
Fiole Documentation
Release 0.4.1

Florent Xicluna

July 03, 2014

Contents

1 Overview 3
1.1 Quickstart . 3
1.2 Next steps . 4

2 Routing requests 5
2.1 Decorators . 5
2.2 Dynamic routes . 5
2.3 Hooks . 6
2.4 Helpers . 7

3 Build templates 9
3.1 Template loading . 10
3.2 Inline expressions . 10
3.3 Directives . 12
3.4 Python code . 13
3.5 Restrictions . 14

4 Fiole API 17
4.1 Decorators . 17
4.2 Helpers . 17
4.3 WSGI application . 18
4.4 Template engine . 21

5 Developer’s notes 25
5.1 Frequently asked questions . 25
5.2 Source code . 27
5.3 Changes . 27

6 Indices and tables 29

7 Credits 31

8 License 33

Python Module Index 35

i

ii

Fiole Documentation, Release 0.4.1

Contents:

Contents 1

Fiole Documentation, Release 0.4.1

2 Contents

CHAPTER 1

Overview

fiole.py is a WSGI micro-framework with the following development constraints:

• Single file, no external dependency

• Provide enough features to build a web application with minimal effort

• Embed a compact template engine

• Keep the module reasonably small

Main features:

• Routing

• Methods GET/HEAD/POST/PUT/DELETE

• Error handlers

• File uploads (Request.POST)

• Static files

• Fast template engine

• Secure cookies (Request.get_cookie(), Response.set_cookie(), ...)

Disclaimer: this framework is intentionally limited. If you need a robust and scalable solution, look elsewhere.

Link to the PyPI page: https://pypi.python.org/pypi/fiole

Tested against: Python 2.7, PyPy 2.2 and Python >= 3.2

1.1 Quickstart

Either download the single file fiole.py and save it in your project directory, or pip install fiole, prefer-
ably in a virtualenv.

Create an application and save it with name hello.py:

from fiole import get, run_fiole

@get(’/’)
def index(request):

return ’Hello World!’

3

https://pypi.python.org/pypi/fiole

Fiole Documentation, Release 0.4.1

run_fiole()

Then run this example (default port 8080) with:

python hello.py

or (on port 4000 for example):

python fiole.py -p 4000 hello
(or)
python -m fiole -p 4000 hello

1.2 Next steps

Clone the examples and run the demo:

git clone git://github.com/florentx/fiole.git
cd fiole/
python fiole.py examples

Open your browser and navigate through the examples: http://127.0.0.1:8080

Read the documentation about Routing requests and Build templates.

Some features are not yet covered in the documentation:

• sending and receiving cookies

• adding custom HTTP headers

• stacking multiple applications

• serving through a third-party WSGI server (gevent, ...)

Look at the Fiole API for some crispy details.

Read the documentation of Flask and Bottle for more information about web development in general.

4 Chapter 1. Overview

https://github.com/florentx/fiole
http://127.0.0.1:8080
http://flask.pocoo.org/docs/
http://bottlepy.org/docs/dev/

CHAPTER 2

Routing requests

2.1 Decorators

Declare the routes of your application using the Fiole decorators.

Example:

@route(’/about’)
def about(request):

return "About Fiole sample application"

@get(’/home’)
def home(request):

return "Sweet"

Both route() and get() declare a route for the GET (and HEAD) methods. The other decorators are post(),
put() and delete().

The route() decorator supports an extended syntax to match multiple methods to the same function:

@route(’/api’, methods=(’GET’, ’HEAD’, ’POST’))
def multi(request):

return "Received %s %s" % (request.method, request.path)

It is also available as a plain function:

def say_hi(request):
return "Hi"

route(’/welcome’, methods=(’GET’, ’HEAD’), callback=say_hi)
route(’/ciao’, methods=(’GET’, ’HEAD’), callback=say_hi)

2.2 Dynamic routes

Two different syntaxes are supported.

Easy syntax

The simple syntax for URL pattern is like "/hello/<name>". The placeholder matches a non-empty path element
(excluding "/"):

5

Fiole Documentation, Release 0.4.1

@get(’/’)
@get(’/hello/<name>’)
def ciao(request, name=’Stranger’):

return render_template(’Hello {{name}}!’, name=name)

Regex syntax

The advanced syntax is regex-based. The variables are extracted from the named groups of the regular expression:
(?P<name>...). See Regular Expressions for the full syntax. The unnamed groups are ignored. The initial ^ and
the final $ chars should be omitted: they are automatically added when the route is registered.

