

 Navigation

 	
 index

 	
 next |

 	FIWARE-GlanceSync: Glancesync

Welcome to FIWARE GlanceSync - Glance Synchronization Component

GlanceSync is a command line tool and a server with API to solve the problem
of the images synchronisation between regions. It synchronises glance servers
connected in the FIWARE Lab, in different regions taking the base of a master
region.

This project is part of FIWARE [http://www.fiware.org].

Documentation

GitHub’s README [https://github.com/telefonicaid/fiware-glancesync/blob/master/README.rst] provides a whole documentation:

	GlanceSync - Glance Synchronization Component
	Introduction

	Overall description

	Build and Install

	Server Configuration

	Client Configuration

	Client Running

	Server Running

	API Overview

	Testing

	Support

	License

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	FIWARE-GlanceSync: Glancesync

GlanceSync - Glance Synchronization Component

[image: Apache 2.0 License] [image: Documentation Badge] [http://fiware-glancesync.readthedocs.org/en/latest/?badge=latest] [image: Help? Ask questions] [https://stackoverflow.com/questions/tagged/fiware-glancesync] [image: Build status] [https://travis-ci.org/telefonicaid/fiware-glancesync] [image: Unit Tests coverage] [https://coveralls.io/github/telefonicaid/fiware-glancesync?branch=develop] [image: Docker Pulls] [https://hub.docker.com/r/fiware/glancesync/]

	Introduction

	Overall description
	About UUIDs and image names

	How it works

	How the images to be synchronised are selected

	How the obsoleted images are managed

	Build and Install
	Requirements

	Installation

	Server Configuration
	GlanceSync server configuration file

	Configure your own configuration files

	Client Configuration
	Working without a configuration file

	The configuration file
	Example of a configuration file

	Security consideration

	Client Running
	Basic use

	Advanced use

	Making a backup of metadata
	Using a mock with a backup

	Checking status
	Final status

	Error status

	Pending synchronisation status

	How use glancesync without access to images files

	Server Running
	Database configuration

	Run basic server

	Run Gunicorn server

	Logging files

	API Overview
	API Reference Documentation

	Testing
	Ent-to-end tests
	Ent-to-end tests with Docker execution

	Unit tests
	Unit tests with Docker execution

	Contributing new tests

	Support

	License

Introduction

This is the code repository for the GlanceSync component, the FIWARE Ops tool
used to synchronise the glance images in the different Glance servers connected
in the FIWARE Lab.

This project is part of FIWARE [http://www.fiware.org].

Although this component has been developed for FIWARE, the software is highly
configurable, do not have special requirements beyond OpenStack libraries and
may be used with any other project or as a generic tool to synchronise images.
Moreover, all the OpenStack interface is in a module and it is possible to
adapt the code to support other platforms.

There is also the possibility to launch the application like a service which
allows you synchronise the different regions using a specific FIWARE Lab
administrator account. It could be used with a specific token generated by the
FIWARE Lab Keystone service.

Any feedback on this documentation is highly welcome, including bugs, typos
or things you think should be included but are not. You can use
github issues [https://github.com/telefonicaid/fiware-glancesync/issues/new]
to provide feedback.

Top

Overall description

GlanceSync is a command line tool and a server with API to solve the problem
of the images synchronisation between regions. It synchronises glance servers
in different regions taking the base of a master region. It was designed for
FIWARE project, but it has been expanded to be useful for other users or
projects.

GlanceSync synchronises all the images with certain metadata owned by a tenant
from a master region to each other region in a federation (or a subset of them).
This feature works out of the box without configuration. It requires only the
same set of environment variables, which are needed to contact the
keystone server, than the glance tool. It is also possible to set these
parameters in a file instead of using environment variables. Furthermore, any
option in the configuration file can be provided via command line, too.

GlanceSync synchronisation algorithm (i.e. the method to determine if a master
image must be synchronised to the other regions) is configurable. By default
all public images are synchronised, but it is enough with adding a line in the
configuration file to synchronise only the public images with certain metadata
(e.g. federated_image=True).

GlanceSync supports also the synchronisation to regions which do not use the
same keystone server than the master region and therefore require their own set
of credentials. The regions are grouped by targets: two regions may be in the
same target if they use the same credential (therefore, their glance servers
are registered in the same keystone server). The only mandatory target is the
master target, where the master region is. Most of the GlanceSync
configuration, including the criteria to select which images are synchronised,
is defined at target level. It is okay to create several targets using the same
credential, for example if some regions only share a minimal set of images and
others have a broader list.

GlanceSync by default does not replace existing images. If an
image checksum is different between the region to synchronise and the master
region, a warning is emitted. The user has the option of forcing the
overwriting of a specific image (optionally renaming the old one) including the
checksums in a configuration file, using a whilelist or a blacklist.

When the remote image has the same content than the master image, but the
metadata differs, GlanceSync updates the metadata, but only a limited set, to
avoid overwriting properties considered as local in that glance server. Also
the system property is_public is updated.

GlanceSync has special support for AMI (Amazon Machine Image). Amazon images
include a reference to a kernel image (AKI) and to a ramdisk image (ARI),
but they are named by UUID. Therefore GlanceSync has to update this fields to
reflect the UUIDs in that particular region.

