
FIWARE Advanced Middleware KIARA
Documentation

Release 0.4.0

eProsima, DFKI, ZHAW

March 29, 2016

Manuals

1 KIARA Installation and Administration Guide 3
1.1 Introduction . 3
1.2 System Requirements . 3
1.3 Installation . 4
1.4 Sanity Check Procedures . 10
1.5 Diagnosis Procedures . 11

2 KIARA User and Programmer Guide 13
2.1 Introduction . 13
2.2 User guide . 14
2.3 Programmers guide . 14

3 Advanced Middleware Architecture 39
3.1 Copyright . 39
3.2 Legal Notice . 39
3.3 Overview . 39
3.4 Basic Concepts . 39
3.5 Generic Architecture . 41
3.6 Main Interactions . 44
3.7 Basic Design Principles . 45

4 Open Specifiation 47
4.1 Preface . 47
4.2 Copyright . 47
4.3 Legal Notice . 47
4.4 Overview . 47
4.5 Basic Concepts . 47
4.6 Generic Architecture . 49
4.7 Main Interactions . 52
4.8 Basic Design Principles . 53
4.9 Detailed Specifications . 54
4.10 Re-utilised Technologies/Specifications . 54
4.11 Terms and definitions . 54

5 Advanced Middleware RPC API Specification 55
5.1 Abstract . 55
5.2 Status of this Document . 55
5.3 Introduction . 55
5.4 A quick Example . 56
5.5 API Overview . 56
5.6 Detailed API . 60
5.7 API Usage Examples . 63

i

6 Advanced Middleware RPC Dynamic Types API Specification 67
6.1 Abstract . 67
6.2 Status of this Document . 67
6.3 Introduction . 68
6.4 A quick Example . 68
6.5 API Overview . 69
6.6 Detailed API . 89

7 Advanced Middleware Publication Subscription API Specification 101
7.1 Abstract . 101
7.2 Status of this Document . 101
7.3 Conformance . 101
7.4 Reference Material . 102
7.5 API Overview . 102
7.6 API Description . 106

8 Advanced Middleware IDL Specification 113
8.1 Abstract . 113
8.2 Status of this Document . 113
8.3 Preface . 114
8.4 Related documentation . 114
8.5 Syntax Definition . 114
8.6 IDL Complete Example . 128
8.7 Appendix A: Changes from OMG IDL 3.5 . 129
8.8 Appendix B: FIWARE Middleware IDL Grammar . 130
8.9 Appendix C: OMG IDL 3.5 Grammar . 135

ii

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

KIARA Advanced Middleware is a Java based communication middleware for modern, efficient and secure appli-
cations.

It is an implementation of the FIWARE Advanced Middleware Generic Enabler.

This first release focuses on the basic features of RPC communication:

• Modern Interface Definition Language (IDL) with a syntax based on the Corba IDL.

• Easy to use and extensible Application Programmer Interface (API).

• IDL derived operation mode providing Stubs and Skeletons for RPC Client/Server implementations.

• Synchronous and Asynchronous function calls.

Later versions will include additional features like:

• Application derived and Mapped operation mode providing dynamic declaration of functions and data type
mapping.

• Advanced security features like field encryption and authentication.

• Additional communication patterns like publish/subscribe.

KIARA Advanced Middleware is essentially a library which is incorporated into the developed applications, the
requirements are rather minimal. In particular it requires no service running in the background.

• Manuals

• Architecture

• Open Specification

• API Specification

Please also check out our Github repository

Manuals 1

https://github.com/FIWARE-Middleware/KIARA

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

2 Manuals

CHAPTER 1

KIARA Installation and Administration Guide

Date: 18th January 2016

• Version: 0.4.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

1.1 Introduction

KIARA Advanced Middleware is a Java based communication middleware for modern, efficient and secure appli-
cations. It is an implementation of the FIWARE Advanced Middleware Generic Enabler.

This first release focuses on the basic features of RPC communication:

• Modern Interface Definition Language (IDL) with a syntax based on the Corba IDL.

• Easy to use and extensible Application Programmer Interface (API).

• IDL derived operation mode providing Stubs and Skeletons for RPC Client/Server implementations.

• Synchronous and Asynchronous function calls.

Later versions will include additional features like:

• Application derived and Mapped operation mode providing dynamic declaration of functions and data type
mapping.

• Advanced security features like field encryption and authentication.

• Additional communication patterns like publish/subscribe.

KIARA Advanced Middleware is essentially a library which is incorporated into the developed applications, the
requirements are rather minimal. In particular it requires no service running in the background.

1.2 System Requirements

This section describes the basic requirements of KIARA Advanced Middleware and how to install them.

3

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

1.2.1 Hardware Requirements

The hardware requirements depend on the application to be developed. Any hardware running Java JRE/JDK 7 or
later is supported.

This Oracle JDK Webpage provides specific minimal hardware requirements (Disk, Memory, CPU).

1.2.2 Software Requirements

Runtime Systems:

• Any Java SE JRE 7 or later distribution (OpenJDK, Oracle Java SE or IBM Java SDK)

Development Systems:

• Any Java SE JDK 7 or later distribution (OpenJDK, Oracle Java SE or IBM Java SDK)

• Build Tools (gradle or maven) and/or IDE (Eclipse, IntelliJ IDEA, Netbeans, ...)

1.2.3 Operating System support:

Any Operating system running Java JRE/JDK 7 or later is supported.

KIARA is tested on Windows (7), Linux (Ubuntu 14.04/Fedora 19) and OS X (10.9/10.10).

1.3 Installation

1.3.1 Installation of the Java JDK

Please follow the installation instructions of the respective Java distribution:

• OpenJDK (Default on most Linux-Systems)

• Oracle Java SE JDK (Linux, Windows, OS X, Solaris)

• IBM Java SE JDK (Linux, Windows, AIX, z/OS)

To verify that the installation is correct please open a terminal/shell/command line interface (cmd.exe, sh/bash/zsh)
and check, that the java command is executable:

$ java -version
java version 1.7.0_65
OpenJDK Runtime Environment (IcedTea 2.5.3) (7u71-2.5.3-0ubuntu0.14.04.1)
OpenJDK 64-Bit Server VM (build 24.65-b04, mixed mode)

If the java command is not found, please make sure, that the <java_home>/bin directory is in your PATH
environment variable and the JAVA_HOME environment variable is set (see troubleshooting instructions on the
Oracle Website).

1.3.2 Installation of Build Tools

On development systems developers should use a build tool to compile, test, package and deploy applications. In
the Java (JVM) world the most commonly used tools are Gradle and Apache Maven. An alternative approach is
to use the built in build-management of IDEs like Eclipse, IntelliJ IDEA or Netbeans.

In the following section covers the Installation of these tools.

4 Chapter 1. KIARA Installation and Administration Guide

http://docs.oracle.com/javase/8/docs/technotes/guides/install/windows_system_requirements.html
http://openjdk.java.net/install/
http://docs.oracle.com/javase/8/docs/technotes/guides/install
http://www-01.ibm.com/support/knowledgecenter/#!/SSYKE2_7.0.0/welcome/welcome_javasdk_version71.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/windows_jdk_install.html#BABGDJFH
http://www.gradle.org
http://maven.apache.org

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Gradle

Gradle is the newest and most flexible build tool for Java. It provides every good and detailed documentation and
tutorials to get developers started. Official installation instructions are here.

The official way to install Gradle is to download and unpack the binary ZIP file to a common directory, set the
environment variable GRADLE_HOME and add the bin directory to your PATH environment variable.

Windows installation

Download newest gradle-x.x.x-all.zip from http://www.gradle.org/downloads.

Open CLI (cmd.exe)

unzip ~\Download\gradle-x.x.x-all.zip -d C:\Program Files
setx GRADLE_HOME C:\Program Files\gradle-x.x.x /M
setx PATH %PATH%;%GRADLE_HOME%\bin /M

/M sets the value on a machine level, which means for all users. The values are stored permanently and will be
available in any new cmd.exe session.

Unix (Linux / OS X / Solaris / FreeBSD) manual installation

Download newest gradle-x.x.x-all.zip from http://www.gradle.org/downloads.

Open a shell:

$ sudo unzip ~/gradle-x.x.x-all.zip -d /usr/share/
$ sudo ln -s /usr/share/gradle-x.x.x /usr/share/gradle

Open ~/.profile (single user) or /etc/profile (all users) and add the following lines:

export GRADLE_HOME=/usr/share/gradle
export PATH=$PATH:$GRADLE_HOME/bin

Unix (Linux / OS X / Solaris / FreeBSD) installation using gvm

An alternative and simpler option to install gradle for a single user is to use the Groovy enVironment Manager
(gvm) to install and update Gradle. You need the commands/packages curl and unzip to be installed on your
system.

Open shell:

$ curl -s get.gvmtool.net | bash
... follow instructions
$ gvm install gradle

See gvm help to get more infos about other options of gvm, like updating or switching between different versions.

Verify installation

Open a new shell or cmd.exe session and test if gradle is available:

$ gradle -v
--
Gradle 2.2.1
--

Build time: 2014-11-24 09:45:35 UTC

1.3. Installation 5

http://www.gradle.org
http://www.gradle.org/documentation
http://www.gradle.org/docs/current/userguide/tutorials.html
http://www.gradle.org/docs/current/userguide/installation.html
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://www.gradle.org/downloads
http://gvmtool.net
http://gvmtool.net

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Build number: none
Revision: 6fcb59c06f43a4e6b1bcb401f7686a8601a1fb4a

Groovy: 2.3.6
Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JVM: 1.7.0_65 (Oracle Corporation 24.65-b04)
OS: Linux 3.13.0-34-generic amd64

Apache Maven

Apache Maven is a very common build tool in the Java/JVM world and is very well known for its dependency
management and its central artifact repository (mavencentral). Find the documentation and tutorials on the main
page. Installation instructions and downloads are here.

The official way to install Maven is to download and unpack the binary ZIP file to a common directory, set the
environment variable M2_HOME and add the bin directory to your PATH environment variable.

Windows installation

Follow process in the install instructions.

Unix (Linux / OS X / Solaris / FreeBSD) manual installation

Download newest apache-maven-x.x.x-bin.zip from http://maven.apache.org/download.html.

Open shell:

$ sudo unzip ~/apache-maven-x.x.x-bin.zip -d /usr/share/
$ sudo ln -s apache-maven-x.x.x /usr/share/maven

Open ~/.profile (single user) or /etc/profile (all users) and add the following lines:

export M2_HOME=/usr/share/maven
export PATH=$PATH:$M2_HOME/bin

Unix (Linux / OS X / Solaris / FreeBSD) installation using package manager

An alternative option to install maven is to use the package manager of the unix system.

• on DEB based systems (Debian,Ubuntu,...) $ sudo apt-get install maven (this is a quite out-
dated version 3.0.x)

• on RPM based systems (RedHat,CentOS,Fedora,...) exists no official package (use above manual instruc-
tions).

• on OS X you can install Maven using a packet manager for OS X like Homebrew or MacPorts. Because
the packages are usually compiled during installation you need to install Xcode beforehand. This is recom-
mended especially, if you already have Xcode installed or you would like to install also other common unix
packages.

Homebrew (http://brew.sh):

:: $ brew install maven

MacPorts (http://www.macports.org/install.php):

:: $ port install maven2

6 Chapter 1. KIARA Installation and Administration Guide

http://maven.apache.org
http://search.maven.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://books.sonatype.com/mvnex-book/reference/installation-sect-maven-install.html
http://maven.apache.org/download.html
http://brew.sh
http://www.macports.org/install.php

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Verify installation Open a new shell or cmd.exe session and test if maven is available:

$ mvn -version
Apache Maven 3.2.3 (33f8c3e1027c3ddde99d3cdebad2656a31e8fdf4; 2014-08-11T22:58:10+02:00)
Maven home: /usr/local/Cellar/maven/3.2.3/libexec
Java version: 1.8.0_20, vendor: Oracle Corporation
Java home: /Library/Java/JavaVirtualMachines/jdk1.8.0_20.jdk/Contents/Home/jre
Default locale: en_US, platform encoding: UTF-8
OS name: mac os x, version: 10.10.2, arch: x86_64, family: mac

Integraded Development Environments (IDE)

To install your IDE please check the webpage of your prefered IDE product:

• Eclipse

• IntelliJ IDEA

• Netbeans

These IDEs typically integrate well with Gradle and Apache Maven using plugins. Alternatively you have to copy
the KIARA libraries manually to the library folder of your project and add them to your classpath.

Installation of the kiaragen tool

The kiaragen tool is part of the KIARA components available on Maven Central. Depending on your build tool
kiaragen can be easily integrated or it can be called with a shell/batch script.

If you are using Maven or an IDE you can download an executable jar file of kiaragen from the
ga|1|g:org.fiware.kiara|KIARA Maven-Central repository, or you can find it in a standalone distribution available
online.

On Windows:

• There are two ways of obtaining the kiaragen software:

• Download the file kiaragen-x.x.x-cli.jar from Maven Central and place it into a directory (e.g.
subdirectory kiaragen).

• To make the execution simpler you can also download the kiaragen.bat script from the kiaragen project
(https://github.com/FIWARE-Middleware/kiaragen) and copy it into the scripts directory (create if not not
created yet).

Please take into account that the script will look for the kiaragen-x.x.x-cli.jar file
inside the kiaragen subdirectory.

• Now the tool can be called using: kiaragen.bat when the scripts folder in the installation dir is in the execute
path or with a relative path ./scripts/kiaragen.bat for project local installations.

On Linux / OS X:

• Download the file kiaragen-x.x.x-cli.jar from Maven Central

• Place it in a directory of your shells execute path (e.g. /usr/local/bin). Alternatively you can also
add it to your project dir and call it with a relative path (./scripts/kiaragen.sh).

• To make the execution simpler you can also download the kiaragen.sh script from the kiaragen project
(https://github.com/FIWARE-Middleware/kiaragen) and copy it into the scripts directory.

Please take into account that the script will look for the kiaragen-x.x.x-cli.jar file
inside the kiaragen subdirectory.

1.3. Installation 7

http://eclipse.org
https://www.jetbrains.com/idea/
https://netbeans.org
http://search.maven.org/#search
https://github.com/FIWARE-Middleware/kiaragen
https://github.com/FIWARE-Middleware/kiaragen

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• Now the tool can be called using: kiaragen.sh when the scripts folder in the installation dir is in the execute
path or with a relative path ./scripts/kiaragen.sh for project local installations executable flag is
lost while downloading, you can set it again using chmod a+x kiaragen

1.3.3 KIARA components

The KIARA components (libraries) are usually delivered together with the the developed application and do not
have to be installed separately.

1.3.4 Setting up the development environment

In this section it is explained how to set up your development environment and configure your project to use
KIARA Advanced Middleware. We support the most common build tools for Java projects, which are:

• Gradle

• Apache Maven

All Java Integrated Development environments like Eclipse, InteliJ IDEA, Netbeans, etc. provide support for one
of these tools.

Please check the Installation Manual for instructions how to install the required plugins and import your KIARA
project.

Gradle

Set up the basic project structure

If you do not yet have a project you can setup the basic structure using the gradle init plugin:

$ mkdir calculator
$ cd calculator
$ gradle init --type java-library

This will create a basic directory structure for your source and test code and create a commented build.gradle
file for a Java application.

Additionally the gradle wrapper is set up, which allows developers to execute gradle tasks without installing the
gradle tool globally.

Configure your Gradle project to use KIARA

To use KIARA in your project you have to extend your build.gradle file:

apply plugin: 'java'

sourceCompatibility = 1.7
version = '1.0'

// In this section you declare where to find the dependencies of your project
repositories {

mavenCentral()
}

// In this section declare the dependencies for your production and test code
dependencies {

compile group: 'org.fiware.kiara', name: 'KIARA', version: '0.4.0'
compile group: 'org.slf4j', name: 'slf4j-api', version: '1.7.7'

8 Chapter 1. KIARA Installation and Administration Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

testCompile group: 'junit', name: 'junit', version: '4.11'
}

The KIARA artefacts are available on the Maven Central repository. So you have to make sure, ‘mavenCentral()
is part of your repositories section.

To include the KIARA artefacts you have to add the kiara main library to the dependencies section. All the
depending libraries will be added automatically to your project.

The following is a typical file structure for a gradle project using KIARA:
.
-- build // generated files

| -- classes // compiled classes
| | -- main
| | -- com
| | -- example
| | -- Calculator.class
| | -- CalculatorAsync.class
| | -- CalculatorClient.class
| | -- CalculatorProcess.class
| | -- CalculatorProxy.class
| | -- CalculatorServant.class
| | -- CalculatorServantExample.class
| | -- ClientExample.class
| | -- IDLText.class
| | -- ServerExample.class
| -- generated-src // generated support classes
| | -- kiara
| | -- com
| | -- example
| | -- Calculator.java
| | -- CalculatorAsync.java
| | -- CalculatorClient.java
| | -- CalculatorProcess.java
| | -- CalculatorProxy.java
| | -- CalculatorServant.java
| -- libs
| -- Calculator-1.0.jar // packaged application
-- build.gradle // gradle build file
-- gradle

| -- wrapper // gradle wrapper files
| -- ...
-- gradlew // gradle wrapper unix script
-- gradlew.bat // gradle wrapper windows script
-- settings.gradle
-- src // source files

-- main
| -- idl // IDL definitions for KIARA
| | -- com
| | -- example
| | -- Calculator.idl
| -- java // application code
| -- com
| -- example
| -- ClientExample.java // client start code
| -- ServerExample.java // server start code
| -- CalculatorServantExample.java // servant impl.
-- test

-- java

Some basic gradle tasks:

1.3. Installation 9

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

./gradlew build→ builds all classes and run tests

./gradlew jar→ creates the application jar

./gradlew clean→ cleans up your project

./gradlew tasks→ shows all available tasks

Apache Maven

Set up the basic project structure

If you do not yet have a maven project you can setup the basic structure using the archetype plugin:

$ mvn archetype:generate \
-DgroupId=mw.kiara \
-DartifactId=calculator \
-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

This will create a basic directory structure for your source and test code and create a commented pom.xml file
for a Java application.

1.4 Sanity Check Procedures

1.4.1 End to End testing

To verify your development environment you can download and run the KIARA Calculator example application.

Download the example application from Github. You can clone it using git or download the ZIP archive and unzip
it to an empty directory.

$ git clone https://github.com/FIWARE-Middleware/Examples.git KiaraCalculator
$ cd KiaraCalculator

Build the application

$ gradle build
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Total time: 1.793 secs

Run the Server

$ gradle runServer
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:runServer
CalculatorServerExample
Apr 15, 2015 6:00:32 PM io.netty.util.internal.logging.Slf4JLogger info

10 Chapter 1. KIARA Installation and Administration Guide

https://github.com/FIWARE-Middleware/Examples

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

INFO: [id: 0xbfb04d67] REGISTERED
Apr 15, 2015 6:00:32 PM io.netty.util.internal.logging.Slf4JLogger info
INFO: [id: 0xbfb04d67] BIND(/0.0.0.0:9090)
Apr 15, 2015 6:00:32 PM io.netty.util.internal.logging.Slf4JLogger info
INFO: [id: 0xbfb04d67, /0:0:0:0:0:0:0:0:9090] ACTIVE
> Building 75% > :runServer

Open an new terminal window and run the Client

$ cd KiaraCalculator
$ gradle runClient
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:runClient
CalculatorClientExample

10 + 5 = 15

Apr 15, 2015 5:54:06 PM org.fiware.kiara.Kiara shutdown
INFO: shutdown 2 services
Apr 15, 2015 5:54:06 PM org.fiware.kiara.Kiara shutdown
INFO: shutdown org.fiware.kiara.netty.NettyTransportFactory$1@880ec60
Apr 15, 2015 5:54:11 PM org.fiware.kiara.Kiara shutdown
INFO: shutdown org.fiware.kiara.transport.impl.Global$1@3f3afe78

BUILD SUCCESSFUL

Total time: 12.76 secs

The Client task should terminate with BUILD SUCCESSFUL and the Calculation should show the correct result.

1.4.2 List of Running Processes

KIARA Advanced Middleware itself do not install any kind of daemon or service. There are no running processes,
but libraries to link to your applications.

1.4.3 Network interfaces Up & Open

The KIARA Middleware itself does not open or provide services, therefore has no open Ports or Interfaces.
Applications using KIARA can open any ports or interfaces and firewalls have to be configured accordingly.

The provided TestServer is opening and listening by default on Port 9090.

1.4.4 Databases

N/A

1.5 Diagnosis Procedures

1.5.1 Resource availability

This middleware requires very few resources, any typical PC should be enough to run the regular examples.

1.5. Diagnosis Procedures 11

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

1.5.2 Remote Service Access

N/A

1.5.3 Resource consumption

Depends on your application, it can be as low of 256 Kbytes of heap space and almost zero cpu use. The amount
of RAM depends on your data types size and the different persistence options, please read the user manual for
more information.

1.5.4 I/O flows

N/A

12 Chapter 1. KIARA Installation and Administration Guide

CHAPTER 2

KIARA User and Programmer Guide

Date: 18th January 2016

• Version: 0.4.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

2.1 Introduction

KIARA Advanced Middleware is a Java based communication middleware for modern, efficient and secure appli-
cations. It is an implementation of the FIWARE Advanced Middleware Generic Enabler.

This first release focuses on the basic features of RPC communication:

• Modern Interface Definition Language (IDL) with a syntax based on the Corba IDL.

• Easy to use and extensible Application Programmer Interface (API).

• IDL derived operation mode providing Stubs and Skeletons for RPC Client/Server implementations.

• Synchronous and Asynchronous function calls.

Later versions will include additional features like:

• Application derived and Mapped operation mode providing dynamic declaration of functions and data type
mapping.

• Advanced security features like field encryption and authentication.

• Additional communication patterns like publish/subscribe.

KIARA Advanced Middleware is essentially a library which is incorporated into the developed applications, the
requirements are rather minimal. In particular it requires no service running in the background.

2.1.1 Background and Detail

This User and Programmers Guide relates to the Advanced Middleware GE which is part of the Interface to
Networks and Devices (I2ND) chapter. Please find more information about this Generic Enabler in the related
Open Specification and Architecture Description.

13

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

2.2 User guide

These products are for programmers, who will invoke the APIs programmatically and there is no user interface as
such.

See the programmers guide section to browse the available documentation.

2.3 Programmers guide

2.3.1 Middleware Operation Modes

The KIARA Advanced Middleware supports multiple operation modes. From traditional IDL-based approaches
like Corba, DDS, Thrift up to newer approaches which start with the application data structure and automatically
create the wire format.

We therefore differentiate three operation modes.

IDL derived operation mode

The IDL derived operation mode is similar to the traditional middleware approaches.

Based on the IDL definition we generate with a precompiler stub- and skeleton-classes, which have to be used by
the application to implement the server and client (or Pub/Sub) application parts.

Prerequisite: IDL definition

Generated: Stubs and Skeletons (at compile time) which have to be used by the application

Examples: Corba, DDS, Thrift, ...

Application derived operation mode

This mode is typical for some modern (e.g. RMI, WebService,...) frameworks. Based on an application specific
interface definitions, the framework automatically generates Server- and Client-Proxy-Classes, which serialize the
application internal data structures and send them over the wire. Using Annotations, the required serialization and
transport mechanisms and type mappings can be influenced.

This mode implicitly generates an IDL definition based on the Java interfaces definition and provide this IDL
through a “service registry” for remote partners.

Prerequisite: Application-Interface-Definition (has to be the same on client and server side)

Generated: Server-/Client-Proxies (generated at runtime)

Examples: RMI, JAX-RS, Spring REST, ...

Mapped operation mode

Goal of the mapped operation mode is to separate the application interfaces from the data structure used to trans-
port the data over the wire. Therefore the middleware has to map the application internal data structure and
interfaces to a common IDL definition. Advantage is, that the application interface on client and server (or pub-
lisher/subscriber) side can be different.

Prerequisite: Application-Interface-Definition (can be different on server and client side) IDL Definition

Generated: Server-/Client-Proxis (generated at runtime, which map the attributes & operations

Examples: KIARA

14 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

The current release of KIARA provides support for the traditional IDL derived operation mode, be-
ing able to handle different communication patterns such as RPC or Publish/Subscribe. Application
derived and mapped operation mode will follow in a future release.

2.3.2 A quick example

In the following chapters we will use the following example application to explain the basic concepts of building
an application using KIARA.

Calculator

The KIARA Calculator example application provides an API to ask for simple mathematics operations over two
numbers. Is a common used example when trying to understand how an RPC framework works.

Basically the service provides two functions:

• float add (float n1, float n2) : Returns the result of adding the two numbers introduced as
parameters (n1 and n2).

• float subtract (float n1, float n2) : Returns the result of subtracting the two numbers
introduced as parameters (n1 and n2).

The KIARA Calculator example is provided within this distribution, so itcan be used as starting point.

Basic procedure

Before diving into the details describing the features and configure your projectfor KIARA, the following quick
example should show the basic steps to create a simple client and server application in the different operation
modes.

Detailed instructions on how to execute the particular steps are given in chapter Building a KIARA RPC applica-
tion.

IDL derived application process

In the IDL derived approach, first the IDL definition has to be created:

service Calculator
{

float32 add (float32 n1, float32 n2);
float32 subtract (float32 n1, float32 n2);

};

The developer has to implement the functions inside the class CalculatorServantImpl:

public static class CalculatorServantImpl extends CalculatorServant
{

@Override
public float add (/*in*/ float n1, /*in*/ float n2) {

return (float) n1 + n2;
}

@Override
public float subtract (/*in*/ float n1, /*in*/ float n2) {

return (float) n1 - n2;
}
...

