalid attribute value

> catalog/create_abstract_environment/create_abstract_environment_with_tiers.feature:

		Scenario Outline: Create abstract environment. Products with valid attributes

		Scenario Outline: Create abstract environment. Products with invalid attribute type

		Scenario Outline: Create abstract environment. Products with invalid attribute value

> catalog/add_tier/add_tier.feature:

		Scenario Outline: Add tier to an environment with valid product attributes

		Scenario Outline: Add tier to an environment. Products with invalid attribute type

		Scenario Outline: Add tier to an environment. Products with invalid attribute value

> catalog/create_environment/create_environment_with_tiers.feature:

		Scenario Outline: Create environment. Products with valid attributes

		Scenario Outline: Create environment. Products with invalid attribute type

		Scenario Outline: Create environment. Products with invalid attribute value

> instances/create_instance/create_instance_attribute.feature:

		Scenario: Create instance of an environment with two tiers with products and attributes using chef

		Scenario: Create instance of an environment with two tiers with products and attributes using puppet (IP type)

		Scenario: Create instance of an environment with two tiers with products and attributes using puppet (IPALL type)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

contents.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

		User & Programmer Guide
		Introduction

		Accessing PaaS Manager from the CLI

		Admin Guide
		Introduction

		Requirements

		Installation from script

		Manual Installation

		Sanity check procedures

		Diagnosis Procedures

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

search.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/ajax-loader.gif

python-paasmanagerclient/README.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

FIWARE PaaSManager Python Client

This is a client for Pegasus PaaSManager API. This API client has been developed in Python [http://www.python.org/]. This client uses
the OpenStack Keystone service for authorization and service endpoint management.

Environment

Prerequisites

		Python 2.7 [https://www.python.org/downloads/] or newer

		pip [https://pypi.python.org/pypi/pip] 6.0 or newer

		Additional libs that are required before installing dependencies: Python Development Tools (python-devel),

zlib-devel, bzip2-devel, openssl-devel, ncurses-devel, sqlite-devel, gcc
- PaaSManager_
- OpenStack Keystone service [http://docs.openstack.org/developer/keystone/] v2 (so far, only Keystone v2 is supported for this client)

Installation

All dependencies has been defined in requirements.txt.
To install the last version of this client, download it from the GIT PaaSManager repository (master branch)
and install it, using following command:

pip install -e "-e git+https://github.com/telefonicaid/fiware-paas.git@master#egg=python-paasmanagerclient&subdirectory=python-paasmanagerclient"

Developed operations

Following operations are already implemented:

Environment API Resource

		Create new environment

		Delete environment

Python API

An example of use of this client is:

from paasmanager_client.client import PaaSManagerClient
paasmanager_client = PaaSManagerClient(tenant_id, username, password, region_name, auth_url)

env_name = "QAEnv"
response = paasmanager_client.getEnvironmentResourceClient().create_environment(env_name,
 "For testing purposes")
assertTrue(response.ok, "ERROR creating environment {}. Response: {}".format(env_name, str(response.content)))

 © Copyright .
 Created using Sphinx 1.3.1.

scripts/recipes_checking/README.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

FIWARE Recipes Checking Python Script

This is a script to check the execution of all the products (recipes) that are in the SDC Catalog by building
Environments and deploying Environment Instances through the PaaSManager API. This script has been developed in
Python [http://www.python.org/]. This script uses FIWARE PaasManager and SDC Python Client.

Environment

Prerequisites

		Python 2.7 [https://www.python.org/downloads/] or newer

		pip [https://pypi.python.org/pypi/pip] 6.0 or newer

		PaaSManager [https://github.com/telefonicaid/fiware-paas]

		SDC [https://github.com/telefonicaid/fiware-sdc]

		OpenStack Keystone service [http://docs.openstack.org/developer/keystone/] v2 (so far, only Keystone v2 is supported for this client)

Installation

All dependencies has been defined in requirements.txt.
To install the last version of this client, download/clone it from the GIT PaaSManager repository (master branch)
and go to scripts/recipes/checking directory:

How to use it

An example of use of this client is:

sudo python recipes_checking.py -u <user> -p <paasword> -t <tenant-id> -f <report_file_path> -e <environment-name>

 © Copyright .
 Created using Sphinx 1.3.1.

src/license/fiware/README.html

 Navigation

 		
 index

 		FIWARE-PaaS documentation »

 Run the next sentence for insert the license (in header.txt) in all files .java:

		Go to parent folder

		mvn license:remove; mvn license:format

 © Copyright .
 Created using Sphinx 1.3.1.