The pattern parser switches to the advanced syntax when an extension notation is detected: (?.

Example:

@get(r’/api/(?P<action>[^:]+):?(?P<params>.*)’)
def call_api(request, action, params):

if action == ’view’:
return "Params received {0}".format(params)

raise NotFound("This action is not supported")

2.3 Hooks

There’s a flexible way to define extensions for Fiole: you can register hooks which will be executed for each request.
For example you can setup a database connection before each request, and release the connection after the request.

A dumb no-op hook looks like:

app = get_app()

@app.hooks.append
def noop_hook(request):

acquire the resource
...
try:

pre-process the Request
...
response = yield
post-process the Response
...
yield response

finally:
release the resource
pass

This example setup a database connection:

@app.hooks.append
def hook_db(request):

request.db = connect_db()
try:

forward the response unchanged
yield (yield)

finally:
request.db.close()

6 Chapter 2. Routing requests

http://docs.python.org/2/library/re

Fiole Documentation, Release 0.4.1

2.4 Helpers

Redirect a request:

@get(’/test_redirect’)
def test_redirect(request):

raise Redirect(’/hello’)

Return an error page:

@get(’/test_404’)
def test_404(request):

raise NotFound(’Not here, sorry.’)

Register a different error page:

template_404 = get_template("error404.tmpl")

@errorhandler(404)
def not_found(request):

return template_404.render(request)

Send static files:

get_app().static_folder = "/path/to/public/directory"

@get(’/static/(?P<path>.+)’)
def download(request, path):

return send_file(request, path)

2.4. Helpers 7

Fiole Documentation, Release 0.4.1

8 Chapter 2. Routing requests

CHAPTER 3

Build templates

Parts of this page are converted from the wheezy.template documentation. Thank you to the author. (akorn)

Fiole comes with a decent template engine. It supports the usual features of well known engines (Mako, Jinja2).
The engine is derived from the wonderful wheezy.template package. It retains the same design goals:

• intuitive, use the full power of Python

• inherit your templates (%extends, %include and %import)

• stay blazingly fast.

In a nutshell, the syntax looks as simple as Bottle SimpleTemplate:

• {{ ... }} executes the enclosed expression and inserts the result.

• Use the |e filter to convert any of & < > " ’ to HTML-safe sequences.

• Switch to auto-escaping with fiole.engine.default_filters = [’e’] and use |n to disable es-
caping (and default filters) for an expression.

• A single percent % at the beginning of the line identifies a template directive or Python code. (except if it is
repeated: %%)

• Spaces and indentation around the % special char are ignored.

• A backslash \ at the end of a line will skip the line ending.

Simple template:

%require(user, items)
Welcome, {{user.name}}!
%if items:

%for i in items:
{{i.name}}: {{i.price}}.

%endfor
%else:

No item found.
%endif

9

http://wheezytemplate.readthedocs.org/en/latest/
http://mindref.blogspot.ch/2012/07/python-fastest-template.html
http://bottlepy.org/docs/dev/stpl.html

Fiole Documentation, Release 0.4.1

• Template loading
• Inline expressions

– Variables
– Filters

• Directives
– Inheritance
– Include
– Import

• Python code
– Line Statements
– Line Comments
– Line Join

• Restrictions

3.1 Template loading

This is a basic example for a route mapped to a template:

@get(’/’)
@get(’/hello/<name>’)
def hello(request, name=None):

return render_template(
source=’Hello {{party.title() if party else "stranger"}}!’, party=name)

In this case the template is not cached. It is built again for each request.