}

Now the server can be started:

2.3. Programmers guide 15

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Context context = Kiara.createContext();
Server server = context.createServer();
Service service = context.createService();

// Create and register an instance of the CalculatorServant implementation.
CalculatorServant Calculator_impl = new CalculatorServantImpl();
service.register(Calculator_impl);

// register the service on port 9090 using CDR serialization
server.addService(service, "tcp://0.0.0.0:9090", "cdr");

// run the server
server.run();

The client can connect and call the remote functions via the proxy class:

Context context = Kiara.createContext();

// setup the connection to the server
Connection connection = context.connect("tcp://192.168.1.18:9090?serialization=cdr");

// get the client Proxy implementation
CalculatorClient client = connection.getServiceProxy(CalculatorClient.class);

// call the remote methods
float result = client.add(3, 5);

Application derived application example

This example will be added, when the feature is implemented.

Mapping application example

This example will be added, when the feature is implemented.

2.3.3 Kiaragen tool

Kiaragen installation

To install kiaragen, please follow the installation instructions that can be found in the .

Generate support code manually using kiaragen

To call kiaragen manually it has to be installed and in your run path.

The usage syntax is:

$ kiaragen [options] <IDL file> [<IDL file> ...]

Options:

-help Shows help information

-version Shows the current version of KIARA/kiaragen

-package Defines the package prefix of the generated Java classes. Default: no package

-d <path> Specify the output diretory for the generated Java classes. Default: Current
working dir

16 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

-replace Replaces existing generated

--example <pattern> Generates the support files (interfaces, classes, stubs, skeletons,...) for the
given target communication pattern. These classes can be used by the de-
veloper to implement his application. It also creates build.gradle files. Sup-
ported values:

• rpc: Creates an example application which uses RPC as a communica-
tion framework.

• ps: Creates an example application which uses Publish/Subscribe as a
communication pattern.

-ppDisable Disables the preprocessor.

--ppPath <path> Specifies the path of the preprocessor. Default: Systems C++ preprocessor

-t <path> Specify the output temploral directory for the files generated by the prepro-
cessor. Default: machine temp path

2.3.4 KIARA IDL

The KIARA Interface Definition Language (IDL) can be used to describe data types, namespaces, constants and
even remote functions the server will offer (when using RPC pattern). In addition the KIARA IDL supports the
declaration and application of Annotations to add metadata to almost any IDL element. These can be used by
the code generator, when implementing the service functionality or configure some specific runtime functionality.
The IDL syntax is based on the OMG IDL 3.5.

The basic structure of an IDL File is shown in the picture in the right.

Following, a short overview of the supported KIARA IDL elements. For a detailed description please see KIARA
IDL Specification chapter KIARA Interface Definition Language.

• Import Declarations: Definitions can be split into multiple files and/or share common elements among
multiple definitions using the import statement.

• Namespace Declarations: Within a definition file the declarations can be grouped into modules. Mod-
ules are used to define scopes for IDL identifiers. KIARA supports the modern keyword namespace.
Namespaces can be nested to support multi-level namespaces.

• Constant Declarations: A constant declarations allows the definition of literals, which can be used as
values in other definitions (e.g. as return values, default parameters, etc.)

• Type Declarations

– Basic Types: KIARA IDL supports the OMG IDL basic data types like float, double, (unsigned)
short/int/long, char, wchar, boolean, octet, etc. Additionally it supports modern aliases like
float32, float64, i16, ui16, i32, ui32, i64, ui64 and byte

– Constructed Types: Constructed Types are combinations of other types like. The following con-
structs are supported:

* Structures: Struct types are mapped as classes in Java code. These structures can contain
every other data type that can be described using KIARA IDL.

* Unions: Union types are mapped into Java by using special classes. These classes use a
discriminator value to distinguish between the different types that form the union.

* Exceptions: Exception types are mapped as classes in Java code. These exceptions can
contain every other data type that can be described using KIARA IDL.

– Template Types: Template types are frequently used data structures like the various forms of collec-
tions. The following Template Types are supported:

* Lists Ordered collection of elements of the same type. “list” is the modern variant of the
OMG IDL keyword “sequence”

2.3. Programmers guide 17

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 2.1: IDL File Structure

18 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

* Sets Ordered collection of different elements of the same type. “list” is the modern variant
of the OMG IDL keyword “sequence”

* Maps Lists of paired objects indexed by a key

* Strings Collection of chars, will be mapped to the String representation of the language.

* Complex Declarations: In addition to the above Type declarations, KIARA
supports multidimensional Arrays using the bracket notation (e.g. int
monthlyRevenue[12][10])

• Service Declarations: KIARA supports interface and service declarations via IDL. Meaning that the user
can declare different services where the operations are going to be placed.

• Operation Declarations: Operations can be declared within the services following the standard OMG IDL
notation.

2.3.5 Using KIARA to create an RPC application

KIARA Advanced Middleware allows the developer to easily implement a distributed application using remote
procedure invocations. In client/server paradigm, a server offers a set of remote procedures that the client can
remotely call. How the client calls these procedures should be transparent.

For the developer, a proxy object represents the remote server, and this object offers the remote procedures imple-
mented by the server. In the same way, how the server obtains a request from the network and how it sends the
reply should also be transparent. The developer just writes the behaviour of the remote procedures.

KIARA Advanced Middleware offers this transparency and facilitates the development.

IDL derived operation mode in RPC

The general steps to build an application in IDL derived operation mode are:

1. Define a set of remote procedures: using the KIARA Interface Definition Language.

2. Generation of specific remote procedure call support code: a Client-Proxy and a Server-Skeleton.

3. Implement the servant: with the needed behaviour.

4. Implement the server: filling the server skeleton with the behaviour of the procedures.

5. Implement the client: using the client proxy to invoke the remote procedures.

This section describes the basic concepts of these four steps that a developer has to follow to implement a dis-
tributed application.

Defining a set of remote procedures using the KIARA IDL

The KIARA Interface Definition Language (IDL) can be used to define the remote procedures (operations) the
server will offer. Simple and Complex Data Types | used as parameter types in these remote procedures are also
defined in the IDL file. The IDL file for our example application (calculator.idl) shows the usage of some
of the above elements.

service Calculator
{

float32 add (float32 n1, float32 n2);
float32 substract (float32 n1, float32 n2);

};

2.3. Programmers guide 19

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Generating remote procedure call support code

KIARA Advanced Middleware includes a Java application named kiaragen. This application parses the IDL
file and generates Java code for the defined set of remote procedures.

All support classes will be generated (e.g. for structs):

• x.y.<StructName>: Support classes containing the definition of the data types as well as the serializa-
tion code.

Using the -example option (described below), kiaragen will generate the following files for each of your mod-
ule/service definitions:

• x.y.<IDL-ServiceName>: Interface exposing the defined synchronous service operation calls.

• x.y.<IDL-ServiceName>Async: Interface exposing the asynchronous operation calls.

• x.y.<IDL-ServiceName>Client: Interface exposing all client side calls (sync & async).

• x.y.<IDL-ServiceName>Process: Class containing the methods that will be executed to process
dynamic calls.

• x.y.<IDL-ServiceName>Proxy: This class encapsulates all the logic needed to call the remote op-
erations. (Client side proxy → stub).

• x.y.<IDL-ServiceName>Servant: This abstract class provides all the mechanisms (transport,
un/marshalling, etc.) the server requires to call the server functions.

• x.y.<IDL-ServiceName>ServantExample: This class will be extended to implement the server
side functions (see Servant Implementation).

• x.y.ClientExample: This class contains the code needed to run a possible example of the client side
application.

• x.y.ServerExample: This class contains the code needed to run a possible example of the server side
application.

• x.y.IDLText: This class contains a String whose value is the content of the IDL file.

The package name x.y. can be declared when generating the support code using kiaragen (see -package
option in kiaragen tool description).

For our example the call could be:

$ kiaragen -example rpc -package com.example src/main/idl/calculator.idl
Loading templates...
org.fiware.kiara.generator.kiaragen
org.fiware.kiara.generator.idl.grammar.Context
Processing the file calculator.idl...
Creating destination source directory... OK
Generating Type support classes...
Generating application main entry files for interface Calculator... OK
Generating specific server side files for interface Calculator... OK
Generating specific client side files for interface Calculator... OK
Generating common server side files... OK
Generating common client side files... OK

This would generate the following files:
.
-- src // source files

-- main
| -- idl // IDL definitions for kiaragen
| | -- calculator.idl
| -- java // Generated support files
| -- com.example
| | // Generated using --example
| -- Calculator.java // Interface of service

20 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

| -- CalculatorAsync.java // Interface of async calls
| -- CalculatorProcess.java // Process methods for dynamic operations
| -- CalculatorClient.java // Interface client side
| -- CalculatorProxy.java // Client side implementation
| -- CalculatorServant.java // Abstract server side skeleton
| -- CalculatorServantExample.java // Dummmy servant impl.
| -- ClientExample.java // Example client code
| -- ServerExample.java // Example server code
| -- IDLText.java // IDL File contents
-- build.gradle // File with targets to compile the example

Servant implementation

Please note that the code inside the file x.y.<IDL-ServiceName>ServantExample.java (which in this
case is CalculatorServantExample.java) has to be modified in order to specify the behaviour of each
declared function.

class CalculatorServantExample extends CalculatorServant {

public float add (/*in*/ float n1, /*in*/ float n2) {
return (float) n2 + n2;

}

public float substract (/*in*/ float n1, /*in*/ float n2) {
return (float) n1 - n2;

}

}

Implementing the server

The source code generated using kiaragen tool (by using the -example rpc option) contains a simple imple-
mentation of a server. This implementation can obviously be extended as far as the user wants, this is just a very
simple server capable of executing remote procedures.

The class containing the mentioned code is named ServerExample, and its code is shown below:

public class ServerExample {

public static void main (String [] args) throws Exception {

System.out.println("CalculatorServerExample");

Context context = Kiara.createContext();
Server server = context.createServer();

CalculatorServant Calculator_impl = new CalculatorServantExample();

Service service = context.createService();

service.register(Calculator_impl);

//Add service waiting on TCP using CDR serialization
server.addService(service, "tcp://0.0.0.0:9090", "cdr");

server.run();

}

}

2.3. Programmers guide 21

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Creating a secure TCP server (SSL)

In order to create a secure TCP server, the URL specified to listen into must be different. In this case, we would
use tcps as a network protocol instead of tpc. The only change that has to be done in the code is to change the
service address.

This is shown in the following snippet:

//Add service waiting on SSL TCP using CDR serialization
server.addService(service, "tcps://0.0.0.0:9090", "cdr");

Implementing the client

The source code generated using kiaragen tool (by using the -example rpc option) contains a simple im-
plementation of a client. This implementation must be extended in order to show the output received from the
server.

In the KIARA Calculator example, as we have defined first the add function in the IDL file, this will be the one
used by default in the generated code. The code for doing this is shown in the following snippet:

public class ClientExample {
public static void main (String [] args) throws Exception {

System.out.println("CalculatorClientExample");

float n1 = (float) 3.0;
float n2 = (float) 5.0;

float ret = (float) 0.0;

Context context = Kiara.createContext();

//Connect to server listening in 127.0.0.1:9090 (TCP)
Connection connection =

context.connect("tcp://127.0.0.1:9090?serialization=cdr");
Calculator client = connection.getServiceProxy(CalculatorClient.class);

try {
ret = client.add(n1, n2);
System.out.println("Result: " + ret);

} catch (Exception ex) {
System.out.println("Exception: " + ex.getMessage());
return;

}
}

Kiara.shutdown();
}

The previous code has been shown exactly the way it is generated, with only two differences:

• Parameter initialization: Both of the parameters n1 and n2 have been initialized to random values (in this
case 3 and 5).

• Result printing: To have feedback of the response sent by the server when the remote procedure is executed.

Creating a secure TCP client (SSL)

In order to create a secure TCP client, the URI to connect to must be that of the server (who must also be using
SSL TCP for a full secure communication).

This is shown in the following snippet:

//Connect to server listening in 127.0.0.1:9090 (SSL)
Connection connection =

context.connect("tcps://127.0.0.1:9090?serialization=cdr");

22 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Compiling the client and the server

For the client and server examples to compile, some jar files are needed. These files are located under the lib
directory provided with this distribution, and they must be placed in the root working directory, under the lib
folder:
.
-- src // source files
-- lib // generated support files
-- build.gradle // Gradle compilation script

To compile the client using gradle, the call would be the next one (change target clientJar to serverJar to compile
the server):

$ gradle clientJar
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:clientJar

BUILD SUCCESSFUL

Total time: 3.426 secs

After compiling both of them the following files will be generated:
.
-- src // source files
-- build // generated by gradle

| -- classes // Compiled .class files
| -- dependency-cache // Inner gradle files
| -- libs // Executable jar files
| -- tmp // Temporal files used by gradle
-- lib
-- build.gradle // Gradle compilation script

In order to execute the examples, just cd where they are placed (build/libs directory), and execute them using the
command java -jar file_to_execute.jar.

2.3.6 Using KIARA to create an RPC application (using the dynamic API)

The “KIARA RPC Dynamic API” allows the developers to easily execute calls in an RPC framework without
having to statically generate code to support them. In the following sections, the different concepts of this feature
will be explained.

Using the dynamic API we still need the IDL file, which declares the “contract” between server and client by
defining the data types and services (operations) the server offers.

For the dynamic API the IDL format is identical to the one used for the static/compile time version. For example
the IDL file for our demo application (calculator.idl) is identical to the static use-case:

service Calculator
{

float32 add (float32 n1, float32 n2);
float32 substract (float32 n1, float32 n2);

};

Declaring the remote calls and data types at runtime

In the dynamic approach, the comple time kiaragen code-generator will not be required anymore. Instead,
the middleware provides a function to load the IDL definition from a String object. The generation of the IDL

2.3. Programmers guide 23

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

String has to be done by the developer. For example it can be loaded from a File, from a URL or generated by an
algorithm.

The process to declare the dynamic part is as follows:

• The server loads the IDL String (e.g. from a file).

• The IDL definition will then be provided to the clients connecting with the server.

• On the server the developer has to provide objects to act as servants and execute code depending on the
function the client has requested.

Loading the IDL definition

On the server side, in order to provide the user with a definition of the functions that the server offers, the first
thing to be done is to load the IDL definition into the application.

Therefore, the Service class provides a public function that can be used to load the IDL information from a
String object. It is the developers responsibility to load the String from the source (e.g. from a file).

The following snippet shows an example on how to do this:

// Load IDL content string from file
String idlString = new String(Files.readAllBytes(Paths.get("calculator.idl")));
/* This is just one way to do it. Developer decides how to do it */

// Load service information dynamically from IDL
Service service = context.createService();
service.loadServiceIDLFromString(idlString);

Implementing the service functionality

Unlike in the static approach, in the dynamic version exists no Servant class to code the behaviour of the functions.
To deal with this, KIARA provides a functional interface DynamicFunctionHandler that acts as a servant
implementation. This class must be used to implement the function and register it with the service, which means
to map the business logic of each function with its registered name.

// Create type descriptor and dynamic builder
final TypeDescriptorBuilder tdbuilder = Kiara.getTypeDescriptorBuilder();
final DynamicValueBuilder dvbuilder = Kiara.getDynamicValueBuilder();
// Create type descriptor int (used for the return value)
final PrimitiveTypeDescriptor intType =

tdbuilder.createPrimitiveType(TypeKind.INT_32_TYPE);

// Implement the functional interface for the add function
DynamicFunctionHandler addHandler = new DynamicFunctionHandler() {

@Override
public void process(

DynamicFunctionRequest request,
DynamicFunctionResponse response

) {
// read the parameters
int a = (Integer)((DynamicPrimitive)request.getParameterAt(0)).get();
int b = (Integer)((DynamicPrimitive)request.getParameterAt(1)).get();
// create the return value
final DynamicPrimitive intValue =

(DynamicPrimitive)dvbuilder.createData(intType);
intValue.set(a+b); // implmement the function
response.setReturnValue(intValue);

}
}

24 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

// Register function and map handler (do this for every function)
service.register("Calculator.add", addHandler);

Implementing the server

Because the server functionality is not encapsuled in generated Servant classes, the server implmentation is a bit
more extensive. It still follows the same pattern as in the static API, but the implementation and registration of the
dynamic functions has to be done completely by the developer.

The following ServerExample class shows, how this would look like:

public class ServerExample {
public static void main (String [] args) throws Exception {

System.out.println("CalculatorServerExample");

Context context = Kiara.createContext();
Server server = context.createServer();

// Enable negotiation with clients
server.enableNegotiationService("0.0.0.0", 8080, "/service");

Service service = context.createService();
String idlContent =
new String(Files.readAllBytes(Paths.get("calculator.idl")))
service.loadServiceIDLFromString(idlContent);

// Create descriptor and dynamic builder
final TypeDescriptorBuilder tdbuilder = Kiara.getTypeDescriptorBuilder();
final DynamicValueBuilder dvbuilder = Kiara.getDynamicValueBuilder();

// Declare handlers
DynamicFunctionHandler addHandler;
DynamicFunctionHandler substractHandler;
addHandler = /* Implement handler for the add function */;
substractHandler = /* Implement handler for the substract function */;

// Register services
service.register("Calculator.add", addHandler);
service.register("Calculator.substract", substractHandler);

//Add service waiting on TCP with CDR serialization
server.addService(service, "tcp://0.0.0.0:9090", "cdr");

server.run();
}

}

Creating a secure TCP server (SSL)

In order to create a secure TCP server, the URL specified to listen into must be different. In this case, we would
use tcps as a network protocol instead of tpc. The only change that has to be done in the code is to change the
service address.

This is shown in the following snippet:

// Enable negotiation with clients
server.enableNegotiationService("0.0.0.0", 8080, "/service");

...

//Add service waiting on SSL TCP using CDR serialization
server.addService(service, "tcps://0.0.0.0:9090", "cdr");

2.3. Programmers guide 25

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Please note that the negotiation service has to be enabled first, otherwise the client will not be able to retrieve the
connection information from the server.

Implementing the client

On the client side the key point is the negotiation with the server to download the IDL it provides. After down-
loading, it will automatically parse the content and generate the necessary information to create the dynamic
objects.

When the DynamicProxy is created the functions provided by the server can be executed by using
DynamicFunctionRequest objects. The parameters of the functions have to be set in the request using
DynamicData objects. The call of the request function execute() will finally perform the call to the server
and return the result in a DynamicFunctionResponse object.

The following code shows the client implementation:

public class ClientExample {
public static void main (String [] args) throws Exception {

System.out.println("CalculatorClientExample");

Context context = Kiara.createContext();

// Create connection indicating the negotiation service
Connection connection =

context.connect("kiara://127.0.0.1:9090/service");

// Create client by using the proxy's name
DynamicProxy client = connection.getDynamicProxy("Calculator");

// Create request object
DynamicFunctionRequest request = client.createFunctionRequest("add");
((DynamicPrimitive) request.getParameterAt(0)).set(8);
((DynamicPrimitive) request.getParameterAt(1)).set(5);

// Create response object and execute RPC
DynamicFunctionResponse response = request.execute();
if (response.isException()) {

DynamicData result = response.getReturnValue();
System.out.println("Exception = " + (DynamicException) result);

} else {
DynamicData result = response.getReturnValue();
System.out.println("Result = " + (DynamicPrimitive) result);

}
// shutdown the client

Kiara.shutdown();
}

}

Creating a secure TCP client (SSL)

In order to create a secure TCP client, the URI to connect to must be that of the server’s negotiation endpoint.
When using the dynamic API, KIARA will automatically match the type of connection the server is using, whether
it is TCP or TCPS (if the networking card of the computer supports it)

For this, the code for the client is exactly the same (note this in the following snippet):

// Create connection indicating the negotiation service
Connection connection =

context.connect("kiara://127.0.0.1:9090/service");

26 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

2.3.7 Using KIARA to create a Pub/Sub application

KIARA Advanced Middleware allows the developer to easily implement a distributed application using a Pub-
lish/Subscribe pattern. In software architecture, publish/subscribe is a messaging pattern when messages of a
specific data type (topic) are sent by entities called publishers, and received by entities who are subscribed to that
same data type, called subscribers.

From the point of view of the developer, all he knows is that he has a certain data type in his application and he
wants it to be sent. How the publisher publishes this data in the network and how the subscriber gets it must be
transparent.

KIARA Advanced Middleware offers this transparency and facilitates the development.

IDL derived operation mode using Pub/Sub

The general steps to build an application in IDL derived operation mode are:

1. Define the application data types using KIARA IDL: using the KIARA Interface Definition Language.

2. Generation of specific support code: those classes representing the types defined using IDL.

3. Generate the Pub/Sub example: using the kiaragen tool.

4. Implementing the Publisher side: using the Publisher entity and the generated type support classes.

5. Implementing the Subscriber side: using the Subscriber entity and the generated type support classes.

This section describes the basic concepts of these steps that a developer has to follow to implement a distributed
application.

Defining the application data types using KIARA IDL

The KIARA Interface Definition Language (IDL) can be used to define the application data types to be published.
Simple and Complex Data Types inside the structures can also be defined in the IDL file, but take into account
that only structures will count as Topic types.

The IDL file for our RPC example application shows the definition of a temperature sensor whose value is going
to be published over the wire when changed.

struct TSensor
{

float32 temperature;
};

Generate Pub/Sub code using kiaragen

KIARA Advanced Middleware includes a Java application named kiaragen. By using this application, the type
support code for the structure defined in the IDL file can be generated. The files that will result as the output of
the kiaragen execution are the following:

• x.y.: Support classes containing the definition of the data types as well as the serialization code.

• x.y.Type: Topic class for the data type. This class will be the one used to register the data types in a specific
topic.

Using ps as -example option, kiaragen will generate the following files for the data type definitions:

• x.y.SubscriberExample: This class contains the code needed to run a simple application with a Subscriber.

• x.y.PublisherExample: This class contains the code needed to run a simple application with a Publisher.

2.3. Programmers guide 27

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

The package name x.y. can be declared when generating the support code using kiaragen (see -package option
below).

For our example the call could be:

$ kiaragen -example ps -package com.example src/main/idl/calculator.idl
Loading templates...
org.fiware.kiara.generator.kiaragen
org.fiware.kiara.generator.idl.grammar.Context
Processing the file calculator.idl...
Creating destination source directory... OK
Generating Type support classes...
Generating Type support class for structure TSensor... OK
Generating Topic class for structure TSensor... OK
Generating Publisher example main code for Topic TSensor... OK
Generating Subscriber example main code for Topic TSensor... OK

Generating GRADLE compilation script... OK

This would generate the following files:
.
-- src // source files

-- main
| -- idl // IDL definitions for kiaragen
| | -- sensor.idl
| -- java // Generated support files
| -- com.example
| | // Generated using --example ps
| -- TSensor.java // User data type
| -- TSensorType.java // Topic class for user data type
| -- TSensorPublisherExample.java // Publisher example code
| -- TSensorSubscriberExample.java // Subscriber example code
-- build.gradle // File with targets to compile the example

Static Endpoint Discovery (SED) using XML files

In this version of the Publish/Subscribe pattern implemented in KIARA, the discovery of endpoints is done stati-
cally by loding the information of those endpoints from an XML file. It supports loading such information from a
String variable with the contents of the XML discovery file as well.

The discovery information than can be represented into the XML file includes the participant (with its name), and
the endpoints this participant might have (readers or writers). it also supports adding multiple participant entities
as well as multiple reader or writer configurations.

The XML tags supported by KIARA are described below, grouped into different categories according to the entity
they belong to.

staticdiscovery

This tag is used to define that the XML file is going to contain information about the RTPS Endpoint Discovery
protocol.

The available tags inside staticdiscovery are the following:

Tag Type Description
<participant> complexType Participant entity.

28 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

participant

The participant tag is the one used to define a grouping entity for readers and writers. It allows to add as many
endpoints as the user wants, as well as to configure the participant name.

The available tags inside participant are the following:

Tag Type Description
<name> element Name of the Participant entity
<writer> complexType Writer entity
<reader> complexType Reader entity

writer

The writer tag is the use used to describe all the characteristics of the reader endpoint. There can be multiple
writers, as long as their values do not interfere one another.

The available tags inside writer are the following:

2.3. Programmers guide 29

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Tag Type Description
<userId> element Integer defining the user ID for this

endpoint.
<entityId> element Integer defining the specific ID of

the endpoint.
<topicName> element Indicates the name of the Topic used

by the endpoint.
<topicDataName> element Indicates the name of the data type

that can be sent by the endpoint.
<topicKind> element Indicates whether the endpoint uses

keyed topics or not. Supported val-
ues:

• WITH_KEY
• NO_KEY

<reliabilityQos> element Indicates which kind of reliability
is used by the endpoint. Supported
values:

•
RELIABLE_RELIABILITY_QOS

•
BEST_EFFORT_RELIABILITY_QOS

<unicastLocator> complexType List of unicastLocator types indicat-
ing the unicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<multicastLocator> complexType List of unicastLocator types indicat-
ing the multicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<topic> complexType Entity inticading the name, data
type and kind of the topic this end-
point is related to. Attributes:

name Name of the
topic.

dataType Name of
the dataType re-
lated to this topic.

kind Indicates
whether it is a
keyed topic or
not. Supported
values:

• WITH_KEY
• NO_KEY

<durabilityQos> element String element indicating the dura-
bility of the data send by the end-
point. Supported values:

•
TRANSIENT_LOCAL_DURABILITY_QOS

•
VOLATILE_DURABILITY_QOS

<ownershipQos> element Complex type that describes the
ownership of the data sent by the
endpoint. Attributes:

kind Indicates the
kind of owner-
ship. Supported
values:

•
SHARED_OWNERSHIP_QOS

•
EXCLUSIVE_OWNERSHIP_QOS

strength Integer
value used to
give priority of
the data owner-
ship over other
endpoints.