GlanceSync supports marking an image as obsolete, adding the suffix _obsolete.
An obsolete image is not synchronisable, but it is managed in a special way:
when an image is renamed, the change is propagated to the other regions. Also
the visibility of the image is propagated (i.e. if the master image is
marked as private, is made private in all the other regions).

The idea of marking the obsoleted images, is allow the administrator of the
regions to make a decision about them. These images are not part of set of
mandatory images in a federation anymore, but perhaps are in use by their local
users.

About UUIDs and image names

This tool does not synchronise using UUID but names (i.e. an image has the same
name in all regions, but not the same UUID). Using a UUID to synchronise is
generally a bad idea, because some problems may arise with the restriction that
a UUID must be unique. Be aware that it is not possible to replace
the content of a image, without creating a new one and the old UUID may not be
reused. If something similar to an UUID is required, it is better to use a
metadata field to simulate it.

The downside of using names, is that a region may have more than a image
with the same name. This is specially challenging, when there is more than one
image in a destination target, with the name of the image to synchronise. In
this situation, GlanceSync takes the first image that is found with the same checkum
(or absolutely the first image that is found if there is not a checksum match)
and prints a warning for each duplicated image detected. Master images
with duplicated names are not synchronised and a warning is printed.

Image names with duplicated names are easy to avoid, with one serious
exception: when ordinary users can publish their images as public (shared), the
risk of collision increases and escapes of the control of the user. To avoid
this, GlanceSync ignore the images of other tenants by default.
Anyway, this is a general problem, not only a synchronisation
problem, due to more that one image with the same name is very confusing to users
that want to use them. Therefore it is better to restrict the publication of
shared images.

How it works

First GlanceSync gets a list of the images in the master region. Then runs the
algorithm with each specified region (or all the regions registered in the
same keystone server than the master region, if not specified). If an error
occurs within a region synchronisation, GlanceSync does not run more operations
in that region and jumps to the next one.

For each region, GlanceSync starts getting a list of its images. Then
calculates with images should be synchronised to this region (this is detailed
in the next section).

It some images has metadata pending, it updates them. After updating the metadata,
the missing images are upload. The uploading is by size order, this way when
there is a problem in the glance server it will be detected earlier with the
smallest image (e.g. when there is not enough space). Another reason to start
with the smallest first, is because AMI images; the kernel and ramdisk are also
images and because they are smaller, are uploaded before the AMI image that
needs them.

The last step is to update the kernel/ramdisk fields in AMI
images when the kernel/ramdisk images has been uploaded during this synchronisation
session.

When a image with the same name is already present in the destination region,
Glancesycn checks it they are the same comparing the checksums. When they are
different, the following algorithm is applied:

	Is the checksum in the dontupdate list? Print a warning only

	Is the checksum in the rename list? Rename old image (adding the .old
suffix), change it to private, and upload the master region’s image

	Is the checksum in the replace list? Replace the old image with the master
region’s image

	Does the parameter replace include the keyword any? Rename old image and
upload the master region’s image

	Does the parameter rename include the keyword any? Replace the old image
with the master region’s image

	Otherwise: print a warning. The user should take an action and fill
dontupdate, replace or rename parameters. In the meanwhile, the
image is considered stalled and it is not synchronised at all.

How the images to be synchronised are selected

There are three parameters in the configuration that affects which images are
selected: forcesync, metadata_condition and metadata_set. All of them can be
different for each target; when most targets use the same selection criteria,
an option is to put this options in the DEFAULT section.

This is the algorithm to determine if an image is synchronisable:

	images with the _obsolete suffix, are never synchronised

	images of other tenants are never synchronised

	images with duplicated names are never synchronised, to avoid ambiguity.

	if the UUID of the image is included in forcesync, then it is synchronised
unconditionally, even if the image is not public.

	if metadata_condition is defined, it contains python code that is evaluated
to determine if the image is synchronised. The code can use two variables:
image, with the information about the image and metadata_set, with the content
of that parameter. The more interesting field of image is user_properties,
that is a dictionary with the metadata of the image. Other properties are id,
name, owner, size, region, is_public. The image may be synchronised
even if it is not public, to avoid this, check image.is_public in the condition.
If metadata_set is not defined and image.is_public, then the image will be synchronised
with all user_properties.

	if metadata_condition is not defined, the image is public, and
metadata_set is defined, the image is synchronised if some of the
properties of metadata_set is on image.user_properties.

	if metadata_condition is not defined, the image is public, and
metadata_set is not defined, the image is synchronised

	otherwise, the image is not synchronised.

For example, to synchronise the images in FIWARE Lab, the best choice is
setting metadata_set=nid, sdc_aware, type, nid_version, because all the images to be
synchronised has at least one of those properties.

A trip to synchronise also the images specified in a white list is combine the
parameter forcesyncs with metadata_condition=False

The parameter metadata_set has another function. It is used to determine how
the metadata is updated in the remote image. If it is not defined, all the metadata
is copied from the master image, otherwise, only the properties in metadata_set
are copied. Be aware that system property is_public must not be included in
metadata_set, because it is not a user property but a system one. Anyway,
is_public is unconditionally synchronised.