In order to activate the cache, the string template should be assigned to a name. The previous example becomes:

Preload the cache
get_template(’hello_tpl’,

source="""Hello {{party.title() if party else "stranger"}}!""",
require=[’party’])

@get(’/’)
@get(’/hello/<name>’)
def hello(request, name=None):

return render_template(’hello_tpl’, party=name)

Templates can be saved to files in the ./templates/ folder of the project. Then they are loaded by filename and
cached in memory:

@get(’/’)
def index(request):

return render_template(’hello.tmpl’, party=’World’)

3.2 Inline expressions

3.2.1 Variables

The variables which need to be extracted from the context are listed in the require directive. These names become
visible to the end of the template scope (a template is like a Python function). The application passes variables to the
template via context:

10 Chapter 3. Build templates

Fiole Documentation, Release 0.4.1

%require(var1, var2)

{{ var1 }} ... {{ var2 }}

For string templates, you can declare the variables using the require keyword argument:

>>> hello_tmpl = get_template(source=’Hello {{ party.capitalize() }}!’, require=[’party’])
>>> hello_tmpl.render(party=’WORLD’)
u’Hello World!’
>>> hello_tmpl.render({’party’: ’world’})
u’Hello World!’

This declaration is omitted when rendering the string directly:

>>> render_template(source=’Hello {{party}}!’, party=’World’)
u’Hello World!’
>>> #
>>> render_template(source=’Hello {{ party.capitalize() }}!’, party=’world’)
u’Hello World!’

Variable syntax is not limited to a single name access. You are able to use the full power of Python to access items in
dictionary, attributes, function calls, etc...

3.2.2 Filters

Variables can be formatted by filters. Filters are separated from the variable by the | symbol. Filter syntax:

{{ variable_name|filter1|filter2 }}

The filters are applied from left to right so above syntax is equivalent to the following call:

{{ filter2(filter1(variable_name)) }}

The built-in filter |e converts any of & < > " ’ to HTML-safe sequences & < > "
'.

You can define and use custom filters. Here is an example how to switch to a different implementation for the html
escape filter:

try:
from webext import escape_html
engine.global_vars[’escape’] = escape_html

except ImportError:
pass

It tries to import an optimized version of html escape from the Webext package and assigns it to the escape global
variable, which is aliased as e filter. The built-in escape is pure Python.

An example which demonstrates the standard |e filter:

>>> render_template(’This: {{ data | e }}’, data=’"Hello small\’ <i>World!<i>" ... & farther’)
u’This: "Hello small' <i>World!<i>" ... & farther’

You can enable auto-escaping by default, then use |n as the last filter to bypass the default filters:

>>> engine.default_filters = [’e’]
>>> render_template(source=’Hello {{ party.capitalize() }}’,
... party=’<script src="evil" />’)
u’Hello <script src="evil" />’

3.2. Inline expressions 11

https://pypi.python.org/pypi/Webext

Fiole Documentation, Release 0.4.1

>>> render_template(source=’Hello {{ party | n }}’,
... party=’World’)
u’Hello World’

You are able to use engine Engine.global_vars dictionary in order to simplify your template access to some
commonly used variables.

3.3 Directives

Any line starting with a single % contains either a template directive or Python code. Following directives are sup-
ported:

• %extends("layout.tmpl"): Tell which master template should be extended to generate the current doc-
ument. This should be the first line.

• %require(firstname, lastname): Declare the variables which are expected when rendering the tem-
plate.

• %include("footer.html"): Render the template and insert the output just here.

• %import "widgets.tmpl" as widgets: Import reusable helpers from another template.

• %from "toolbox.tmpl" import popup: Import a function from the other template.

• %def: Define a Python function (used for inheritance: %extends or %import).

• %end or %enddef: End the Python function definition.

3.3.1 Inheritance

Template inheritance (%extends) allows to build a master template that contains common layout of your site and
defines areas that child templates can override.

Master Template

Master template is used to provide common layout of your site. Let define master template (filename
shared/master.html):

<html>
<head>
<title>
%def title():
%enddef
{{title()}} - My Site</title>

</head>
<body>
<div id="content">

%def content():
%enddef
{{content()}}

</div>
<div id="footer">

%def footer():
© Copyright 2014 by Him.
%enddef
{{footer()}}

12 Chapter 3. Build templates

Fiole Documentation, Release 0.4.1

</div>
</body>

</html>

In this example, the %def tags define python functions (substitution areas). These functions are inserted into specific
places (right after definition). These places become placeholders for child templates. The %footer placeholder
defines default content while %title and %content are just empty.

