

FinSL-signbank documentation contents

Contents

	FinSL-signbank documentation

	Installation
	Set up the environment
	Git repository

	Python Virtual Environment

	Install dependencies with pip

	Configure settings

	Databases
	PostgreSQL

	SQLite

	MySQL

	Other settings
	Django debug toolbar

	Database migration

	Apache (httpd)
	Apache + mod_wsgi

	Apache envvars

	HTTPS

	Settings
	The different settings files
	base.py

	development.py

	production.py

	settings_secret.py

	testing.py

	When is which settings file applied?

	Translation
	Create a new language to translate to
	Add a new translation language

	Make database migrations for django-modeltranslation

	Create or update translations
	Create the translation file (.po)

	Write the translations

	Translate Flat pages

	Changelog
	1.0.0 - dd/mm/2018

	Applications in FinSL-signbank
	Dictionary
	Models

	Video
	Models

	Glossary

Indices, glossary and tables

	Index

	Module Index

	Glossary

FinSL-signbank documentation

	Date

	Jan 05, 2019

	Version

	1.0.0

FinSL-signbank is a Django web framework based application for
managing sign language lexicons.

Contents:

	Installation
	Set up the environment

	Databases

	Other settings

	Database migration

	Apache (httpd)

	Settings
	The different settings files

	When is which settings file applied?

	Translation
	Create a new language to translate to

	Create or update translations

	Changelog
	1.0.0 - dd/mm/2018

	Applications in FinSL-signbank
	Dictionary

	Video

	Glossary

Features

	
	Keep your sign language lexicon organized.

	
	Have as many lexicons as you like.

	Control user permissions per lexicon.

	Publish your lexicons to be viewed by the public.

	
	Create Glosses and attach many kinds of data into them.

	
	Videos: Record videos with a webcam in the app, or simply upload from your
computer.

	Translation equivalents in any language(s) you want.

	Relationships between Glosses.

	Sign language, notes, URLs, comments, etc.

	Separate user interfaces for viewing and editing detailed gloss data, and
a non-editable interface for the public.

	Export you lexicon to be used with annotation of videos with ELAN [https://tla.mpi.nl/tools/tla-tools/elan/].

	
	The user interface is translated into several languages.

	
	You can create translations for any language.

	View complete version history of Glosses and revert changes when needed.

	See a network graph of relationships between glosses per lexicon.

Requirements

	Python 3.4

	Django 1.11

	PostgreSQL (or MySQL, SQLite3�)

	Apache+mod_wsgi (or nginx)

Python dependencies are listed in requirements.txt [https://github.com/Signbank/FinSL-signbank/blob/master/requirements.txt]:

django==1.11.18
django-tagging==0.4.6
django-reversion==2.0.13
django-bootstrap3==11.0.0
django-summernote==0.8.8.8
django-modeltranslation==0.12.2
django-registration==2.4.1
django-contrib-comments==1.9.0
django-guardian==1.4.9
django-notifications-hq==1.4

JavaScript dependencies are listed in package.json [https://github.com/Signbank/FinSL-signbank/blob/master/package.json]:

{
 "name": "finsl-signbank",
 "version": "1.0.0",
 "description": "sign language lexicon database",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "collectjs": "cp -f ./node_modules/*/dist/*min.js ./signbank/static/js && cp -f ./node_modules/recordrtc/RecordRTC.min.js ./signbank/static/js && cp -f ./node_modules/at.js/dist/js/jquery.atwho.min.js ./signbank/static/js && cp -f ./node_modules/cookieconsent/build/cookieconsent.min.js ./signbank/static/js && cp -f ./node_modules/sigma/build/sigma.min.js ./signbank/static/js && cp -f ./node_modules/sigma/build/plugins/sigma.layout.forceAtlas2.min.js ./signbank/static/js",
 "collectcss": "cp -f ./node_modules/at.js/dist/css/jquery.atwho.min.css ./signbank/static/css && cp -rf ./node_modules/bootstrap/dist/* ./signbank/static/bootstrap/ && cp -f ./node_modules/cookieconsent/build/cookieconsent.min.css ./signbank/static/css"
 },
 "repository": {
 "type": "git",
 "url": "git+https://github.com/Signbank/FinSL-signbank.git"
 },
 "keywords": [
 "signlanguage"
],
 "author": "Henri Nieminen",
 "license": "BSD-3-Clause",
 "bugs": {
 "url": "https://github.com/Signbank/FinSL-signbank/issues"
 },
 "homepage": "https://github.com/Signbank/FinSL-signbank#readme",
 "dependencies": {},
 "devDependencies": {
 "TagManager": "git+https://github.com/max-favilli/tagmanager.git",
 "at.js": "^1.5.4",
 "bootstrap": "^3.3.7",
 "jquery": "^3.3.1",
 "jquery.caret": "^0.3.1",
 "mark.js": "^8.11.1",
 "recordrtc": "^5.4.6",
 "sigma": "^1.2.1",
 "typeahead.js": "^0.11.1",
 "cookieconsent": "^3.0.6"
 }
}

Installation (in short)

	Install with pip: pip install finsl-signbank.

	Edit settings files [https://github.com/Signbank/FinSL-signbank/tree/master/signbank/settings].

	Migrate: python bin/develop.py migrate

Note

See Installation and Settings for more detailed instructions.

Installation

Updated on June 15th 2018 by @henrinie [https://github.com/henrinie]

These instructions are written for linux operating systems. For Windows or MacOS
some parts might be relevant, look up python docs [https://docs.python.org/3/index.html] and django docs [https://docs.djangoproject.com/en/stable/] for
further instructions for those operating systems.

Set up the environment

Clone the git repository, create a python virtual environment, install
dependencies with pip, and configure the relevant settings.

Git repository

Clone the repository to your machine from GitHub:

$ git clone https://github.com/Signbank/FinSL-signbank.git

Python Virtual Environment

Create a
virtual environment in python3 [https://docs.python.org/3/library/venv.html]:

$ cd FinSL-signbank
$ python3 -m venv venv
$ source venv/bin/activate

If you need to deactivate the environment write:

$ deactivate

Install dependencies with pip

Install required python dependencies:

$ pip install -r /path/to/requirements.txt
Example: $ pip install -r FinSL-signbank/requirements.txt

Configure settings

Edit settings files in FinSL-signbank/signbank/settings/ and change the paths
in:

settings/production.py & settings/development.py
LOCALE_PATHS = (
 '/path/to/FinSL-signbank/locale',
)
STATIC_ROOT = '/path/to/FinSL-signbank/static' # For development only! Production dir needs to be server by web server.
MEDIA_ROOT = '/path/to/FinSL-signbank/media' # For development only! Production dir needs to be server by web server.

settings/development.py
LOGGING = {
...
'filename': '/path/you/want/debug.log'
...
}

settings/production.py

IMPORTANT: The hostname that this signbank runs on, this prevents HTTP Host header attacks
ALLOWED_HOSTS = ['yourhost.here.com']

STATIC_ROOT = '/path/to/static' # Served by the web server, e.g. /var/www/yourdomain/static
MEDIA_ROOT = '/path/to/media' # Served by the web server, e.g. /var/www/yourdomain/media

WSGI_FILE = '/path/to/FinSL-signbank/signbank/wsgi.py' # This will matter when you want to use a web server

Rename settings/settings_secret.py.template

$ mv settings/settings_secret.py.template settings/settings_secret.py

Edit settings/settings_secret.py

settings/settings_secret.py

Make SECRET_KEY unique and do not share it with anyone
You may use characters available in ASCII
SECRET_KEY = 'yoursecretkey!"#¤%&/()=?'
ADMINS = (
 ('Your Name', 'your.email@address.com'),
)
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/path/to/signbank.db',
 }
}

Tip

Generate
a random secret key [http://www.miniwebtool.com/django-secret-key-generator/]

Databases

We kindly recommend using PostgreSQL with FinSL-signbank, because
django-framework is optimized to run on PostgreSQL. We have used MySQL in the
past, but at least in our case we started to experience some problems with
migrations.

PostgreSQL

When you are ready to switch to a database server, PostgreSQL is our
recommendation, see django docs for more information about setting django up
with PostgreSQL:
https://docs.djangoproject.com/en/stable/ref/databases/#postgresql-notes.

In your postgresql.conf make sure you have the following:

client_encoding = 'UTF8'
default_transaction_isolation = 'read committed'
timezone: 'UTC' # Because USE_TZ = True in FinSL-signbank

Edit settings/secret_settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'mydatabase',
 'USER': 'mydatabaseuser',
 'PASSWORD': 'mypassword',
 'HOST': '127.0.0.1',
 'PORT': '5432',
 }
}

Then install psycopg2 with pip when your virtual environment is activated.