<livelinessQos> complexType It describes the Lliveliness QoS se-
lected for the endpoint. Attributes:

kind Indicates the
kind of liveli-
ness selected.
Supported values:

•
AUTOMATIC_LIVELINESS_QOS

•
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

•
MANUAL_BY_TOPIC_LIVELINESS_QOS

leaseDuration_ms
Integer indicating
the lease duration
in milliseconds.

30 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

reader

The reader tag is the use used to describe all the characteristics of the reader endpoint. There can be multiple
readers, as long as their values do not interfere one another.

The available tags inside reader are the following:

2.3. Programmers guide 31

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Tag Type Description
<userId> element Integer defining the user ID for this

endpoint.
<entityId> element Integer defining the specific ID of

the endpoint.
<topicName> element Indicates the name of the Topic used

by the endpoint.
<topicDataName> element Indicates the name of the data type

that can be received by the endpoint.
<expectsInlineQos> element Boolean value inticating whether

the reader endpoint expects to re-
ceive inline QoS in the RTPS mes-
sages or not.

<topicKind> element Indicates whether the endpoint uses
keyed topics or not. Supported val-
ues:

• WITH_KEY
• NO_KEY

<reliabilityQos> element Indicates which kind of reliability
is used by the endpoint. Supported
values:

•
RELIABLE_RELIABILITY_QOS

•
BEST_EFFORT_RELIABILITY_QOS

<unicastLocator> complexType* List of unicastLocator types indicat-
ing the unicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<multicastLocator> complexType* List of unicastLocator types indicat-
ing the multicast IP adresses of this
endpoint. Attributes:

address IP address
of the endpoint.

port Integer indicat-
ing the port for
communication.

<topic> complexType Entity inticading the name, data
type and kind of the topic this end-
point is related to. Attributes:

name Name of the
topic.

dataType Name of
the dataType re-
lated to this topic.

kind Indicates
whether it is a
keyed topic or
not. Supported
values:

• WITH_KEY
• NO_KEY

<durabilityQos> element String element indicating the dura-
bility of the data send by the end-
point. Supported values:

•
TRANSIENT_LOCAL_DURABILITY_QOS

•
VOLATILE_DURABILITY_QOS

<ownershipQos> element Complex type that describes the
ownership of the data received by
the endpoint. Attributes:

kind Indicates the
kind of owner-
ship. Supported
values:

•
SHARED_OWNERSHIP_QOS

•
EXCLUSIVE_OWNERSHIP_QOS

strength Integer
value used to
give priority of
the data owner-
ship over other
endpoints.

<livelinessQos> complexType It describes the Lliveliness QoS se-
lected for the endpoint. Attributes:

kind Indicates the
kind of liveli-
ness selected.
Supported values:

•
AUTOMATIC_LIVELINESS_QOS

•
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS

•
MANUAL_BY_TOPIC_LIVELINESS_QOS

leaseDuration_ms
Integer indicating
the lease duration
in milliseconds.

32 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Implementing the Publisher

The PubliserExample class is the one containing the main entry point for creating an application capable of pub-
lishing the user’s data types over the wire. This class is automatically generated by using the kiaragen tool,
and it contains a basic initialization of QoS (Qualities of Service), a participant, and one simple Publisher entity.

The following PublisherExample class shows how this would look like:

public class TSensorPublisherExample {

private static final TSensorType type = new TSensorType();

public static void main (String [] args) throws InterruptedException {

The generated class has a static final variable named type, and it will be used to register the user’s data type.

The predefined arguments this example will handle are:

• domainId: This parameter is a number indicating the domain identifier for the RTPS communication. If not
specified, the default value is 0.

• sampleCount: Number of samples the publisher will send. If not specified, the publisher will send examples
without stopping.

int domainId = 0;
if (args.length >= 1) {

domainId = Integer.parseInt(args[0]);
}

int sampleCount = 0;
if (args.length >= 2) {

sampleCount = Integer.parseInt(args[1]);
}

In the following lines, the data itself is created by using the generated Topic class. The developer can now edit the
created object before sending it over the network.

TSensor instance = type.createData();

// Initialize your data here

Now, the participant’s attributes are initialized. Note that the domainId introduces as a parameter will be used
here, and also that the attributes specify the participant to activate the static discovery protocol.

To use the static discovery, either an XML file or a String variable with the XML contents can be used. In the gen-
erated example, the chosen approach is to load the XML discovery information by using a single String variable.
In this String, the known endpoints have to be defined. In this case, a participant containing a BEST_EFFORT
reader.

ParticipantAttributes pAtt = new ParticipantAttributes();
pAtt.rtps.builtinAtt.domainID = domainId;
pAtt.rtps.builtinAtt.useStaticEDP = true;

final String edpXml = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
+ "<staticdiscovery>"
+ " <participant>"
+ " <name>SubscriberParticipant</name>"
+ " <reader>"
+ " <userId>1</userId>"
+ " <topic name=\"TSensorTopic\" dataType=\"TSensor\" kind=\"NO_KEY\"></topic>"
+ " <expectsInlineQos>false</expectsInlineQos>"
+ " <reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>"
+ " </reader>"
+ " </participant>"
+ "</staticdiscovery>";

2.3. Programmers guide 33

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

pAtt.rtps.builtinAtt.setStaticEndpointXML(edpXml);

pAtt.rtps.setName("PublisherParticipant");

At this point, the only thing remaining to be done before creating the Publisher is to finally create the Participant
and register the user’s data type. To do so, the generated Topic class must be used after the participant has been
correctly initialized.

Participant participant = Domain.createParticipant(pAtt, null /* LISTENER */);
if (participant == null) {

throw new RuntimeException("createParticipant");
}

Domain.registerType(participant, type);

The Publisher’s attributes must specify the topic name and the name of the data type, and this information has to
be the same in the other endpoints so that they can communicate with each other. In this generated example, the
topic data name will be the same of the defined structure. Note that the example uses by default a BEST_EFFORT
configuration for the Publisher.

// Create publisher
PublisherAttributes pubAtt = new PublisherAttributes();
pubAtt.setUserDefinedID((short) 1);
pubAtt.topic.topicDataTypeName = "TSensor";
pubAtt.topic.topicName = "TSensorTopic";
pubAtt.qos.reliability.kind = ReliabilityQosPolicyKind.BEST_EFFORT_RELIABILITY_QOS;

org.fiware.kiara.ps.publisher.Publisher<TSensor> publisher = Domain.createPublisher(participant, pubAtt, null /* LISTENER */);

if (publisher == null) {
Domain.removeParticipant(participant);
throw new RuntimeException("createPublisher");

}

Finally, the examples are sent according to the number of samples specified via parameter (without stopping if
this number is not set).

int sendPeriod = 4000; // milliseconds
for (int count=0; (sampleCount == 0) || (count < sampleCount); ++count) {

System.out.println("Writing TSensor, count: " + count);
publisher.write(instance);
Thread.sleep(sendPeriod);

}

In order for the Participant to stop succesfully, it must be removed from the Domain (all the associated endpoints
will be stopped as well), and then the method named shutdown belonging to the Kiara class will be the one to stop
all running services.

Domain.removeParticipant(participant);

Kiara.shutdown();

System.out.println("Publisher finished");

}

}

Implementing the Subscriber

The SubscriberExample class is the one containing the main entry point for creating an application capable of sub-
scribing to a topic representing the user’s data types. This class is automatically generated by using the kiaragen

34 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

tool, and it contains a basic initialization of QoS (Qualities of Service), a participant, and one simple Subscriber
entity.

The following PublisherExample class shows how this would look like:

public class TSensorSubscriberExample {

private static final TSensorType type = new TSensorType();

public static void main (String [] args) throws InterruptedException {

as it happened with the PublisherExample, the generated class has a static final variable named type, and it will be
used to register the user’s data type.

The predefined arguments this example will handle are:

• domainId: This parameter is a number indicating the domain identifier for the RTPS communication. If not
specified, the default value is 0.

• sampleCount: Number of samples the subscriber expects to receive. If not specified, the will run without
stopping.

int domainId = 0;
if (args.length >= 1) {

domainId = Integer.parseInt(args[0]);
}

int sampleCount = 0;
if (args.length >= 2) {

sampleCount = Integer.parseInt(args[1]);
}

Now, the participant’s attributes are initialized. Note that the domainId introduces as a parameter will be used
here, and also that the attributes specify the participant to activate the static discovery protocol.

To use the static discovery, either an XML file or a String variable with the XML contents can be used. In the gen-
erated example, the chosen approach is to load the XML discovery information by using a single String variable.
In this String, the known endpoints have to be defined. In this case, a participant containing a BEST_EFFORT
writer.

ParticipantAttributes pAtt = new ParticipantAttributes();
pAtt.rtps.builtinAtt.domainID = domainId;
pAtt.rtps.builtinAtt.useStaticEDP = true;

final String edpXml = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
+ "<staticdiscovery>"
+ " <participant>"
+ " <name>PublisherParticipant</name>"
+ " <writer>"
+ " <userId>1</userId>"
+ " <topicName>TSensorTopic</topicName>"
+ " <topicDataType>TSensor</topicDataType>"
+ " <topicKind>NO_KEY</topicKind>"
+ " <reliabilityQos>BEST_EFFORT_RELIABILITY_QOS</reliabilityQos>"
+ " <livelinessQos kind=\"AUTOMATIC_LIVELINESS_QOS\" leaseDuration_ms=\"100\"></livelinessQos>"
+ " </writer>"
+ " </participant>"
+ " </staticdiscovery>";

pAtt.rtps.builtinAtt.setStaticEndpointXML(edpXml);

pAtt.rtps.setName("SubscriberParticipant");

At this point, the only thing remaining to be done before creating the Subscriber is to finally create the Participant
and register the user’s data type. To do so, the generated Topic class must be used after the participant has been

2.3. Programmers guide 35

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

correctly initialized.

Participant participant = Domain.createParticipant(pAtt, null /* LISTENER */);
if (participant == null) {

throw new RuntimeException("createParticipant");
}

Domain.registerType(participant, type);

The Publisher’s attributes must specify the topic name and the name of the data type, and this information has to
be the same in the other endpoints so that they can communicate with each other. In this generated example, the
topic data name will be the same of the defined structure. Note that the example uses by default a BEST_EFFORT
configuration for the Subscriber.

// Create publisher
SubscriberAttributes satt = new SubscriberAttributes();
satt.setUserDefinedID((short) 1);
satt.topic.topicDataTypeName = "TSensor";
satt.topic.topicName = "TSensorTopic";
satt.qos.reliability.kind = ReliabilityQosPolicyKind.BEST_EFFORT_RELIABILITY_QOS;

// CountDown object to store the number of received samples
final CountDownLatch doneSignal = new CountDownLatch(sampleCount);

For this Subscriber, a SubscriberListener object is implemented below. It will print out when a new saple has
been received by the Subscriber, and it will also take care of the total number of samples that have already been
received.

org.fiware.kiara.ps.subscriber.Subscriber<TSensor> subscriber = Domain.createSubscriber(participant, satt, new SubscriberListener() {

@Override
public void onNewDataMessage(Subscriber<?> sub) {

TSensor type = (TSensor) sub.takeNextData(null /* SampleInfo */);
while (type != null) {

System.out.println("Message received");
type = (TSensor) sub.takeNextData(null);
doneSignal.countDown();

}
}

@Override
public void onSubscriptionMatched(Subscriber<?> sub, MatchingInfo info) {

// Write here you handling code
}

});

if (subscriber == null) {
Domain.removeParticipant(participant);
throw new RuntimeException("createSubscriber");

}

int receivePeriod = 4000; // milliseconds
while ((sampleCount == 0) || (doneSignal.getCount() != 0)) {

System.out.println("$ctx.currentSt.name$ Subscriber sleeping for " + receivePeriod/1000 + " seconds..");
Thread.sleep(receivePeriod);

}

In order for the Participant to stop succesfully, it must be removed from the Domain (all the associated endpoints
will be stopped as well), and then the method named shutdown belonging to the Kiara class will be the one to stop
all running services.

36 Chapter 2. KIARA User and Programmer Guide

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Domain.removeParticipant(participant);

Kiara.shutdown();

System.out.println("Publisher finished");

}

}

2.3.8 Concerns

Connection compatibilities when using SSL over TCP

A secure connection is made by using TLS v1.2 (Transport Layer Security), an updated version of the SSL
v3.1(Secure Sockets Layer). The use of this security layer carries a procedure to establish a connection between
two endpoints, more than the classical Three-Way Handshake used in standard TCP. When using SSL, after the
Three-Way Handshake, the client sends a Client Hello package that the server must answer with a Server
Hello, and then the connection can be negotiated and established.

When the connection protocol specified is TCPS (SSL), there are some minor compatibility concerns that must be
taken into account. The following table shows how the secure connections work depending on the side (client or
server).

Server Protocol TCP Client TCPS Client
TCP OK ERROR*
TCPS ERROR OK

• The problem when only the client is TCPS is that the TCP connection is succesfully established, but the
server will not answer the Hello package from the client, so this last one will never detect the connection
as literally finished.

2.3. Programmers guide 37

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

38 Chapter 2. KIARA User and Programmer Guide

CHAPTER 3

Advanced Middleware Architecture

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

3.1 Copyright

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

3.2 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

3.3 Overview

This specification describes the Advanced Middleware GE, which enables flexible, efficient, scalable, and secure
communication between distributed applications and to/between FIWARE GEs.

Middleware in general provides a software layer between the application and the communication network and
allows application to abstract from the intricacies of how to send a piece of data to a service offered by a another
application and possibly return results. The middleware offers functionality to find and establish a connection to
a service, negotiate the best wire and transport protocols, access the applications data structures and encode the
necessary data in a format suitable for the chosen protocol, and finally send that data and possibly receive results
in return. In a similar way an application can use the middleware also to offer services to other applications by
registering suitable service functionality and interfaces, which can then be used as targets of communication.

3.4 Basic Concepts

In this section several basic concepts of the Advanced Communication Middleware are explained. We assume that
the reader is familiar with the basic functionality of communication middleware like CORBA or WebServices.

39

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab
http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab
http://wiki.fiware.org/FI-WARE_Open_Specification_Legal_Notice_(implicit_patents_license)

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 3.1: Publish/Subscribe Pattern

Fig. 3.2: Point-To-Point Pattern

3.4.1 Communication Patterns

We can distinguish between three main different messaging patterns, Publish/Subscribe, Point-to-Point, and Re-
quest/Reply, shown schematically below:

All available middleware technologies implement one or more of these messaging patterns and may incorporate
more advanced patterns on top of them. Most RPC middleware is based on the Request/Reply pattern and more
recently, is extended towards support of Publish/Subscribe and/or the Point-To-Point pattern.

W3C Web Service standards define a Request/Reply and a Publish/Subscribe pattern which is built on top on that
(WS-Notification). CORBA, in a similar way, build its Publish/Subscribe pattern (Notification Service) on top of a
Request/Reply infrastructure. In either case the adopted architecture is largely ruled by historical artifacts instead
of performance or functional efficiency. The adopted approach is to emulate the Publish/Subscribe pattern on top
of the more complex pattern thus inevitably leading to poor performance and complex implementations.

The approach of the Advanced Middleware takes the other direction. It provides native Publish/Subscribe and
implements the Request/Reply pattern on top of this infrastructure. Excellent results can be achieved since the
Publish/Subscribe is a meta-pattern, in other words a pattern generator for Point-To-Point and Request/Reply and
potential alternatives.

3.4.2 Interface Definition Language (IDL)

The Advanced Middleware GE supports a novel IDL to describe the Data Types and Operations. Following is a
list of the main features it supports:

• IDL, Dynamic Types & Application Types: It support the usual schema of IDL compilation to generate
support code for the data types.

• IDL Grammar: An OMG-like grammar for the IDL as in DDS, Thrift, ZeroC ICE, CORBA, etc.

Fig. 3.3: Request/Reply Pattern

40 Chapter 3. Advanced Middleware Architecture

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• Types: Support of simple set of basic types, structs, and various high level types such as lists, sets, and
dictionaries (maps).

• Type inheritance, Extensible Types, Versioning: Advanced data types, extensions, and inheritance, and
other advanced features will be supported.

• Annotation Language: The IDL is extended with an annotation language to add properties to the data types
and operations. These will, for example, allows adding security policies and QoS requirements.

• Security: The IDL allows for annotating operations and data types though the annotation feature of our
IDL, allowing setting up security even at the field level.

3.5 Generic Architecture

3.5.1 General Note

In contrast to other GEs, the Advanced Middleware GE is not a standalone service running in the network, but a
set of compile-/runtime tools and a communication library to be integrated with the application.

The Advanced Middleware (AMi) architecture presented here offers a number of key advantages over other avail-
able middleware implementations:

• High-Level Service Architecture: AMi offers applications a high-level architecture that can shield them
from the complexities and dangers of network programming. When applications declare services and data
structures they can annotate them with the QoS, security, and other requirements while AMi automatically
implement them. Thus application developers can exclusively focus on the application functionality.

• Security: The network is the main security threat to most applications today but existing middleware has
offered only limited security functionality that has often been added as an afterthought and requires the ap-
plication developer (who are often not security experts) to configure the security functionality. Instead, AMi
offers Security by Design where security has been designed into the architecture from the start. Applica-
tions can simply declare their security needs in the form of security policies (security rules) and apply them
to data structures and service at development time or even later during deployment definitions. AMi then
makes sure that these requirements are met before any communication takes place and applies any suitable
security measures (e.g. encryption, signatures, etc.) during the communication.

• Dynamic Multi-Protocol support: The AMi architecture can select at run-time the best way to communi-
cate with a remote service. Thus, an AMi application can simultaneously talk with legacy services via their
predefined protocols (e.g. DDS). It also supports various communication patterns, like Publish-/Subscribe
(PubSub), Point-To-Point, or Request-/Reply (RPC).

• QoS and Software Defined networking: Where possible the QoS annotations are also used to configure
the network using modern Software Defined networking functionality, e.g. to reserve bandwidth.

3.5.2 The Advanced Middleware GE components

The following layer diagram shows the main components of the Advanced Communication Middleware GE.

In the diagram the main communication flow goes from top to bottom for sending data, respectively and from
bottom to top for receiving data. As in a typical layer diagram each layer is responsible for specific features
and builds on top of the layers below. Some modules are cross cutting and go therefore over several layers (e.g.
Security).

Here are some of the highlights of the AMi architecture shown in the diagram:

• AMi clearly separates the definition of WHAT data must be communicated (the communication contract via
one of many interface definition languages (IDLs)) from WHERE that data comes from in the application
and from HOW that data is transmitted. This separation of concerns is critical to support some advanced
functionality and be portable to a wide range of services and their communication mechanisms.

3.5. Generic Architecture 41

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 3.4: I2ND Middleware Architecture Overview

42 Chapter 3. Advanced Middleware Architecture

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• AMi supports multiple IDLs to define what data needs to be communicated. On establishing the connection
the interface definition of a service are obtained (explicitly or implicitly).

• AMi offers annotations for QoS, security, or other features that can be added to the data declared by the
application, to the IDL, as well as later during deployment. They are used by the middleware to automat-
ically implement its functionality by requesting QoS functionality from the network layer or automatically
enforcing security measures.

• As the connection to a service is established, both sides choose a common mechanism and protocol (nego-
tiation) to best communicate with each other.

The most efficient transport and protocol method supported by both sides will be selected. AMi has been designed
to also support Software Defined Networking in order to configure QOS parameters in the network.

• AMi offers an efficient dispatching mechanism for scheduling incoming request to the correct service im-
plementation.

Below we give a short description of the different layers and components.

API & Data Access

The application accesses the communication middleware using a set of defined function calls provided by the
API-layer. They may vary depending on the communication pattern (see below).

The main functionality of the Data Access Layer is to provide the mapping of data types and Function
Stubs/Skeletons (request/response pattern) or DataReaders/-Writers (publish/subscribe or point-to-point pattern).

The Advanced Middleware GE provides two variants of this functionality:

• A basic static compile-time Data-Mapping and generation of Function Stubs/Skeletons or
DataReaders/-Writers, created by a compile time IDL-Parser/Generator from the remote service descrip-
tion, which is provided in an Interface Definition Language (IDL) syntax based on the Object Management
Group (OMG) IDL (see below), which is submitted as a W3C draft.

• A dynamic runtime Data-Mapping and invocation of Function or DataReader/-Writer proxies, by
parsing the IDL description of the remote service at runtime and map it to the function/data definition
provided by the developer when setting up the connection.

Quality of Service (QoS) parameters and Security Policies may be provided through the API and/or IDL-
Annotations. This information will be used by the QoS and Security modules to ensure the requested guarantees.

Depending on the communication pattern, different communication mechanisms will be used.

• For publish/subscribe and point-to-point scenarios, the DDS services and operations will be pro-
vided. When opening connections, a DataWriter for publishers/sender and a DataReader for sub-
scribers/receivers will be created, which can be used by the application to send or receive DDS messages.

• For request/reply scenarios the Function Stubs/Skeletons created at compile-time can be used to send or
receive requests/replies.

Marshalling

Depending on configuration, communication pattern and type of end-points the data will be serialized to the
required transmission format when sending and deserialized to the application data structures when receiving.

• Common Data Representation (CDR) an OMG specification used for all DDS/RTPS and high-speed
communication.

• Extensible Markup Language (XML) for WebService compatibility.

• JavaScript Object Notation (JSON) for WebService compatibility.

3.5. Generic Architecture 43

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Wire Protocols

Depending on configuration, communication pattern and type of end-points the matching Wire-Protocol will be
chosen.

• For publish/subscribe and point-to-point patterns the Real Time Publish Subscribe (RTPS) Protocol is
used.

• For request/reply pattern with WebService compatibility the HTTP Protocol is used.

• For request/reply pattern between DDS end-points the Real Time Publish Subscribe (RTPS) Protocol is
used.

Dispatching

The dispatching module is supporting various threading models and scheduling mechanisms. The module is
providing single-threaded, multi-threaded and thread-pool operation and allows synchronous and asynchronous
operation. Priority or time constraint scheduling mechanisms can be specified through QoS parameters.

Transport Mechanisms

Based on the QoS parameters and the runtime-environment the QoS module will decide which transport mecha-
nisms and protocols to choose for data transmission.

In Software Defined Networking (SDN) environments, the QoS module will interface with the Netfloc GE to
get additional network information or even provision the network components to provide the requested quality of
service or privacy.

Transport Protocols

All standard transport protocols (TCP, UDP) as well as encrypted tunnels (TLS, DTLS) are supported.

Security

The security module is responsible for authentication of communication partners and will ensure in the whole
middleware stack, the requested data security and privacy. The required information can be provided with Security
Annotations in the IDL and by providing a security policy via the API.

Negotiation

The negotiation module provides mechanisms to discover or negotiate the optimal transmission format and pro-
tocols when peers are connecting. It discovers automatically the participants in the distributed system, searching
through the different transports available (shared memory and UDP by default, TCP for WebService compatibility)
and evaluates the communication paradigms and and the corresponding associated QoS parameters and security
policies.

3.6 Main Interactions

As explained above, the middleware can be used in different communication scenarios. Depending on the scenario,
the interaction mechanisms and the set of API-functions for application developers may vary.

44 Chapter 3. Advanced Middleware Architecture

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

3.6.1 API versions

There will be two versions of APIs provided:

• RPC Static API
Static compile-time parsing of IDL and generation of Stub-/Skeletons and DataReader/DataWriter

• RPC Dynamic API
Dynamic runtime parsing of IDL and run-time invocation of operations.

Additionally following features will be provided as API extensions:

• Advanced security policy and QoS parameters

• Publish/subscribe functionality compatible to RPC-DDS and DDS applications

3.6.2 Classification of functions

The API-Functions can be classified in the following groups:

• Preparation: statically at compile-time (Static API) or dynamically at run-time (Dynamic API)

– Declare the local applications datatypes/functions (Dynamic API only)

– Parsing the Interface Definition of the remote side (IDL-Parser)

– Generate Stubs-/Skeletons, DataReader-/Writer

– Build your application against the Stubs-/Skeletons, DataReader-/Writer (Static API only)

• Initialization:

– Create the context (set up the environment, global QoS/Transport/Security policy,...)

– Open connection (provide connection specific parameters: QoS/Transport/Security policy, Authenti-
cation, Tunnel encryption, Threading policy,...)

• Communication

– Send Message/Request/Response (sync/async, enforce security)

– Receive Message/Request/Response (sync/async, enforce security)

– Exception Handling

• Shutdown

– Close connection (cleanup topics, subscribers, publishers)

– Close the context (Free resources)

Detailed description of the APIs and tools can be found in the User and Developer Guide, which will be updated
for every release of the Advanced Middleware GE.

3.7 Basic Design Principles

Implementations of the Advanced Middleware GE have to comply to the following basic design principles:

• All modules have to provide defined and documented APIs.

• Modules may only be accessed through these documented APIs and not use any internal undocumented
functions of other modules.

• Modules in the above layer model may only depend on APIs of lower level modules and never access APIs
of higher level modules.

• All information required by lower level modules has to be provided by the higher levels modules through
the API or from a common configuration.

3.7. Basic Design Principles 45

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• If a module provides variants of internal functionalities (e.g. Protocols, Authentication Mechanisms, ...)
these should be encapsulated as Plugins with a defined interface.

46 Chapter 3. Advanced Middleware Architecture

CHAPTER 4

Open Specifiation

4.1 Preface

Within this document you find a self-contained open specification of a FI-WARE generic enabler, please consult as
well the FI-WARE Product Vision, the website on http://www.fiware.org and similar pages in order to understand
the complete context of the FI-WARE project.