How the obsoleted images are managed

An obsolete image is an image with the _obsolete suffix. When an image is
marked as obsoleted is not synchronised anymore and therefore it is not upload to
regions where it is not present. However, if an image exists in the remote region
with the same name but without the suffix, it is renamed and the visibility is
updated with the value on the master region. Also the properties specified
in obsolete_syncprops, if any, are synchronised. The synchronisation of the
properties and the visibility is also managed when there is a image in the
region to synchronise that is already renamed but without the other changes
propagated.

There are some checks to do before propagating the changes of an
obsoleted image:

	Are the two images the same? The checksums are compared and only if they are
the same the change is done.

	Is the image in the region to synchronise a public image of another tenant?
in this case do not touch the image.

	Is there an image with the same name but without the suffix also in the
master region and is synchronisable? In this case the image will be
synchronised normally without taking in consideration the obsolete image.

Usually obsoleted images are made private, because are not supported anymore.
It is possible to restore an image as public for local use after renaming or changing
the tenant (to avoid that it is made private again automatically), but before this is
important to look out more about the security status of the image.

The treatment of obsolete images can be disabled for a target with
support_obsolete_images=False. This flag affects the image renaming and
the metadata updating, but anyway images with ‘_obsolete’ suffix are never
synchronised.

Top

Build and Install

Requirements

GlanceSync is designed to run with a mounting point with the images, because it
reads the images that are stored directly in the filesystem. Usually this
directory is /var/lib/glance/images.

The following software must be installed (e.g. using apt-get on Debian and Ubuntu,
or with yum in CentOS):

	Python 2.7

	pip

	virtualenv

Installation

The recommend installation method is using a virtualenv. Actually, the installation
process is only about the python dependencies, because the python code do not need
installation.

	Create a virtualenv ‘glancesyncENV’ invoking virtualenv glancesyncENV

	Activate the virtualenv with source glancesyncENV/bin/activate

	Install the requirements running pip install -r requirements.txt
–allow-all-external

Now the system is ready to use. For future sessions, only the step2 is required.

Top

Server Configuration

There is the possibility to execute the glancesync like a service. You should
launch the server by executing the run.py process. You can see in the
Running section how to launch the server. In this section we explain the configuration
file that have to be defined to work with the GlanceSync Service. Last but not least
keep in bear that you will need also configure the client component if you want to launch
the core module of synchronization component.

GlanceSync server configuration file

The server have to be launched with a configuration file. By default, the service
will take the values either from environment variables or from files located in
/etc/fiware.d. The name of the files MUST be fiware-glancesync.cfg and
fiware-glancesync-logging.cfg. The options that we take are the following:

1) In the first case, the application try to see if there is defined
the variables GLANCESYNC_SETTINGS_FILE, GLANCESYNCAPP_DATABASE_PATH,
GLANCESYNCAPP_CONFIG and GLANCESYNC_LOGGING_SETTINGS_FILE.
This environment variables will have the location of the configuration files, you can
specify them using the following commands

$ export GLANCESYNC_SETTINGS_FILE=/Users/foo/fiware-glancesync/app/settings/fiware-glancesync.cfg
$ export GLANCESYNC_LOGGING_SETTINGS_FILE=/Users/foo/fiware-glancesync/app/settings/fiware-glancesync-logging.cfg
$ export GLANCESYNCAPP_DATABASE_PATH=/Users/foo/glancesyncENV/lib/python2.7/site-packages/
 fiware_glancesync.egg/fiwareglancesync/
$ export GLANCESYNCAPP_CONFIG=/Users/foo/glancesyncENV/lib/python2.7/site-packages/
 fiware_glancesync.egg/fiwareglancesync/app/config.py

2) If the GLANCESYNC_SETTINGS_FILE and GLANCESYNC_LOGGING_SETTINGS_FILE
environment variables are not presented, the application will try to obtain the
files from the directory /etc/fiware.d

If no one of the previos option is accomplished the server will launch an error message
like the following:

ERROR: There is not defined GLANCESYNCAPP_CONFIG environment variable
 pointing to config.py path file
 Please correct at least one of them to execute the program.

ERROR: There is not defined GLANCESYNCAPP_DATABASE_PATH environment variable
 pointing to database path file
 Please correct at least one of them to execute the program.

ERROR: There is neither defined GLANCESYNC_LOGGING_SETTINGS_FILE environment variable pointing
 to fiware-glancesync-logging.cfg nor /etc/fiware.d/etc/fiware-glancesync-logging.cfg
 file. Please correct at least one of them to execute the program.

ERROR: There is neither defined GLANCESYNC_SETTINGS_FILE environment variable
 pointing to fiware-glancesync.cfg nor /etc/fiware.d/etc/fiware-glancesync.cfg
 file. Please correct at least one of them to execute the program.

Configure your own configuration files

The GlanceSync server has two configuration files:

	fiware-glancesync.cfg, this is the important one to configure the service and need some modifications

	fiware-glancesync-logging.cfg, this file is used to configure the logging system, it is not needed to

change the content that we have defined by default in the publication of the component.