$ pip install psycopg2

SQLite

Edit the following lines in settings/secret_settings.py:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/path/to/signbank.db',
 }
}

MySQL

If your database of choice is
MySQL [https://docs.djangoproject.com/en/stable/ref/databases/#mysql-notes],
create my.cnf for your MySQL credentials

[client]
database = yourdatabasename
user = yourusername
password = "yourpassword"
host = host.name.com # Could be localhost, if the database is hosted on the local machine
port = 3306 # Or whichever is the correct one for your setting
default-character-set = utf8 # This is pretty much required with django

After done with my.cnf settings, make sure that the file is not accessible by
anyone else than you

$ chmod 600 my.cnf

If you have problems with access by apache, place your my.cnf in a place where
it can be accessed, or play with the user rights in the current location.

Edit settings/secret_settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'OPTIONS': {
 'read_default_file': '/path/to/my.cnf',
 'init_command': 'SET storage_engine=INNODB',
 },
 }
}

Then install MySQL-python with pip when your virtual environment is activated.

$ pip install MySQL-python

On RHEL and CentOS you might need additional packages, if the pip installing
of MySQL-python is not working, you might try to install mariadb-devel. For
debian based distributions the package name might be different.

$ sudo yum install mariadb-devel

It might be required that you install MySQL-python again with pip. Remove it
and install it again without using the cache.

$ pip uninstall MySQL-python
$ pip install MySQL-python --no-cache

Other settings

Change these settings in settings/base.py according to your needs

settings/base.py
TIME_ZONE = 'Europe/Helsinki'
LANGUAGE_CODE = 'fi' # examples: 'en-us', 'de', 'se'

Enter the desired languages under this setting. These languages can be translated in the app.
LANGUAGES = (
 ('fi', _('Finnish')),
 ('en', _('English')),
)

Django debug toolbar

Using django debug toolbar is optional, but recommended as it is very useful
for evaluating of the actual SQL queries for example.

To install django debug toolbar (while your virtual environment is active):

$ pip install django-debug-toolbar

If you don’t want to use django debug toolbar, remove or comment out the
following lines in settings/development.py:

if DEBUG:
 # Setting up debug toolbar.
 MIDDLEWARE.append('debug_toolbar.middleware.DebugToolbarMiddleware')
 INSTALLED_APPS += ('debug_toolbar',)

and also remove or comment out the following lines in signbank/urls.py:

if settings.DEBUG:
 import debug_toolbar
 from django.conf.urls.static import static
 # Add debug_toolbar when DEBUG=True, also add static+media folders when in development.
 # DEBUG should be False when in production!
 urlpatterns += [
 url(r'^__debug__/', include(debug_toolbar.urls)),
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)\
 + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Database migration

Once we have handled all the settings, we can migrate the database.

Make sure you are in your environment

$ source /path/to/venv/bin/activate

First create migrations for django flatpages app to add translation fields with
django-modeltranslation:

$ python FinSL-signbank/bin/develop.py makemigrations

Then migrate:

$ python FinSL-signbank/bin/develop.py migrate

Load fixture for flatpages:

$ python FinSL-signbank/bin/develop.py loaddata flatpages_initial_data

Note: In MySQL you might need to change the default collation, if the
utf8_general_ci doesn’t match your languages alphabetical order. You might
need to do this to all the tables of the signbank app (not on the ones that
begin with django_ or auth_).
Take a look at:
http://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html and
https://docs.djangoproject.com/en/stable/ref/databases/#collation-settings

Run djangos test/development server to see if it works

Run locally, only accessible from the machine you are running signbank with
$ python FinSL-signbank/bin/develop.py runserver localhost:8000

Or run in your network/internet by entering your IPaddress or your hostname
$ python FinSL-signbank/bin/develop.py runserver 80.12.16.10:8000 # Change the port if needed

Apache (httpd)

Apache + mod_wsgi

This process can differ between linux distributions. Take a look at django documentation [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/].

You can read about the settings in django documentation [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/].
These settings work with CentOS7 and apache httpd 2.4. The location of the
configurations vary between linux distributions. It is important to note that
you should definitely store FinSL-signbank and django files outside of the path
your webserver serves to the web (f.ex. /var/www/), I suggest that you store
the files inside your /home/ folder. This way you avoid the risk of your
settings, code and files being accessible from the web. Your wsgi.py file
should be located at FinSL-signbank/signbank/wsgi.py.

#/etc/httpd/conf/httpd.conf
These lines set the WSGI directories for FinSL-signbank and django
WSGIScriptAlias / /path/to/FinSL-signbank/signbank/wsgi.py
WSGIDaemonProcess FinSL-signbank python-path=/path/to/FinSL-signbank:/path/to/FinSL-signbank/venv/lib/python3.x/site-packages
WSGIProcessGroup FinSL-signbank

<Directory /path/to/FinSL-signbank/signbank>
 SetEnvIfNoCase Host your\.domain\.com VALID_HOST
 Require env VALID_HOST
 Options +FollowSymLinks -ExecCGI
 <Files wsgi.py>
 Require env VALID_HOST
 </Files>
</Directory>

Creates alias for /media as /static
This will be the directory where static files are collected to, the web server should serve them not django.
Alias /static /path/to/static # For example /var/www/yourdomain/static ,
Sets robots.txt to be accessible at /robots.txt, you need to create the robots.txt file to suit your needs
Alias /robots.txt /path/to/static/robots.txt
Sets favicon.ico to be accessible at /favicon.ico, you need to create a favicon
Alias /favicon.ico /path/to/FinSL-signbank/favicon.ico

Create alias for /media/ directory
Alias /media /path/to/media # For example /var/www/yourdomain/media
Gives access to /media directory
<Directory /path/to/media>
 SetEnvIfNoCase Host your\.domain\.com VALID_HOST
 Require env VALID_HOST
</Directory>

Apache envvars

If you are running Signbank with apache (or probably any web server), make sure
it is running on the right locale. For example in CentOS Apache seemed to run
on LANG=C by default. To avoid problems with non-ascii characters,
add these values to your web server evnvvars (in CentOS /etc/sysconfig/httpd):

LANG='en_US.UTF-8'
LC_ALL='en_US.UTF-8'

HTTPS

It is strongly recommended that you run your production server with HTTPS.
For this take a look at the HTTPS specific settings in the settings files.
Have a look at the django docs:
https://docs.djangoproject.com/en/stable/topics/security/#ssl-https
And also configure your domain properly for HTTPS. If you need free
certificates check out LetsEncrypt at https://letsencrypt.org/.

Settings

Here you can find explanations for some of the settings, and how the settings
files are distributed.

The different settings files

You can find all the settings files in the directory signbank/settings/.

There are several different files for different purposes:

	base.py: settings shared with all environments.

	production.py: production environment specific settings.

	development.py: development environment specific settings.

	testing.py: settings for tests.

	
	settings_secret.py:

	
	Settings you don’t want push to a public git repository.

	SECRET_KEY and database passwords and such.

base.py

	
signbank.settings.base.ACCOUNT_ACTIVATION_DAYS

	How many days a user has until activation time expires. Django-registration related setting.

	
signbank.settings.base.AUTHENTICATION_BACKENDS

	A list of authentication backend classes (as strings) to use when attempting to authenticate a user.

	
signbank.settings.base.INSTALLED_APPS

	A list of strings designating all applications that are enabled in this Django installation.
Dotted Python path to: an application configuration class (preferred), or a package containing an application.
The order of the apps matter!

	
signbank.settings.base.LANGUAGES

	A list of all available languages.
The list is a list of two-tuples in the format (language code, language name) - for example, (‘ja’, ‘Japanese’).

	
signbank.settings.base.LANGUAGE_CODE

	A string representing the language code for this installation. This should be in standard language ID format.
For example, U.S. English is “en-us”.

	
signbank.settings.base.LOGIN_REDIRECT_URL

	The URL where requests are redirected after login when the contrib.auth.login view gets no next parameter.

	
signbank.settings.base.MIDDLEWARE

	A list of middleware classes to use. The order of middleware classes is critical!

	
signbank.settings.base.REGISTRATION_OPEN

	A boolean indicating whether registration of new accounts is currently permitted.

	
signbank.settings.base.STATICFILES_FINDERS

	The list of finder backends that know how to find static files in various locations.

	
signbank.settings.base.TIME_ZONE

	A string representing the time zone for this installation.

	
signbank.settings.base.USE_I18N

	A boolean that specifies whether Django’s translation system should be enabled.

	
signbank.settings.base.USE_L10N

	A boolean that specifies if localized formatting of data will be enabled by default or not.

	
signbank.settings.base.USE_TZ

	A boolean that specifies if datetimes will be timezone-aware by default or not.

