
FITS Documentation
Release 1.3.3

Tal Zinger

Jun 22, 2023

Contents

1 Before you start 3

2 Using FITS 11

i

ii

FITS Documentation, Release 1.3.3

FITS (Flexible Inference from Time-Series data) is described in a paper published in Virus Evolution:

Tal Zinger, Maoz Gelbart, Danielle Miller, Pleuni S Pennings, Adi Stern, Inferring population genetics parameters
of evolving viruses using time-series data, Virus Evolution, Volume 5, Issue 1, January 2019, vez011, https://doi.
org/10.1093/ve/vez011

FITS comes in two distributions:

• Graphical user interface (GUI) distribution for Windows and MacOS

• Command line interface (CLI) distribution for Linux, Windows and MacOS

Contents 1

https://doi.org/10.1093/ve/vez011
https://doi.org/10.1093/ve/vez011

FITS Documentation, Release 1.3.3

2 Contents

CHAPTER 1

Before you start

1.1 Downloading and installing FITS

FITS is ready to run out of the box (i.e. provided as pre-compiled binaries) for Windows, macOS and Linux. All
versions are available at https://github.com/SternLabTAU/FITS/releases.

The command line version (CLI) is identified by file names beginning with fits**X.X.X, and the graphical version
(**GUI) is identified by file names beginning with **fits_gui**X.X.X (X.X.X being the version of FITS).

Download the appropriate archive (e.g. fits_gui1.3.3_MacOS.tar.gz for the GUI version compiled under MacOS), and
extract all files from the archive to a folder of your choice.

Windows: Right-click on the downloaded archive, and choose “Extract all”. Choose a target folder, and press the
“extract” button, then “finish”. For the CLI - open a command prompt window and cd to the created folder, then
run fits. For the GUI - simply run fits_gui.exe. Depending on your security settings, Windows may warn you that
fits_gui.exe can’t be run because it is from an unidentified developer. Choose to run it anyway. FITS should now be
fully operable.

Mac: Double-click on the downloaded archive within Finder. Archive Utility should create a folder with a name
matching the archive (e.g. fits_gui1.3.3_MacOS for fits_gui1.3.3_MacOS.tar.gz). For the CLI - open a Terminal
window and cd to the created folder, then run fits. For the GUI - run fits_gui.app. Depending on your security settings,
macOS may warn you that “fits_gui.app can’t be opened because it is from an unidentified developer”. To override
this warning, go to System Preferences Security & Privacy General and press the “Open Anyway” button, the “Open”.
FITS should now be fully operable.

Linux: For the CLI - Extract the downloaded archive, and run ./fits. Because FITS for Linux open a command prompt
window and cd to the created folder, then run fits. If you get a error saying “GLIBCXX was not found”, you will need
to compile it from source on your system (see below).

1.2 Compiling from source

The most recent version of FITS is available here. In order to compile, FITS requires the Boost library 1.69 and
a C++11 supporting compiler. We used gcc 8.2 on Linux (Centos), Clang provided with Xcode9 on MacOS (High

3

https://github.com/SternLabTAU/FITS/releases
https://github.com/SternLabTAU/FITS/releases/latest
https://www.boost.org/users/history/version_1_69_0.html

FITS Documentation, Release 1.3.3

Sierra) and MinGW provided with Qt 5.12 on Windows 10 & 7.

Note: Before you start, make sure GCC is in the PATH.

1.2.1 Compiling the command line interface

1. Download and extract the Boost library 1.69 to a convenient location.

2. Compile all *.cpp files, referring the compiler to the Boost libraries, e.g.: g++ -std=c++11 -O3 -o
fits1.3.2 -I/path/to/boost/ -L/path/to/boost/libs *.cpp

(here we tell gcc to use c++11 standard, use optimization (-O3) and name the output file (-o) fits1.3.2).