Related to the first file, how we have mentioned, there is some parameters that have to be configured in
order to execute correctly the service. For obvious reason they are not included in the repository:

	KEYSTONE_URL, service endpoint of the Keystone service in FIWARE Lab (it usually comes defined in

the installation of the component.

	ADM_USER, admin user in Keystone.

	ADM_PASS, password of the admin user

	ADM_TENANT_ID, tenant id of the admin user.

	ADM_TENANT_NAME, tenant name of the admin user (you have to provide either ADM_TENANT_ID or ADM_TENANT_NAME).

	USER_DOMAIN_NAME, user domain name, by default for an administrator account you can use the value Default.

Top

Client Configuration

Working without a configuration file

The tool can work without a configuration file or with an empty one. In this
case, the following OpenStack environment variables must be filled with the
administrator’s credential: OS_USERNAME, OS_PASSWORD, OS_AUTH_URL,
OS_TENANT_NAME, OS_REGION_NAME. The value of OS_REGION_NAME will be
the master region (in FIWARE Lab this region is Spain2).

It is also possible to pass any configuration option using command line. For
example, the following invocation runs a synchronisation taking from command
line the parameters master_region in the main section and metadata_set in
the DEFAULT section:

./sync.py --config main.master_region=Spain2 metadata_set=nid,type,sdc_aware,sdc_version

It is important to note that –config parameter expect any number of parameters
separated by spaces. This is a problem if the list of regions are specified

after the –config parameter, because then the regions are parsed as part

of the –config parameter. The solution is passing the regions before the
parameter or using the standard separator –:

Wrong: region1 and region2 are interpreted as part of --config param
./sync.py --config main.master_region=Spain2 region1 region2
Ok
./sync.py --config main.master_region=Spain2 -- region1 region2
Ok
./sync.py region1 region2 --config main.master_region

The configuration file

The configuration used by the GlanceSync component is stored in the
/etc/fiware.d/glancesync.conf file. However, this path may be changed with the
environment variable GLANCESYNC_CONFIG.

The configuration file has a main section with some global configuration
parameters and one section for each target (regions are grouped by targets,
two regions are in the same targets if they use the same credential). The
master section is the target where the master region is, that is, the region
where are located the images to synchronise to the other regions.

Most of the configuration is defined at target level. If the same values are
used in most or all the targets, an option is to set them in the DEFAULT section.

The only mandatory settings in the target sections, is the credential. It may be
provided in two ways (in the case of master also it is possible to use
the environment variables as explained in the previous section, even it is
possible to combine both methods, for example to set only the password via
environment variable):

	using the credential option. There are four values separated by commas: the
first is the user, the second is the password encoded with base64, the third
is the keystone URL and the fourth, the tenant name.

	using the options user, password, tenant, keystone_url.

If credentials are stored in the configuration file, it is convenient to
make the file only readable by the user who invokes GlanceSync.

Example of a configuration file

The following is an example of a configuration file, with all the possible
options auto explained in the comments. A configuration file like this can be
generated invoking fiwareglancesync/script/generated_config_file.py

[main]

Region where are the images in the "master" target that are synchronised to
the other regions of "master" regions and/or to regions in other targets.
master_region = Spain

A sorted list of regions. Regions that are not present are silently
ignored. Synchronization is done also to the other regions, but first this
list is revised and then the Regions are prefixed with "target:"
This parameter is only used when running synchronisation without parameters
or the region list includes a 'target' (e.g. 'master:' that is expanded to
the regions in master but the specified in ignore_regions). When the full region
list is provided explicitly via command line, the order of
the parameters is used instead.
preferable_order = Trento, Lannion, Waterford, Berlin, Prague

The maximum number of simultaneous children to use to do the synchronisation.
Each region is synchronised using a children process, therefore, this
parameter sets how many regions can be synchronised simultaneously.
The default value, max_children = 1, implies that synchronisation is fully
sequential. Be aware that you need also to invoke the sync tool with the
--parallel parameter.
#
max_children = 1

The folder where the master images are (the filename is the UUID of the
image in the master region). The default value is the folder where the
Glance server stores the images.
images_dir = /var/lib/glance/images

[DEFAULT]

Values in this section are default values for the other sections.

the files with this checksum will be replaced with the master image
parameter may be any or a CSV list (or a CSV list with 'any' at the end)
replace = 9046fd22131a96502cb0d85b4a406a5a

the files with this checksum will be replaced with the master image,
but the old image will be preserved renamed (using same name, but with
.old extension) and made private.
parameter may be any or a CSV list (or a CSV list with 'any' at the end)
rename = any

If replace or rename is any, don't update nor rename images with some of
these checksums
dontupdate =

List of UUIDs that must be synchronised unconditionally.
#
This is useful for example to pre-sync images marked as private

forcesyncs = 6e240dd4-e304-4599-b7d8-e38e13cef058

condition to evaluate if the image is synchronised.
image is defined, as well as metadata_set (see next parameter).
Default condition is:
image.is_public and (not metadata_set or metadata_set.intersection(image.user_properties))

metadata_condition = image.is_public and\
 ('nid' in image.user_properties or 'type' in image.user_properties)

the list of userproperties to synchronise. If this variable is undefined, all
user variables are synchronised.
metadata_set = nid , type, sdc_aware, nid_version