	
signbank.settings.base.VIDEO_UPLOAD_LOCATION

	Location for upload of videos relative to MEDIA_ROOT, videos are stored here prior to copying over to the main
storage location

development.py

	
signbank.settings.development.DEBUG

	Debug should be True in development but not in production!

	
signbank.settings.development.EMAIL_BACKEND

	To test emailing, use this to show emails in the console

	
signbank.settings.development.LOCALE_PATHS

	A list of directories where Django looks for translation files.

production.py

	
signbank.settings.production.ALLOWED_HOSTS

	IMPORTANT: The hostname that this signbank runs on, this prevents HTTP Host header attacks

	
signbank.settings.production.CACHES

	Use Local-memory caching for specific views (if you have bigger needs, use something else).

	
signbank.settings.production.DEBUG

	IMPORTANT: Debug should always be False in production

	
signbank.settings.production.DO_LOGGING

	Turn off lots of logging.

	
signbank.settings.production.EMAIL_BACKEND

	The backend to use for sending emails.

	
signbank.settings.production.LOGGING

	A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See http://docs.djangoproject.com/en/stable/topics/logging for
more details on how to customize your logging configuration.

	
signbank.settings.production.MEDIA_ROOT

	Absolute filesystem path to the directory that will hold user-uploaded files.

	
signbank.settings.production.STATIC_ROOT

	The absolute path to the directory where collectstatic will collect static files for deployment.
Example: “/var/www/example.com/static/”

	
signbank.settings.production.UPLOAD_ROOT

	Location and URL for uploaded files.

settings_secret.py

	
signbank.settings.settings_secret.ADMINS

	A list of all the people who get code error notifications. When DEBUG=False and a view raises an exception, Django will email these people with the full exception information.

	
signbank.settings.settings_secret.DATABASES

	A dictionary containing the settings for all databases to be used with Django.

	
signbank.settings.settings_secret.DB_IS_PSQL

	Is the database engine used is postgresql?

	
signbank.settings.settings_secret.PSQL_DB_QUOTA

	Maximum size of database in bytes, controlled outside of this application. Fill it in if you have a quota.

	
signbank.settings.settings_secret.PSQL_DB_NAME

	The name of a database used.

	
signbank.settings.settings_secret.DEFAULT_FROM_EMAIL

	Default email address to use for various automated correspondence from the site manager(s). Note: You can also use the following form ‘Webmaster <webmaster@yourdomain.com>’

	
signbank.settings.settings_secret.EMAIL_HOST

	The host to use for sending email.

	
signbank.settings.settings_secret.EMAIL_PORT

	Port to use for the SMTP server defined in EMAIL_HOST.

	
signbank.settings.settings_secret.SECRET_KEY

	Make this unique, and don’t share it with anybody. This is used to provide cryptographic signing.

	
signbank.settings.settings_secret.SERVER_EMAIL

	The email address that error messages come from, such as those sent to ADMINS and MANAGERS. Note: You can also use the following form ‘Webmaster <webmaster@yourdomain.com>’

testing.py

The testing.py settings file currently only imports development.py
settings.
Edit this file to customize test settings when runnings tests with
bin/runtests.py.

When is which settings file applied?

By default when creating a new django project, a manage.py file is created.
It is used to run all the management commands, and it applies all the settings.

FinSL-signbank useses separate management files to make it easier to run
management commands in different environments with different settings. You
can find these files in the bin/ folder:

Note

base.py holds shared settings, and is imported in every settings file.
settings_secret.py is then imported in base.py.

	develop.py: to run the development environment with development.py settings.

	production.py: to run management commands with production.py settings.

	runtests.py: to run management commands with testing.py settings.

Translation

How to translate the user interface into a desired language, or how to edit
current translations?

Translating the interface is handled with Django’s internalization features,
see django translation docs [https://docs.djangoproject.com/en/stable/topics/i18n/translation/] for more
information.

Create a new language to translate to

Follow these instructions when you want to add a new language to translate to.

Add a new translation language

Before beginning translating the user interface into a new language, you need
to add the new language into the LANGUAGES setting in
signbank/settings/base.py.

A list of all available languages. The list is a list of two-tuples in the
format (language code, language name) - for example, ('ja', 'Japanese').
LANGUAGES = (
 ('fi', _('Finnish')),
 ('en', _('English')),
)

You can find the correct ISO 639-1 codes here:
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Make database migrations for django-modeltranslation

Django-modeltranslation is used to dynamically add translatable fields into
models. See django-modeltranslation docs here:
http://django-modeltranslation.readthedocs.io/en/latest/index.html

After you have added a new language to the LANGUAGES setting, run the
following in the commandline in your development or production
environment

In development environment:

$ python bin/development.py makemigrations
$ python bin/development.py migrate

In production environment:

$ python bin/production.py makemigrations
$ python bin/production.py migrate

Create or update translations

Create the translation file (.po)

You’ll want to do this in your development environment.

-i venv ignores the python virtual environment folder.
$ python bin/develop.py makemessages -i venv

For more information see:
https://docs.djangoproject.com/en/stable/ref/django-admin/#makemessages

This command creates/updates the django.po files for all the LANGUAGES.
These files will be created in locale/<ISO 639-1 CODE>/LC_MESSAGES/django.po

Write the translations

To write the translations, open the django.po file. For each
msgid "texthere" there is a msgstr "" where you should place the
translation of the text inside the quotes of msgstr.

For example the locale/fi/LC_MESSAGES/django.po [https://github.com/Signbank/FinSL-signbank/blob/master/locale/fi/LC_MESSAGES/django.po]
for Finnish translations:

msgid ""
"You are not allowed to edit this comment, because you are not the author of "
"the comment."
msgstr "Et voi muokata tätä kommenttia, koska et ole kommentin kirjoittaja."

Once you have written the translations, make sure you put the new file on the
server (overwrite the old one).

To activate the translations in the application, you have to run the following
command which compiles the translation file :

In development:

$ python bin/develop.py compilemessages

In production:

$ python bin/production.py compilemessages
Make the server reload FinSL-signbank to update the translations.
$ touch signbank/wsgi.py

For more information see:
https://docs.djangoproject.com/en/stable/ref/django-admin/#compilemessages

Translate Flat pages

Open the edit page for the Flat page you want to edit. For each Flat page you
should be able to translate the title and the content of the page. Each
language should have their own field for their version of the page, e.g.
Title [fi] and Content [fi].

Changelog

1.0.0 - dd/mm/2018

	First release

Applications in FinSL-signbank

Applications that form FinSL-signbank.

	Dictionary
	Models

	Video
	Models

Dictionary

A django app that handles data related to Lexicons and their Glosses.

	Models

Models

Django models for dictionary app.

Here are all the models that are actually used within the application.
Some models are missing because they are not being used, but haven’t yet been
removed.

Models for the Signbank dictionary/corpus.

	
class signbank.dictionary.models.AllowedTags(*args, **kwargs)

	Tags a model is allowed to use.

	
allowed_tags

	The tags that are shown in tag lists.

	
content_type

	The ContentType of the object whose AllowedTags we set.

	
class signbank.dictionary.models.Dataset(*args, **kwargs)

	Dataset/Lexicon of which Glosses are part of.

	
admins

	The admins of this Dataset. Admins receive notifications when a user applies for permissins for the Dataset.

	
copyright

	The copyright statement for the data in this Dataset, the license used for the videos etc.

	
description

	A description of the Dataset: who maintains it, what is its purpose, etc.

	
is_public

	Boolean defining whether to show this Dataset in the public interface.

	
name

	A private name for the Dataset. Can include abbrevations not recognizable by the general users.

	
public_name

	Public name for the Dataset, intended for users of the public interface.

	
signlanguage

	The Sign Language of the Glosses in this Dataset.

	
translation_languages

	The translation equivalent languages that should be available to the Glosses of this Dataset.

	
class signbank.dictionary.models.Dialect(*args, **kwargs)

	A dialect name - a regional dialect of a given Language

	
description

	Description of the Dialect.

	
language

	The Language of the Dialect.

	
name

	Name of the Dialect.

	
class signbank.dictionary.models.FieldChoice(id, field, english_name, machine_value)

	
	
english_name

	English (verbose) name of the FieldChoice.

	
field

	The name of the FieldChoice.

	
machine_value

	Machine value of the FieldChoice, its ID number.

	
class signbank.dictionary.models.Gloss(id, published, exclude_from_ecv, dataset, idgloss, idgloss_en, notes, created_at, created_by, updated_at, updated_by, handedness, strong_handshape, weak_handshape, location, relation_between_articulators, absolute_orientation_palm, absolute_orientation_fingers, relative_orientation_movement, relative_orientation_location, orientation_change, handshape_change, repeated_movement, alternating_movement, movement_shape, movement_direction, movement_manner, contact_type, phonology_other, mouth_gesture, mouthing, phonetic_variation, iconic_image, named_entity, semantic_field, number_of_occurences)