Child Template

Child templates are used to extend master templates via placeholders defined:

%extends("shared/master.html")

%def title():
Welcome

%enddef

%def content():
<h1>Home</h1>
<p>
Welcome to My Site!

</p>
%enddef

In this example, the %title and %content placeholders are overriden by the child template.

3.3.2 Include

The include is useful to insert a template content just in place of call:

%include("shared/snippet/script.html")

3.3.3 Import

The import is used to reuse some code stored in other files. So you are able to import all functions defined by that
template:

%import "shared/forms.html" as forms

{{ forms.textbox(’username’) }}

or just a certain name:

%from "shared/forms.html" import textbox

{{ textbox(name=’username’) }}

Once imported you use these names as variables in the template.

3.4 Python code

Any line starting with a single % and which is not recognized as a directive is actual Python code. Its content is copied
to the generated source code.

3.4. Python code 13

Fiole Documentation, Release 0.4.1

3.4.1 Line Statements

The %import and %from lines can be either directives or Python commands, depending on their arguments.

In addition to the special %def, all kinds of Python blocks are supported. The indentation is not significant, blocks
must be ended explicitly.

• %for, %if, %elif, %else, %while: loops and conditionals

• %try, %except, %else, %finally: exception handlers

• %end identifies the end of the inner block. It is recommended to use the specific %endfor, %endif,
%endwhile or %endtry directive, even if this rule is not strictly enforced

• for completeness %class/%endclass and %with/%endwith are also supported

The empty %return directive triggers an early return in the template. The code execution is stopped and the generated
content is returned.

Here is a simple example:

%require(items)
%if items:
%for i in items:
{{i.name}}: {{i.price}}.

%endfor
%else:
No items found.

%endif

3.4.2 Line Comments

Only single line comments are supported.

The %# directive introduces a one-line comment. Comments are removed before the template is compiled.

%# TODO:

3.4.3 Line Join

In case you need to continue a long line without breaking it with new line during rendering use line join (\):

%if menu_name == active:
<li class=’active’> \

%else:
 \

%endif

3.5 Restrictions

The line after the %def directive must not enter a new block (%for, %if, etc...). A workaround is to insert an empty
comment line before opening the block.

The variables used in the template should be declared, either with a %require directive (recommended for tem-
plates loaded from the filesystem), or passed as keyword argument (require=["nav", "body"]) when prepar-
ing the template (recommended for string templates). When using the render_template() function with a

14 Chapter 3. Build templates

Fiole Documentation, Release 0.4.1

(source="...") keyword argument, the declaration %require is automatically generated based on the names
of the other keyword arguments passed to the function.

These features are not supported (among others):

• code blocks: as an alternative, prepend a % on each line

• multi-line comments: prepend %# on each line

3.5. Restrictions 15

Fiole Documentation, Release 0.4.1

16 Chapter 3. Build templates

CHAPTER 4

Fiole API

4.1 Decorators

fiole.route(url, methods=(‘GET’, ‘HEAD’), callback=None, status=200)
Register a method for processing requests.

fiole.get(url)
Register a method as capable of processing GET/HEAD requests.

fiole.post(url)
Register a method as capable of processing POST requests.

fiole.put(url)
Register a method as capable of processing PUT requests.

fiole.delete(url)
Register a method as capable of processing DELETE requests.

fiole.errorhandler(code)
Register a method for processing errors of a certain HTTP code.

4.2 Helpers

fiole.send_file(request, filename, root=None, content_type=None, buffer_size=65536)
Fetch a static file from the filesystem.

fiole.get_template(name=None, source=None, require=None)
Return a compiled template.

fiole.render_template(template_name=None, source=None, **context)
Render a template with values of the context dictionary.

fiole.engine
Default instance of the Template Engine.

fiole.default_app
Default Fiole application.

fiole.get_app()
Get the Fiole application which is on the top of the stack.

fiole.run_wsgiref(host, port, handler)
Simple HTTPServer that supports WSGI.

17

Fiole Documentation, Release 0.4.1

fiole.run_fiole(app=default_app, server=run_wsgiref, host=None, port=None)
Run the Fiole web server.