When the software asks for the list of images in a region, it gets both the
images owned by the tenant and the public images owned by other tenants.
If this parameter is true (the default and recommended value), only the
tenant's images are considered. This implies that it can exist after the
synchronisation a new image with the same name that a public one from other
user. It could be very confusing (actually, a warning is printed when it is
detected), but usually it is not recommend to work with images from other
tenants. To find out more about this, see 'About UUIDs and image names' in
the documentation.
#
This parameter only affects to the list of images obtained from the regional
servers. From master region only the tenant's images are considered.
only_tenant_images = True

When this option is true (the default), the renaming and metadata updating of
obsolete images is activate. See the documentation for details.
support_obsolete_images = True

These are the properties that are synchronised (in addition to is_public
and the name) in obsolete images, when support_obsolete_images is True.
obsolete_syncprops = sdc_aware

Timeout to get the image list from a glance server, in seconds. Default
value is 30 seconds.
list_images_timeout = 30

API required to contact with the keystone server. If this parameter is True,
then version 3 of the API is used. Otherwise, the version 2 is used
use_keystone_v3 = False

[master]

This is the only mandatory target: it includes all the regions registered
in the same keystone server than the master region.
#
credential set: user, base64(password), keystone_url, tenant_name
as alternative, options user, password, keystone_url and tenant can be used
only with master target, it is possible also to set the credential using
OS_USERNAME, OS_PASSWORD, OS_TENANT_NAME, OS_AUTH_URL (or even mixing this
environment variables with parameters user, password, etc.)
credential = user,W91c2x5X2RpZF95b3VfdGhpbmtfdGhpc193YXNfdGhlX3JlYWxfcGFzc3dvcmQ/,http://server:4730/v2.0,tenantid1

This parameter is useful when invoking the tool without specifying which
images to synchronise or when the list includes a "target" without a region
(e.g. master:). In this case it is expanded with the list of regions in that
target except the included in ignore_regions
ignore_regions = Spain1

[experimental]

Another
credential = user2,W91c2x5X2RpZF95b3VfdGhpbmtfdGhpc193YXNfdGhlX3JlYWxfcGFzc3dvcmQ/,http://server2:4730/v2.0,tenantid2
metadata_condition = image.is_public and image.user_properties.get('type', None) == 'baseimages'

This configuration file defines two targets: master and experimental. The first one
synchronises all the public images with properties nid and/or type defined. The last one only
synchronises images with type=baseimages

Security consideration

GlanceSync does not require root privileges. But at this version it requires
read-only access to image directory /var/lib/glance/images (or making
available a copy of all these files, or at least the subset that may be
synchronised, in other path and then set the option images_dir)

It is strongly recommended:

	creating an account to run GlanceSync only

	creating a configuration file only readable by the GlanceSync account. This
is because the credentials should not be exposed to other users.

Top

Client Running

Basic use

Once installed all the dependencies, there is a way to run GlanceSync manually
from the command line invoking the sync.py tool inside the GlanceSync
distribution.

When ./sync.py is invoked without parameters, it synchronises the images from
the master region to all the other regions with a glance endpoint registered in
the keystone server (except the ones, if any, specified as a comma separated list
in the ignore_regions parameter, inside the master section). The command
can also receive as parameters the regions to synchronise. It is possible also
to specify a target name and the suffix :; this way it is expanded to all the
regions in that target (e.g. if there are two regions, regionA and regionB in
target target1, then target1: is expanded with target1:regionA target1:regionB)

Advanced use

By default, GlanceSync synchronises regions one by one. When the command line
option –parallel is passed, GlanceSync synchronised several regions in
parallel. The number or regions synchronised at the same time is determined by the
parameter max_children in the main section. Default value is 1 (no parallel).
When synchronisation runs on parallel, a directory with the pattern
sync_<year><month>_<hour><minute> is created. Inside this, it is a file for each
region with the log of the synchronisation process.

The option –dry-run shows the changes needed to synchronise the images,
but without doing the operations actually.

The option –show-regions shows all the regions available in all the targets
defined in the configuration file.

The option –make-backups creates a backup of the medatada of the images
in the regional Glance servers, instead of running the synchronisation.

It is possible to override any parameter of the configuration file, using the
option –config. Be aware that the way of setting several parameters is
separating them with spaces (e.g. –config option1=value1 option2=value2)

Finally, the option –show-status is to obtain a report about the
synchronisation status of the regions. A more detailed information of this is
provided in the Checking status section.

As pointed, GlanceSync can synchronised also from the master region to regions
that do not use the same keystone server. A target is a namespace to refer to
the regions sharing a credential. The master target is the one
where the master region is. Each target has a section with its name in the
configuration file, to specify the credential and optionally other configuration
(most of the parameters are local to each target).

The way to synchronise to regions that are in other target, is to specified
the region with the preffix <target_name>:. For example, to synchronise to region
Trento and Berlin2, both in the same keystone server than the master region,
but also to RegionOne and RegionTwo, registered in target other the
following command must be invoked:

./sync.py Trento Berlin2 other:RegionOne other:RegionTwo

Note that the master: prefix may be omitted.