	
	
created_at

	The DateTime when the Gloss was created.

	
created_by

	The User who created the Gloss.

	
dataset

	The Dataset (Lexicon) this Gloss is part of.

	
dialect

	One or more regional dialects that this Gloss is used in.

	
exclude_from_ecv

	Boolean: Exclude this gloss from all ELAN externally controlled vocabularies (ECV)?

	
field_labels()

	Return the dictionary of field labels for use in a template

	
static get_choice_lists()

	Return FieldChoices for selected fields in JSON, grouped by field, key=machine_value, value=english_name

	
get_translation_languages()

	Returns translation languages that are set for the Dataset of the Gloss.

	
get_translations_for_translation_languages()

	Returns a zipped list of translation languages and translations.

	
idgloss

	Gloss in Finnish. This is the unique identifying name of the Gloss.

	
idgloss_en

	Gloss in English. This is the English name of the Gloss.

	
notes

	Notes about the Gloss.

	
published

	Boolean: Is this Gloss published in the public interface?

	
updated_at

	The DateTime when the Glosses information was last updated.

	
updated_by

	The User who last updated the Glosses information.

	
class signbank.dictionary.models.GlossRelation(*args, **kwargs)

	Relation between two glosses

	
source

	The source Gloss of the Relation.

	
tag()

	The type of the Relation, a Tag.

	
target

	The target Gloss of the Relation, the Gloss to which the source Gloss related to.

	
class signbank.dictionary.models.GlossTranslations(*args, **kwargs)

	Store a string representation of translation equivalents of certain Language for a Gloss.

	
get_keywords()

	Returns keywords parsed from self.translations.

	
get_keywords_unique()

	Returns only unique keywords from get_keywords()

	
gloss

	The Gloss to translate

	
language

	The written/spoken Language of the translations.

	
translations

	The fields that contains the translations, a text field.

	
class signbank.dictionary.models.GlossURL(*args, **kwargs)

	URL’s for gloss

	
gloss

	The Gloss the URL belongs to.

	
url

	The URL, a websites address.

	
class signbank.dictionary.models.Keyword(*args, **kwargs)

	A keyword that stores the text for translation(s)

	
text

	The text of a Keyword.

	
class signbank.dictionary.models.Language(*args, **kwargs)

	A written language, used for translations in written languages.

	
description

	Description of the Language.

	
language_code_2char

	The ISO 639-1 code of the Language (2 characters long).

	
language_code_3char

	The ISO 639-3 code of the Language (3 characters long).

	
name

	The name of a spoken/written Language.

	
class signbank.dictionary.models.MorphologyDefinition(*args, **kwargs)

	Tells something about morphology of a gloss

	
class signbank.dictionary.models.Relation(*args, **kwargs)

	A relation between two glosses

	
class signbank.dictionary.models.RelationToForeignSign(*args, **kwargs)

	Defines a relationship to another sign in another language (often a loan)

	
gloss

	The source Gloss of the relation.

	
loan

	Boolean: Is this a loan sign?

	
other_lang

	The language of the related sign.

	
other_lang_gloss

	The name of the Gloss in the related language.

	
class signbank.dictionary.models.SignLanguage(*args, **kwargs)

	A sign language.

	
language_code_3char

	The ISO 639-3 code of the Sign Language (3 characters long).

	
name

	The name of the Sign Language

	
class signbank.dictionary.models.Translation(*args, **kwargs)

	A translation equivalent of a sign in selected language.

	
gloss

	The Gloss to translate.

	
keyword

	The Keyword of the translation, the textual form.

	
language

	The written/spoken Language of the translation.

	
order

	The order number of the Translation within a Glosses Translations.

	
signbank.dictionary.models.build_choice_list(field)

	This function builds a list of choices from FieldChoice.

	
signbank.dictionary.models.model

	alias of signbank.dictionary.models.GlossRelation

Video

A django app that handles data all the videos.

	Models

Models

Django models for video app.

Models for the video application keep track of uploaded videos and converted versions

	
class signbank.video.models.GlossVideo(*args, **kwargs)

	A video that represents a particular idgloss

	
correct_duplicate_versions()

	If glosses glossvideos have duplicate version numbers, reset version numbers.

	
create_filename()

	Returns a correctly named filename

	
create_poster_filename(ext)

	Returns a preferred filename of posterfile. Ext is the file extension without the dot.

	
dataset

	The Dataset/Lexicon this GlossVideo is part of.

	
get_extension()

	Returns videofiles extension.

	
get_glosses_videos()

	Returns queryset of glosses GlossVideos.

	
get_videofile_modified_date()

	Return a Datetime object from filesystems last modified time of path.

	
gloss

	The Gloss this GlossVideo belongs to.

	
has_poster()

	Returns true if the glossvideo has a poster file.

	
is_public

	Boolean: Is this GlossVideo public? Do you want to show it in the public interface, for a published Gloss?

	
move_video_version(direction)

	Move video back or forth in glosses videos.

	
next_version()

	Return a next suitable version number.

	
posterfile

	Poster image of the GlossVideo.

	
static rename_glosses_videos(gloss)

	Renames the filenames of selected Glosses videos to match the Gloss name

	
rename_video()

	Rename the video and move the video to correct path if the glossvideo object has a foreignkey to a gloss.

	
title

	Descriptive title of the GlossVideo.

	
version

	Version number of the GlossVideo within Glosses videos.

	
videofile

	Video file of the GlossVideo.

	
class signbank.video.models.GlossVideoStorage(location=u'/home/docs/checkouts/readthedocs.org/user_builds/finsl-signbank/checkouts/latest/media', base_url=u'/media/')

	Video storage, handles saving to directories based on filenames first two characters.

	
get_valid_name(name)

	Generate a valid name, save videos to a ‘base_directory’, and under it use directories
named for the first two characters in the filename to partition the videos

	
url(name)

	Returns an absolute URL where the file’s contents can be accessed
directly by a Web browser.

Glossary

	Allowed tags

	A model that controls which Tags are shown in Tag add lists for each
types of objects.

	CSV

	Comma Separated Values, a text file format used to import and export
data from spreadsheets.

	Dataset

	A model that holds the data for a Lexicon.

See Models.

	Flat pages

	User editable content pages. These pages can be edited by admins
with a WYSIWYG (what you see is what you get) editor.

	Gloss

	Name of an entry of a Sign in a lexicon.

	Gloss relation

	A relationship between two Glosses, stores a source Gloss and a target
Gloss.

	Gloss videos

	Videos to be attached to Glosses. Only the videos are able to show
the form of a sign.

	Lexicon

	A collection of Glosses. The name of the model in the application is
Dataset, but it is also called a Lexicon in some places.

See Models.

	Translation equivalent

	Translation of the Sign in the Gloss in some spoken language.

Installation

Updated on June 15th 2018 by @henrinie [https://github.com/henrinie]

These instructions are written for linux operating systems. For Windows or MacOS
some parts might be relevant, look up python docs [https://docs.python.org/3/index.html] and django docs [https://docs.djangoproject.com/en/stable/] for
further instructions for those operating systems.

Set up the environment

Clone the git repository, create a python virtual environment, install
dependencies with pip, and configure the relevant settings.

Git repository

Clone the repository to your machine from GitHub:

$ git clone https://github.com/Signbank/FinSL-signbank.git

Python Virtual Environment

Create a
virtual environment in python3 [https://docs.python.org/3/library/venv.html]:

$ cd FinSL-signbank
$ python3 -m venv venv
$ source venv/bin/activate

If you need to deactivate the environment write:

$ deactivate

Install dependencies with pip

Install required python dependencies:

$ pip install -r /path/to/requirements.txt
Example: $ pip install -r FinSL-signbank/requirements.txt

Configure settings

Edit settings files in FinSL-signbank/signbank/settings/ and change the paths
in:

settings/production.py & settings/development.py
LOCALE_PATHS = (
 '/path/to/FinSL-signbank/locale',
)
STATIC_ROOT = '/path/to/FinSL-signbank/static' # For development only! Production dir needs to be server by web server.
MEDIA_ROOT = '/path/to/FinSL-signbank/media' # For development only! Production dir needs to be server by web server.

settings/development.py
LOGGING = {
...
'filename': '/path/you/want/debug.log'
...
}

settings/production.py

IMPORTANT: The hostname that this signbank runs on, this prevents HTTP Host header attacks
ALLOWED_HOSTS = ['yourhost.here.com']

STATIC_ROOT = '/path/to/static' # Served by the web server, e.g. /var/www/yourdomain/static
MEDIA_ROOT = '/path/to/media' # Served by the web server, e.g. /var/www/yourdomain/media

WSGI_FILE = '/path/to/FinSL-signbank/signbank/wsgi.py' # This will matter when you want to use a web server

Rename settings/settings_secret.py.template

$ mv settings/settings_secret.py.template settings/settings_secret.py

Edit settings/settings_secret.py

settings/settings_secret.py

Make SECRET_KEY unique and do not share it with anyone
You may use characters available in ASCII
SECRET_KEY = 'yoursecretkey!"#¤%&/()=?'
ADMINS = (
 ('Your Name', 'your.email@address.com'),
)
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/path/to/signbank.db',
 }
}

Tip

Generate
a random secret key [http://www.miniwebtool.com/django-secret-key-generator/]

Databases

We kindly recommend using PostgreSQL with FinSL-signbank, because
django-framework is optimized to run on PostgreSQL. We have used MySQL in the
past, but at least in our case we started to experience some problems with
migrations.