4.3 WSGI application

class fiole.Fiole
Web Application.

classmethod push(app=None)
Push a new Fiole application on the stack.

classmethod pop(index=-1)
Remove the Fiole application from the stack.

debug
Enable debugging: don’t catch internal server errors (500) and unhandled exceptions. (default: False)

secret_key
Secret key used to sign secure cookies. (default: unset)

static_folder
Directory where static files are located. (default: ./static)

hooks
List of Hooks which are registered for this application.

handle_request(environ, start_response)
The main handler. Dispatch to the user’s code.

handle_error(exception, environ, level=0)
Deal with the exception and present an error page.

find_matching_url(request)
Search through the methods registered.

route(url, methods=(‘GET’, ‘HEAD’), callback=None, status=200)
Register a method for processing requests.

get(url)
Register a method as capable of processing GET/HEAD requests.

post(url)
Register a method as capable of processing POST requests.

put(url)
Register a method as capable of processing PUT requests.

delete(url)
Register a method as capable of processing DELETE requests.

errorhandler(code)
Register a method for processing errors of a certain HTTP code.

encode_signed(name, value)
Return a signed string with timestamp.

decode_signed(name, value, max_age_days=31)
Decode a signed string with timestamp or return None.

send_file(request, filename, root=None, content_type=None, buffer_size=65536)
Fetch a static file from the filesystem.

18 Chapter 4. Fiole API

Fiole Documentation, Release 0.4.1

class fiole.Request(environ)
An object to wrap the environ bits in a friendlier way.

Environment variables are also accessible through Request attributes.

environ
Dictionary of environment variables

path
Path of the request, decoded and with / appended.

method
HTTP method (GET, POST, PUT, ...).

query
Read QUERY_STRING from the environment.

script_name
Read SCRIPT_NAME from the environment.

host_url
Build host URL.

headers
An instance of EnvironHeaders which wraps HTTP headers.

content_length
Header "Content-Length" of the request as integer or 0.

accept
Header "Accept" of the request. Return an Accept instance.

accept_charset
Header "Accept-Charset" of the request. Return an Accept instance.

accept_encoding
Header "Accept-Encoding" of the request. Return an Accept instance.

accept_language
Header "Accept-Language" of the request. Return an Accept instance.

GET
A dictionary of GET parameters.

POST
A dictionary of POST (or PUT) values, including files.

PUT
A dictionary of POST (or PUT) values, including files.

body
Content of the request.

cookies
A dictionary of Cookie.Morsel objects.

get_cookie(name, default=None)
Get the value of the cookie with the given name, else default.

get_secure_cookie(name, value=None, max_age_days=31)
Return the given signed cookie if it validates, or None.

get_url(path=’‘, full=False)
Build the absolute URL for an application path.

4.3. WSGI application 19

Fiole Documentation, Release 0.4.1

By default it builds the current request URL with leading and trailing / and no query string. The boolean
argument full builds a full URL, incl. host.

class fiole.Response(output, headers=None, status=200, content_type=’text/html’, wrapped=False)

charset = ‘utf-8’

status
Status code of the response as integer (default: 200)

headers
Response headers as HTTPHeaders.

set_cookie(name, value, domain=None, expires=None, path=’/’, expires_days=None, signed=None,
**kwargs)

Set the given cookie name/value with the given options.

clear_cookie(name, path=’/’, domain=None)
Delete the cookie with the given name.

set_secure_cookie(name, value, expires_days=30, **kwargs)
Sign and timestamp a cookie so it cannot be forged.

send(environ, start_response)
Send the headers and return the body of the response.

class fiole.HTTPHeaders(headers=None)
An object that stores some headers.

An instance of HTTPHeaders is an iterable. It yields tuples (header_name, value). Additionally it
provides a dict-like interface to access or change individual headers.

__getitem__(name)
Access the header by name. This method is case-insensitive and the first matching header is returned. It
returns None if the header does not exist.

get(name, default=None)
Return the default value if the header doesn’t exist.

get_all(name)
Return a list of all the values for the header.

add(name, value, **kw)
Add a new header tuple to the list.

set(name, value, **kw)
Remove all header tuples for key and add a new one.

setdefault(name, value)
Add a new header if not present. Return the value.

to_list(charset=’iso-8859-1’)
Convert the headers into a list.

keys()

values()

items()

class fiole.EnvironHeaders(environ)
Headers from a WSGI environment. Read-only view.