Making a backup of metadata

The option –make-backups create a backup of the metadata in the specified
regions and in the master region. This is useful for example for
debugging or testing, because GlanceSync supports the use of a mock that reads
files likes these as input instead of contacting to the real servers. The mock
is also used for testing real scenarios.

The backup is created in a directory named backup_glance_ with the date and
time as suffix. There is a file for each region (the name is backup_<region>.csv)
and inside the file a line for each image. The following fields are included:

	the region name

	the image name

	the UUID of the image in the region

	the status of the image (the OK status is ‘active’)

	the size in bytes

	the checksum

	the tenant id of the owner (a.k.a. project id)

	a boolean indicating if the image is Public

	a dictionary with the user properties

Only the information about public images/ the images owned by the tenant, can
be obtained. This is a limitation of the glance API: even the administrator
does not get a list of private images of other users.

Using a mock with a backup

It is possible to use the result of a backup (optionally after changing the
contents) for testing different scenarios.

Supposing the backup directory backup_glance_2015-11-17T12:54:26.117838 is
renamed to scenario1. After invoking this line, instead of operating with
the real servers, a mock with metadata saved in persistent_data folder is
used:

eval $(glancesync/glancesync_serverfacade_mock.py --path persistent_data scenenario1)
export PYTHONPATH=glancesync

The created scenario is persistent, that is, is possible to invoke sync.py –show-status
before and after running the synchronisation for checking that the state has
changed.

The mock uses as tenant_id (this is important to compare the owner of the files)
the paremeter tenant_id if defined in the configuration, otherwise id is
added to the tenant_name as suffix.

To make test results deterministic, when a new image is created in the mock, the
UUID is not random. The UUID’s pattern is <seq>$<image_name> where seq is a number
starting with 1 that guarantees the UUID uniqueness.

Checking status

In order to check the status of the synchronisation, use the following command:

./sync.py --show-status

This print the status of all the regions in the master target, that is, the
region in the same keystone server than the master region. If ignore_regions
is defined in the master configuration section, the specified regions are
ignored.

Of course is also possible to check the status of any group of regions, for
example, the call:

./sync.py --show-status Trento Mexico Gent target2:Region1 target2:Region2

It will show the status of the regions Trento, Mexico, Gent both in the master
target, and the regions Region1 in Region2 defined in the target2 target.

The output of command is a line for each image to be synchronised for each
region. That is, in the last example, if 15 images are synchronised to the
regions of master and 10 images to the regions of target2, then a total
of 15*3 + 10*2 images are printed.

Each line is a CSV. The first field is the synchronisation status, the
seconds is the region’s name, and the third is the image name. This is an
example:

ok,Prague,base_centos_6
ok,Prague,base_ubuntu_14.04
ok,Prague,base_ubuntu_12.04
ok,Prague,base_debian_7
ok,Prague,base_centos_7
pending_upload,experimental:Valladolid,base_centos_7

The synchronisation status can be classified in three categories: final status,
error status and pending synchronisation status.

Final status

GlanceSync consider that there is no pending operations: the image is
synchronised or marked as ‘dontupdate’.

	ok: the image is fully synchronised

	ok_stalled_checksum: the image has a different checksum than master,
but this checksum is included in parameter ‘dontupdate’. Therefore the image
will not be updated (content nor metadata)

Error status

There is an error condition that requires user intervention before trying
again.

	error_checksum: there is an image, but with a different checksum and
there is not a matching dontupdate, rename or replace directive. Action
required: fill the checksum (or use any) with dontupdate or rename or
replace.

	error_ami: the image requires a kernel or ramdisk that is not in the
list of images to sync. Action required: ensure that the selection criteria
include the kernel/ramdisk images.

Pending synchronisation status

The image needs synchronisation. Be aware that perhaps the image is on a
pending status although GlanceSync execution has completed, because the glance
server responded with an error. However, this is yet considered a pending status
and not an error status, because it is not a problem that users must resolve by
themselves.

	pending_metadata: there is an image with the right content (checksum), but
metadata must be updated (this may include ramdisk_id and kernel_id)

	pending_upload: the image is not synchronised; it must be upload

	pending_replace: there is an image, but with different checksum. The
image will be replaced

	pending_rename: there is an image, but with different checksum. The
image will be replaced, but before this the old image will be renamed

	pending_ami: the image requires a kernel or ramdisk image that is in state
pending_upload, pending_replace or pending_rename.

How use glancesync without access to images files

At the moment, GlanceSync is designed to run in the glance server of the master
region, because it reads the images that are stored directly in the filesystem.

This may be an inconvenience, but a real issue is when the Glance backed does not
use plain files (e.g. the Cepth backend) and therefore GlanceSync cannot read
the files even when it is running at the glance server.