4.2 Copyright

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

4.3 Legal Notice

Please check the following Legal Notice to understand the rights to use these specifications.

4.4 Overview

This specification describes the Advanced Middleware GE, which enables flexible, efficient, scalable, and secure
communication between distributed applications and to/between FIWARE GEs.

Middleware in general provides a software layer between the application and the communication network and
allows application to abstract from the intricacies of how to send a piece of data to a service offered by a another
application and possibly return results. The middleware offers functionality to find and establish a connection to
a service, negotiate the best wire and transport protocols, access the applications data structures and encode the
necessary data in a format suitable for the chosen protocol, and finally send that data and possibly receive results
in return. In a similar way an application can use the middleware also to offer services to other applications by
registering suitable service functionality and interfaces, which can then be used as targets of communication.

4.5 Basic Concepts

In this section several basic concepts of the Advanced Communication Middleware are explained. We assume that
the reader is familiar with the basic functionality of communication middleware like CORBA or WebServices.

47

http://wiki.fiware.org/FI-WARE_Product_Vision
http://www.fiware.org
http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab
http://wiki.fiware.org/FI-WARE_Open_Specification_Legal_Notice_(implicit_patents_license)

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 4.1: Publish/Subscribe Pattern

Fig. 4.2: Point-To-Point Pattern

4.5.1 Communication Patterns

We can distinguish between three main different messaging patterns, Publish/Subscribe, Point-to-Point, and Re-
quest/Reply, shown schematically below:

All available middleware technologies implement one or more of these messaging patterns and may incorporate
more advanced patterns on top of them. Most RPC middleware is based on the Request/Reply pattern and more
recently, is extended towards support of Publish/Subscribe and/or the Point-To-Point pattern.

W3C Web Service standards define a Request/Reply and a Publish/Subscribe pattern which is built on top on that
(WS-Notification). CORBA, in a similar way, build its Publish/Subscribe pattern (Notification Service) on top of a
Request/Reply infrastructure. In either case the adopted architecture is largely ruled by historical artifacts instead
of performance or functional efficiency. The adopted approach is to emulate the Publish/Subscribe pattern on top
of the more complex pattern thus inevitably leading to poor performance and complex implementations.

The approach of the Advanced Middleware takes the other direction. It provides native Publish/Subscribe and
implements the Request/Reply pattern on top of this infrastructure. Excellent results can be achieved since the
Publish/Subscribe is a meta-pattern, in other words a pattern generator for Point-To-Point and Request/Reply and
potential alternatives.

4.5.2 Interface Definition Language (IDL)

The Advanced Middleware GE supports a novel IDL to describe the Data Types and Operations. Following is a
list of the main features it supports:

• IDL, Dynamic Types & Application Types: It support the usual schema of IDL compilation to generate
support code for the data types.

• IDL Grammar: An OMG-like grammar for the IDL as in DDS, Thrift, ZeroC ICE, CORBA, etc.

Fig. 4.3: Request/Reply Pattern

48 Chapter 4. Open Specifiation

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• Types: Support of simple set of basic types, structs, and various high level types such as lists, sets, and
dictionaries (maps).

• Type inheritance, Extensible Types, Versioning: Advanced data types, extensions, and inheritance, and
other advanced features will be supported.

• Annotation Language: The IDL is extended with an annotation language to add properties to the data types
and operations. These will, for example, allows adding security policies and QoS requirements.

• Security: The IDL allows for annotating operations and data types though the annotation feature of our
IDL, allowing setting up security even at the field level.

4.6 Generic Architecture

4.6.1 General Note

In contrast to other GEs, the Advanced Middleware GE is not a standalone service running in the network, but a
set of compile-/runtime tools and a communication library to be integrated with the application.

The Advanced Middleware (AMi) architecture presented here offers a number of key advantages over other avail-
able middleware implementations:

• High-Level Service Architecture: AMi offers applications a high-level architecture that can shield them
from the complexities and dangers of network programming. When applications declare services and data
structures they can annotate them with the QoS, security, and other requirements while AMi automatically
implement them. Thus application developers can exclusively focus on the application functionality.

• Security: The network is the main security threat to most applications today but existing middleware has
offered only limited security functionality that has often been added as an afterthought and requires the ap-
plication developer (who are often not security experts) to configure the security functionality. Instead, AMi
offers Security by Design where security has been designed into the architecture from the start. Applica-
tions can simply declare their security needs in the form of security policies (security rules) and apply them
to data structures and service at development time or even later during deployment definitions. AMi then
makes sure that these requirements are met before any communication takes place and applies any suitable
security measures (e.g. encryption, signatures, etc.) during the communication.

• Dynamic Multi-Protocol support: The AMi architecture can select at run-time the best way to communi-
cate with a remote service. Thus, an AMi application can simultaneously talk with legacy services via their
predefined protocols (e.g. DDS). It also supports various communication patterns, like Publish-/Subscribe
(PubSub), Point-To-Point, or Request-/Reply (RPC).

• QoS and Software Defined networking: Where possible the QoS annotations are also used to configure
the network using modern Software Defined networking functionality, e.g. to reserve bandwidth.

4.6.2 The Advanced Middleware GE components

The following layer diagram shows the main components of the Advanced Communication Middleware GE.

In the diagram the main communication flow goes from top to bottom for sending data, respectively and from
bottom to top for receiving data. As in a typical layer diagram each layer is responsible for specific features
and builds on top of the layers below. Some modules are cross cutting and go therefore over several layers (e.g.
Security).

Here are some of the highlights of the AMi architecture shown in the diagram:

• AMi clearly separates the definition of WHAT data must be communicated (the communication contract via
one of many interface definition languages (IDLs)) from WHERE that data comes from in the application
and from HOW that data is transmitted. This separation of concerns is critical to support some advanced
functionality and be portable to a wide range of services and their communication mechanisms.

4.6. Generic Architecture 49

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 4.4: I2ND Middleware Architecture Overview

50 Chapter 4. Open Specifiation

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• AMi supports multiple IDLs to define what data needs to be communicated. On establishing the connection
the interface definition of a service are obtained (explicitly or implicitly).

• AMi offers annotations for QoS, security, or other features that can be added to the data declared by the
application, to the IDL, as well as later during deployment. They are used by the middleware to automat-
ically implement its functionality by requesting QoS functionality from the network layer or automatically
enforcing security measures.

• As the connection to a service is established, both sides choose a common mechanism and protocol (nego-
tiation) to best communicate with each other.

The most efficient transport and protocol method supported by both sides will be selected. AMi has been designed
to also support Software Defined Networking in order to configure QOS parameters in the network.

• AMi offers an efficient dispatching mechanism for scheduling incoming request to the correct service im-
plementation.

Below we give a short description of the different layers and components.

API & Data Access

The application accesses the communication middleware using a set of defined function calls provided by the
API-layer. They may vary depending on the communication pattern (see below).

The main functionality of the Data Access Layer is to provide the mapping of data types and Function
Stubs/Skeletons (request/response pattern) or DataReaders/-Writers (publish/subscribe or point-to-point pattern).

The Advanced Middleware GE provides two variants of this functionality:

• A basic static compile-time Data-Mapping and generation of Function Stubs/Skeletons or
DataReaders/-Writers, created by a compile time IDL-Parser/Generator from the remote service descrip-
tion, which is provided in an Interface Definition Language (IDL) syntax based on the Object Management
Group (OMG) IDL (see below), which is submitted as a W3C draft.

• A dynamic runtime Data-Mapping and invocation of Function or DataReader/-Writer proxies, by
parsing the IDL description of the remote service at runtime and map it to the function/data definition
provided by the developer when setting up the connection.

Quality of Service (QoS) parameters and Security Policies may be provided through the API and/or IDL-
Annotations. This information will be used by the QoS and Security modules to ensure the requested guarantees.

Depending on the communication pattern, different communication mechanisms will be used.

• For publish/subscribe and point-to-point scenarios, the DDS services and operations will be pro-
vided. When opening connections, a DataWriter for publishers/sender and a DataReader for sub-
scribers/receivers will be created, which can be used by the application to send or receive DDS messages.

• For request/reply scenarios the Function Stubs/Skeletons created at compile-time can be used to send or
receive requests/replies.

Marshalling

Depending on configuration, communication pattern and type of end-points the data will be serialized to the
required transmission format when sending and deserialized to the application data structures when receiving.

• Common Data Representation (CDR) an OMG specification used for all DDS/RTPS and high-speed
communication.

• Extensible Markup Language (XML) for WebService compatibility.

• JavaScript Object Notation (JSON) for WebService compatibility.

4.6. Generic Architecture 51

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Wire Protocols

Depending on configuration, communication pattern and type of end-points the matching Wire-Protocol will be
chosen.

• For publish/subscribe and point-to-point patterns the Real Time Publish Subscribe (RTPS) Protocol is
used.

• For request/reply pattern with WebService compatibility the HTTP Protocol is used.

• For request/reply pattern between DDS end-points the Real Time Publish Subscribe (RTPS) Protocol is
used.

Dispatching

The dispatching module is supporting various threading models and scheduling mechanisms. The module is
providing single-threaded, multi-threaded and thread-pool operation and allows synchronous and asynchronous
operation. Priority or time constraint scheduling mechanisms can be specified through QoS parameters.

Transport Mechanisms

Based on the QoS parameters and the runtime-environment the QoS module will decide which transport mecha-
nisms and protocols to choose for data transmission.

In Software Defined Networking (SDN) environments, the QoS module will interface with the Netfloc GE to
get additional network information or even provision the network components to provide the requested quality of
service or privacy.

Transport Protocols

All standard transport protocols (TCP, UDP) as well as encrypted tunnels (TLS, DTLS) are supported.

Security

The security module is responsible for authentication of communication partners and will ensure in the whole
middleware stack, the requested data security and privacy. The required information can be provided with Security
Annotations in the IDL and by providing a security policy via the API.

Negotiation

The negotiation module provides mechanisms to discover or negotiate the optimal transmission format and pro-
tocols when peers are connecting. It discovers automatically the participants in the distributed system, searching
through the different transports available (shared memory and UDP by default, TCP for WebService compatibility)
and evaluates the communication paradigms and and the corresponding associated QoS parameters and security
policies.

4.7 Main Interactions

As explained above, the middleware can be used in different communication scenarios. Depending on the scenario,
the interaction mechanisms and the set of API-functions for application developers may vary.

52 Chapter 4. Open Specifiation

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

4.7.1 API versions

There will be two versions of APIs provided:

• RPC Static API
Static compile-time parsing of IDL and generation of Stub-/Skeletons and DataReader/DataWriter

• RPC Dynamic API
Dynamic runtime parsing of IDL and run-time invocation of operations.

Additionally following features will be provided as API extensions:

• Advanced security policy and QoS parameters

• Publish/subscribe functionality compatible to RPC-DDS and DDS applications

4.7.2 Classification of functions

The API-Functions can be classified in the following groups:

• Preparation: statically at compile-time (Static API) or dynamically at run-time (Dynamic API)

– Declare the local applications datatypes/functions (Dynamic API only)

– Parsing the Interface Definition of the remote side (IDL-Parser)

– Generate Stubs-/Skeletons, DataReader-/Writer

– Build your application against the Stubs-/Skeletons, DataReader-/Writer (Static API only)

• Initialization:

– Create the context (set up the environment, global QoS/Transport/Security policy,...)

– Open connection (provide connection specific parameters: QoS/Transport/Security policy, Authenti-
cation, Tunnel encryption, Threading policy,...)

• Communication

– Send Message/Request/Response (sync/async, enforce security)

– Receive Message/Request/Response (sync/async, enforce security)

– Exception Handling

• Shutdown

– Close connection (cleanup topics, subscribers, publishers)

– Close the context (Free resources)

Detailed description of the APIs and tools can be found in the User and Developer Guide, which will be updated
for every release of the Advanced Middleware GE.

4.8 Basic Design Principles

Implementations of the Advanced Middleware GE have to comply to the following basic design principles:

• All modules have to provide defined and documented APIs.

• Modules may only be accessed through these documented APIs and not use any internal undocumented
functions of other modules.

• Modules in the above layer model may only depend on APIs of lower level modules and never access APIs
of higher level modules.

• All information required by lower level modules has to be provided by the higher levels modules through
the API or from a common configuration.

4.8. Basic Design Principles 53

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• If a module provides variants of internal functionalities (e.g. Protocols, Authentication Mechanisms, ...)
these should be encapsulated as Plugins with a defined interface.

4.9 Detailed Specifications

Following is a list of Open Specifications linked to this Generic Enabler. Specifications labelled as “PRELIMI-
NARY” are considered stable but subject to minor changes derived from lessons learned during last interactions
of the development of a first reference implementation planned for the current Major Release of FI-WARE. Spec-
ifications labelled as “DRAFT” are planned for future Major Releases of FI-WARE but they are provided for the
sake of future users.

4.9.1 Open API Specifications

• Advanced Middleware IDL Specification

• Advanced Middleware RPC API Specification

• Advanced Middleware RPC Dynamic Types API Specification

• Advanced Middlware Pub-Sub API Specification

4.10 Re-utilised Technologies/Specifications

The technologies and specifications re-used in this GE are:

• RTPS - Realtime Publish Subscribe Wire Protocol (OMG Standard V2.1) : Used as the protocol for the
Pub/sub mechanism

• CDR - Common Data Representation (CDR Page 4 of the PDF) : Used as the serialization mechanism

4.11 Terms and definitions

This section comprises a summary of terms and definitions introduced during the previous sections. It intends to
establish a vocabulary that will be help to carry out discussions internally and with third parties (e.g., Use Case
projects in the EU FP7 Future Internet PPP). For a summary of terms and definitions managed at overall FI-WARE
level, please refer to FIWARE Global Terms and Definitions

54 Chapter 4. Open Specifiation

http://www.omg.org/spec/DDS-RTPS/2.1/
http://www.omg.org/cgi-bin/doc?formal/02-06-51
http://wiki.fiware.org/FIWARE.Glossary.Global

CHAPTER 5

Advanced Middleware RPC API Specification

Date: 18th January 2016

• Version: 0.4.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

5.1 Abstract

Ahe Advanced Middleware GE enables flexible, efficient, scalable, and secure communication between distributed
applications and to/between FIWARE GEs. The Middleware RPC API Specification describes the interfaces and
procedures to do Request/Reply type Remote Procedure Calls (RPC).

It provides basic static compile-time Data-Mapping and generation of Function Stubs/Skeletons, created by a
compile time IDL-Parser/Generator from the remote service description, which is provided in the Advanced Mid-
dleware Interface Definition Language (IDL) syntax, which is based on the Object Management Group (OMG)
IDL draft submitted to W3C.

5.2 Status of this Document

Date Description
7-November-2014 Release 0.1.0
8-April-2015 Release 0.2.0
10-October-2015 Release 0.3.0
18-January-2016 Release 0.4.0

5.3 Introduction

5.3.1 Purpose

This document attempts to describe the Advanced Middleware RPC API.

55

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

5.3.2 Reference Material

• Advanced Middleware IDL Specification

• Advanced Middleware RPC Dynamic Types API Specification

5.4 A quick Example

Before the description of the public Advanced Middleware RPC API, a quick example is provided. It shows how
a simple client is created, as well as a simple server. The example uses the following Advanced Middleware
interface definition:

service Calculator
{

i32 add(i32 num1, i32 num2);
};

5.4.1 Creating a client

The following code shows how to instanciate and start a client and execute a call to the server:

Context context = Advanced Middleware.createContext();
Connection connection = context.connect("tcp://192.168.1.18:8080?serialization=cdr");
CalculatorClient client = connection.getServiceProxy(CalculatorClient.class);

int result = client.add(3,4);

5.4.2 Creating a server

The following code shows how to instanciate and start a server:

Context context = Advanced Middleware.createContext();
Server server = context.createServer();
Service service = context.createService();

// User creates its implementation of the Middleware IDL service.
Calculator calculator_impl = new CalculatorImpl();

service.register(calculator_impl);
server.addService(service, "tcp://0.0.0.0:8080", "cdr");

server.run();

5.5 API Overview

This section enumerates and describes the classes provided by Advanced Middleware RPC API.

5.5.1 Main entry point

org.fiware.kiara.Kiara

This class is the main entry point to use the Advanced Middlware. It creates or provides implementation of the
top level Advanced Middleware interfaces, especially the Context.

Functions:

56 Chapter 5. Advanced Middleware RPC API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• getTypeDescriptorBuilder: This function returns an instance of the type descriptor builder. It is a part of
the dynamic API and is described here.

• getDynamicValueBuilder: This function returns an instance of the dynamic value builder. It is a part of
the dynamic API and is described here.

• createContext: This function creates a new instance of the Context class, which is described below.

• shutdown: This function closes and releases all internal Advanced Middleware structures (e.g. stops all
pending tasks). Call this before you exit your application.

5.5.2 Common interfaces

org.fiware.kiara.Context

This interface is the starting point to use the Advanced Middleware. It holds the configuration of the middleware
and hides the process of negotiation, selection, and configuration of the correct implementation classes. Also it
provides users a way to instantiate Advanced Middleware components.

Functions:

• connect: This function creates a new connection to the server. This connection might be used by proxies to
send requests to the server.

• createTransport: This function provides a direct way to create a specific network Transport instance
which can be configured for specific use cases.

• createSerializer: This function provides a direct way to create a specific Serializer instance which can
be configured for specific use cases.

• createServer: This function creates a new Server instance used to add Service instances.

• createService: This function creates a new Service instance used to register Servant instances.

5.5.3 Network transports

org.fiware.kiara.transport.Transport

This interface provides a basic abstraction for network transport implementations. To create a Transport
instance directly, the developer must use the factory method createTransport of the interface
org.fiware.kiara.Context, which will return a compliant network transport implementation.

Functions:

• getTransportFactory: This function returns an instance of the factory class used to create this transport
instance.

org.fiware.kiara.transport.ServerTransport

This interface provides an abstraction for a server-side connection endpoint waiting for incoming connections.

Functions:

• getTransportFactory: This function returns an instance of a factory class which was used to create this
server transport instance.

• setDispatchingExecutor: This function sets executor service used for dispatching incoming messages.

• getDispatchingExecutor: Returns executor service previously set.

• isRunning: Returns true if server is up and waiting for incoming connections.

5.5. API Overview 57

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• startServer: Starts server.

• stopServer: Stops server.

• getLocalTransportAddress: Returns transport address to which this server is bound.

org.fiware.kiara.client.AsyncCallback

This interface provides an abstraction used by the client to return the server’s reply when the call was asyn-
chronous.

Functions:

• onSuccess: This function will be called when the remote function call was successfull. It must be imple-
mented by the user.

• onFailure: This function will be called when the remote function call was not successfull.It must be imple-
mented by the user.

5.5.4 Server API

org.fiware.kiara.server.Server

Using this interface, users can start up multiple services on different ports. The implementation uses serialization
mechanisms and network transports to listen for client requests and executes the proper Servant implementation.
The optional negotiation protocol provides automatic discovery of all available services via the HTTP protocol.

Functions:

• enableNegotiationService: Enables the negotiation service on the specified port and configuration path.

• disableNegotiationService: Disables the negotiation service.

• addService: This function registers the service on a specified URL and with a specified serialization proto-
col.

• removeService: Removes a previously registered service.

• run: Starts the server.

org.fiware.kiara.server.Service

This interface represent a service that can be registered with the server.

Functions:

• register: Register a Servant object or DynamicHandler with the service.

• loadServiceIDLFromString: Load the service IDL from a string. This function is only required when the
service is handled via dynamic handlers.

org.fiware.kiara.server.Servant

This interface provides an abstraction used by the server to execute the provided functions when a client request
is received.

Functions:

• getServiceName: Returns the name of the service implemented by this servant.

58 Chapter 5. Advanced Middleware RPC API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• process: This function processes the incoming request message and returns the produced response message.
It is automatically generated.

5.5.5 Dependent API

This subsection contains the interfaces and classes that are dependent from the user Advanced Middleware IDL
definition. In the static version of the Advanced Middleware implementation these interfaces and classes should
be generated by the compile time preprocessor.
This section uses the example in section API Usage Examples.

x.y.<IDL-ServiceName>

This interface is a mapping of the Advanced Middleware IDL service. It exposes the service’s procedures. All
classes that implement these service’s procedures, have to inherit from this interface. For example the imlementa-
tion of the servant have to inherit from this interface, allowing the user to implement the service’s procedures.

Functions:

• add: This function is the mapping of the Advanced Middleware IDL service procedure add().

x.y.<IDL-ServiceName>Async

This interface is a mapping of the Advanced Middleware IDL service. It exposes the asynchronous version of the
service’s procedures. All classes that that implement these service’s asynchronous procedures have to inherit from
this interface.

Functions:

• add: This function is the asynchronous version of the Advanced Middleware IDL service’s procedure
add(). It has no return value.

x.y.<IDL-ServiceName>Process

This class is a mapping of the Advanced Middleware IDL service. It provides the asynchronous version of the
service’s processing procedures.

Functions:

• add_processAsync: This function is the asynchronous version of the Advanced Middleware IDL service’s
process procedure. It has no return value.

5.5. API Overview 59

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

x.y.<IDL-ServiceName>Client

This interface provides the synchronous and asynchronous version of the Advanced Middleware IDL ser-
vice, because it implements the previously described interfaces x.y.<IDL-ServiceName> and x.y.<IDL-
ServiceInterface>Async. The Advanced Middleware IDL service proxy will implement this interface, allowing
the user to call the service’s remote procedures synchronously or asynchronously. It is only used on the client side
in order to make the Proxy to implement all the functions for this service (both synchronous and asynchronous).

Functions:

• add: Function inherited from x.y.<IDL-ServiceName> interface. This function is the mapping of the Ad-
vanced Middleware IDL service.

• add: Function inherited from x.y.<IDL-ServiceName>Async interface. This function is the asynchronous
version of the Advanced Middleware IDL service’s procedure.

x.y.<IDL-ServiceName>Proxy

This class encapsulates the implementation of the interface x.y.<IDL-ServiceName>Client. It provides the logic
to call the Advanced Middleware IDL service’s remote procedures, synchronously or asynchronously.

Functions:

• add: Function inherited from x.y.<IDL-ServiceName>Client interface. This function is the mapping of the
Advanced Middleware IDL service.

• add: Function inherited from x.y.<IDL-ServiceName>Client interface. This function is the asynchronous
version of the Advanced Middleware IDL service’s procedure.

x.y.<IDL-ServiceName>Servant

This abstract class can be used by users to implement the Advanced Middleware IDL service’s procedures. This
class implements the interface org.fiware.kiara.server.Servant, providing the mechanism the server will use to call
the user’s procedure implementations. Also it inherits from the interface x.y.<IDL-ServiceName> leaving the
implementation of this functions to the user.

5.6 Detailed API

This section defines in detail the API provided by the classes defined above.

5.6.1 Main entry point

org.fiware.kiara.Kiara
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getTypeDescriptorBuilder TypeDescriptorBuilder
getDynamicValueBuilder DynamicValueBuilder
createContext Context
shutdown void

60 Chapter 5. Advanced Middleware RPC API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

5.6.2 Common interfaces

org.fiware.kiara.Context
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
connect Connection IOException

url String
connect Connection IOException

transport Transport
serializer Serializer

createService Service
createServer Server
createTransport Transport IOException

String url
createServerTransport ServerTransport IOException

url String
createSerializer Serializer IOException

name String

5.6.3 Network transports

org.fiware.kiara.transport.Transport
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getTransportFactory TransportFactory

5.6.4 Dependent API

Cause the described classes in this section are dependant of the Advanced Middleware IDL service, this section
will use the example in section API Examples to define them.

x.y.<IDL-ServiceName>
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
add int

num1 int
num2 int

5.6. Detailed API 61

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

x.y.<IDL-ServiceName>Async
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
add void

num1 int
num2 int
callback AsyncCallback<Integer>

x.y.<IDL-ServiceName>Client
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Re-
turns/Type

Raises

Inherited from x.y.<IDL-ServiceName> and
x.y.<IDL-ServiceName>Async

x.y.<IDL-ServiceName>Proxy
Attributes
Name Type
m_ser org.fiware.kiara.serialization.Serializer
m_transport org.fiware.kiara.transport.Transport
Public Operations
Name Parameters Re-

turns/Type
Raises

Inherited from x.y.<IDL-ServiceName> and
x.y.<IDL-ServiceName>Async

x.y.<IDL-ServiceName>Servant
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getServiceName String
process TransportMessage

ser Serializer
message TransportMessage
transport Transport
messageId Object
bis BinaryInputStream

x.y.<IDL-ServiceName>Process
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
add_processsAsync void

message TransportMessage
ser Serializer
callback AsyncCallback

62 Chapter 5. Advanced Middleware RPC API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

5.7 API Usage Examples

Examples used in this section are based on the following Advanced Middleware IDL:

service Calculator
{

i32 add(i32 num1, i32 num2);
};

5.7.1 Client API

Direct connection to remote service

This example shows how to create a direct connection to a server using the TCP transport and the CDR serializa-
tion. After it creates the connection, the service proxy is instantiated and used to call a remote procedure.

Context context = Kiara.createContext();
Connection connection = context.connect("tcp://192.168.1.18:8080?serialization=cdr");
CalculatorClient client = connection.getServiceProxy(CalculatorClient.class);

int result = client.add(3,4);

Transport and Serialization instances are implizitly created by the connection, based on the string pa-
rameter of the connect method.

Secure connection to remote service

KIARA also provides a way to stablish secure TCP connections with servers running in secure mode. To to so,
simply change the connection URL to use TCPS instead of TCP.