PostgreSQL

When you are ready to switch to a database server, PostgreSQL is our
recommendation, see django docs for more information about setting django up
with PostgreSQL:
https://docs.djangoproject.com/en/stable/ref/databases/#postgresql-notes.

In your postgresql.conf make sure you have the following:

client_encoding = 'UTF8'
default_transaction_isolation = 'read committed'
timezone: 'UTC' # Because USE_TZ = True in FinSL-signbank

Edit settings/secret_settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': 'mydatabase',
 'USER': 'mydatabaseuser',
 'PASSWORD': 'mypassword',
 'HOST': '127.0.0.1',
 'PORT': '5432',
 }
}

Then install psycopg2 with pip when your virtual environment is activated.

$ pip install psycopg2

SQLite

Edit the following lines in settings/secret_settings.py:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/path/to/signbank.db',
 }
}

MySQL

If your database of choice is
MySQL [https://docs.djangoproject.com/en/stable/ref/databases/#mysql-notes],
create my.cnf for your MySQL credentials

[client]
database = yourdatabasename
user = yourusername
password = "yourpassword"
host = host.name.com # Could be localhost, if the database is hosted on the local machine
port = 3306 # Or whichever is the correct one for your setting
default-character-set = utf8 # This is pretty much required with django

After done with my.cnf settings, make sure that the file is not accessible by
anyone else than you

$ chmod 600 my.cnf

If you have problems with access by apache, place your my.cnf in a place where
it can be accessed, or play with the user rights in the current location.

Edit settings/secret_settings.py

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'OPTIONS': {
 'read_default_file': '/path/to/my.cnf',
 'init_command': 'SET storage_engine=INNODB',
 },
 }
}

Then install MySQL-python with pip when your virtual environment is activated.

$ pip install MySQL-python

On RHEL and CentOS you might need additional packages, if the pip installing
of MySQL-python is not working, you might try to install mariadb-devel. For
debian based distributions the package name might be different.

$ sudo yum install mariadb-devel

It might be required that you install MySQL-python again with pip. Remove it
and install it again without using the cache.

$ pip uninstall MySQL-python
$ pip install MySQL-python --no-cache

Other settings

Change these settings in settings/base.py according to your needs

settings/base.py
TIME_ZONE = 'Europe/Helsinki'
LANGUAGE_CODE = 'fi' # examples: 'en-us', 'de', 'se'

Enter the desired languages under this setting. These languages can be translated in the app.
LANGUAGES = (
 ('fi', _('Finnish')),
 ('en', _('English')),
)

Django debug toolbar

Using django debug toolbar is optional, but recommended as it is very useful
for evaluating of the actual SQL queries for example.

To install django debug toolbar (while your virtual environment is active):

$ pip install django-debug-toolbar

If you don’t want to use django debug toolbar, remove or comment out the
following lines in settings/development.py:

if DEBUG:
 # Setting up debug toolbar.
 MIDDLEWARE.append('debug_toolbar.middleware.DebugToolbarMiddleware')
 INSTALLED_APPS += ('debug_toolbar',)

and also remove or comment out the following lines in signbank/urls.py:

if settings.DEBUG:
 import debug_toolbar
 from django.conf.urls.static import static
 # Add debug_toolbar when DEBUG=True, also add static+media folders when in development.
 # DEBUG should be False when in production!
 urlpatterns += [
 url(r'^__debug__/', include(debug_toolbar.urls)),
] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)\
 + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Database migration

Once we have handled all the settings, we can migrate the database.

Make sure you are in your environment

$ source /path/to/venv/bin/activate

First create migrations for django flatpages app to add translation fields with
django-modeltranslation:

$ python FinSL-signbank/bin/develop.py makemigrations

Then migrate:

$ python FinSL-signbank/bin/develop.py migrate

Load fixture for flatpages:

$ python FinSL-signbank/bin/develop.py loaddata flatpages_initial_data

Note: In MySQL you might need to change the default collation, if the
utf8_general_ci doesn’t match your languages alphabetical order. You might
need to do this to all the tables of the signbank app (not on the ones that
begin with django_ or auth_).
Take a look at:
http://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html and
https://docs.djangoproject.com/en/stable/ref/databases/#collation-settings

Run djangos test/development server to see if it works

Run locally, only accessible from the machine you are running signbank with
$ python FinSL-signbank/bin/develop.py runserver localhost:8000

Or run in your network/internet by entering your IPaddress or your hostname
$ python FinSL-signbank/bin/develop.py runserver 80.12.16.10:8000 # Change the port if needed

Apache (httpd)

Apache + mod_wsgi

This process can differ between linux distributions. Take a look at django documentation [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/].

You can read about the settings in django documentation [https://docs.djangoproject.com/en/stable/howto/deployment/wsgi/].
These settings work with CentOS7 and apache httpd 2.4. The location of the
configurations vary between linux distributions. It is important to note that
you should definitely store FinSL-signbank and django files outside of the path
your webserver serves to the web (f.ex. /var/www/), I suggest that you store
the files inside your /home/ folder. This way you avoid the risk of your
settings, code and files being accessible from the web. Your wsgi.py file
should be located at FinSL-signbank/signbank/wsgi.py.

#/etc/httpd/conf/httpd.conf
These lines set the WSGI directories for FinSL-signbank and django
WSGIScriptAlias / /path/to/FinSL-signbank/signbank/wsgi.py
WSGIDaemonProcess FinSL-signbank python-path=/path/to/FinSL-signbank:/path/to/FinSL-signbank/venv/lib/python3.x/site-packages
WSGIProcessGroup FinSL-signbank

<Directory /path/to/FinSL-signbank/signbank>
 SetEnvIfNoCase Host your\.domain\.com VALID_HOST
 Require env VALID_HOST
 Options +FollowSymLinks -ExecCGI
 <Files wsgi.py>
 Require env VALID_HOST
 </Files>
</Directory>

Creates alias for /media as /static
This will be the directory where static files are collected to, the web server should serve them not django.
Alias /static /path/to/static # For example /var/www/yourdomain/static ,
Sets robots.txt to be accessible at /robots.txt, you need to create the robots.txt file to suit your needs
Alias /robots.txt /path/to/static/robots.txt
Sets favicon.ico to be accessible at /favicon.ico, you need to create a favicon
Alias /favicon.ico /path/to/FinSL-signbank/favicon.ico

Create alias for /media/ directory
Alias /media /path/to/media # For example /var/www/yourdomain/media
Gives access to /media directory
<Directory /path/to/media>
 SetEnvIfNoCase Host your\.domain\.com VALID_HOST
 Require env VALID_HOST
</Directory>

Apache envvars

If you are running Signbank with apache (or probably any web server), make sure
it is running on the right locale. For example in CentOS Apache seemed to run
on LANG=C by default. To avoid problems with non-ascii characters,
add these values to your web server evnvvars (in CentOS /etc/sysconfig/httpd):

LANG='en_US.UTF-8'
LC_ALL='en_US.UTF-8'

HTTPS

It is strongly recommended that you run your production server with HTTPS.
For this take a look at the HTTPS specific settings in the settings files.
Have a look at the django docs:
https://docs.djangoproject.com/en/stable/topics/security/#ssl-https
And also configure your domain properly for HTTPS. If you need free
certificates check out LetsEncrypt at https://letsencrypt.org/.

Settings

Here you can find explanations for some of the settings, and how the settings
files are distributed.

The different settings files

You can find all the settings files in the directory signbank/settings/.

There are several different files for different purposes:

	base.py: settings shared with all environments.

	production.py: production environment specific settings.

	development.py: development environment specific settings.

	testing.py: settings for tests.

	
	settings_secret.py:

	
	Settings you don’t want push to a public git repository.