3. Run FITS with no command line arguments to get the help text

4. Run FITS with the proper syntax (see Using the command line interface) in order to generate data or infer the
required parameter

1.2.2 Compiling the graphical user interface

In order to compile the GUI, you will need (in addition to Boost) the Qt framework, along with Qt Creator. Both are
available in open source license here.

Note: When installing the Qt framework, make sure you also install the included MinGW compiler.

1. Extract the source code zip folder in your favorite location.

2. Open Qt Creator.

3. Click File>Open file or project and locate the project file (fits_gui.pro)

4. Within the project file, replace placeholder text next to __INCLUDEPATH__ with the path to the boost library

5. Click “fits_gui” in the left toolbox and make sure the configuration is set to Release.

6. Click Build>Build All. After build completion, FITS executable will be found in the Build directory (you can
see where it is under Projects>Build directory that is available from the left toolbar.

7. Move fits_gui.exe to a new folder. Open the console and navigate to that folder.

8. • For windows: Locate windeployqt.exe under bin directory in the Qt installation folder. Run winde-
ployqt.exe with fits_gui.exe as its sole argument: path/to/windeployqt.exe fits_gui.exe.

• For MacOS: Locate macdeployqt.exe under bin directory in the Qt installation folder. Run macdeployqt
with fits_gui as its sole argument: path/to/macdeployqt fits_gui.

1.3 FITS input

FITS requires two types of input: Data file and Parameters file.

4 Chapter 1. Before you start

https://www.boost.org/users/history/version_1_69_0.html
https://www.qt.io/download

FITS Documentation, Release 1.3.3

1.3.1 Data file

This file is expected to hold observed allele information from the system under study. FITS expects a tab-delimited
textual file, with following columns:

1. gen for the generation of the observation

2. allele for the observed state

3. freq for the measured frequency for that state

Note: FITS assumes the columns to appear in the above order.

Note: The allele with the highest frequency at the first available time point will be defined as WT (w=1).

You can also download an example.

Note: For each generation, the sum of frequencies for the different alleles should be 1.

Note: FITS accepts allele frequencies at a given loci. Sequencing techniques tend to vary in their accuracy, so
sometimes the provided allele frequencies may be inaccurate. If using inaccurate input, FITS inferences may be
inaccurate as well. Specific examples include:

1. Inference of fitness of highly deleterious mutations where the accuracy threshold of sequencing is worse than
the mutation rate.

2. Inference of mutation rate from neutral alleles when the number of generations X the mutation rate is lower than
the accuracy threshold of the sequencing.

3. Inference of mutation rate or fitness when very shallow sequencing is available (due to limited sampling or
limited sequence coverage).

1.3.2 Parameters file

This file provides FITS with population genetics parameters information of the system under study. Each line in this
file represents a different parameter to set, where a space exists between the name of the parameter and its value:
<parameter_name> <parameter value>.

Note: If you want to put comments within the parameters file, just add # at the beginning of the comments’ lines.

You can also download an example.

1.3. FITS input 5

FITS Documentation, Release 1.3.3

General parameters

Parameter
name

Type Description

N Inte-
ger

Size of population

sample_size Inte-
ger

Size of observed population (e.g., sequenced genomes)

bottleneck_size Inte-
ger

Size of the population transferred on a bottleneck event

bottle-
neck_interval*

Inte-
ger

Number of generations separating between bottleneck events (default: 0)

num_alleles Inte-
ger

Number of alleles observed in all loci

muta-
tion_rateX_Y

Float Rate of mutation of allele X to allele Y. Not required if mutation rate is to be inferred

fitness_alleleX Float Fitness value assigned to allele X. Not required if fitness is to be inferred
logistic_growth* Float 1: model the population growth throughout the generations with a logistic growth

model (default: 0)
logis-
tic_growth_K

Float Logistic model - upper bound

logis-
tic_growth_r

Float Logistic model - proportionality constant

*parameter value of 0 means disabled/off; positive values mean enabled/on.

ABC parameters

Parameter name Type Description
num_samples_from_prior Integer How many simulations to perform
acceptance_rate Float Fraction of best simulations to utilize for the inference of the parameter.