Context context = Kiara.createContext();
Connection connection = context.connect("tcps://192.168.1.18:8080?serialization=cdr");
CalculatorClient client = connection.getServiceProxy(CalculatorClient.class);

int result = client.add(3,4);

Note that a client running normal (non secure) TCP transport can initialize a connection with a non-secure TCP
server, but this does not happen in the opposite way.

Explicitly instanciate and configure Advanced Middleware components

This examples shows how to create a direct connection as above, but using a TCP transport and CDR serialization
created and configured explicitly by the user.

Context context = Kiara.createContext();
// User instantiates a transport object which can be configured later.
Transport transport = context.createTransport("tcp://192.168.1.18:8080");
// User instantiates a serialization object which can be configured later.
Serializer serializer = context.createSerializer("cdr");
Connection connection = context.connect(transport, serializer);
CalculatorClient client = connection.getServiceProxy(CalculatorClient.class);

int result = client.add(3,4);

5.7. API Usage Examples 63

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

5.7.2 Server API

Providing a service

This examples shows how to create a server and add a service to it.

Context context = Kiara.createContext();
Server server = context.createServer();
Service service = context.createService();

// User creates and registers it's implementation of the servant.
Calculator calculator_impl = new CalculatorServantImpl();
service.register(calculator_impl);

// Add the service to the server
server.addService(service, "tcp://0.0.0.0:8080", "cdr");

server.run();

Transport and Serialization instances are implizitly created by the connection, based on the string pa-
rameters of the addService method.

Explicitly instanciate and configure Advanced Middleware components

This example shows how to provide a service as above, but using a TCP transport and CDR serialization created
and configured explicitly by the user.

Context context = Kiara.createContext();
Server server = context.createServer();
Service service = context.createService();

// User creates and registers it's implementation of the servant.
Calculator calculator_impl = new CalculatorServantImpl();
service.register(calculator_impl);

// Transport and Serializer are expicitly created ...
Transport transport = context.createTransport("tcp://0.0.0.0:8080");
Serializer serializer = context.createSerializer("cdr");

// ... and bound to the service when adding it to the server
server.addService(service, transport, serializer);

server.run();

Secure TCP server

KIARA allows the server to initialize using a secure TCP layer so that only clients using the same protocol can
establish a connection with it.

The transport used to handle secure connections is SSL v3.1 (Secure Sockets Layer) over TLS v1.2 (Transport
Layer Security). In order to start a secure server, the only change the user has to take into account is changing the
URL of the server so that it uses TCPS instead of TCP.

This example shows how to create a secure server and add a service to it.

Context context = Kiara.createContext();
Server server = context.createServer();
Service service = context.createService();

// User creates and registers it's implementation of the servant.
Calculator calculator_impl = new CalculatorServantImpl();

64 Chapter 5. Advanced Middleware RPC API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

service.register(calculator_impl);

// Add the service to the server
server.addService(service, "tcps://0.0.0.0:8080", "cdr");

server.run();

Transport and Serialization instances are implicitly created by the connection, based on the string pa-
rameters of the addService method.

5.7. API Usage Examples 65

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

66 Chapter 5. Advanced Middleware RPC API Specification

CHAPTER 6

Advanced Middleware RPC Dynamic Types API Specification

Date: 18th January 2016

• Version: 0.4.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

6.1 Abstract

The Advanced Middleware GE enables flexible, efficient, scalable, and secure communication between distributed
applications and to/between FIWARE GEs. The Middleware RPC Dynamic Types API Specification describes
the extensions to the Middleware RPC API Specification to do dynamic Request/Reply type Remote Procedure
Calls (RPC).

It provides a dynamic runtime Data-Mapping and invocation of Function proxies, by parsing the IDL description
of the remote service at runtime and map it to the function/data definition provided by the developer when setting
up the connection.

6.2 Status of this Document

Date Description
30-January-2015 Frist release
04-February-2015 Update after review meeting
08-April-2015 Release 0.2.0
10-October-2015 Release 0.3.0
18-January-2016 Release 0.4.0

67

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

6.3 Introduction

6.3.1 Purpose

The purpose of this document is to specify the dynamic Remote Procedure Call (RPC) Application Programming
Interface (API) for the Advanced Middleware GE.

6.3.2 Reference Material

• Advanced Middleware IDL Specification

• Advanced Middleware RPC API Specification

6.4 A quick Example

Before the description of the public Advanced Middleware RPC Dynamic Types API, a quick example is provided.
This example shows how a client should use this dynamic API framework to call a remote server and how a server
can send the response.

First of all, let’s bear in mind that the server provides an IDL defining the services and their functions. The
example uses the following Advanced Middleware interface definition:

service Calculator
{

i32 add(i32 num1, i32 num2);
};

6.4.1 Loading the services’ definitions

To be able to call remote functions dynamically, it is required to know the services and what functions they offer.
The use case is to load the TypeCodeelements when creating the connection, so it will be the Connection
class which offers an API to get all the data definitions from the server.

6.4.2 Creating a client

On the client side, there is no differnce between the dynamic and the static API from the developers point of view
in terms of creating the connection. In the dynamic case this connection will be used to obtain all the types and
functions offered by the server.

This means, the user has to create a connection and then use it to get a definition of the function he wants to
execute. Let’s walk through it based on the following example.

// Create context and connect with the server
Context context = Kiara.createContext();
Connection connection = context.connect("kiara://127.0.0.1:8080/service");

// Get a generic proxy based on the service interface
DynamicProxy client = connection.getDynamicProxy("Calculator");

When connecting to the server, the scheme specified in the URI is used by the Context to decide from where to
download the information. In this example, the scheme “kiara” means the connection information is going to be
downloaded from the server and then used in the negotiation process. Otherwise, information such as the transport
protocol and serialization mechanism must be specified in the URI itself.

Before being able to call remotely a function on the server, the client will need to have access to its functions, and
in a typical RPC framework, this can be done by using a Proxy. The class named DynamicProxy allows the
user to have access to this information from the data that has been downloaded from the server.

68 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

To do so, the Connection object offers a function called getDynamicProxy, which looks inside the dynamic
data types created when connecting to the server and retrieves a DynamicProxy whose name is the same as the
service name specified as a parameter.

Once the user has obtained this DynamicProxy, all the functions defined inside the service are available. To use
them, two objects are necessary, the DynamicFunctionRequest and the DynamicFunctionResponse.

The DynamicFunctionRequest object is created at run-time by using the name of the function the user
wants to execute on the server’s side. If there is a function whose name fits the one specified, this object will be
filled with all the DynamicValue objects necessary to execute the function.

On the other hand, the DynamicFunctionResponse object will be created and filled with the response obtained
from the server after the execution is finished (either if it finished properly or not).

// Create the function request
DynamicFunctionRequest request = dclient.createFunctionRequest("add");
((DynamicPrimitive) request.getParameterAt(0)).set(3.5);
((DynamicPrimitive) request.getParameterAt(1)).set(5.2);

// Execute the Remote Procedure Call
DynamicFunctionResponse response = drequest.execute();

In this example, the createFunctionRequest method has been executed specifying “add as” the function
name. Therefore, the DynamicFunctionRequest object will have two primitive DynamicValue objects
(DynamicPrimitive) inside (one for each parameter defined in the IDL description of the function). The
user can easily modify these values and call the execute method on the request object, obtaining this way a
DynamicFunctionResponse which holds the result of the function execution.

The execute method will have all the business logic so that the service name, the operation name, message ID,
etc. as well as all the parameters are serialized properly according to the function that is going to be executed.

The same thing happens with the return type of each function. Depending on the DynamicValue that defines
it, a different deserialization method will be executed. By using this method, the user only has to specify which
function must be executed on the server’s side, and all the information will be (de)serialized automatically.

In order to know if the function finished the way it should, the DynamicFunctionResponse object offers a
function named isException, which will return true if and only if the function did raise an exception. The
following code snippet shows this behaviour:

// Check RPC result
if (dresponse.isException()) {

DynamicData result = dresponse.getReturnValue();
System.out.println("Exception = " + (DynamicPrimitive) result);

} else {
DynamicData result = dresponse.getReturnValue();
System.out.println("Result = " + ((DynamicPrimitive) result).get());

}

6.4.3 Creating a secure client

KIARA allows to use the Dynamic RPC API to connecto to a secure TCP server. This behaviour does not apply
to the dynamic API, and therefore it can be found in the Advanced Middleware RPC API Specification document,
in the section API Usage Examples.

6.5 API Overview

This section enumerates and describes the classes provided by Advanced Middleware Dynamic Types RPC API.

6.5. API Overview 69

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

6.5.1 Main entry point

org.fiware.kiara.Kiara

This class is the main entry point to use Advanced Middleware middleware. It creates or provides implementation
of top level Advanced Middleware interfaces, especially Context.

Functions:

• getTypeDescriptorBuilder: This function returns an instance of the type DescriptorBuilder de-
scribed below.

• getDynamicValueBuilder: This function returns an instance of the DynamicValueBuilder described
below.

• createContext: This function creates a new instance of the Context class, which is part of the public Ad-
vanced Middleware RPC API.

• shutdown: This function closes releases all internal Advanced Middleware structures, and is a part of the
public Advanced Middleware RPC API.

6.5.2 Serialization mechanisms

org.fiware.kiara.serialization.Serializer

This interface is part of the public Advanced Middleware RPC API.

org.fiware.kiara.serialization.impl.Serializable

This interface is the one that must be implemented by all the used defined data types in order to be serializable. It
defines the methods serialize and deserialize for each data type. This class will not be described in this
document, for more information take a look at the Advanced Middleware RPC API document.

6.5.3 Client API

org.fiware.kiara.client.Connection

The Connection interface manages the connection to the server. It holds the required Transport objects and
Serialization objects. Also it can create these object automatically depending on the server information. The
connection provides the service proxy interfaces, which will be used by the application to call remote functions.

Functions:

• getDynamicProxy: This function looks in the endpoint for a service whose name is the same as
the one specified as a parameter, and creates a new DynamicProxy representing that service. This
DynamicProxy will provide the user with all the functions defined in such a service.

6.5.4 TypeDescriptor

This subsection contains the interfaces and classes that are dependent on the user. This section will use the example
in section API Usage Examples to define them.

70 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.1: Class Diagram TypeDescriptor

org.fiware.kiara.typecode.TypeDescriptorBuilder

This interface defined the operations used to create type-describing objects. It allows the users to create every
supported data type inside Advanced Middleware by acting as a single access builder.

Functions:

• createVoidType: This function creates a new DataTypeDescriptor representing a void data type..

• createPrimitiveType: This function returns a new PrimitiveTypeDescriptor whose kind is the
same specified as a parameter.

• createArrayType: Function that creates a new ArrayTypeDescriptor object representing an array.

• createListType: This function creates a new ListTypeDescriptor object representing a list of objects.

• createSetType: Function that creates a new SetTypeDescriptor object representing a set. A set is
defined as a list with no repeated objects.

• createMapType: This function is used to create a MapTypeDescriptor object that represents a map
data type.

• createStructType: This function creates a new StructTypeDescriptor object representing a struct
data type.

• createEnumType: Function that creates a new EnumTypeDescriptor object representing an enumer-
ation.

• createUnionType: This function can be used to create a new UnionTypeDescriptor that represents a
union data type.

• createExceptionType: Function that creates a new ExceptionTypeDescriptor used to represent an
exception data type.

• createFunctionType: This function can be used to create a new FunctionTypeDescriptor repre-
senting a Remote Procedure Call (RPC).

• createServiceType: Function that creates a new ServiceTypeDescriptor object used to represent a
service defined in the server’s side.

org.fiware.kiara.typecode.TypeDescriptor

This class is used to manipulate the objects used to describe the data types. It allows the users to know what type
of data an object represents.

Functions:

• getKind: Function that returns the TypeKind of a TypeDescriptor object.

6.5. API Overview 71

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.2: Interface TypeDescriptor

• isData: This function returns true if and only if the TypeDescriptor represented by the object in which
is invoked describes a data type. Functions and services are not considered data types.

• isPrimitive: Function used to know if a TypeCode object is a description of a primitive data type.

• isVoid: This function returns true if the TypeDescriptor object represents a void data type.

• isContainer: This function can be used to check if a TypeDescriptor object is representing a container
type. The types considered as container data types are arrays, lists, sets and maps.

• isArray: Function used to know if a TypeDescriptor object is a description of an array data type.

• isList: Function used to know if a TypeDescriptor object is a description of a list data type.

• isMap: Function used to know if a TypeDescriptor object is a description of a map data type.

• isSet: Function used to know if a TypeDescriptor object is a description of a set data type.

• isMembered: This function is used to know if a TypeDescriptor object is a description of a membered
data type. Membered types are structs, enumerations, unions and exceptions.

• isStruct: Function used to know if a TypeDescriptor object is a description of a struct data type.

• isEnum: Function used to know if a TypeDescriptor object is a description of an enumeration data
type.

• isUnion: Function used to know if a TypeDescriptor object is a description of a union data type.

• isException: Function used to know if a TypeDescriptor object is a description of an exception data
type.

• isFunction: Function used to know if a TypeDescriptor object is a description of a function.

• isService: Function used to know if a TypeDescriptor object is a description of a service.

org.fiware.kiara.typecode.data.DataTypeDescriptor

Interface that represents the top level class of the data type hierarchy. It is used as a generic type to englobe only
and exclusively data type descriptors.

Functions: None

72 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.3: Interface DataTypeDescriptor

org.fiware.kiara.typecode.data.PrimitiveTypeDescriptor

Interface that represents a primitive data type. Primitive types include boolean, byte, i16, ui16, i32, ui32, i64,
ui64, float32, float64, char and string.

Fig. 6.4: Interface PrimitiveTypeDescriptor

Functions:

• isString: This function returns true if and only if the PrimitiveTypeDescriptor object represents a
string data type.

• setMaxFixedLength: This function can only be used with string types. It sets the maximum length value
for a specific string represented by the PrimitiveTypeDescriptor object.

• getMaxFixedLength: This function returns the maximum length specified when creating the
PrimitiveTypeDescriptor object if it represents a string data type.

org.fiware.kiara.typecode.data.ContainerTypeDescriptor

Interface that represents a container data type. Container data types are arrays, lists, maps and sets.

Functions:

• setMaxSize: This function sets the maximum size of a container data type.

• getMaxSize: This function returns the maximum size of a container data type.

6.5. API Overview 73

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.5: Interface ContainerTypeDescriptor

Fig. 6.6: Interface ArrayTypeDescriptor

org.fiware.kiara.typecode.data.ArrayTypeDescriptor

Interface that represents an array data type. Arrays can hold multiple repeated objects of the same data type inside.

Functions:

• getElementType: This function returns the DataTypeDescriptor object describing the content type
of the array.

• setElementType: This function sets the DataTypeDescriptor object describing the content type of
the array.

• setDimensions: This method sets the dimensions of the array.

• getDimensions: This method returns the different dimensions of the array.

org.fiware.kiara.typecode.data.ListTypeDescriptor

Interface that represents a list data type. Lists can hold multiple repeated objects of the same data type inside.

Functions:

• getElementType: This function returns the DataTypeDescriptor object describing the content type
of the list.

• setElementType: This function sets the DataTypeDescriptor object describing the content type of
the list.

74 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.7: Interface ListTypeDescriptor

org.fiware.kiara.typecode.data.SetTypeDescriptor

Interface that represents a set data type. Sets can have non repeated objects of the same data type inside.

Fig. 6.8: Interface SetTypeDescriptor

Functions:

• getElementType: This function returns the DataTypeDescriptor object describing the content type
of the set.

• setElementType: This function sets the DataTypeDescriptor object describing the content type of
the set.

org.fiware.kiara.typecode.data.MapTypeDescriptor

Interface that represents a map data type. Maps can hold multiple key-object pairs inside if and only if the key
objects are unique.

Functions:

• getKeyTypeDescriptor: This function returns the DataTypeDescriptor object describing the key type
of the map.

• setKeyTypeDescriptor: This function sets the DataTypeDescriptor object describing the key type of
the map.

• getValueTypeDescriptor: This function returns the DataTypeDescriptor object describing the value
type of the map.

• setValueTypeDescriptor: This function sets the DataTypeDescriptor object describing the value
type of the map.

6.5. API Overview 75

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.9: Interface MapTypeDescriptor

org.fiware.kiara.typecode.data.MemberedTypeDescriptor

Interface that represents a membered data type. Membered data types are structs, enumerations, unions and
exceptions.

Fig. 6.10: Interface MemberedTypeDescriptor

Functions:

• getMembers: This function returns the list of member objects stored in a ContainerTypeDescriptor
object.

• getName: This function returns the name of the ContainerTypeDescriptor object.

org.fiware.kiara.typecode.data.StructTypeDescriptor

Interface that represents a struct data type. Structs can have multiple different DataTypeDescriptor objects
inside stored as members. Every struct member is identified by a unique name.

Functions:

• addMember: This function adds a new TypeDescriptor object as a member using a specific name.

• getMember: This function returns a DataTypeDescriptor object identified by the name introduced
as a parameter.

76 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.11: Interface StructTypeDescriptor

org.fiware.kiara.typecode.data.EnumTypeDescriptor

Interface that represents an enumeration data type. Enumerations are formed by a group of different string values.

Fig. 6.12: Interface EnumTypeDescriptor

Functions:

• addValue: This function adds a new value to the enumeration using the string object received as a parameter.

org.fiware.kiara.typecode.data.UnionTypeDescriptor

Interface that represents a union data type. Unions are formed by a group of members identified by their names
and the labels of the discriminator to which they are assigned.

Fig. 6.13: Interface UnionTypeDescriptor

Functions:

• addMember: This function adds a new TypeDescriptor object as a member using a specific name and
the labels of the discriminator.

6.5. API Overview 77

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.typecode.data.ExceptionTypeDescriptor

Interface that represents a struct data type. Exceptions can have multiple different DataTypeDescriptor
objects inside stored as members. Every struct member is identified by a unique name.

Fig. 6.14: Interface ExceptionTypeDescriptor

Functions:

• addMember: This function adds a new TypeDescriptor object as a member using a specific name.

• getMember: This function returns a DataTypeDescriptor object identified by the name introduced
as a parameter.

• getMd5: This function returns the Md5 hash string of the exception name.

org.fiware.kiara.typecode.data.Member

Interface that represents a member of a MemberedTypeDescriptor object. Each member is identified by its
name and the TypeDescriptor object that it holds.

Fig. 6.15: Interface Member

Functions:

• getName: This function returns the member’s name.

• getTypeDescriptor: This function returns a DataTypeDescriptor object stored inside the member.

org.fiware.kiara.typecode.data.EnumMember

Interface that represents a member of a EnumTypeDescriptor object. It inherits from Member interface and
therefore it has no new methods.

Functions: None

78 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.16: Interface EnumMember

org.fiware.kiara.typecode.data.UnionMember

Interface that represents a member of a UnionTypeDescriptor object. It inherits from Member interface and
therefore it has no new methods.

Fig. 6.17: Interface UnionMember

Functions: None

org.fiware.kiara.typecode.services.FunctionTypeDescriptor

This interface represents a function, providing methods to easily describe it by setting its return type, parameters
and exceptions that it might throw.

Fig. 6.18: Interface FunctionTypeDescriptor

Functions:

• getReturnType:This function returns the return DataTypeDescriptor of the function.

• setReturnType: This function sets the return DataTypeDescriptor of the function.

• getParameter: This function returns a DataTypeDescriptor representing a parameter whose name is
the same as the one indicated.

6.5. API Overview 79

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• addParameter: This function adds a new DataTypeDescriptor to the parameters list with the name
indicated.

• getException: This function returns an ExceptionTypeDescriptor whose name is the same as the
one specified as a parameter.

• addException: This function adds a new ExceptionTypeDescriptor to the exceptions list.

• getName: This function returns the function name.

• getServiceName: This function returns the name of the ServiceTypeDescriptor in which the
FunctionTypeDescriptor is defined.

• setServiceName: This function sets the name of the ServiceTypeDescriptor in which the
FunctionTypeDescriptor is defined.

org.fiware.kiara.typecode.services.ServiceTypeDescriptor

This interface represents a service, providing methods to add the FunctionTypeDescriptor objects representing
every function defined in a specific service.

Fig. 6.19: Interface ServiceTypeDescriptor

Functions:

• getName: This function returns the service name.

• getScopedName: This function returns the service scoped name.

• getFunctions: This function returns the list of FunctionTypeDescriptor objects stored inside the
ServiceTypeDescriptor.

• addFunction: This function adds a FunctionTypeDescriptor to the list of functions defined inside
the service.

6.5.5 Dynamic

This subsection contains the interfaces and classes that are designed to provide the developer with functions to
create and manage dynamic data types.

org.fiware.kiara.dynamic.DynamicValueBuilder

This class allows the users to create new data types based on their TypeCode descriptions.

Functions:

• createData: This function allows the user to create new DynamicData objects by using their
TypeDescriptor.

80 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.20: Class Diagramm DynamicValue

Fig. 6.21: Interface DynamicValueBuilder

• createFunctionRequest: This function receives a FunctionTypeDescriptor object describing a
function, and it generates a new DynamicFunctionRequest (which inherits from DynamicData)
object representing it.

• createFunctionResponse: This function receives a FunctionTypeDescriptor object describing a
function, and it generates a new DynamicFunctionResponse (which inherits from DynamicData)
object representing it.

• createService: This function receives a ServiceTypeDescriptor object describing a function, and it
creates a new DynamicService object representing it.

org.fiware.kiara.dynamic.DynamicValue

Interface that acts as a supertype for every dynamic value that can be managed. Every DynamicValue object
is defined by using a TypeDescriptor which is used to describe the data. It defines the common serialization
functions as well as a function to retrieve the TypeDescriptor object it was created from.

Fig. 6.22: Interface DynamicValue

Functions:

• getTypeDescriptor: This function returns the TypeDescriptor used when creating the DynamicValue object.

• serialize: This function serializes the content of the DynamicValue object inside a BinaryOutputStream
message.

6.5. API Overview 81

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• deserialize: This function deserializes the content of a BinaryInputStream message into a DynamicValue
object.

org.fiware.kiara.dynamic.data.DynamicData

Interface that is used to group all the DynamicValues representing data types.

Fig. 6.23: Interface DynamicData

Functions: None

org.fiware.kiara.dynamic.data.DynamicPrimitive

This class allows the users to manipulate DynamicData objects made from PrimitiveTypeDescriptor
objects.

Fig. 6.24: Interface DynamicPrimitive

Functions:

• set: This function sets the inner value of a DynamicPrimitive object according to the
TypeDescriptor specified when creating it.

• get: This function returns the value of a DynamicPrimitive object.

org.fiware.kiara.dynamic.data.DynamicContainer

This class holds the data values of a DynamicData object created from a ContainerTypeDescriptor.

Functions: None

82 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.25: Interface DynamicContainer

org.fiware.kiara.dynamic.data.DynamicArray

This class holds the data values of a DynamicData object created from an ArrayTypeDescriptor. A
DynamicArray contains a group of DynamicData objects (all must be the same type) stored in single or
multi dimensional matrixes.

Fig. 6.26: Interface DynamicArray

Functions:

• getElementAt: This function returns DynamicData object stored in a certain position or coordinate..

• setElementAt: This function sets a DynamicData object in a specific position inside the array. If the
array has multiple dimensions, the object will be set in a specific coordinate.

org.fiware.kiara.dynamic.data.DynamicList

This class holds the data values of a DynamicData object created from a ListTypeDescriptor. A list can only have
one dimension and it has a maximum length. All the DynamicData objects stored inside a DynamicList must have
been created from the same TypeDescriptor definition.

Functions:

• add: This function adds a DynamicData object into the list in the last position or in the position specified
via parameter.

• get: This function returns a DynamicData object stored is a specific position in the list.

• isEmpty: This function returns true if the DynamicList is empty.

6.5. API Overview 83

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.27: Interface DynamicList

org.fiware.kiara.dynamic.data.DynamicSet

This class holds the data values of a DynamicData object created from a SetTypeDescriptor. A set can only have
one dimension and it has a maximum length. All the DynamicData objects stored inside a DynamicSet must have
been created from the same TypeDescriptor definition and it cannot be duplicated objects.

Fig. 6.28: Interface DynamicSet

Functions:

• add: This function adds a DynamicData object into the list in the last position or in the position specified
via parameter.

• get: This function returns a DynamicData object stored is a specific position in the list.

• isEmpty: This function returns true if the DynamicSet is empty.

org.fiware.kiara.dynamic.data.DynamicMap

This class holds a list of pairs key-value instances of DynamicData. In a DynamicMap, the key values cannot be
duplicated.

Functions:

• put: This function adds a new key-value pair using the DynamicData objets introduces as parameters. It
will return false if the key value already exists in the map.

• containsKey: This function returns true if the DynamicMap contains at least one key-value pair in which
the key DynamicData object is equal to the one introduced as a parameter.

• containsValue: This function returns true if the DynamicMap contains at least one key-value pair in which
the value DynamicData object is equal to the one introduced as a parameter.

84 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.29: Interface DynamicMap

• get: This function returns a DynamicData object from a key-value pair whose key is equal to the one
introduced as a parameter.

org.fiware.kiara.dynamic.data.DynamicMembered

This class represents a DynamicData type formed by multiple DynamicData objects stored into a class named
DynamicMember.

Fig. 6.30: Interface DynamicMembered

Functions: None

org.fiware.kiara.dynamic.data.DynamicStruct

This class holds group of DynamicData objects acting as members of a stucture. Each member is identified by
its name.

Fig. 6.31: Interface DynamicStruct

Functions:

• getMember: This function returns a DynamicData object (acting as a member of the structure) whose
name is the same as the one introduced as a parameter.

6.5. API Overview 85

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.dynamic.data.DynamicEnum

This class is used to dynamically manipulate enumerations described by a specific EnumTypeDescriptor
object.