	SECRET_KEY and database passwords and such.

base.py

	
signbank.settings.base.ACCOUNT_ACTIVATION_DAYS

	How many days a user has until activation time expires. Django-registration related setting.

	
signbank.settings.base.AUTHENTICATION_BACKENDS

	A list of authentication backend classes (as strings) to use when attempting to authenticate a user.

	
signbank.settings.base.INSTALLED_APPS

	A list of strings designating all applications that are enabled in this Django installation.
Dotted Python path to: an application configuration class (preferred), or a package containing an application.
The order of the apps matter!

	
signbank.settings.base.LANGUAGES

	A list of all available languages.
The list is a list of two-tuples in the format (language code, language name) - for example, (‘ja’, ‘Japanese’).

	
signbank.settings.base.LANGUAGE_CODE

	A string representing the language code for this installation. This should be in standard language ID format.
For example, U.S. English is “en-us”.

	
signbank.settings.base.LOGIN_REDIRECT_URL

	The URL where requests are redirected after login when the contrib.auth.login view gets no next parameter.

	
signbank.settings.base.MIDDLEWARE

	A list of middleware classes to use. The order of middleware classes is critical!

	
signbank.settings.base.REGISTRATION_OPEN

	A boolean indicating whether registration of new accounts is currently permitted.

	
signbank.settings.base.STATICFILES_FINDERS

	The list of finder backends that know how to find static files in various locations.

	
signbank.settings.base.TIME_ZONE

	A string representing the time zone for this installation.

	
signbank.settings.base.USE_I18N

	A boolean that specifies whether Django’s translation system should be enabled.

	
signbank.settings.base.USE_L10N

	A boolean that specifies if localized formatting of data will be enabled by default or not.

	
signbank.settings.base.USE_TZ

	A boolean that specifies if datetimes will be timezone-aware by default or not.

	
signbank.settings.base.VIDEO_UPLOAD_LOCATION

	Location for upload of videos relative to MEDIA_ROOT, videos are stored here prior to copying over to the main
storage location

development.py

	
signbank.settings.development.DEBUG

	Debug should be True in development but not in production!

	
signbank.settings.development.EMAIL_BACKEND

	To test emailing, use this to show emails in the console

	
signbank.settings.development.LOCALE_PATHS

	A list of directories where Django looks for translation files.

production.py

	
signbank.settings.production.ALLOWED_HOSTS

	IMPORTANT: The hostname that this signbank runs on, this prevents HTTP Host header attacks

	
signbank.settings.production.CACHES

	Use Local-memory caching for specific views (if you have bigger needs, use something else).

	
signbank.settings.production.DEBUG

	IMPORTANT: Debug should always be False in production

	
signbank.settings.production.DO_LOGGING

	Turn off lots of logging.

	
signbank.settings.production.EMAIL_BACKEND

	The backend to use for sending emails.

	
signbank.settings.production.LOGGING

	A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See http://docs.djangoproject.com/en/stable/topics/logging for
more details on how to customize your logging configuration.

	
signbank.settings.production.MEDIA_ROOT

	Absolute filesystem path to the directory that will hold user-uploaded files.

	
signbank.settings.production.STATIC_ROOT

	The absolute path to the directory where collectstatic will collect static files for deployment.
Example: “/var/www/example.com/static/”

	
signbank.settings.production.UPLOAD_ROOT

	Location and URL for uploaded files.

settings_secret.py

	
signbank.settings.settings_secret.ADMINS

	A list of all the people who get code error notifications. When DEBUG=False and a view raises an exception, Django will email these people with the full exception information.

	
signbank.settings.settings_secret.DATABASES

	A dictionary containing the settings for all databases to be used with Django.

	
signbank.settings.settings_secret.DB_IS_PSQL

	Is the database engine used is postgresql?

	
signbank.settings.settings_secret.PSQL_DB_QUOTA

	Maximum size of database in bytes, controlled outside of this application. Fill it in if you have a quota.

	
signbank.settings.settings_secret.PSQL_DB_NAME

	The name of a database used.

	
signbank.settings.settings_secret.DEFAULT_FROM_EMAIL

	Default email address to use for various automated correspondence from the site manager(s). Note: You can also use the following form ‘Webmaster <webmaster@yourdomain.com>’

	
signbank.settings.settings_secret.EMAIL_HOST

	The host to use for sending email.

	
signbank.settings.settings_secret.EMAIL_PORT

	Port to use for the SMTP server defined in EMAIL_HOST.

	
signbank.settings.settings_secret.SECRET_KEY

	Make this unique, and don’t share it with anybody. This is used to provide cryptographic signing.

	
signbank.settings.settings_secret.SERVER_EMAIL

	The email address that error messages come from, such as those sent to ADMINS and MANAGERS. Note: You can also use the following form ‘Webmaster <webmaster@yourdomain.com>’

testing.py

The testing.py settings file currently only imports development.py
settings.
Edit this file to customize test settings when runnings tests with
bin/runtests.py.

When is which settings file applied?

By default when creating a new django project, a manage.py file is created.
It is used to run all the management commands, and it applies all the settings.

FinSL-signbank useses separate management files to make it easier to run
management commands in different environments with different settings. You
can find these files in the bin/ folder:

Note

base.py holds shared settings, and is imported in every settings file.
settings_secret.py is then imported in base.py.

	develop.py: to run the development environment with development.py settings.

	production.py: to run management commands with production.py settings.

	runtests.py: to run management commands with testing.py settings.

Translation

How to translate the user interface into a desired language, or how to edit
current translations?

Translating the interface is handled with Django’s internalization features,
see django translation docs [https://docs.djangoproject.com/en/stable/topics/i18n/translation/] for more
information.

Create a new language to translate to

Follow these instructions when you want to add a new language to translate to.

Add a new translation language

Before beginning translating the user interface into a new language, you need
to add the new language into the LANGUAGES setting in
signbank/settings/base.py.

A list of all available languages. The list is a list of two-tuples in the
format (language code, language name) - for example, ('ja', 'Japanese').
LANGUAGES = (
 ('fi', _('Finnish')),
 ('en', _('English')),
)

You can find the correct ISO 639-1 codes here:
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Make database migrations for django-modeltranslation

Django-modeltranslation is used to dynamically add translatable fields into
models. See django-modeltranslation docs here:
http://django-modeltranslation.readthedocs.io/en/latest/index.html

After you have added a new language to the LANGUAGES setting, run the
following in the commandline in your development or production
environment

In development environment:

$ python bin/development.py makemigrations
$ python bin/development.py migrate

In production environment:

$ python bin/production.py makemigrations
$ python bin/production.py migrate

Create or update translations

Create the translation file (.po)

You’ll want to do this in your development environment.

-i venv ignores the python virtual environment folder.
$ python bin/develop.py makemessages -i venv

For more information see:
https://docs.djangoproject.com/en/stable/ref/django-admin/#makemessages

This command creates/updates the django.po files for all the LANGUAGES.
These files will be created in locale/<ISO 639-1 CODE>/LC_MESSAGES/django.po

Write the translations

To write the translations, open the django.po file. For each
msgid "texthere" there is a msgstr "" where you should place the
translation of the text inside the quotes of msgstr.

For example the locale/fi/LC_MESSAGES/django.po [https://github.com/Signbank/FinSL-signbank/blob/master/locale/fi/LC_MESSAGES/django.po]
for Finnish translations:

msgid ""
"You are not allowed to edit this comment, because you are not the author of "
"the comment."
msgstr "Et voi muokata tätä kommenttia, koska et ole kommentin kirjoittaja."

Once you have written the translations, make sure you put the new file on the
server (overwrite the old one).

To activate the translations in the application, you have to run the following
command which compiles the translation file :

In development:

$ python bin/develop.py compilemessages

In production:

$ python bin/production.py compilemessages
Make the server reload FinSL-signbank to update the translations.
$ touch signbank/wsgi.py

For more information see:
https://docs.djangoproject.com/en/stable/ref/django-admin/#compilemessages

Translate Flat pages

Open the edit page for the Flat page you want to edit. For each Flat page you
should be able to translate the title and the content of the page. Each
language should have their own field for their version of the page, e.g.
Title [fi] and Content [fi].

Changelog

1.0.0 - dd/mm/2018

	First release

Applications in FinSL-signbank

Applications that form FinSL-signbank.

	Dictionary
	Models

	Video
	Models

Dictionary

A django app that handles data related to Lexicons and their Glosses.

	Models

Models

Django models for dictionary app.

Here are all the models that are actually used within the application.
Some models are missing because they are not being used, but haven’t yet been
removed.