20 Chapter 4. Fiole API

Fiole Documentation, Release 0.4.1

__getitem__(name)
Access the header by name. This method is case-insensitive and returns None if the header does not exist.

get(name, default=None)
Return the default value if the header doesn’t exist.

get_all(name)
Return a list of all the values for the header.

keys()

values()

items()

class fiole.Accept(header_name, value)
Represent an Accept-style header.

__contains__(offer)
Return True if the given offer is listed in the accepted types.

quality(offer)
Return the quality of the given offer.

best_match(offers, default_match=None)
Return the best match in the sequence of offered types.

exception fiole.HTTPError(message, hide_traceback=False)
Base exception for HTTP errors.

exception fiole.BadRequest(message, hide_traceback=True)

exception fiole.Forbidden(message, hide_traceback=True)

exception fiole.NotFound(message, hide_traceback=True)

exception fiole.MethodNotAllowed(message, hide_traceback=True)

exception fiole.Redirect(url)
Redirect the user to a different URL.

exception fiole.InternalServerError(message, hide_traceback=False)

4.4 Template engine

class fiole.Engine(loader=None, parser=None, template_class=None)
Assemble the template engine.

global_vars
This mapping contains additional globals which are injected in the generated source. Two special globals
are used internally and must not be modified: _r and _i. The functions str and escape (alias e) are
also added here. They are used as filters. They can be replaced by C extensions for performance (see
Webext). Any object can be added to this registry for usage in the templates, either as function or filter.

default_filters
The list of filters which are applied to all template expressions {{ ... }}. Set to None to remove all
default filters, for performance. (default: [’str’])

clear()
Remove all compiled templates from the internal cache.

4.4. Template engine 21

https://pypi.python.org/pypi/Webext

Fiole Documentation, Release 0.4.1

get_template(name=None, **kwargs)
Return a compiled template.

The optional keyword argument default_filters overrides the setting which is configured on the
Engine.

remove(name)
Remove given name from the internal cache.

import_name(name, **kwargs)
Compile and return a template as module.

class fiole.Template
Simple template class.

name
Name of the template (it can be None).

render(context)
render(**context)

Render the template with these arguments (either a dictionary or keyword arguments).

class fiole.Loader(templates=None)
Load templates.

templates - a dict where key corresponds to template name and value to template content.

template_folder
Directory where template files are located. (default: ./templates)

list_names()
List all keys from internal dict.

load(name, source=None)
Return template by name.

class fiole.Lexer(lexer_rules)
Tokenize input source per rules supplied.

tokenize(source)
Translate source into an iterable of tokens.

class fiole.Parser(token_start=’%’, var_start=’{{‘, var_end=’}}’, line_join=’\’)
Include basic statements, variables processing and markup.

tokenize(source)
Translate source into an iterable of tokens.

end_continue(tokens)
If token is continue prepend it with end token so it simulates a closed block.

parse_iter(tokens)
Process and yield groups of tokens.

class fiole.BlockBuilder(indent=’‘, lineno=0, nodes=(), default_filters=None)

filters = {‘e’: ‘escape’}
A mapping of declared template filters (aliases of globals). This mapping can be extended. The globals
can be extended too, see Engine.global_vars.

rules
A mapping of tokens with list of methods, to generate the source code.

22 Chapter 4. Fiole API

Fiole Documentation, Release 0.4.1

add(lineno, code)
Add Python code to the source.

compile_code(name)
Compile the generated source code.

4.4. Template engine 23

Fiole Documentation, Release 0.4.1

24 Chapter 4. Fiole API

CHAPTER 5

Developer’s notes

5.1 Frequently asked questions

• Another web framework, are you kidding me?
• How much is it extensible?
• How to make my application really fast?
• I need only the template engine, can you release it?

5.1.1 Another web framework, are you kidding me?

Fiole is a new challenger in the category of the Python micro-frameworks. As you probably know, there are very good
competitors in the market and we don’t really need a new one.

Read the introduction for a quick outline of the development guidelines for the Fiole framework.

So, how Fiole is different or similar to the others?