Fig. 6.32: Interface DynamicEnum

Functions:

• set: This function sets the actual value of the DynamicEnum object to the one specified as a parameter.

• get: This function returns the actual value of the DynamicEnum object.

org.fiware.kiara.dynamic.data.DynamicUnion

This class is used to dynamically manipulate unions described by a specific UnionTypeDescriptor object.
A union is formed by some DynamicData objects, and the valid one is selected by using a discriminator.

Fig. 6.33: Interface DynamicUnion

Functions:

• _d: This function either returns the discriminator or sets a new one, depending on the existence of an object
parameter indicating a new value.

• getMember: This function returns valid DynamicData value depending on the selected discriminator.

• setMember: This function sets the DynamicData object received as a parameter in the member whose
name is the same as the one introduced (if and only if the discriminator value is correct).

86 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.34: Interface DynamicException

org.fiware.kiara.dynamic.data.DynamicException

This class holds group of DynamicData objects acting as members of an exception. Each member is identified
by its own name.

Functions:

• getMember: This function returns a DynamicData object whose name is the same as the one introduced
as a parameter.

org.fiware.kiara.dynamic.data.DynamicMember

This class represents a dynamic member of any DynamicMembered object. It is used to store the DynamicData
objects inside structures, unions, enumerations and exceptions.

Fig. 6.35: Interface DynamicMember

Functions:

• getName: This function returns the member’s name.

• getDynamicData: This function returns the DynamicData stored inside a DynamicMember object.

• equals: It returns true if two DynamicMember objects are equal.

org.fiware.kiara.dynamic.service.DynamicFunctionRequest

This class represents a dynamic function request. This class is used to create objects whose objective is to invoke
functions remotely.

Functions:

• getParameter: This function returns a DynamicData object stored in the parameter list depending on its
name or its position in such list.

• execute: This function executes a function remotely. It serializes all the necessary information and sends
the request over the wire. It returns a DynamicFunctionResponse with the result.

6.5. API Overview 87

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Fig. 6.36: Interface DynamicFunctionRequest

• executeAsync: This function behaves the same way as the function execute. The only difference is that
it needs a callback to be executed when the response arrives from the server.

org.fiware.kiara.dynamic.service.DynamicFunctionResponse

This class represents a dynamic function response. This class is used to retrieve the information sent from the
server after a remote procedure call.

Fig. 6.37: Interface DynamicFunctionResponse

Functions:

• isException: This function returns true if the server raised an exception when executing the function.

• setException: This method sets the attribute indicating that an exception has been thrown on the server
side.

• setReturnValue: This function sets a DynamicData object as a return value for the remote call.

• getReturnValue: This function returns the DynamicData representing the result of the remote call.

org.fiware.kiara.dynamic.service.DynamicProxy

This class represents a proxy than can be dynamically used to create an instance of DynamicFunctionRequest or
a DynamicFunctionResponse depending if the user wants an object to execute a remote call or to store the result.

Fig. 6.38: Interface DynamicProxy

Functions:

• getServiceName: This function returns the service name.

88 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• createFunctionRequest: This function creates a new object instance of DynamicFunctionRequest
according to the FunctionTypeDescriptor that was used to describe it.

• createFunctionResponse: This function creates a new object instance of
DynamicFunctionResponse according to the FunctionTypeDescriptor that was used to
describe it.

org.fiware.kiara.dynamic.service.DynamicFunctionHandler

This class represents a dynamic object used to hold the implementation of a specific function. Its process method
must be defined by the user when creating the object, and it will be used to register the service’s functions on the
server’s side.

Fig. 6.39: Interface DynamicFunctionHandler

Functions:

• process: This function is the one that will be registered to be executed when a client invokes remotely a
function. It must be implemented by the user.

6.6 Detailed API

This section defines in detail the API provided by the classes defined above.

6.6.1 Main entry point

org.fiware.kiara.Kiara
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getTypeDescriptorBuilder TypeDescriptorBuilder
getDynamicValueBuilder DynamicValueBuilder
createContext Context
shutdown void

6.6.2 Client API

This classes are those related to the client side API. This section includes all the relevant classes, attributes and
methods.

6.6. Detailed API 89

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.client.Connection
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getTransport Transport
getSerializer Serializer
getServiceProxy T Exception

interfaceClass Class<T>
getDynamicProxy DynamicProxy

name String

6.6.3 TypeDescriptor

This classes are those related to the client’s side API. This section includes all the relevant classes, attributes and
methods.

org.fiware.kiara.typecode.TypeDescriptorBuilder
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
createVoidType DataTypeDescriptor
createPrimitiveType PrimitiveTypeDescriptor

kind TypeKind
createArrayType ArrayTypeDescriptor

contentDescriptor DataTypeDescriptor
dimensions int[]

createListType ListTypeDescriptor
contentDescriptor DataTypeDescriptor
maxSize int

createSetType SetTypeDescriptor
contentDescriptor DataTypeDescriptor
maxSize int

createMapType MapTypeDescriptor
keyDescriptor DataTypeDescriptor
valueDescriptor DataTypeDescriptor
maxSize int

createStructType StructTypeDescriptor
name String

createEnumType EnumTypeDescriptor
name String
values String[]

createUnionType UnionTypeDescriptor
name String
discriminatorDesc DataTypeDescriptor

createExceptionType ExceptionTypeDescriptor
name String

createFunctionType FunctionTypeDescriptor
name String

createServiceType ServiceTypeDescriptor
name String
scopedName String

90 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.typecode.TypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getKind TypeKind
isData boolean
isPrimitive boolean
isVoid boolean
isContainer boolean
isArray boolean
isList boolean
isMap boolean
isSet boolean
isMembered boolean
isEnum boolean
isUnion boolean
isStruct boolean
isException boolean
isService boolean
isFunction boolean

org.fiware.kiara.typecode.data.DataTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
n/a

org.fiware.kiara.typecode.data.PrimitiveTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

isString boolean
setMaxFixedLength PrimitiveTypeDescrip-

tor
length int

getMaxFixedLength int

org.fiware.kiara.typecode.data.ContainerTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
setMaxSize void

length int
getMaxSize int

6.6. Detailed API 91

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.typecode.data.ArrayTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getElementType DataTypeDescrip-

tor
setElementType boolean

content-
Type

DataTypeDescrip-
tor

setDimensions void
dimensions int[]

getDimensions List<Integer>

org.fiware.kiara.typecode.data.ListTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getElementType DataTypeDescriptor
setElementType boolean

contentType DataTypeDescriptor

org.fiware.kiara.typecode.data.SetTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getElementType DataTypeDescriptor
setElementType boolean

contentType DataTypeDescriptor

org.fiware.kiara.typecode.data.MapTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
setKeyTypeDescriptor boolean

keyTypeDescriptor DataTypeDescrip-
tor

getKeyTypeDescriptor DataTypeDescrip-
tor

setValueTypeDescriptor boolean
valueTypeDescrip-
tor

DataTypeDescrip-
tor

getValueTypeDescriptor DataTypeDescrip-
tor

92 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.typecode.data.MemberedTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

getMembers List<Member>
getName String

org.fiware.kiara.typecode.data.StructTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

addMember void
member TypeDescriptor
name String

getMember DataTypeDescrip-
tor

name String

org.fiware.kiara.typecode.data.EnumTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
addValue void

value String

org.fiware.kiara.typecode.data.UnionTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
addMember UnionTypeDescrip-

tor
typeDescrip-
tor

DataTypeDescriptor

name String
isDefault boolean
labels Object[]

6.6. Detailed API 93

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.typecode.data.FunctionTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getReturnType DataTypeDescriptor
setReturnType void

returnType DataTypeDescriptor
getParameter DataTypeDescriptor

name String
addParameter void

parameter DataTypeDescriptor
name String

getException ExceptionType-
Descriptor

name String
addException void

exception ExceptionType-
Descriptor

getName String
getServiceName String
setServiceName FunctionTypeDescrip-

tor
service-
Name

String

org.fiware.kiara.typecode.data.ServiceTypeDescriptor
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getName String
getScopedName String
getFunctions List<FunctionTypeDescriptor>
addFunction void

functionType-
Desc

FunctionTypeDescriptor

6.6.4 Dynamic

The following classes are those related to creation and management of dynamic types, including data definition
and function description and execution.

94 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.dynamic.DynamicValueBuilder
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
createData DynamicData

dataDescriptor DataTypeDescriptor
createFunctionRequest DynamicFunctionRe-

quest
functionDescrip-
tor

FunctionTypeDescriptor

serializer Serializer
transport Transport

createFunctionRequest DynamicFunctionRe-
quest

functionDescrip-
tor

FunctionTypeDescriptor

createFunctionResponse DynamicFunctionRe-
sponse

functionDescrip-
tor

FunctionTypeDescriptor

serializer Serializer
transport Transport

createFunctionResponse DynamicFunctionRe-
sponse

functionDescrip-
tor

FunctionTypeDescriptor

createService DynamicProxy
serviceDescrip-
tor

ServiceTypeDescriptor

serializer Serializer
transport Transport

org.fiware.kiara.dynamic.DynamicValue
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getTypeDescriptor TypeDescriptor
serialize void IOException

impl SerializerImpl
message BinaryOutputStream
name String

deserialize void IOException
impl SerializerImpl
message BinaryInputStream
name String

org.fiware.kiara.dynamic.data.DynamicData
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
n/a

6.6. Detailed API 95

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.dynamic.data.DynamicPrimitive
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
set boolean

value Object
get Object
set boolean

value DynamicData

org.fiware.kiara.dynamic.data.DynamicContainer
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
n/a

org.fiware.kiara.dynamic.data.DynamicArray
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getElement DynamicData

position int[]
setElementAt boolean

value DynamicData
position int[]

org.fiware.kiara.dynamic.data.DynamicList
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
add boolean

element DynamicData
add void

index int
element DynamicData

get DynamicData
index int

isEmpty boolean

96 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.dynamic.data.DynamicSet
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
add boolean

element DynamicData
add void

index int
element DynamicData

get DynamicData
index int

isEmpty boolean

org.fiware.kiara.dynamic.data.DynamicMap
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
put boolean

key DynamicData
value DynamicData

containsKey boolean
key DynamicData

containsValue boolean
value DynamicData

get DynamicData
key DynamicData

org.fiware.kiara.dynamic.data.DynamicMembered
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
n/a

org.fiware.kiara.dynamic.data.DynamicStruct
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getMember DynamicData

name String

org.fiware.kiara.dynamic.data.DynamicEnum
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
set void

value String
get String

6.6. Detailed API 97

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.dynamic.data.Dynamic
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
_d void

value Object
_d Object
getMember DynamicData

name String
setMember void

name String
data DynamicData

org.fiware.kiara.dynamic.data.DynamicException
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getMember DynamicData

name String

org.fiware.kiara.dynamic.data.DynamicMember
Attributes
Name Type
n/a n/a
Public Operations
Name Parameters Returns/Type Raises
getName String
getDynamicData DynamicData
equals boolean

anotherObject Object

org.fiware.kiara.dynamic.service.DynamicFunctionRequest
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

getParameter DynamicData
name String

getParameterAt DynamicData
index int

execute DynamicFunctionResponse
executeAsync void

callback AsyncCall-
back<DynamicFunctionResponse>

98 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.dynamic.service.DynamicFunctionResponse
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

isException boolean
setException void

isExcep-
tion

boolean

setReturnValue void
returnType Dynamic-

Data
getReturnValue Dynamic-

Data

org.fiware.kiara.dynamic.service.DynamicProxy
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

getServiceName String
createFunctionRequest DynamicFunctionRequest

name String
createFunctionReqponse DynamicFunctionRe-

sponse
name String

org.fiware.kiara.dynamic.service.DynamicFunctionRequest
Attributes
Name Type
n/a n/a
Public Operations
Name Parame-

ters
Returns/Type Raises

process void
request DynamicFunctionRe-

quest
response DynamicFunctionRe-

sponse

6.6. Detailed API 99

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

100 Chapter 6. Advanced Middleware RPC Dynamic Types API Specification

CHAPTER 7

Advanced Middleware Publication Subscription API Specification

Date: 01th November 2015

• Version: 0.3.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

7.1 Abstract

This document presents a proposal for a publication-subscription API. The goal of this document is to define the
basic principles of a new KIARA Publication-Subscription framework.

The API proposed in this document will be very user-friendly in order to allow FI-WARE users to easily migrate
to KIARA’s Publisher-Subscriber framework. The presented API should allow users to set up a publisher or a
subscriber with very few calls and with little knowledge of the technology behind the framework.

7.2 Status of this Document

Date Description
29-April-2015 Release 0.2.0
01-November-2015 Release 0.3.0

7.3 Conformance

The conformance clause identifies which clauses of the specification are mandatory (or conditionally mandatory)
and which are optional in order for an implementation to claim conformance to the specification.

Note: For conditionally mandatory clauses, the conditions must be specified.

101

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

7.4 Reference Material

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply.

7.5 API Overview

This section enumerates and describes the classes provided by the KIARA Publication-Subscription API.

The Publication-Subscription framework is a messaging pattern by which the information producers, in this case
called publishers, publish messages characterized in a specific manner. On the other hand, the information con-
sumers, called subscribers, state their interest in a certain type of messages. This pattern provides a larger flexibil-
ity and scalability compared to other messaging paradigms.

This pattern also allows for message filtering, and the most common way of doing so is by using a topic-based
filter, where each publisher or subscriber produces or consumes information of a specific topic. Each topic has a
unique name in the network, as well as a specific data type associated with it.

The main objective of this API is to allow users to easily have access to the basics of a Publication-Subscription
messaging framework, providing them with a friendly interface and lowering the learning curve.

7.5.1 Main classes

There are four main classes in this API:

org.fiware.kiara.ps.participant.Participant

Singleton class representing a node in the network. It might have multiple publishers and subscribers associated
to it. This object acts as a supervisor of this node in the network. All the methods in this class will be static, since
the constructor will be hidden to the user.

Functions:

• registerTopicDataType: This function is used to register new TopicDataType objects in a Participant (net-
work node). The registration acts as a contract defining which data types a publisher is able to under-
stand. It allows the creation of publishers and subscribers that use the registered TopicDataType.

• createPublisher: Function to create a new Publisher for a specific TopicDataType object and associate it
with a listener.

• createSubscriber: Function to create a new Subscriber for a specific TopicDataType object and associate
it with a listener.

• removePubisher: This function removes a Publisher from this Participant.

• removeSubscriber: This function removes a Subscriber from this Participant.

• registerType: This function is used to register a TopicDataType in this participant.

org.fiware.kiara.ps.topic.TopicDataType

This interface describes the serialization and deserialization procedures of the selected data type. It also defines
how the key is obtained from the data object in case the topic is a keyed topic.

Functions:

• serialize: This function defines the signature of the serialization functions for every TopicDataType object
existing in the framework.

102 Chapter 7. Advanced Middleware Publication Subscription API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• deserialize: This function defines the signature of the deserialization functions for every TopicDataType
object existing in the framework.

• createData: This function returns a new object of the type represented by the TopicDataType.

• getKey: This function is used to return the IntanceHandle object representing the 16-Byte key of the Top-
icDataType.

org.fiware.kiara.ps.publisher.Publisher

This class is the one used to describe a data publisher inside a specific node. It has multiple parameters grouped
into a single PublisherAttributes object, which will be detailed later.

It also provides functions to easily change and manipulate the parameters of the publisher, as well as a function to
send data over the wire.

Functions:

• getAttributes: This function is used to retrieve the PublisherAttributes object contained within this class.

• setAttributes: This function is used to set the PublisherAttributes object inside this class.

• write: This function is the one used to send data through the network. Its function is to publish information
about a specific topic which the publisher is able to use.

• destroy: This function is used to delete all the entities associated to this publisher.

org.fiware.kiara.ps.subscriber.Subscriber

This class is similar to the Publisher class. All the parameters associated with each subscriber are aggregated into
a single SubscriberAttributes object that can be retrieved and changed by using its accessor functions.

Functions:

• getAttributes: This function is used to retrieve the SubscriberAttributes object contained within this class.

• setAttributes: This function is used to set the SubscriberAttributes object inside this class.

• readNextData: This function is used to retrieve an unread CacheChange with the data sent through the
network. The data received belongs to a topic the subscriber has subscribed to.

• takeNextData: This function is used to retrieve and remove the next unread CacheChange with data re-
ceiver over the wire.

• waitForMessage: This method blocks the execution thread until a message is received. This message can
be retrieved then using the read function.

• destroy: This function is used to delete all the entities associated to this subscriber.

7.5.2 Secondary classes

This classes are those necessary for the main ones described before. In this group are included the classes that are
used to deliberately specify a certain behaviour for an event that happened in the publisher or the subscriber side.

org.fiware.kiara.ps.listeners.PublisherListener

This interface is designed to be implemented for those classes that ought to manage certain events in the publisher
side. It defines a set of methods that can be overwritten by the user to specify the behaviour of the publisher when
certain events occur. An example of this would be a new subscriber that has been discovered.

Functions:

7.5. API Overview 103

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• onPublicationMatched: This function is the one that will be called when the data published by a publisher
matches with the subscriber for a specific topic. The MatchingInfo class provided as a parameter gives
the user information about the matched subscriber.

org.fiware.kiara.ps.listeners.SubscriberListener

This interface is similar to the PublisherListener interface described above, but in this case it defines a set of
methods used to specify the subscriber’s behaviour. An example of this would be a new message that has been
received.

Functions:

• onSubscriptionMatched: This method’s objective is the same as the one described in the PublisherListener
class, but in this case, it will be executed when a new subscription matches with the data a publisher
is publishing.

• onNewDataMessage: This function will be executed when a new message is received by the subscriber.

7.5.3 Auxiliary classes

org.fiware.kiara.ps.utils.InstanceHandle

This class contains the serialized data of a specific message the user is sending or receiving through the network.
It provides functions to retrieve the information of such message.

Functions: None

org.fiware.kiara.ps.attributes.TopicAttributes

This structure contains all the different attributes of a Topic. These attributes will include the topic name, the data
type name and the topic kind.

Attributes:

• topicKind: This attribute represents the kind of the Topic (with key or without key)

• topicName: This attribute represents the topic name.

• topicDataTypeName: This attribute represents the name of the data type for a specific topic.

• historyQos: This attribute represents the History QoS.

• resourceLimitQos: This attribute represents the limit of the resources for this topic.

org.fiware.kiara.ps.attributes.PublisherAttributes

This structure contains all the different attributes of a publisher. These attributes will include the topic attributes
(topic name, topic data type, etc), as well as the list of locators, times and writer QoS.

Attributes:

• topic: Object instance of TopicAttributes. It holds all the attributes of the Topic.

• wqos: Represents the Qualities of Service associated to the Writer.

• times: Time values associated to the Publisher entity.

• unicastLocatorList: List of unicast locators representing different Endpoints.

• multicastLocatorList: List of multicast locators representing different Endpoints.

Functions:

• getUserDefinedID: Returns the user defined identifier for this object.

104 Chapter 7. Advanced Middleware Publication Subscription API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• setUserDefinedID: Sets the user defined identifier for this object.

• getEntityId: Returns the EntityID that uses this attributes class.

• setEntityId: Sets the EntityID that uses this attributes class.

org.fiware.kiara.ps.attributes.SubscriberAttributes

This structure contains all the different attributes of subscriber. These attributes will include the topic attributes
(name, topic data type, etc), as well as the list of locators, times and reader QoS.

Attributes:

• topic: Object instance of TopicAttributes. It holds all the attributes of the Topic.

• rqos: Represents the Qualities of Service associated to the Reader.

• times: Time values associated to the Subscriber entity.

• unicastLocatorList: List of unicast locators representing different Endpoints.

• multicastLocatorList: List of multicast locators representing different Endpoints.

• expectsInlineQos: This attribute defines whether or not the Subscriber will expect inline QoS.

Functions:

• getUserDefinedID: Returns the user defined identifier for this object.

• setUserDefinedID: Sets the user defined identifier for this object.

• getEntityId: Returns the EntityID that uses this attributes class.

• setEntityId: Sets the EntityID that uses this attributes class.

org.fiware.kiara.ps.utils.SampleInfo

This class contains information about each particular message, for example the publisher who originated it or a
timestamp of its creation time. The GUID of the writer is related to the node from where the information comes
from.

Functions:

• getWriterGUID: This function is used to obtain the GUID of the writer who originated a specific message.

• getTimestamp: This function returns the timestamp value indicating the exact time when the message was
created.

org.fiware.kiara.ps.utils.MatchingInfo

This class informs the user of whether the event is a matching or an un-matching event and also the global identifier
of the remote endpoint.

Functions:

• getMatchingStatus: This function allows the users to know the matching status of a specific endpoint with
the risen event.

• getRemoteEndpointGUID: This function returns the endpoint’s unique identifier.

7.5. API Overview 105

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.ps.common.GUID

This class represents a unique identifier of a node in the network. It is formed by two members, a prefix (12 Bytes)
and an entity ID (4 Bytes).

Functions:

• getEntityId: This function returns the EntityId associated to the GUID.

• getGUIDPrefix: This function returns the GUIDPrefix associated to the GUID.

Note: There are some classes that do not appear yet in this document, and this is because their definition is too
long (they will be included in an external annex)

A few examples of these classes are:

• QoS related classes: QoSList, ReaderQos, WriterQos and QoSPolicy (and all its subclasses).

• SerializableDataType: Interface between Serializable objects defined in KIARA and TopicDataTypes.

• History classes: HistoryCache, SubscriberHistory and PublisherHistory

7.6 API Description

This section details the classes of this API and all their methods.

7.6.1 Main classes

org.fiware.kiara.ps.participant.Participant

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
registerTopicDataType boolean

dataType TopicDataType<T>
createPublisher Publisher<T>

attributes PublisherAttributes
listener PublisherListener
topic TopicDataType<T>

createSubscriber Subscriber<T>
attributes SubscriberAttributes
listener SubscriberListener
topic TopicDataType<T>

removePublisher boolean
publisher Publisher<T>

removeSubscriber boolean
subscriber Subscriber<T>

registerType boolean
type TopicDataType<T>

106 Chapter 7. Advanced Middleware Publication Subscription API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.ps.topic.TopicDataType

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
serialize void IOException

payload SerializedPayload
object T

deserialize T IOException
payload SerializerPayload

createData T
getKey InstanceHandle IOException

object T

org.fiware.kiara.ps.publisher.Publisher

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
getAttributes Attributes
setAttributes void PublisherException

attributes PublisherAttributes
write boolean PublisherException

data TopicDataType<T>
destroy void

org.fiware.kiara.ps.subscriber.Subscriber

The public methods of this class are listed below:

Attributes

• None

7.6. API Description 107

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Public Operations

Name Parameters Returns/Type Raises
getAttributes Attributes
setAttributes void SubscriberException

attributes SubscriberException
waitForMessage void SubscriberException
readNextData boolean

info SampleInfo
takeNextData boolean

info SampleInfo
destroy void

7.6.2 Secondary classes

org.fiware.kiara.ps.publisher.PublisherListener

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
onPublicationMatched void PublisherException

info MatchingInfo
pub Publisher

org.fiware.kiara.ps.subscriber.SubscriberListener

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
onSubscriptionMatched void SubscriberException

info MatchingInfo
sub Subscriber

onNewDataMessage void SubscriberException
sub Subscriber

108 Chapter 7. Advanced Middleware Publication Subscription API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

7.6.3 Auxiliary classes

org.fiware.kiara.ps.utils.InstanceHandle

The public methods of this class are listed below:

Attributes

• None

Public Operations

• None

org.fiware.kiara.ps.attributes.TopicAttributes

The public methods of this class are listed below:

Attributes

+———————+—————————+ | | Name | Type | | +=====================+===========================+
| | topicKind | TopicKind | | +———————+—————————+ | | topicName | String | | +—————
——+—————————+ | | topicDataTypeName | String | | +———————+—————————+ | |
historyQos | HistoryPolicyQos | | +———————+—————————+ | | resourceLimitQos | Resource-
LimitsQosPolicy | | +———————+—————————+ |

Public Operations

• None

org.fiware.kiara.ps.attributes.PublisherAttributes

The public methods of this class are listed below:

Attributes

+————————+——————-+ | | Name | Type | | +========================+===================+
| | topic | TopicAttributes | | +————————+——————-+ | | wqos | WriterQos | | +———————
—+——————-+ | | times | WriterTimes | | +————————+——————-+ | | unicastLocatorList |
LocatorList | | +————————+——————-+ | | multicastLocatorList | LocatorList | | +———————
—+——————-+ |

Public Operations

Name Parameters Returns/Type Raises
getUserDefinedID short
setUserDefinedID void

userDefinedID short
getEntityID short
setEntityID void

entityID short

7.6. API Description 109

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.ps.attributes.SubscriberAttributes

The public methods of this class are listed below:

Attributes

+————————+——————-+ | | Name | Type | | +========================+===================+
| | topic | TopicAttributes | | +————————+——————-+ | | rqos | ReaderQos | | +———————
—+——————-+ | | times | ReaderTimes | | +————————+——————-+ | | unicastLocatorList |
LocatorList | | +————————+——————-+ | | multicastLocatorList | LocatorList | | +———————
—+——————-+ | | expectsInlineQos | boolean | | +————————+——————-+ |

Public Operations

Name Parameters Returns/Type Raises
getUserDefinedID short
setUserDefinedID void

userDefinedID short
getEntityID short
setEntityID void

entityID short

org.fiware.kiara.ps.utils.SampleInfo

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
getWriterGUID GUID
getTimestamp Timestamp

org.fiware.kiara.ps.utils.MatchingInfo

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
getMatchingStatus MatchingStatus
geRemoteEndpointGUID GUID

110 Chapter 7. Advanced Middleware Publication Subscription API Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

org.fiware.kiara.ps.common.GUID

The public methods of this class are listed below:

Attributes

• None

Public Operations

Name Parameters Returns/Type Raises
getEntityId EntityId
setEntityId void

entityID EntityId
getGUIDPrefix GuidPrefix
setGUIDPrefix void

guidPrefix GUIDPrefix
equals boolean

other Object

7.6. API Description 111

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

112 Chapter 7. Advanced Middleware Publication Subscription API Specification

CHAPTER 8

Advanced Middleware IDL Specification

Date: 10th October 2015

• Version: 0.3.0

• Latest version: latest

Editors:

• eProsima - The Middleware Experts

• DFKI - German Research Center for Artificial Intelligence

• ZHAW - School of Engineering (ICCLab)

Copyright © 2013-2015 by eProsima, DFKI, ZHAW. All Rights Reserved

8.1 Abstract

Ahe Advanced Middleware GE enables flexible, efficient, scalable, and secure communication between distributed
applications and to/between FIWARE GEs. The Interface Definition Language (IDL) Specifications allowes to
describes the Data Types and Operations supported by a Service. Following is a list of the main features it supports:

• IDL, Dynamic Types & Application Types: It support the usual schema of IDL compilation to generate
support code for the data types.