Models for the Signbank dictionary/corpus.

	
class signbank.dictionary.models.AllowedTags(*args, **kwargs)

	Tags a model is allowed to use.

	
allowed_tags

	The tags that are shown in tag lists.

	
content_type

	The ContentType of the object whose AllowedTags we set.

	
class signbank.dictionary.models.Dataset(*args, **kwargs)

	Dataset/Lexicon of which Glosses are part of.

	
admins

	The admins of this Dataset. Admins receive notifications when a user applies for permissins for the Dataset.

	
copyright

	The copyright statement for the data in this Dataset, the license used for the videos etc.

	
description

	A description of the Dataset: who maintains it, what is its purpose, etc.

	
is_public

	Boolean defining whether to show this Dataset in the public interface.

	
name

	A private name for the Dataset. Can include abbrevations not recognizable by the general users.

	
public_name

	Public name for the Dataset, intended for users of the public interface.

	
signlanguage

	The Sign Language of the Glosses in this Dataset.

	
translation_languages

	The translation equivalent languages that should be available to the Glosses of this Dataset.

	
class signbank.dictionary.models.Dialect(*args, **kwargs)

	A dialect name - a regional dialect of a given Language

	
description

	Description of the Dialect.

	
language

	The Language of the Dialect.

	
name

	Name of the Dialect.

	
class signbank.dictionary.models.FieldChoice(id, field, english_name, machine_value)

	
	
english_name

	English (verbose) name of the FieldChoice.

	
field

	The name of the FieldChoice.

	
machine_value

	Machine value of the FieldChoice, its ID number.

	
class signbank.dictionary.models.Gloss(id, published, exclude_from_ecv, dataset, idgloss, idgloss_en, notes, created_at, created_by, updated_at, updated_by, handedness, strong_handshape, weak_handshape, location, relation_between_articulators, absolute_orientation_palm, absolute_orientation_fingers, relative_orientation_movement, relative_orientation_location, orientation_change, handshape_change, repeated_movement, alternating_movement, movement_shape, movement_direction, movement_manner, contact_type, phonology_other, mouth_gesture, mouthing, phonetic_variation, iconic_image, named_entity, semantic_field, number_of_occurences)

	
	
created_at

	The DateTime when the Gloss was created.

	
created_by

	The User who created the Gloss.

	
dataset

	The Dataset (Lexicon) this Gloss is part of.

	
dialect

	One or more regional dialects that this Gloss is used in.

	
exclude_from_ecv

	Boolean: Exclude this gloss from all ELAN externally controlled vocabularies (ECV)?

	
field_labels()

	Return the dictionary of field labels for use in a template

	
static get_choice_lists()

	Return FieldChoices for selected fields in JSON, grouped by field, key=machine_value, value=english_name

	
get_translation_languages()

	Returns translation languages that are set for the Dataset of the Gloss.

	
get_translations_for_translation_languages()

	Returns a zipped list of translation languages and translations.

	
idgloss

	Gloss in Finnish. This is the unique identifying name of the Gloss.

	
idgloss_en

	Gloss in English. This is the English name of the Gloss.

	
notes

	Notes about the Gloss.

	
published

	Boolean: Is this Gloss published in the public interface?

	
updated_at

	The DateTime when the Glosses information was last updated.

	
updated_by

	The User who last updated the Glosses information.

	
class signbank.dictionary.models.GlossRelation(*args, **kwargs)

	Relation between two glosses

	
source

	The source Gloss of the Relation.

	
tag()

	The type of the Relation, a Tag.

	
target

	The target Gloss of the Relation, the Gloss to which the source Gloss related to.

	
class signbank.dictionary.models.GlossTranslations(*args, **kwargs)

	Store a string representation of translation equivalents of certain Language for a Gloss.

	
get_keywords()

	Returns keywords parsed from self.translations.

	
get_keywords_unique()

	Returns only unique keywords from get_keywords()

	
gloss

	The Gloss to translate

	
language

	The written/spoken Language of the translations.

	
translations

	The fields that contains the translations, a text field.

	
class signbank.dictionary.models.GlossURL(*args, **kwargs)

	URL’s for gloss

	
gloss

	The Gloss the URL belongs to.

	
url

	The URL, a websites address.

	
class signbank.dictionary.models.Keyword(*args, **kwargs)

	A keyword that stores the text for translation(s)

	
text

	The text of a Keyword.

	
class signbank.dictionary.models.Language(*args, **kwargs)

	A written language, used for translations in written languages.

	
description

	Description of the Language.

	
language_code_2char

	The ISO 639-1 code of the Language (2 characters long).

	
language_code_3char

	The ISO 639-3 code of the Language (3 characters long).

	
name

	The name of a spoken/written Language.

	
class signbank.dictionary.models.MorphologyDefinition(*args, **kwargs)

	Tells something about morphology of a gloss

	
class signbank.dictionary.models.Relation(*args, **kwargs)

	A relation between two glosses

	
class signbank.dictionary.models.RelationToForeignSign(*args, **kwargs)

	Defines a relationship to another sign in another language (often a loan)

	
gloss

	The source Gloss of the relation.

	
loan

	Boolean: Is this a loan sign?

	
other_lang

	The language of the related sign.

	
other_lang_gloss

	The name of the Gloss in the related language.

	
class signbank.dictionary.models.SignLanguage(*args, **kwargs)

	A sign language.

	
language_code_3char

	The ISO 639-3 code of the Sign Language (3 characters long).

	
name

	The name of the Sign Language

	
class signbank.dictionary.models.Translation(*args, **kwargs)

	A translation equivalent of a sign in selected language.

	
gloss

	The Gloss to translate.

	
keyword

	The Keyword of the translation, the textual form.

	
language

	The written/spoken Language of the translation.

	
order

	The order number of the Translation within a Glosses Translations.

	
signbank.dictionary.models.build_choice_list(field)

	This function builds a list of choices from FieldChoice.

	
signbank.dictionary.models.model

	alias of signbank.dictionary.models.GlossRelation

Video

A django app that handles data all the videos.

	Models

Models

Django models for video app.

Models for the video application keep track of uploaded videos and converted versions

	
class signbank.video.models.GlossVideo(*args, **kwargs)

	A video that represents a particular idgloss

	
correct_duplicate_versions()

	If glosses glossvideos have duplicate version numbers, reset version numbers.

	
create_filename()

	Returns a correctly named filename

	
create_poster_filename(ext)

	Returns a preferred filename of posterfile. Ext is the file extension without the dot.

	
dataset

	The Dataset/Lexicon this GlossVideo is part of.

	
get_extension()

	Returns videofiles extension.

	
get_glosses_videos()

	Returns queryset of glosses GlossVideos.

	
get_videofile_modified_date()

	Return a Datetime object from filesystems last modified time of path.

	
gloss

	The Gloss this GlossVideo belongs to.

	
has_poster()

	Returns true if the glossvideo has a poster file.

	
is_public

	Boolean: Is this GlossVideo public? Do you want to show it in the public interface, for a published Gloss?

	
move_video_version(direction)

	Move video back or forth in glosses videos.

	
next_version()

	Return a next suitable version number.

	
posterfile

	Poster image of the GlossVideo.

	
static rename_glosses_videos(gloss)

	Renames the filenames of selected Glosses videos to match the Gloss name

	
rename_video()

	Rename the video and move the video to correct path if the glossvideo object has a foreignkey to a gloss.

	
title

	Descriptive title of the GlossVideo.

	
version

	Version number of the GlossVideo within Glosses videos.

	
videofile

	Video file of the GlossVideo.

	
class signbank.video.models.GlossVideoStorage(location=u'/home/docs/checkouts/readthedocs.org/user_builds/finsl-signbank/checkouts/latest/media', base_url=u'/media/')

	Video storage, handles saving to directories based on filenames first two characters.

	
get_valid_name(name)

	Generate a valid name, save videos to a ‘base_directory’, and under it use directories
named for the first two characters in the filename to partition the videos

	
url(name)

	Returns an absolute URL where the file’s contents can be accessed
directly by a Web browser.

Glossary

	Allowed tags

	A model that controls which Tags are shown in Tag add lists for each
types of objects.

	CSV

	Comma Separated Values, a text file format used to import and export
data from spreadsheets.

	Dataset

	A model that holds the data for a Lexicon.

See Models.

	Flat pages

	User editable content pages. These pages can be edited by admins
with a WYSIWYG (what you see is what you get) editor.

	Gloss

	Name of an entry of a Sign in a lexicon.

	Gloss relation

	A relationship between two Glosses, stores a source Gloss and a target
Gloss.

	Gloss videos

	Videos to be attached to Glosses. Only the videos are able to show
the form of a sign.

	Lexicon

	A collection of Glosses. The name of the model in the application is
Dataset, but it is also called a Lexicon in some places.

See Models.