Single simulation

Parameter name Type Description
num_generations Integer Number of generations to simulate
init_freq_alleleX Float Initial frequency of allele X

6 Chapter 1. Before you start

FITS Documentation, Release 1.3.3

Fitness inference parameters

Parameter name Type Description
fitness_prior Text

One of the following:
uniform (for Uniform distribution)
log_normal (based on Bons et al.
2018)
fitness_composite
smoothed_composite (default)
See the distribution of the above
priors on a (0,2) fitness here

min_fitness_alleleX Float The minimum fitness value (inclu-
sive) that may be assigned to allele
X

max_fitness_alleleX Float The maximum fitness value (exclu-
sive) that may be assigned to allele
X

Mutation rate inference parameters

X and Y are alleles defined in the data file (i.e., 0 and 1).

Parameter name Type Description
min_log_mutation_rateX_Y Float Minimum (inclusive) 𝑛 for mutation rate 10𝑛 from alleleX to allele Y
max_log_mutation_rateX_Y Float Maximum (exclusive) 𝑛 for mutation rate 10𝑛 from alleleX to allele Y

Population size inference parameters

Parameter name Type Description
Nlog_min Float Minimum (inclusive) exponent 𝑛 for population size 10𝑛

Nlog_max Float Maximum (exclusive) exponent 𝑛 for population size 10𝑛

1.4 FITS output

1.4.1 General

FITS infers population genetics parameters using the Approximate Bayesian Computation (ABC) method. The output
of this method is a distribution of values that explain the observed allele frequencies with the highest probabilities
(also called the posterior distribution). A common practice is to take the median of this distribution as the inferred
value of the parameter under study.

The results below are outputted for all inferences.

1.4. FITS output 7

https://doi.org/10.1093/ve/vey029
https://doi.org/10.1093/ve/vey029
_static/priors.png

FITS Documentation, Release 1.3.3

Result header Description
median

The median value of the posterior distribution.

MAD Median Absolute Deviation index (MAD) of the poste-
rior distribution.

min The minimum value in the posterior distribution.
max the maximum value in the posterior distribution.
pval

The result of a Levene’s test,
comparing between the prior and posterior
distributions.
Successful inference process should yield a posterior
distribution
that is significantly different from the prior.

Note: If the p-value for Levene’s test is not significant (>=0.05) or Nµ is small (<1), FITS will mark the relevant line
in the results with an asterisk (*). This result is considered unreliable.

1.4.2 Fitness inference results

In addition to the General reported values, in fitness inference more data are available:

Result
header

Description

allele The allele for which the results are reported
DEL(%) The proportion of the posterior distribution with values below 1.
NEU(%) The proportion of the posterior distribution with values equal to 1.
ADV(%) The proportion of the posterior distribution with values above 1.
category A possible classification of the allele into {LETHAL,DEL,NEU,ADV}, based on the inferred

fitness value.

Note: Some fitness priors rarely choose the exact value of 1 and therefore NEU(%) will approach zero, even for
neutral alleles.

1.4.3 Mutation rate inference results

FITS infers the mutation rates between all defined alleles. Accordingly, the output table contains the target allele in
the first row and the source allele in the first column.

Note: In Evolve & Resequence (E&R) studies, when the population is homogeneous at first generation, in the absence
of more information the inference of the rates between the minor allele to the major will be insignificant, so the pval
should be taken into account.

8 Chapter 1. Before you start

https://en.wikipedia.org/wiki/Median_absolute_deviation
_static/priors.png

FITS Documentation, Release 1.3.3

1.4.4 Population size inference results

See the General inference results.

1.4. FITS output 9

FITS Documentation, Release 1.3.3

10 Chapter 1. Before you start

CHAPTER 2

Using FITS

2.1 Using the graphical interface

Note: On Windows, please extract all files from the downloaded archive, and only then run the (extracted) executable.
Running the program directly from the compressed archive will not work.