• IDL Grammar: An OMG-like grammar for the IDL as in DDS, Thrift, ZeroC ICE, CORBA, etc.

• Types: Support of simple set of basic types, structs, and various high level types such as lists, sets, and
dictionaries (maps).

• Type inheritance, Extensible Types, Versioning: Advanced data types, extensions, and inheritance, and
other advanced features will be supported.

• Annotation Language: The IDL is extended with an annotation language to add properties to the data types
and operations. These will, for example, allows adding security policies and QoS requirements.

8.2 Status of this Document

Date Description
8-April-2015 Release 0.2.0
10-October-2015 Release 0.3.0

113

http://www.eprosima.com/index.php/en/
http://www.dfki.de/
http://blog.zhaw.ch/icclab

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

8.3 Preface

The foundation of the FIWARE Middleware Interface Definition Language (IDL) is the Object Management
Group (OMG) IDL 3.5. See Appendix C for the OMG IDL 3.5 grammar.

To maintain backward compatibility, the FIWARE Middleware IDL grammar embraces all OMG IDL 3.5 features.
IDL parsers are not required to implement all of the extended OMG features. Check the documentation of the
specific parser implementations.

The basic subset needed by DDS and future standard RPC over DDS must be supported.

8.4 Related documentation

• OMG DDS-XTypes 1.0

8.5 Syntax Definition

The FIWARE Middleware IDL specification consists of one or more type definitions, constant definitions, excep-
tion definitions, or module definitions. Some definitions are allowed in the grammar for backward compatibility,
but are not used by the FIWARE Middleware IDL and therefore will be ignored by the implmentations.

<specification> ::= <import>* <definition>+
<definition> ::= <type_dcl> ";"

| <const_dcl> ";"
| <except_dcl> ";"
| <interface> ";"
| <module> ";"
| <value> ";"
| <type_id_dcl> ";"
| <type_prefix_dcl> ";"
| <event> ";"
| <component> ";"
| <home_dcl> ";"
| <annotation_dcl> ";"
| <annotation_appl> <definition>

See section Import Declaration for the specification of <import>
See section Module Declaration for the specification of <module\>
See section Interface Declaration for the specification of <interface>
See section Value Declaration for the specification of <value\>
See section Constant Declaration for the specification of <const_dcl>
See section Type Declaration for the specification of <type_dcl>
See section Exception Declaration for the specification of <except_dcl>
See section Repository Identity Related Declarations for the specification of <type_id_dcl> and
<type_prefix_dcl>

See section Event Declaration for the specification of <event>
See section Component Declaration for the specification of <component>
See section Event Declaration for the specification of <home_dcl>
See section Annotation Declaration for the specification of <annotation_dcl>
See section Annotation Application for the specification of < annotation_appl>

114 Chapter 8. Advanced Middleware IDL Specification

http://www.omg.org/spec/DDS-XTypes/1.0/

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

8.5.1 Import Declaration

An import statement conforms to the following syntax:

<import> ::= "import" <imported_scope> ";"
<imported_scope> ::= <scoped_name> | <string_lieral>

Import declarations are not supported by FIWARE Middleware. Any FIWARE Middleware IDL parser has to
inform users about this and ignore the declaration.

8.5.2 Module Declaration

A module definition conforms to the following syntax:

<module> ::= ("module" | "namespace") <identifier> "{" <definition> + "}"

The module construct is used to scope IDL identifiers. FIWARE Middleware IDL supports the OMG IDL 3.5
keyword module, but also adds the modern keyword namespace as an alias.

Examples of module definitions:

namespace MyNamespace {
...

};

namespace YourNamespace {
namespace HisNamespace {

...
};

};

8.5.3 Interface Declaration

An interface definition conforms to the following syntax:

<interface> ::= <interface_dcl> | <forward_dcl>
<interface_dcl> ::= <interface_header> "{" <interface_body> "}"
<forward_dcl> ::= ["abstract" | "local"] ("interface" | "service") <identifier>
<interface_header> ::= ["abstract" | "local"]("interface" | "service") <identifier>

[<interface_inheritance_spec>]
<interface_body> ::= <export>*
<export> ::= <type_dcl> ";"

| <const_dcl> ";"
| <except_dcl> ";"
| <attr_dcl> ";"
| <op_dcl> ";"
| <type_id_dcl> ";"
| <type_prefix_dcl> ";"

Example of interface definition:

service MyService {
...

};

Interface Header

The interface header consists of three elements:

1. An optional modifier specifying if the interface is an abstract interface.

8.5. Syntax Definition 115

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

2. The interface name. The name must be preceded by the old OMG IDL 3.5 keyword interface or the
new modern keyword service.

3. An optional inheritance specification.

An interface declaration containing the keyword abstract in its header, declares an abstract interface. Abstract
interfaces have slightly different rules from regular interfaces, as described in section Abstract interface.

An interface declaration containing the keyword local in its header, declares a local interface. Local interfaces
are not currently supported by the FIWARE Middleware. Any FIWARE Middleware IDL parser has to inform
users about this, and explain the interface will be used as a regular interface.

Interface Inheritance Specification

The syntax for interface inheritance is as follows:

<interface_inheritance_spec> ::= ":" <interface_name> { "," <interface_name> }*
<interface_name> ::= <scoped_name>
<scoped_name> ::= <identifier>

| "::" <identifier>
| <scoped_name> "::" <identifier>

Each <scoped_name> in an <interface_inheritance_spec>must be the name of a previously defined
interface or an alias to a previously defined interface.

Interface Body

The interface body contains the following kind of declarations:

• Constant declarations whose syntax is described in section Constant Declaration.

• Type declarations whose syntax is described in section Type Declaration.

• Exception declarations whose syntax is described in section Exception Declaration.

• Attribute declarations whose syntax is described in section Attribute Declaration.

• Operation declarations whose syntax is described in section Operation Declaration.

Abstract interface

An interface declaration contains the keyword abstract in its header, declares an abstract interface. The fol-
lowing special rule apply to abstract interfaces:

• Abstract interfaces may only inherit from other abstract interfaces.

8.5.4 Value Declaration

Value type declarations are supported by FIWARE Middleware IDL, but aren’t by FIWARE Middleware. Any
FIWARE Middleware IDL parser has to explain that these declarations are not used and the parser will ignore
them.

8.5.5 Constant Declaration

A constant definition conforms to the following syntax:

116 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<const_dcl> ::= "const" <const_type>
<identifier> "=" <const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

<const_exp> ::= <or_expr>
<or_expr> ::= <xor_expr>

| <or_expr> "|" <xor_expr>
<xor_expr> ::= <and_expr>

| <xor_expr> "^" <and_expr>
<and_expr> ::= <shift_expr>

| <and_expr> "&" <shift_expr>
<shift_expr> ::= <add_expr>

| <shift_expr> ">>" <add_expr>
| <shift_expr> "<<" <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> "+" <mult_expr>
| <add_expr> "-" <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> "*" <unary_expr>
| <mult_expr> "/" <unary_expr>
| <mult_expr> "%" <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> ::= "-"
| "+"
| "~"

<primary_expr> ::= <scoped_name>
| <literal>
| "(" <const_exp> ")"

<literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= "TRUE"
| "FALSE"

<positive_int_const> ::= <const_exp>

Examples for constant declarations:

const string c_str = "HelloWorld";
const i32 c_int = 34;
const boolean c_bool = true;

8.5.6 Type Declaration

As in OMG IDL 3.5, FIWARE Middleware IDL provides constructs for naming data types; that is, it provides
C language-like declarations that associate an identifier with a type. The IDL uses the keyword typedef to
associate a name with a data type.

Type declarations conform to the following syntax:

8.5. Syntax Definition 117

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<type_dcl> ::= "typedef" <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>
| <constr_forward_decl>

<type_declarator> ::= <type_spec> <declarators>

For type declarations, FIWARE Middleware IDL defines a set of type specifiers to represent typed value. The
syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

<template_type_spec> ::= <sequence_type>
| <set_type>
| <map_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { "," <declarator> }*
<declarator> ::= <simple_declarator>

| <complex_declarator>
<simple_declarator> ::= <identifier>
<complex_declarator> ::= <array_declarator>

The <scoped_name\> in <simple_type_spec> must be a previously defined type introduced by a type
declaration(<type_dcl> - see section Type Declaration).

The next subsections describe basic and constructed type specifiers.

Basic Types

The syntax for the supported basic types is as follows:

<floating_pt_type> ::= "float"
| "double"
| "long" "double"
| "float32"
| "float64"
| "float128"

<integer_type> ::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

<signed_short_int> ::= "short"
| "i16"

118 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<signed_long_int> ::= "long"
| "i32"

<signed_longlong_int> ::= "long" "long"
| "i64"

<unsigned_int> ::= <unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>

<unsigned_short_int> ::= "unsigned" "short"
| "ui16"

<unsigned_long_int> ::= "unsigned" "long"
| "ui32"

<unsigned_longlong_int> ::= "unsigned" "long" "long"
| "ui64"

<char_type> ::= "char"
<wide_char_type> ::= "wchar"
<boolean_type> ::= "boolean"
<octet_type> ::= "octet"

| "byte"
<any_type> ::= "any"

Each IDL data type is mapped to a native data type via the appropriate language mapping. The syntax allows to
use some OMG IDL 3.5 keywords and to use new modern keyword. For example, FIWARE Middleware IDL
supports both keywords: long and i32.

The any type is not supported currently by FIWARE Middleware. Any FIWARE Middleware IDL parser has to
inform users about this.

8.5.7 Constructed Types

Constructed types are structs, unions, and enums.
Their syntax is as follows:

<type_dcl> ::= "typedef" <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>
| <constr_forward_decl>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<constr_forward_decl> ::= "struct" <identifier>
| "union" <identifier>

Structures

The syntax for the struct type is as follows:

<struct_type> ::= "struct" <identifier> "{" <member_list> "}"
<member_list> ::= <member> +
<member> ::= <type_spec> <declarators> ";"

Example of struct syntax:

struct MyStruct {
i32 f_int;
string f_str;
boolean f_bool;

};

8.5. Syntax Definition 119

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Unions

The syntax for the union type is as follows:

<union_type> ::= "union" <identifier> "switch"
"(" <switch_type_spec> ")"
"{" <switch_body> "}"

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> ::= <case> +
<case> ::= <case_label> + <element_spec> ";"
<case_label> ::= "case" <const_exp> ":"

| "default" ":"
<element_spec> ::= <type_spec> <declarator>

The <scoped_name> in the <switch_type_spec> production must be a previously defined integer,
char, boolean or enum type.

Example of union syntax:

union MyUnion switch(i32)
{

case 1:
i32 f_int;

case 2:
string f_str;

default:
boolean f_bool;

};

Enumerations

Enumerated types consist of ordered lists of identifiers.
The syntax is as follows:

<enum_type> ::= "enum" <identifier>
"{" <enumerator> { "," <enumerator> } * "}"

<enumerator> ::= <identifier>

Example of an enumerated type:

enum MyEnum {
ENUM1,
ENUM2,
ENUM3

};

Template Types

Template types are:

<template_type_spec> ::= <sequence_type>
| <set_type>
| <map_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

120 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Lists

The FIWARE Middleware IDL defined the template type list. A list is similar to the OMG IDL 3.5 sequence
type. It is one-dimensional array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time). The syntax is as follows:

<sequence_type> ::= "sequence" "<" <simple_type_spec> "," <positive_int_const> ">"
| "sequence" "<" <simple_type_spec> ">"
| "list" "<" <simple_type_spec> "," <positive_int_const> ">"
| "list" "<" <simple_type_spec> ">"

Examples of list type declarations:

list<string> mylist;
list<string, 32> myboundedlist;

Sets

The FIWARE Middleware IDL includes the template type set. At marshalling level it is like the template type
list. But at a higher level, contrary to the list type, a set can only contain unique values. The syntax is as
follows:

<set_type> ::= "set" "<" <simple_type_spec> "," <positive_int_const> ">"
| "set" "<" <simple_type_spec> ">"

Examples of set type declarations:

set<string> myset;
set<string, 32> myboundedset;

Maps

The FIWARE Middleware IDL includes the template type map, using the upcoming definition in OMG IDL 4.0.
Maps are a collections, similar to lists, but items are associated with a key. Like lists, maps may be bounded or
unbounded. The syntax is as follows:

<map_type> ::= "map" "<" <simple_type_spec> ","
<simple_type_spec> "," <positive_int_const> ">"

| "map" "<" <simple_type_spec> "," <simple_type_spec> ">"

Examples of map type declaration:

map<i32, string> mymap;
map<i32, string, 32> myboundedmap;

In CDR marshalling, objects of type map shall be represented according to the following equivalent OMG IDL
3.5 definition:

struct MapEntry_<key_type>_<value_type>[_<bound>] {
<key_type> key;
value_type> value;

};

typedef sequence<MapEntry_<key_type>_<value_type>[_<bound>][, <bound>]>
Map_<key_type>_<value_type>[_<bound>];

Strings

The syntax for defining a string is as follows:

8.5. Syntax Definition 121

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<string_type> ::= "string" "<" <positive_int_const> ">"
| "string"

Wstrings

The syntax for defining a wstring is as follows:

<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"
| "wstring"

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The scale factor is a
non-negative integer less than or equal to the total number of digits.

The fixed data type will be mapped to the native fixed point capability of a programming language, if available.
If there is not a native fixed point type, then the IDL mapping for that language will provide a fixed point data
types. The syntax of the fixed type is as follows:

<fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"
<fixed_pt_const_type> ::= "fixed"

Complex Types

Arrays

The syntax for array is as follows:

<array_declarator> ::= <identifier> <fixed_array_size>+
<fixed_array_size> ::= "[" <positive_int_const> "]"

Example of array type declarations:

i32 myi32array[32];
string mystrarray[32];

Native Types

The syntax for native types is as follows:

<type_dcl> ::= "native" <simple_declarator>
<simple_declarator> ::= <identifier>

Native types are not supported by FIWARE Middleware. Any FIWARE Middleware IDL parser has to inform
users about this and ignore this definition.

8.5.8 Exception Declaration

Exception declarations permit the declaration of struct-like data structures, which may be returned to indicate that
an exceptional condition has occurred during the performance of a request. The syntax is as follows:

<except_dcl> ::= "exception" <identifier> "{" <member>* "}"

Example of an exception declaration:

122 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

exception myException {
string msg;
i32 code;

};

8.5.9 Operation Declaration

Operation declarations in OMG IDL 3.5 and FIWARE Middleware IDL are similar to C function declarations.
The syntax is as follows:

<op_dcl> ::= [<op_attribute>] <op_type_spec>
<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

<op_attribute> ::= "oneway"
<op_type_spec> ::= <param_type_spec>

| "void"

Example of an operation declaration:

service myService {
void set(i32 param);
i32 get();
i32 add(i32 param1, i32 param2) raises (myException);

};

An operation declaration consists of:

• An optional operation attribute that is supported by FIWARE Middleware IDL for backward compatibility.
Operation attributes are described in section Operation attribute.

• The type of the operation’s return result. Operations that do not return a result must specify the void type.

• An identifier that names the operation in the scope of the interface in which it is defined.

• A parameter list that specifies zero or more parameter declarations for the operation. Parameter declaration
is described in section Parameter Declarations.

• An optional raises expression that indicates which exception may be raised as a result of an invocation of
this operation. Raises expression are described in section Raises Expressions.

• An optional context expression that is inherited from OMG IDL 3.5, but FIWARE Middleware will not use.
Context expressions are described in section Context Expressions.

Operation attribute

The syntax for operation attributes is as follows:

<op_attribute> ::= "oneway"

This attribute is supported in FIWARE Middleware for backward compatibility. But in FIWARE Middleware IDL
the preferedby way to define a oneway function is using the @Oneway annotation as described in section Oneway
functions.

Parameter Declarations

Parameter declarations in FIWARE Middleware IDL operation declarations have the following syntax:

<parameter_dcls> ::= "(" <param_dcl> { "," <param_dcl> }* ")"
| "(" ")"

<param_dcl> ::= [<param_attribute>] <param_type_spec> <simple_declarator>
<param_attribute> ::= "in"

| "out"

8.5. Syntax Definition 123

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

| "inout"
<raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> }* ")"
<param_type_spec> ::= <base_type_spec>

| <string_type>
| <wide_string_type>
| <scoped_name>

The FIWARE Middleware IDL will not use output parameters, as modern IDLs do. It supports the keywords
in, inout, and out, but any FIWARE Middleware IDL parser will inform users all parameters will be input
parameters.

Raises Expressions

There are two kinds of raises expressions.

Raises Expression

A raises expression specifies which exceptions may be raised as a result of an invocation of the operation or
accessing a readonly attribute. The syntax for its specification is as follows:

<raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> }* ")"

The <scoped_name>s in the raises expression must be previously defined exceptions.

getraises and setraises Expression

The syntax is as follows:

<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

<get_excep_expr> ::= "getraises" <exception_list>
<set_excep_expr> ::= "setraises" <exception_list>
<exception_list> ::= "(" <scoped_name> { "," <scoped_name> }* ")"

getraises and setraises expressions are used in attribute declarations. Like in attribute declarations, the-
ses expressions are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these expressions.

Context Expressions

The syntax for content expressions is as follows:

<context_expr> ::= "context" "(" <string_literal> { "," <string_literal> }* ")"

Context expressions are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these expressions.

8.5.10 Attribute Declaration

The syntax for attribute declarations is as follows:

<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>
<readonly_attr_spec> ::= "readonly" "attribute" <param_type_spec>

<readonly_attr_declarator>
<readonly_attr_declarator> ::= <simple_declarator> <raises_expr>

| <simple_declarator> { "," <simple_declarator> }*
<attr_spec> ::= "attribute" <param_type_spec>

124 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<attr_declarator>
<attr_declarator> ::= <simple_declarator> <attr_raises_expr>

| <simple_declarator> { "," <simple_declarator> }*

These declarations are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these declarations.

8.5.11 Repository Identity Related Declarations

The syntax for repository identity related declarations is as follows:

<type_id_dcl> ::= "typeid" <scoped_name> <string_literal>
<type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_literal>

These declarations are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these declarations.

8.5.12 Event Declaration

The syntax for event declarations is as follows:

<event> ::= (<event_dcl> | <event_abs_dcl> | <event_forward_dcl>)
<event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>
<event_abs_dcl> ::= "abstract" "eventtype" <identifier>

[<value_inheritance_spec>]
"{" <export>* "}"

<event_dcl> ::= <event_header> "{" <value_element> * "}"
<event_header> ::= ["custom"] "eventtype"

<identifier> [<value_inheritance_spec>]

These declarations are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these declarations.

8.5.13 Component Declaration

The syntax for component declarations is as follows:

<component> ::= <component_dcl> | <component_forward_dcl>
<component_forward_dcl> ::= "component" <identifier>
<component_dcl> ::= <component_header> "{" <component_body> "}"
<component_header> ::= "component" <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

<supported_interface_spec> ::= "supports" <scoped_name> { "," <scoped_name> }*
<component_inheritance_spec> ::= ":" <scoped_name>
<component_body> ::= <component_export>*
<component_export> ::= <provides_dcl> ";"

| <uses_dcl> ";"
| <emits_dcl> ";"
| <publishes_dcl> ";"
| <consumes_dcl> ";"
| <attr_dcl> ";"

<provides_dcl> ::= "provides" <interface_type> <identifier>
<interface_type> ::= <scoped_name> | "Object"
<uses_dcl> ::= "uses" ["multiple"] <interface_type> <identifier>
<emits_dcl> ::= "emits" <scoped_name> <identifier>
<publishes_dcl> ::= "publishes" <scoped_name> <identifier>
<consumes_dcl> ::= "consumes" <scoped_name> <identifier>

8.5. Syntax Definition 125

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

These declarations are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these declarations.

8.5.14 Home Declaration

The syntax for home declarations is as follows:

<home_dcl> ::= <home_header> <home_body>
<home_header> ::= "home" <identifier>

[<home_inheritance_spec>]
[<supported_interface_spec>]
"manages" <scoped_name>
[<primary_key_spec>]

<home_inheritance_spec> ::= ":" <scoped_name>
<primary_key_spec> ::= "primarykey" <scoped_name>
<home_body> ::= "{" <home_export>* "}"
<home_export ::= <export>

| <factory_dcl> ";"
| <finder_dcl> ";"

<factory_dcl> ::= "factory" <identifier>
"(" [<init_param_decls>] ")"
[<raises_expr>]

<finder_dcl> ::= "finder" <identifier>
"(" [<init_param_decls>] ")"
[<raises_expr>]

These declarations are supported by FIWARE Middleware IDL but not by FIWARE Middleware. Any FIWARE
Middleware IDL parser has to inform users about this and it will ignore these declarations.

8.5.15 Annotation Declaration

An annotation type is a form of aggregated type similar to a structure with members that could be given constant
values. FIWARE Middleware IDL annotations are the ones used in future OMG IDL 4.0, whose are similar to the
one provided by Java.

An annotation is defined with a header and a body. The syntax is as follows:

<annotation_dcl> ::= <annotation_def> ";"
| <annotation_forward_dcl>

<annotation_def> ::= <annotation_header> "{" <annotation_body> "}"

Annotation Header

The header consists of: - The keyword @annotation, followed by an identifier that is the name given to the
annotation. - Optionally a single inheritance specification.

The syntax of an annotation header is as follows:

<annotation_header> ::= "@annotation" <identifier> [<annotation_inheritance_spec>]
<annotation_inheritance_spec> ::= ":" <scoped_name>

Annotation Body

The body contains a list of zero to several member embedded within braces. Each attribute consists of: - The
keyword attribute. - The member type, which must be a constant type <const_type>. - The name given
to the member. - An optional default value, given by a constant expression <const_expr> prefixed with the
keyword default. The constant expression must be compatible with the member type.

The syntax of annotation body is as follows:

126 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<annotation_body> ::= <annotation_member>*
<annotation_member> ::= <const_type> <simple_declarator>

["default" <const_expr>] ";"

Annotation Forwarding

Annotations may also be forward-declared, which allow referencing an annotation whose definition is not provided
yet.

The syntax of a forwarding annotation is as follows:

<annotation_forward_dcl> ::= "@annotation" <scoped_name>

8.5.16 Annotation Application

An annotation, once its type defined, may be applied using the following syntax:

<annotation_appl> ::= "@" <scoped_name> ["(" [<annotation_appl_params>] ")"]
<annotation_appl_params> ::= <const_exp>

| <annotation_appl_param> { "," <annotation_appl_param> }*
<annotation_appl_param> ::= <identifier> "=" <const_exp>

Applying an annotation consists in prefixing the element under annotation with: - The annotation name prefixed
with a commercial at (@) - Followed by the list of values given to the annotation’s members within parentheses
and separated by comma. Each parameter value consist in: - The name of the member - The symbol ‘=’ - A
constant expression, whose type must be compatible with the member’s declaration.

Members may be indicated in any order. Members with no default value must be given a value. Members with
default value may be omitted. In that case, the member is considered as valued with its default value.

Two shortened forms exist: - In case, there is no member, the annotation application may be as short as just the
name of the annotation prefixed by ‘@’ - In case there is only one member, the annotation application may be as
short as the name of the annotation prefixed by ‘@’ and followed with the constant value of that unique member
within (). The type of the provided constant expression must compatible with the members’ declaration

An annotation may be applied to almost any IDL construct or sub-construct. Applying and annotation consists
actually in adding the related meta-data to the element under annotation. Full FIWARE Middleware IDL described
in section Appendix B: FIWARE Middleware IDL Grammar shows this.

8.5.17 Built-in annotations

FIWARE Middleware will support some built-in annotations, that any user can use in IDL files.

Member IDs

All members of aggregated types have an integral member ID that uniquely identifies them within their defining
type. Because OMG IDL 3.5 has no native syntax for expressing this information, IDs by default are defined
implicitly based on the members’ relative declaration order. The first member (which, in a union type, is the
discriminator) has ID 0, the second ID 1, the third ID 2, and so on.

As described in OMG IDL for X-Types, these implicit ID assignments can be overridden by using the “ID”
annotation interface. The equivalent definition of this type is as follows:

@annotation ID {
attribute ui32 value;

};

8.5. Syntax Definition 127

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

Optional members

The FIWARE Middleware IDL allows to declare a member optional, applying the “Optional” annotation. The
definitions is as follows:

@annotation Optional {
attribute boolean value default true;

};

The CDR marshalling for this optional members is defined in IDL X-Types standard.