The following script can be used to pre-download the images required to
synchronise the indicated regions to the folder specified by environment
variable GLANCE_IMAGES (by default, /var/lib/glance/images) and then
run the synchronisation:

#!/bin/bash

print_required_images_names() {
 ./sync.py --show-status $* | awk -v ORS=" " -F, \
 '/^pending_(upload|rename)/ {words[$3]++}
 END { for (i in words) print substr(i,1, length(i)-1) }'
}

get_id_from_name() {
 glance image-show $1 | awk -F\| \
 ' $2 ~ /^[]*id/ { sub(/[]+/,"",$3) ; print $3}'
}

GLANCE_IMAGES=${GLANCE_IMAGES:-/var/lib/glance/images}

First, download the required images to $GLANCE_IMAGES
for name in $(print_required_images_names $*) ;
do
 id=$(get_id_from_name $name)
 echo $name $id
 if [! -f $GLANCE_IMAGES/$id] ; then
 glance image-download --file $GLANCE_IMAGES/$id --progress $id
 fi
done

run synchronisation
./sync.py $* --config images_dir=$GLANCE_IMAGES

Top

Server Running

There is several options to execute the GlanceSync server from the command line. You
can obtain information of the different options running form the command line the following
command:

$ python run.py

usage: run.py [-h] {gunicornserver,shell,db,runserver} ...

positional arguments:
 {gunicornserver,shell,db,runserver}
 gunicornserver Run the GlanceSync server application within Gunicorn.
 shell Runs a Python shell inside Flask application context.
 db Perform database migrations
 runserver Runs the Flask development server i.e. app.run()

optional arguments:
 -h, --help show this help message and exit

We go into details about the db, runserver and gunicornserver options.

Database configuration

If it is the first time that you use the component or if you need to make an upgrade of the database
schemas, you will need to execute the commands related to the database management. You can obtain a
help of the different operations just executing:

$ python run.py db -h
usage: Perform database migrations

Perform database migrations

positional arguments:
 {upgrade,heads,merge,migrate,stamp,show,current,edit,init,downgrade,branches,history,revision}
 upgrade Upgrade to a later version
 heads Show current available heads in the script directory
 merge Merge two revisions together. Creates a new migration
 file
 migrate Alias for 'revision --autogenerate'
 stamp 'stamp' the revision table with the given revision;
 don't run any migrations
 show Show the revision denoted by the given symbol.
 current Display the current revision for each database.
 edit Edit current revision.
 init Generates a new migration
 downgrade Revert to a previous version
 branches Show current branch points
 history List changeset scripts in chronological order.
 revision Create a new revision file.

optional arguments:
 -h, --help show this help message and exit

This allows you to keep a revision of the database that we are using. The first time that you use
the component you will need to create the database repository and initialize the revision of it. It
can be done with the following commands (in order):

$ python run.py db init
$ python run.py db migrate
$ python run.py db upgrade

Run basic server

Once that we have initialized the database, we can launch the application, there is two possibilities.
In this section, we see the easy way to launch the application running basically a python process.
You can obtain help of the operation just executing:

$ python run.py runserver -h
usage: run.py runserver [-h] [-t HOST] [-p PORT] [--threaded]
 [--processes PROCESSES] [--passthrough-errors] [-d]
 [-r]

Runs the Flask development server i.e. app.run()

optional arguments:
 -h, --help show this help message and exit
 -t HOST, --host HOST
 -p PORT, --port PORT
 --threaded
 --processes PROCESSES
 --passthrough-errors
 -d, --no-debug
 -r, --no-reload

How you can see almost all arguments are optionals, the HOST and PORT are defined in the fiware-glancesync.cfg
file. You can execute the server just executing:

$ python run.py runserver

Run Gunicorn server

There is the possiblity to launch the service behind a Gunicorn HTTP Server. Gunicorn [http://gunicorn.org/] ‘Green Unicorn’ is a
Python WSGI HTTP Server for UNIX. You need to install this HTTP Server previously to execute the GlanceSync
service. Take a look to the Gunicorn site to see how to install it. Keep in bear that you should use a version
greater than 0.9.0.

After the installation of the HTTP server, you can execute the component. If you execute the following command
you can obtain detailed information about the options that you have:

$ python run.py gunicornserver -h
usage: run.py gunicornserver [-h] [-H HOST] [-p PORT] [-w WORKERS]

Run the GlanceSync server application within Gunicorn.

optional arguments:
 -h, --help show this help message and exit
 -H HOST, --host HOST IP address or hostname of the Glancesync server.
 -p PORT, --port PORT Port in which the GlanceSync server is running
 -w WORKERS, --workers WORKERS
 Number of concurrent workers to be launched, usually
 2*core numbers+1.

By default, HOST, PORT and WORKERS are defined in the configuration file, it is not necessary to specify them
again here. So to run the service, just write the following line:

$ python run.py gunicornserver -h

Logging files

The current version of the GlanceSync service produce logging files that will be located in the sam directory
of the application where you launch the application. It is defined with log rotate with allow to control the
extension of the file. You can see details of the configuration of the log file in the fiware-glancesync-logging.cfg
file. By default it will be named with glancesync-api.log. The sucessive rotate files will be numered adding
a string from ‘.1’ to ‘.3’ to the previous file name (e.g. glancesync-api.log.1).

Top

API Overview

The GlanceSync offers a REST API, which can be used for synchronizing images
in different regions. Please have a look at the API Reference Documentation section
bellow.