After opening FITS, the following screen will be visible:

Click the Browse... button near the Parameters label to load a parameters file (example Parameters file).

Note: The loaded parameters may be viewed using the View button.

From the given parameters, FITS will automatically identify the possible inference mode (in the example below,
Fitness inference mode).

To load the data file, click Browse... near the Data label just below the Parameters label. Locate and select
the Data file.

Note: FITS expects the data file to be tab-delimited. If using Office Excel, save your worksheet as tab delimited
file. Verify the content and the format of the file if FITS fails to run.

Within the Actions area, FITS will automatically suggest available actions according to the parameters available in
the parameters file. Press Go! to perform the selected action. FITS will show a progress bar and estimated time to
completion.

The inference results are given in the Output area. It may be copied to the clipboard (for example, to be pasted into
a spreadsheet). Inference output, prior and posterior distributions may be exported to text files.

The inference results are explained in the FITS output page.

11

FITS Documentation, Release 1.3.3

Fig. 1: FITS main screen.

12 Chapter 2. Using FITS

FITS Documentation, Release 1.3.3

Fig. 2: FITS after making an inference.

2.1. Using the graphical interface 13

FITS Documentation, Release 1.3.3

2.2 Using the command line interface

Running fits with no parameters prints the help screen to the console, listing possible usage syntaxes. For fitness
inference, as an example, the syntax is:

fits -fitness <param_file> <actual_data_file> <posterior_file> <summary_file>
→˓(optional: <prior_file>)

2.3 Use cases

2.3.1 Fitness inference

In Evolve & Resequence (E&R) studies, a population is grown for a period of time under a given condition and
sampled at several time points. The frequencies of genetic variants or phenotypes for the different time points are
measured, and we’d like to infer the fitness that is associated with each specific variant (or phenotype). An example
for such frequency data, sampled for 15 generations and determined for frequency is described here:

The size of the population is estimated to be 100,000. Therefore the parameter N 100000 was set.

The mutation rate is estimated to 1:100,000 (or 10-5). Therefore the parameter mutation_rate0_1 1e-05 was
set.

We expect the fitness values of the phenomena to be between 0 (the minimum possible fitness value) and 2 (very
adaptive fitness). Therefore the parameter min_fitness_allele1 0.0 was set, to indicate zero minimal
expected fitness and max_fitness_allele1 2.0 as well, to indicate the maximal possible fitness value of two.

The prior we chose for this analysis was smoothed_composite, a prior that is built towards typical fitness landscapes.
Therefore the parameter fitness_prior smoothed_composite was set.

We want the ABC framework to perform 100,000 simulations, and accept the fitness value from the best 1,000
simulations. Therefore the parameter num_samples_from_prior 100000 was set, to indicate 100,000
simulations, and the parameter acceptance_rate 0.01 was set, to indicate that the top 1% simulations will be
used to decide on the fitness value of this allele.

The data file for a simulated neutral allele (fitness of 1) under a populations size of 105 and a mutation rate of 10-5 is
available here. The corresponding parameters file is available here.

The inferred fitness value by FITS was practically 1:

2.3.2 Mutation rate inference

A common problem is the inference of the rates of mutations between two (or more) alleles. FITS supports such
inference by harnessing prior knowledge about the fitness of the mutant allele(s) (say, from competition essay) and
and the size of the population. A particular example for a case where such inference can be highly accurate is the
usage of frequencies of multiple positions with equal fitness. In many biological entities synonyomus mutations

14 Chapter 2. Using FITS

FITS Documentation, Release 1.3.3

Fig. 3: FITS inferred a fitness value of 1.004 for a simulated neutral allele.

2.3. Use cases 15

FITS Documentation, Release 1.3.3

approach neutrality and therefore may be used for mutation rate inference. In this example we’ll highlight how this
can be done. We simulated 10 independent loci using fitness value of 1, population size of 100,000 and mutation rate
of 10-5 and measured their frequencies for 15 generations.