Key members

The FIWARE Middleware IDL allows to declare a member as part of the key, applying the “Key” annotation. This
will be needed for future pub/sub communication using DDS. The definitions is as follows:

@annotation Key {
attribute boolean value default true;

};

Oneway functions

The FIWARE Middleware IDL allows to declare a function as oneway method, applying the “Oneway” annotation.
The definitions is as follows:

@annotation Oneway {
attribute boolean value default true;

};

Asynchronous functions

The FIWARE Middleware IDL allows to declare a function as asynchronous method, applying the “Async” anno-
tation. The definitions is as follows:

@annotation Async {
attribute boolean value default true;

}

8.6 IDL Complete Example

This section provides a complete example of a FIWARE Middleware IDL file:

typedef list<i32> accountList;
// @Encrypted annotation applies to map type declaration.
@Encrypted(mode="sha1")
typedef map<string, i32> userAccountMap;

// @CppMapping annotation applies to the namespace
@CppMapping
namespace ThiefBank {

// @Authentication annotation applies to the service.
@Authentication(mechanism="login")
service AccountService {

// @Security annotation applies to the structure declaration.
@Security
struct AccountInfo {

128 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

i32 count;
string user;

};

@Oneway
void setAccounts(userAccountMap uamap);

//@Encrypted annotation applies to the parameter "account".
@Oneway
void setAccount(string user, @Encrypted i32 account);

//@Encrypted annotation applies to the return value.
@Encrypted
AccountInfo get(string user);

//@FullEncrypted annotation applies to the operation.
@FullEncrypted(mode="sha1")
AccountInfo get_secured(string user);

};
};

The annotations used in previous example are defined as follows:

@annotation CppMapping {
attribute boolean value default true;

};

@annotation Authentication {
attribute string mechanism default "none";

};

@annotation Encrypted {
attribute string mode default "sha512";

};

@annotation FullEncrypted {
attribute string mode default "sha512";

};

@annotation Security {
attribute boolean active default true;

};

8.7 Appendix A: Changes from OMG IDL 3.5

This section summarizes in one block all changes applied from OMG IDL 3.5 to the FIWARE Middleware IDL:

• Modern keyword for modules. New keyword is namespace. See section Module Declaration.

• Modern keyword for interfaces. New keyword is service. See section Interface Header.

• Modern keywords for basic types. See section Basic Types.

• New template types. See section Template Types.

• FIWARE Middleware IDL only uses input parameters. See section Parameter Declarations

• FIWARE Middleware IDL adds annotations. See sections Annotation Declaration and Annotation Applica-
tion.

Also FIWARE Middleware IDL does not use and support (and therefore ignores) several OMG IDL 3.5 constructs:

• Import declarations. See section Import Declaration.

8.7. Appendix A: Changes from OMG IDL 3.5 129

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

• Value declarations. See section Value Declaration.

• ‘Any’ type. See section Basic Types.

• Native types. See section Native Types.

• Context expressions. See section Context Expressions.

• Attribute declarations. See section Attribute Declaration.

• Repository Identity Related Declarations. See section Repository Identity Related Declarations.

• Event declarations. See section Event Declaration.

• Component declarations. See section Component Declaration.

• Home declarations. See section Home Declaration.

8.8 Appendix B: FIWARE Middleware IDL Grammar

<specification> ::= <import>* <definition>+
<definition> ::= <type_dcl> ";"

| <const_dcl> ";"
| <except_dcl> ";"
| <interface> ";"
| <module> ";"
| <value> ";"
| <type_id_dcl> ";"
| <type_prefix_dcl> ";"
| <event> ";"
| <component> ";"
| <home_dcl> ";"
| <annotation_dcl> ";"
| <annotation_appl> <definition>

<annotation_dcl> ::= <annotation_def> ";"
| <annotation_forward_dcl>

<annotation_def> ::= <annotation_header> "{" <annotation_body> "}"
<annotation_header> ::= "@annotation" <identifier> [<annotation_inheritance_spec>]
<annotation_inheritance_spec> ::= ":" <scoped_name>
<annotation_body> ::= <annotation_member>*
<annotation_member> ::= <const_type> <simple_declarator>

["default" <const_expr>] ";"
<annotation_forward_dcl> ::= "@annotation" <scoped_name>
<annotation_appl> ::= "@" <scoped_name> ["(" [<annotation_appl_params>] ")"]
<annotation_appl_params> ::= <const_exp>

| <annotation_appl_param> { "," <annotation_appl_param> }*
<annotation_appl_param> ::= <identifier> "=" <const_exp>
<module> ::= ("module" | "namespace") <identifier> "{" <definition> + "}"
<interface> ::= <interface_dcl>

| <forward_dcl>
<interface_dcl> ::= <interface_header> "{" <interface_body> "}"
<forward_dcl> ::= ["abstract" | "local"] ("interface" | "service") <identifier>
<interface_header> ::= ["abstract" | "local"] ("interface" | "service") <identifier>

[<interface_inheritance_spec>]
<interface_body> ::= <export>*
<export> ::= <type_dcl> ";"

| <const_dcl> ";"
| <except_dcl> ";"
| <attr_dcl> ";"
| <op_dcl> ";"
| <type_id_dcl> ";"
| <type_prefix_dcl> ";"

| <annotation_appl> <export>
<interface_inheritance_spec> ::= ":" <interface_name>

130 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

{ "," <interface_name> }*
<interface_name> ::= <scoped_name>
<scoped_name> ::= <identifier>

| "::" <identifier>
| <scoped_name> "::" <identifier>

<value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)
<value_forward_dcl> ::= ["abstract"] "valuetype" <identifier>
<value_box_dcl> ::= "valuetype" <identifier> <type_spec>
<value_abs_dcl> ::= "abstract" "valuetype" <identifier>

[<value_inheritance_spec>]
"{" <export>* "}"

<value_dcl> ::= <value_header> "{" <value_element>* "}"
<value_header> ::= ["custom"] "valuetype" <identifier>

[<value_inheritance_spec>]
<value_inheritance_spec> ::= [":" ["truncatable"] <value_name>

{ "," <value_name> }*]
["supports" <interface_name>
{ "," <interface_name> }*]

<value_name> ::= <scoped_name>
<value_element> ::= <export> | <state_member> | <init_dcl>
<state_member> ::= ("public" | "private")

<type_spec> <declarators> ";"
<init_dcl> ::= "factory" <identifier>

"(" [<init_param_decls>] ")"
[<raises_expr>] ";"

<init_param_decls> ::= <init_param_decl> { "," <init_param_decl> }*
<init_param_decl> ::= <init_param_attribute> <param_type_spec> <simple_declarator>
<init_param_attribute> ::= "in"
<const_dcl> ::= "const" <const_type>

<identifier> "=" <const_exp>
<const_type> ::= <integer_type>

| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

<const_exp> ::= <or_expr>
<or_expr> ::= <xor_expr>

| <or_expr> "|" <xor_expr>
<xor_expr> ::= <and_expr>

| <xor_expr> "^" <and_expr>
<and_expr> ::= <shift_expr>

| <and_expr> "&" <shift_expr>
<shift_expr> ::= <add_expr>

| <shift_expr> ">>" <add_expr>
| <shift_expr> "<<" <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> "+" <mult_expr>
| <add_expr> "-" <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> "*" <unary_expr>
| <mult_expr> "/" <unary_expr>
| <mult_expr> "%" <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> ::= "-"
| "+"
| "~"

<primary_expr> ::= <scoped_name>

8.8. Appendix B: FIWARE Middleware IDL Grammar 131

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

| <literal>
| "(" <const_exp> ")"

<literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= "TRUE"
| "FALSE"

<positive_int_const> ::= <const_exp>
<type_dcl> ::= "typedef" <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>
| <constr_forward_decl>

<type_declarator> ::= <type_spec> <declarators>
<type_spec> ::= <simple_type_spec>

| <constr_type_spec>
<simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

<template_type_spec> ::= <sequence_type>
| <set_type>
| <map_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { "," <declarator> }*
<declarator> ::= <simple_declarator>

| <complex_declarator>
<simple_declarator> ::= <identifier>
<complex_declarator> ::= <array_declarator>
<floating_pt_type> ::= "float"

| "double"
| "long" "double"
| "float32"
| "float64"
| "float128"

<integer_type> ::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

<signed_short_int> ::= "short"
| "i16"

<signed_long_int> ::= "long"
| "i32"

132 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<signed_longlong_int> ::= "long" "long"
| "i64"

<unsigned_int> ::= <unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>

<unsigned_short_int> ::= "unsigned" "short"
| "ui16"

<unsigned_long_int> ::= "unsigned" "long"
| "ui32"

<unsigned_longlong_int> ::= "unsigned" "long" "long"
| "ui64"

<char_type> ::= "char"
<wide_char_type> ::= "wchar"
<boolean_type> ::= "boolean"
<octet_type> ::= "octet"

| "byte"
<any_type> ::= "any"
<object_type> ::= "Object"
<struct_type> ::= "struct" <identifier> "{" <member_list> "}"
<member_list> ::= <member>+
<member> ::= <type_spec> <declarators> ";"

| <annotation_appl> <type_spec> <declarators> ";"
<union_type> ::= "union" <identifier> "switch"

"(" <switch_type_spec> ")"
"{" <switch_body> "}"

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> ::= <case> +
<case> ::= <case_label> + <element_spec> ";"
<case_label> ::= "case" <const_exp> ":"

| "default" ":"
<element_spec> ::= <type_spec> <declarator>

| <annotation_appl> <type_spec> <declarator>
<enum_type> ::= "enum" <identifier>

"{" <enumerator> { "," <enumerator> } * "}"
<enumerator> ::= <identifier>
<sequence_type> ::= "sequence" "<" <simple_type_spec> "," <positive_int_const> ">"

| "sequence" "<" <simple_type_spec> ">"
| "list" "<" <simple_type_spec> "," <positive_int_const> ">"
| "list" "<" <simple_type_spec> ">"

<set_type> ::= "set" "<" <simple_type_spec> "," <positive_int_const> ">"
| "set" "<" <simple_type_spec> ">"

<map_type> ::= "map" "<" <simple_type_spec> ","
<simple_type_spec> "," <positive_int_const> ">"

| "map" "<" <simple_type_spec> "," <simple_type_spec> ">"
<string_type> ::= "string" "<" <positive_int_const> ">"

| "string"
<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"

| "wstring"
<array_declarator> ::= <identifier> <fixed_array_size>+
<fixed_array_size> ::= "[" <positive_int_const> "]"
<attr_dcl> ::= <readonly_attr_spec>

| <attr_spec>
<except_dcl> ::= "exception" <identifier> "{" <member>* "}"
<op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

<op_attribute> ::= "oneway"
<op_type_spec> ::= <param_type_spec>

| "void"

8.8. Appendix B: FIWARE Middleware IDL Grammar 133

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<parameter_dcls> ::= "(" <param_dcl> { "," <param_dcl> } * ")"
| "(" ")"

<param_dcl> ::= [<param_attribute>] <param_type_spec> <simple_declarator>
| [<param_attribute>] <annotation_appl>

<param_type_spec> <simple_declarator>
<param_attribute> ::= "in"

| "out"
| "inout"

<raises_expr> ::= "raises" "(" <scoped_name>
{ "," <scoped_name> } * ")"

<context_expr> ::= "context" "(" <string_literal>
{ "," <string_literal> } * ")"

<param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

<fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"
<fixed_pt_const_type> ::= "fixed"
<value_base_type> ::= "ValueBase"
<constr_forward_decl> ::= "struct" <identifier>

| "union" <identifier>
<import> ::= "import" <imported_scope> ";"
<imported_scope> ::= <scoped_name> | <string_literal>
<type_id_dcl> ::= "typeid" <scoped_name> <string_literal>
<type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_literal>
<readonly_attr_spec> ::= "readonly" "attribute" <param_type_spec>

<readonly_attr_declarator>
<readonly_attr_declarator> ::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ "," <simple_declarator> }*

<attr_spec> ::= "attribute" <param_type_spec>
<attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator>

{ "," <simple_declarator> }*
<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]

| <set_excep_expr>
<get_excep_expr> ::= "getraises" <exception_list>
<set_excep_expr> ::= "setraises" <exception_list>
<exception_list> ::= "(" <scoped_name>

{ "," <scoped_name> } * ")"
<component> ::= <component_dcl>

| <component_forward_dcl>
<component_forward_dcl> ::= "component" <identifier>
<component_dcl> ::= <component_header>

"{" <component_body> "}"
<component_header> ::= "component" <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

<supported_interface_spec> ::= "supports" <scoped_name>
{ "," <scoped_name> }*

<component_inheritance_spec> ::= ":" <scoped_name>
<component_body> ::= <component_export>*
<component_export> ::= <provides_dcl> ";"

| <uses_dcl> ";"
| <emits_dcl> ";"
| <publishes_dcl> ";"
| <consumes_dcl> ";"
| <attr_dcl> ";"

<provides_dcl> ::= "provides" <interface_type> <identifier>
<interface_type> ::= <scoped_name>

| "Object"
<uses_dcl> ::= "uses" ["multiple"]

134 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

< interface_type> <identifier>
<emits_dcl> ::= "emits" <scoped_name> <identifier>
<publishes_dcl> ::= "publishes" <scoped_name> <identifier>
<consumes_dcl> ::= "consumes" <scoped_name> <identifier>
<home_dcl> ::= <home_header> <home_body>
<home_header> ::= "home" <identifier>

[<home_inheritance_spec>]
[<supported_interface_spec>]
"manages" <scoped_name>
[<primary_key_spec>]

<home_inheritance_spec> ::= ":" <scoped_name>
<primary_key_spec> ::= "primarykey" <scoped_name>
<home_body> ::= "{" <home_export>* "}"
<home_export ::= <export>

| <factory_dcl> ";"
| <finder_dcl> ";"

<factory_dcl> ::= "factory" <identifier>
"(" [<init_param_decls>] ")"
[<raises_expr>]

<finder_dcl> ::= "finder" <identifier>
"(" [<init_param_decls>] ")"
[<raises_expr>]

<event> ::= (<event_dcl> | <event_abs_dcl> |
<event_forward_dcl>)

<event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>
<event_abs_dcl> ::= "abstract" "eventtype" <identifie

[<value_inheritance_spec>]
"{" <export>* "}"

<event_dcl> ::= <event_header> "{" <value_element> * "}"
<event_header> ::= ["custom"] "eventtype"

<identifier> [<value_inheritance_spec>]

8.9 Appendix C: OMG IDL 3.5 Grammar

<specification> ::= <import>* <definition>+
<definition> ::= <type_dcl> ";"

| <const_dcl> ";"
| <except_dcl> ";"
| <interface> ";"
| <module> ";"
| <value> ";"
| <type_id_dcl> ";"
| <type_prefix_dcl> ";"
| <event> ";"
| <component> ";"
| <home_dcl> ";"

<module> ::= "module" <identifier> "{" <definition> + "}"
<interface> ::= <interface_dcl>

| <forward_dcl>
<interface_dcl> ::= <interface_header> "{" <interface_body> "}"
<forward_dcl> ::= ["abstract" | "local"] "interface" <identifier>
<interface_header> ::= ["abstract" | "local"] "interface" <identifier>

[<interface_inheritance_spec>]
<interface_body> ::= <export>*
<export> ::= <type_dcl> ";"

| <const_dcl> ";"
| <except_dcl> ";"
| <attr_dcl> ";"
| <op_dcl> ";"
| <type_id_dcl> ";"

8.9. Appendix C: OMG IDL 3.5 Grammar 135

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

| <type_prefix_dcl> ";"
<interface_inheritance_spec> ::= ":" <interface_name>

{ "," <interface_name> }*
<interface_name> ::= <scoped_name>
<scoped_name> ::= <identifier>

| "::" <identifier>
| <scoped_name> "::" <identifier>

<value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> | <value_forward_dcl>)
<value_forward_dcl> ::= ["abstract"] "valuetype" <identifier>
<value_box_dcl> ::= "valuetype" <identifier> <type_spec>
<value_abs_dcl> ::= "abstract" "valuetype" <identifier>

[<value_inheritance_spec>]
"{" <export>* "}"

<value_dcl> ::= <value_header> "{" < value_element>* "}"
<value_header> ::= ["custom"] "valuetype" <identifier>

[<value_inheritance_spec>]
<value_inheritance_spec> ::= [":" ["truncatable"] <value_name>

{ "," <value_name> }*]
["supports" <interface_name>
{ "," <interface_name> }*]

<value_name> ::= <scoped_name>
<value_element> ::= <export> | < state_member> | <init_dcl>
<state_member> ::= ("public" | "private")

<type_spec> <declarators> ";"
<init_dcl> ::= "factory" <identifier>

"(" [<init_param_decls>] ")"
[<raises_expr>] ";"

<init_param_decls> ::= <init_param_decl> { "," <init_param_decl> }*
<init_param_decl> ::= <init_param_attribute> <param_type_spec> <simple_declarator>
<init_param_attribute> ::= "in"
<const_dcl> ::= "const" <const_type>

<identifier> "=" <const_exp>
<const_type> ::= <integer_type>

| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

<const_exp> ::= <or_expr>
<or_expr> ::= <xor_expr>

| <or_expr> "|" <xor_expr>
<xor_expr> ::= <and_expr>

| <xor_expr> "^" <and_expr>
<and_expr> ::= <shift_expr>

| <and_expr> "&" <shift_expr>
<shift_expr> ::= <add_expr>

| <shift_expr> ">>" <add_expr>
| <shift_expr> "<<" <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> "+" <mult_expr>
| <add_expr> "-" <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> "*" <unary_expr>
| <mult_expr> "/" <unary_expr>
| <mult_expr> "%" <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> ::= "-"
| "+"

136 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

| "~"
<primary_expr> ::= <scoped_name>

| <literal>
| "(" <const_exp> ")"

<literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= "TRUE"
| "FALSE"

<positive_int_const> ::= <const_exp>
<type_dcl> ::= "typedef" <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>
| <constr_forward_decl>

<type_declarator> ::= <type_spec> <declarators>
<type_spec> ::= <simple_type_spec>

| <constr_type_spec>
<simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>
| <value_base_type>

<template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { "," <declarator> }*
<declarator> ::= <simple_declarator>

| <complex_declarator>
<simple_declarator> ::= <identifier>
<complex_declarator> ::= <array_declarator>
<floating_pt_type> ::= "float"

| "double"
| "long" "double"

<integer_type> ::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

<signed_short_int> ::= "short"
<signed_long_int> ::= "long"
<signed_longlong_int> ::= "long" "long"
<unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

<unsigned_short_int> ::= "unsigned" "short"

8.9. Appendix C: OMG IDL 3.5 Grammar 137

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<unsigned_long_int> ::= "unsigned" "long"
<unsigned_longlong_int> ::= "unsigned" "long" "long"
<char_type> ::= "char"
<wide_char_type> ::= "wchar"
<boolean_type> ::= "boolean"
<octet_type> ::= "octet"
<any_type> ::= "any"
<object_type> ::= "Object"
<struct_type> ::= "struct" <identifier> "{" <member_list> "}"
<member_list> ::= <member> +
<member> ::= <type_spec> <declarators> ";"
<union_type> ::= "union" <identifier> "switch"

"(" <switch_type_spec> ")"
"{" <switch_body> "}"

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> ::= <case> +
<case> ::= <case_label> + <element_spec> ";"
<case_label> ::= "case" <const_exp> ":"

| "default" ":"
<element_spec> ::= <type_spec> <declarator>
<enum_type> ::= "enum" <identifier>

"{" <enumerator> { "," <enumerator> } * "}"
<enumerator> ::= <identifier>
<sequence_type> ::= "sequence" "<" <simple_type_spec> "," <positive_int_const> ">"

| "sequence" "<" <simple_type_spec> ">"
<string_type> ::= "string" "<" <positive_int_const> ">"

| "string"
<wide_string_type> ::= "wstring" "<" <positive_int_const> ">"

| "wstring"
<array_declarator> ::= <identifier> <fixed_array_size>+
<fixed_array_size> ::= "[" <positive_int_const> "]"
<attr_dcl> ::= <readonly_attr_spec>

| <attr_spec>
<except_dcl> ::= "exception" <identifier> "{" <member>* "}"
<op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

<op_attribute> ::= "oneway"
<op_type_spec> ::= <param_type_spec>

| "void"
<parameter_dcls> ::= "(" <param_dcl> { "," <param_dcl> } * ")"

| "(" ")"
<param_dcl> ::= <param_attribute> <param_type_spec> <simple_declarator>
<param_attribute> ::= "in"

| "out"
| "inout"

<raises_expr> ::= "raises" "(" <scoped_name>
{ "," <scoped_name> } * ")"

<context_expr> ::= "context" "(" <string_literal>
{ "," <string_literal> } * ")"

<param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <scoped_name>

<fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"
<fixed_pt_const_type> ::= "fixed"
<value_base_type> ::= "ValueBase"
<constr_forward_decl> ::= "struct" <identifier>

| "union" <identifier>

138 Chapter 8. Advanced Middleware IDL Specification

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

<import> ::= "import" <imported_scope> ";"
<imported_scope> ::= <scoped_name> | <string_literal>
<type_id_dcl> ::= "typeid" <scoped_name> <string_literal>
<type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_literal>
<readonly_attr_spec> ::= "readonly" "attribute" <param_type_spec>

<readonly_attr_declarator>
<readonly_attr_declarator> ::= <simple_declarator> <raises_expr>

| <simple_declarator>
{ "," <simple_declarator> }*

<attr_spec> ::= "attribute" <param_type_spec>
<attr_declarator>

<attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator>

{ "," <simple_declarator> }*
<attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]

| <set_excep_expr>
<get_excep_expr> ::= "getraises" <exception_list>
<set_excep_expr> ::= "setraises" <exception_list>
<exception_list> ::= "(" <scoped_name>

{ "," <scoped_name> } * ")"
<component> ::= <component_dcl>

| <component_forward_dcl>
<component_forward_dcl> ::= "component" <identifier>
<component_dcl> ::= <component_header>

"{" <component_body> "}"
<component_header> ::= "component" <identifier>

[<component_inheritance_spec>]
[<supported_interface_spec>]

<supported_interface_spec> ::= "supports" <scoped_name>
{ "," <scoped_name> }*

<component_inheritance_spec> ::= ":" <scoped_name>
<component_body> ::= <component_export>*
<component_export> ::= <provides_dcl> ";"

| <uses_dcl> ";"
| <emits_dcl> ";"
| <publishes_dcl> ";"
| <consumes_dcl> ";"
| <attr_dcl> ";"

<provides_dcl> ::= "provides" <interface_type> <identifier>
<interface_type> ::= <scoped_name>

| "Object"
<uses_dcl> ::= "uses" ["multiple"]

< interface_type> <identifier>
<emits_dcl> ::= "emits" <scoped_name> <identifier>
<publishes_dcl> ::= "publishes" <scoped_name> <identifier>
<consumes_dcl> ::= "consumes" <scoped_name> <identifier>
<home_dcl> ::= <home_header> <home_body>
<home_header> ::= "home" <identifier>

[<home_inheritance_spec>]
[<supported_interface_spec>]
"manages" <scoped_name>
[<primary_key_spec>]

<home_inheritance_spec> ::= ":" <scoped_name>
<primary_key_spec> ::= "primarykey" <scoped_name>
<home_body> ::= "{" <home_export>* "}"
<home_export ::= <export>

| <factory_dcl> ";"
| <finder_dcl> ";"

<factory_dcl> ::= "factory" <identifier>
"(" [<init_param_decls>] ")"
[<raises_expr>]

<finder_dcl> ::= "finder" <identifier>
"(" [<init_param_decls>] ")"

8.9. Appendix C: OMG IDL 3.5 Grammar 139

FIWARE Advanced Middleware KIARA Documentation, Release 0.4.0

[<raises_expr>]
<event> ::= (<event_dcl> | <event_abs_dcl> |

<event_forward_dcl>)
<event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>
<event_abs_dcl> ::= "abstract" "eventtype" <identifie

[<value_inheritance_spec>]
"{" <export>* "}"

<event_dcl> ::= <event_header> "{" <value_element> * "}"
<event_header> ::= ["custom"] "eventtype"

<identifier> [<value_inheritance_spec>]

140 Chapter 8. Advanced Middleware IDL Specification

	KIARA Installation and Administration Guide
	Introduction
	System Requirements
	Installation
	Sanity Check Procedures
	Diagnosis Procedures

	KIARA User and Programmer Guide
	Introduction
	User guide
	Programmers guide

	Advanced Middleware Architecture
	Copyright
	Legal Notice
	Overview
	Basic Concepts
	Generic Architecture
	Main Interactions
	Basic Design Principles

	Open Specifiation
	Preface
	Copyright
	Legal Notice
	Overview
	Basic Concepts
	Generic Architecture
	Main Interactions
	Basic Design Principles
	Detailed Specifications
	Re-utilised Technologies/Specifications
	Terms and definitions

	Advanced Middleware RPC API Specification
	Abstract
	Status of this Document
	Introduction
	A quick Example
	API Overview
	Detailed API
	API Usage Examples

	Advanced Middleware RPC Dynamic Types API Specification
	Abstract
	Status of this Document
	Introduction
	A quick Example
	API Overview
	Detailed API

	Advanced Middleware Publication Subscription API Specification
	Abstract
	Status of this Document
	Conformance
	Reference Material
	API Overview
	API Description

	Advanced Middleware IDL Specification
	Abstract
	Status of this Document
	Preface
	Related documentation
	Syntax Definition
	IDL Complete Example
	Appendix A: Changes from OMG IDL 3.5
	Appendix B: FIWARE Middleware IDL Grammar
	Appendix C: OMG IDL 3.5 Grammar