• web.py is the first in the series, created in January 2006 by Aaron Swartz (aaronsw). It has no dependency and
it supports old versions of Python, but it is not compatible with Python 3. It is a whole package and it provides
additional features, while Fiole focuses on the essentials. web.py does not support the decorator syntax,
compared with more recent frameworks.

• itty.py is a single-file micro-framework experiment, released on March 2009. It is the first Sinatra-influenced
Python framework. However, it does not have public tests, and it does not ship a template engine.

• Bottle is a micro-web framework born on July 2009. Fiole is similar to Bottle because it is a single file,
inspired by itty.py, with no dependency. It embeds a template engine, which has a syntax close to Bottle’s
SimpleTemplate. When it comes to the differences, Fiole template engine is faster, and its source code is
smaller and follows the PEP 8 guidelines. On the other side Bottle has more features.

• Flask is the successor of Denied, born on 1st April 2010. It is a great framework with a must-read documentation.
Flask is a package which depends on Werkzeug and Jinja. In contrast with it, Fiole is a single file without
external dependencies and with a lot less documentation and less features. Flask has many extensions.

To sum up:

• Fiole is a single file like itty.py and Bottle

• Fiole has no dependency, same as web.py, itty.py and Bottle

• Fiole embeds a template engine similar to web.py and Bottle

25

http://www.infoworld.com/d/application-development/pillars-python-webpy-web-framework-169072
http://toastdriven.com/blog/2009/mar/07/itty-sinatra-inspired-micro-framework/
http://sinatrarb.com/
http://bottlepy.org/
http://bottlepy.org/docs/dev/stpl.html
http://flask.pocoo.org/
http://lucumr.pocoo.org/2010/4/3/april-1st-post-mortem/
http://flask.pocoo.org/docs/
http://werkzeug.pocoo.org/
http://jinja.pocoo.org/

Fiole Documentation, Release 0.4.1

• Fiole supports the decorator syntax like itty.py, Bottle and Flask

• Fiole supports signed cookies like Flask does

• Fiole source code is PEP8-compliant like itty.py and Flask

• Fiole supports Python 3 like Bottle and Flask

• Fiole supports hooks like Bottle and Flask

• Fiole does not have an extensive documentation like Flask or Bottle

• Fiole does not provide built-in adapters for every WSGI server like itty.py or Bottle

Of course the above comparison is partial and subjective.

5.1.2 How much is it extensible?

Fiole is thread-safe and you can configure more than one application (for complex projects).

Fiole supports hooks which can be registered for each application. Moreover, the components of Fiole are well
thought to allow extensibility. For example the template engine is configurable through attributes, and all the compo-
nents of the template engine can be subclassed easily.

As an alternative, you can use any template engine, such as Jinja or Mako instead of the built-in template engine.
There’s no specific integration between Fiole and the built-in template Engine.

Only the adapter for the wsgiref server is provided. You can write your own adapter for your preferred WSGI
server. There are examples available in Bottle or itty.py source code for example.

5.1.3 How to make my application really fast?

First, I am not an expert about this topic. Still, there are various places where you can improve the performance of
your web application. Some ideas that come to my mind:

• use a reverse proxy (nginx, ...)

• delegate serving static files to the proxy

• enable on-the-fly gzip compression on the proxy

• provide the relevant HTTP headers to enable browser caching

• replace the WSGI server with a scalable WSGI server which supports concurrency

• add server caching

• use load-balancing

• switch to PyPy

The template engine is already very fast. Even so, you can achieve a better performance with small changes:

• disable default_filters and use the |str filter only when needed

• replace the escape filter with a C implementation (e.g. Webext)

However the first thing to do is to benchmark your own application with realistic data in order to know where is the
bottleneck before doing any random optimization.

26 Chapter 5. Developer’s notes

Fiole Documentation, Release 0.4.1

5.1.4 I need only the template engine, can you release it?

Indeed, the template engine has some benefits: it is compact (~450 lines of code) and it is rather intuitive (basically,
it’s Python syntax). It is derived from the wheezy.template package which is very fast.

The template engine can be used to process any kind of text.

The good news is that the template engine is not bound to the web framework. Currently there’s no plan to release
it separately because Fiole is already a very small module and there’s nothing wrong using only one of its two
components: the web framework or the template engine.

5.2 Source code

The source code is available on GitHub under the terms and conditions of the BSD license. Fork away!