The minimum and maximum considerable mutations rates should be provided within the parameters file, using the
log value. For this example, we use considerable mutation rates between 10-7 and 10-3, which will be defined
between the wildtype allele (0) and the mutant allele (1) and vice-versa. For providing the minimal log mutation rate
between the wildtype allele and the mutant we set min_log_mutation_rate0_1 -7 and its reciprocal
min_log_mutation_rate1_0 -7. For providing the maximal log mutation rate between the wildtype allele
and the mutant we set max_log_mutation_rate0_1 -3 and its reciprocal max_log_mutation_rate1_0
-3.

We used neutral alleles and therefore set the wildtype and mutant alleles’ fitness to be one: fitness_allele0
1.0 and fitness_allele1 1.0.

The data file for simulated neutral alleles (fitness of 1) under a populations size of 105 and a mutation rate of 10-5 is
available here. The corresponding parameters file is available here.

Fig. 4: FITS inferred 0 → 1 mutation rate of 8.67*10-6, and 1 → 0 mutation rate of 1.15*10-5.

16 Chapter 2. Using FITS

FITS Documentation, Release 1.3.3

2.3.3 Population size inference

If the mutation rates are known and the fitness of the measured allele is known, then the population size parameter
may be inferred. Similar to the mutation rate inference, this can be performed by using frequency data from several
loci that has the same fitness values. Here we simulated 10 neutral positions for 15 generations, using a population
size of 100,000 and a mutation rate of 10-5.

Our prior knowledge suggests that the population size may be in the range between 104 and 107. We therefore set the
parameter Nlog_min 4 to indicate minimum population size of 104. We also set the parameter Nlog_max 7 to
indicate the maximum population size of 107.

Our prior knowledge also suggests that the alleles we measured are neutral, and therefore we set the wildtype and
mutant alleles to have a fitness of 1: fitness_allele0 1.0 and fitness_allele1 1.0.

Other parameters such as mutation rates, number of simulations and the sampling rate are similar to the Fitness
inference example. The example data file is available here. The corresponding parameters file is available here.

Fig. 5: FITS inferred a population size of 5.18*105.

2.3. Use cases 17

FITS Documentation, Release 1.3.3

2.3.4 Trajectory simulations

Sometimes, we wish to have frequency data generated. Since simulations are a cornerstone on which FITS is relying
on, it is possible to ask the framework to perform simulations of frequencies for given mutation rates, population size
and fitness value.

In order to do so, we need to provide these three parameters as described in previous examples. For this example,
we’ll use a mutation rate of 10-3, a fitness of 1.02 and a population size of 105.

We wish to simulate two alleles only. We therefore set num_alleles 2 to indicate two alleles.

We set for the two alleles the fitness values of 1 for the wildtype and 1.02 for the mutant: fitness_allele0
1.0 and fitness_allele1 1.02.

We set the corresponding (equal) mutation rates: mutation_rate0_1 0.001 and mutation_rate1_0
0.001.

The population size is set by defining N 100000.

The last two things to consider are the frequency of the alleles in the beginning of the simulation, and the number of
generations to simulate. Here we will assume that the wildtype allele is fixated for the beginning of the simulation.
We’ll therefore set init_freq_allele0 1 and init_freq_allele1 0. To control for the number of
generations (100 in our example) we set num_generations 100.

Note: There’s no need to load a Data file in order to perform the simulations.

2.3.5 Considering Sample Effect

Population bottlenecks are common during any evolutionary scenario, whether in vivo or in vitro in experimental
populations. In particular during serial passaging, only a fraction of the progeny will be carried on to the next
passage. An additional layer of sampling also exists: the number of genomes that are sampled to be sequenced may
often be much smaller than the population size itself. FITS can account for both of these types of sampling effects by
using the following three parameters: bottleneck_size, bottleneck_interval and sample_size , as
illustrated below:

18 Chapter 2. Using FITS

FITS Documentation, Release 1.3.3

Fig. 6: Simulation results are available in the Output area.

2.3. Use cases 19

	Before you start
	Using FITS