API Reference Documentation

	FIWARE GlanceSync v1 (Apiary) [http://docs.glancesync.apiary.io/]

Top

Testing

Ent-to-end tests

To run the end-to-end tests, go to test/acceptance folder and run:

behave features/ --tags ~@skip

Please, be aware that this tests requires preparing a environment, including
at least three glance servers and two keystone servers. Have a look to the
test/acceptance/README.rst in order to get more information about how to
prepare the environment to run the functional_test target.

Ent-to-end tests with Docker execution

Glancesync acceptance tests can be executed by Docker. To do that, firstly it is required to create the required docker images (fiware-glancesync and
fiware-glancesync-acceptance).
To do that:

docker build -t fiware-glancesync -f docker/Dockerfile docker
docker build -t fiware-glancesync-acceptance -f docker/AcceptanceTests/Dockerfile docker/AcceptanceTests

Once the images have been created, we can run the acceptance tests it by using docker-compose (to include the environment variables). To export then is required:

export OS_AUTH_URL = {the auth uri of the testbed agains the tests are going to be execute}
export OS_USERNAME = {the user name}
export OS_TENANT_NAME = {the tenant name}
export OS_PASSWORD = {the password}
export OS_REGION_NAME = {the region}
export OS_PROJECT_DOMAIN_NAME = {the project domain name}
export OS_USER_DOMAIN_NAME = {the user domain name}
export KEYSTONE_IP = {The keystone ip where testbed is deployed}
export Region1 = {The region name 1 for tests}
export Region2 = {The region name 2 for tests}
export Region3 = {The region name 3 for tests}
docker-compose -f docker/docker-compose.yml up

When docker has finished, you can obtain the tests results by
.. code:

docker cp docker_fiwareglancesync-acceptance:/opt/fiware/glancesync/tests/acceptance/testreport .

Unit tests

To run the unit tests, you need to create a virtualenv using the requirements
both contained in requirements.txt and test-requrirements.txt. You only need to
execute the nosetests program in the root dorectory of the fiware-glancesync
code. Keep in mind that it requires python2.7 or superior to execute the unit
tests.

virtualenv -p <root to python v2.7> venv
source ./venv/bin/activate
pip install -r requirements.txt
pip install -r test-requirements.txt
nosetests --exe
deactivate

Eight tests are marked as skipped because they are more properly integration
test. They are in the file ´´test_glancesync_serversfacade.py´´. The tested
module contains all the code that interacts with Glance and the tests do some
checks against a real glance server. To activate this eight tests, edit the file and
change testingFacadeReal to True. It needs the usual OpenStack environment
variables (OS_USERNAME, OS_PASSWORD, OS_TENANT_NAME, OS_REGION_NAME,
OS_AUTH_URL)

Unit tests with Docker execution

Glancesync unit tests can be executed by docker. To do that, firstly it is required to create the docker image,
with the following command:

docker build -t fiware-glancesync-build -f docker/UnitTests/Dockerfile docker

Once the fiware-glancesync-build image is created, we can run it by:

docker run --name fiware-glancesync-build fiware-glancesync-build

Finally, it is possible to obtain tests results and coverage information by:

docker cp fiware-glancesync-build:/opt/fiware/glancesync/test_results .
docker cp fiware-glancesync-build:/opt/fiware/glancesync/coverage .

Contributing new tests

It is possible to contribute new tests defining a scenario in tests/resources
For a scenario ‘new_scenario’, the following folders must be created:

	
	new_scenario: there are files for each region with the backup of the metadata

	BEFORE invoking the synchronisation. These files can be generated
with sync.py –make-backup

	
	new_scenario.result: there are files for each region with the backup of the

	metadata AFTER invoking the synchronisation

	
	new_scenario.status_pre: there are files with the status of each region BEFORE invoking

	the synchronisation. These files can be generated with the
output of sync.py –show-status

	
	new_scenario.status_post: there are files with the status of each region AFTER invoking

	the synchronisation. These files can be generated with the
output of sync.py –show-status

Inside the forlder new_scenario, optionally a config file may be included.
If this file is not found, then the default configuration defined in the variable
config1 of the test file ´´tests/unit/test_glancesync.py´´ is used.

Then, a test class must be defined extending TestGlanceSync_Sync, for example:

class TestGlanceSync_AMI(TestGlanceSync_Sync):
 """Test a environment with AMI images (kernel_id/ramdisk_id)"""
 def config(self):
 path = os.path.abspath(os.curdir)
 self.path_test = path + '/tests/unit/resources/ami'
 self.regions = ['master:Burgos']

This class is provided in ´´tests/unit/test_glancesync.py´´.

More information about the mock: mock

Top

Support

Ask your thorough programming questions using stackoverflow [http://stackoverflow.com/questions/ask] and your general questions on FIWARE Q&A [https://ask.fiware.org].
In both cases please use the tag fiware-health

Top

License

(c) 2015 Telefónica I+D, Apache License 2.0

Top

 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	FIWARE-GlanceSync: Glancesync

Index

 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		FIWARE-GlanceSync: Glancesync »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.3.5.

_static/down.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