The tests are run against Python 2.7, 3.2 to 3.4 and PyPy on the Travis-CI platform.

Project on PyPI: https://pypi.python.org/pypi/fiole

5.3 Changes

5.3.1 0.4.1 (2014-07-03)

• Replace deprecated cgi.escape with a copy of Python 3.4’s html.escape.

5.3.2 0.4 (2014-07-02)

• Add Request.host_url, Request.script_name and Request.get_url(path,
full=False). (Issue #4)

• Add |n filter to disable default filters. (Issue #5)

• Fix caching of Request.accept* headers.

5.3.3 0.3 (2013-06-12)

• Improve the documentation.

• Add the Fiole application to the WSGI environment: environ[’fiole.app’]. (Issue #1)

• Implement parsing of the Accept headers, and add them as dynamic properties of Request: accept,
accept_charset, accept_encoding and accept_language. (Issue #2)

• Replace the global SECRET_KEY with a new attribute of the Fiole application app.secret_key.

• Replace the helpers _create_signed_value and _decode_signed_value with
methods: Fiole.encode_signed() and Fiole.decode_signed(). The method
Response.create_signed_value() is removed too.

• Remove argument secret from the run_fiole function: use get_app().secret_key =
’s3c4e7k3y...’ instead.

• The send_file helper recognizes the If-Modified-Since header and returns “304 Not Modified” ap-
propriately.

5.2. Source code 27

http://wheezytemplate.readthedocs.org/en/latest/
http://mindref.blogspot.ch/2012/07/python-fastest-template.html
https://github.com/florentx/fiole
http://travis-ci.org/florentx/fiole
https://pypi.python.org/pypi/fiole

Fiole Documentation, Release 0.4.1

• Patch the wsgiref.simple_server.ServerHandler to stop sending Content-Length for status
“304 Not Modified”. (This is related to a Python bug)

• Add Fiole.debug boolean flag to let unhandled exceptions propagate.

• Rename helper html_escape to escape_html.

• Add default_filters for the template engine configuration.

• Automatically cast Python objects to Unicode for template rendering. This can be disabled with
engine.default_filters = None.

• Refactor the internals of the template engine. New method Engine.clear() to reset the cache of byte-
compiled templates.

• Support extensibility of the WSGI application with hooks.

5.3.4 0.2 (2013-05-22)

• Initial release.

28 Chapter 5. Developer’s notes

http://bugs.python.org/issue18099

CHAPTER 6

Indices and tables

• genindex

• search

29

Fiole Documentation, Release 0.4.1

30 Chapter 6. Indices and tables

CHAPTER 7

Credits

Project created by Florent Xicluna.

Thank you to Daniel Lindsley (toastdriven) for itty, the itty-bitty web framework which helped me to kick-start the
project.

Thank you to Andriy Kornatskyy (akorn) for his blazingly fast and elegant template library wheezy.template: it is the
inspiration for the template engine of fiole.py.

The following projects were also a great source of ideas:

• Werkzeug (HTTPHeaders and EnvironHeaders datastructures)

• WebOb (parsing the Accept headers)

• Bottle (embedding a simple template engine)

• Jinja2 and Mako (common template engine syntax and features)

31

https://github.com/toastdriven/itty#readme
http://pythonhosted.org/wheezy.template/
http://werkzeug.pocoo.org/
http://docs.webob.org/
http://bottlepy.org/
http://jinja.pocoo.org/
http://www.makotemplates.org/

Fiole Documentation, Release 0.4.1

32 Chapter 7. Credits

CHAPTER 8

License

This software is provided under the terms and conditions of the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
#
* The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT OWNERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

33

Fiole Documentation, Release 0.4.1

34 Chapter 8. License

Python Module Index

f
fiole, 17

35

	Overview
	Quickstart
	Next steps

	Routing requests
	Decorators
	Dynamic routes
	Hooks
	Helpers

	Build templates
	Template loading
	Inline expressions
	Directives
	Python code
	Restrictions

	Fiole API
	Decorators
	Helpers
	WSGI application
	Template engine

	Developer's notes
	Frequently asked questions
	Source code
	Changes

	Indices and tables
	Credits
	License
	Python Module Index