	Translation equivalent

	Translation of the Sign in the Gloss in some spoken language.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 signbank	

 	
 	
 signbank.dictionary.models	

 	
 	
 signbank.video.models	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ACCOUNT_ACTIVATION_DAYS (in module signbank.settings.base)

 	ADMINS (in module signbank.settings.settings_secret)

 	admins (signbank.dictionary.models.Dataset attribute)

 	Allowed tags

 	
 	ALLOWED_HOSTS (in module signbank.settings.production)

 	allowed_tags (signbank.dictionary.models.AllowedTags attribute)

 	AllowedTags (class in signbank.dictionary.models)

 	AUTHENTICATION_BACKENDS (in module signbank.settings.base)

B

 	
 	build_choice_list() (in module signbank.dictionary.models)

C

 	
 	CACHES (in module signbank.settings.production)

 	content_type (signbank.dictionary.models.AllowedTags attribute)

 	copyright (signbank.dictionary.models.Dataset attribute)

 	correct_duplicate_versions() (signbank.video.models.GlossVideo method)

 	
 	create_filename() (signbank.video.models.GlossVideo method)

 	create_poster_filename() (signbank.video.models.GlossVideo method)

 	created_at (signbank.dictionary.models.Gloss attribute)

 	created_by (signbank.dictionary.models.Gloss attribute)

 	CSV

D

 	
 	DATABASES (in module signbank.settings.settings_secret)

 	Dataset

 	(class in signbank.dictionary.models)

 	dataset (signbank.dictionary.models.Gloss attribute)

 	(signbank.video.models.GlossVideo attribute)

 	DB_IS_PSQL (in module signbank.settings.settings_secret)

 	DEBUG (in module signbank.settings.development)

 	(in module signbank.settings.production)

 	
 	DEFAULT_FROM_EMAIL (in module signbank.settings.settings_secret)

 	description (signbank.dictionary.models.Dataset attribute)

 	(signbank.dictionary.models.Dialect attribute)

 	(signbank.dictionary.models.Language attribute)

 	Dialect (class in signbank.dictionary.models)

 	dialect (signbank.dictionary.models.Gloss attribute)

 	DO_LOGGING (in module signbank.settings.production)

E

 	
 	EMAIL_BACKEND (in module signbank.settings.development)

 	(in module signbank.settings.production)

 	EMAIL_HOST (in module signbank.settings.settings_secret)

 	
 	EMAIL_PORT (in module signbank.settings.settings_secret)

 	english_name (signbank.dictionary.models.FieldChoice attribute)

 	exclude_from_ecv (signbank.dictionary.models.Gloss attribute)

F

 	
 	field (signbank.dictionary.models.FieldChoice attribute)

 	field_labels() (signbank.dictionary.models.Gloss method)

 	
 	FieldChoice (class in signbank.dictionary.models)

 	Flat pages

G

 	
 	get_choice_lists() (signbank.dictionary.models.Gloss static method)

 	get_extension() (signbank.video.models.GlossVideo method)

 	get_glosses_videos() (signbank.video.models.GlossVideo method)

 	get_keywords() (signbank.dictionary.models.GlossTranslations method)

 	get_keywords_unique() (signbank.dictionary.models.GlossTranslations method)

 	get_translation_languages() (signbank.dictionary.models.Gloss method)

 	get_translations_for_translation_languages() (signbank.dictionary.models.Gloss method)

 	get_valid_name() (signbank.video.models.GlossVideoStorage method)

 	get_videofile_modified_date() (signbank.video.models.GlossVideo method)

 	Gloss

 	(class in signbank.dictionary.models)

 	
 	gloss (signbank.dictionary.models.GlossTranslations attribute)

 	(signbank.dictionary.models.GlossURL attribute)

 	(signbank.dictionary.models.RelationToForeignSign attribute)

 	(signbank.dictionary.models.Translation attribute)

 	(signbank.video.models.GlossVideo attribute)

 	Gloss relation

 	Gloss videos

 	GlossRelation (class in signbank.dictionary.models)

 	GlossTranslations (class in signbank.dictionary.models)

 	GlossURL (class in signbank.dictionary.models)

 	GlossVideo (class in signbank.video.models)

 	GlossVideoStorage (class in signbank.video.models)

H

 	
 	has_poster() (signbank.video.models.GlossVideo method)

I

 	
 	idgloss (signbank.dictionary.models.Gloss attribute)

 	idgloss_en (signbank.dictionary.models.Gloss attribute)

 	
 	INSTALLED_APPS (in module signbank.settings.base)

 	is_public (signbank.dictionary.models.Dataset attribute)

 	(signbank.video.models.GlossVideo attribute)

K

 	
 	Keyword (class in signbank.dictionary.models)

 	
 	keyword (signbank.dictionary.models.Translation attribute)

L

 	
 	Language (class in signbank.dictionary.models)

 	language (signbank.dictionary.models.Dialect attribute)

 	(signbank.dictionary.models.GlossTranslations attribute)

 	(signbank.dictionary.models.Translation attribute)

 	LANGUAGE_CODE (in module signbank.settings.base)

 	language_code_2char (signbank.dictionary.models.Language attribute)

 	language_code_3char (signbank.dictionary.models.Language attribute)

 	(signbank.dictionary.models.SignLanguage attribute)

 	
 	LANGUAGES (in module signbank.settings.base)

 	Lexicon

 	loan (signbank.dictionary.models.RelationToForeignSign attribute)

 	LOCALE_PATHS (in module signbank.settings.development)

 	LOGGING (in module signbank.settings.production)

 	LOGIN_REDIRECT_URL (in module signbank.settings.base)

M

 	
 	machine_value (signbank.dictionary.models.FieldChoice attribute)

 	MEDIA_ROOT (in module signbank.settings.production)

 	MIDDLEWARE (in module signbank.settings.base)

 	
 	model (in module signbank.dictionary.models)

 	MorphologyDefinition (class in signbank.dictionary.models)

 	move_video_version() (signbank.video.models.GlossVideo method)

N

 	
 	name (signbank.dictionary.models.Dataset attribute)

 	(signbank.dictionary.models.Dialect attribute)

 	(signbank.dictionary.models.Language attribute)

 	(signbank.dictionary.models.SignLanguage attribute)

 	
 	next_version() (signbank.video.models.GlossVideo method)

 	notes (signbank.dictionary.models.Gloss attribute)

O

 	
 	order (signbank.dictionary.models.Translation attribute)

 	
 	other_lang (signbank.dictionary.models.RelationToForeignSign attribute)

 	other_lang_gloss (signbank.dictionary.models.RelationToForeignSign attribute)

P

 	
 	posterfile (signbank.video.models.GlossVideo attribute)

 	PSQL_DB_NAME (in module signbank.settings.settings_secret)

 	
 	PSQL_DB_QUOTA (in module signbank.settings.settings_secret)

 	public_name (signbank.dictionary.models.Dataset attribute)

 	published (signbank.dictionary.models.Gloss attribute)

R

 	
 	REGISTRATION_OPEN (in module signbank.settings.base)

 	Relation (class in signbank.dictionary.models)

 	
 	RelationToForeignSign (class in signbank.dictionary.models)

 	rename_glosses_videos() (signbank.video.models.GlossVideo static method)

 	rename_video() (signbank.video.models.GlossVideo method)

S

 	
 	SECRET_KEY (in module signbank.settings.settings_secret)

 	SERVER_EMAIL (in module signbank.settings.settings_secret)

 	signbank.dictionary.models (module)

 	signbank.video.models (module)

 	
 	SignLanguage (class in signbank.dictionary.models)

 	signlanguage (signbank.dictionary.models.Dataset attribute)

 	source (signbank.dictionary.models.GlossRelation attribute)

 	STATIC_ROOT (in module signbank.settings.production)

 	STATICFILES_FINDERS (in module signbank.settings.base)

T

 	
 	tag() (signbank.dictionary.models.GlossRelation method)

 	target (signbank.dictionary.models.GlossRelation attribute)

 	text (signbank.dictionary.models.Keyword attribute)

 	TIME_ZONE (in module signbank.settings.base)

 	
 	title (signbank.video.models.GlossVideo attribute)

 	Translation (class in signbank.dictionary.models)

 	Translation equivalent

 	translation_languages (signbank.dictionary.models.Dataset attribute)

 	translations (signbank.dictionary.models.GlossTranslations attribute)

U

 	
 	updated_at (signbank.dictionary.models.Gloss attribute)

 	updated_by (signbank.dictionary.models.Gloss attribute)

 	UPLOAD_ROOT (in module signbank.settings.production)

 	url (signbank.dictionary.models.GlossURL attribute)

 	
 	url() (signbank.video.models.GlossVideoStorage method)

 	USE_I18N (in module signbank.settings.base)

 	USE_L10N (in module signbank.settings.base)

 	USE_TZ (in module signbank.settings.base)

V

 	
 	version (signbank.video.models.GlossVideo attribute)

 	
 	VIDEO_UPLOAD_LOCATION (in module signbank.settings.base)

 	videofile (signbank.video.models.GlossVideo attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 FinSL-signbank documentation contents

 		
 FinSL-signbank documentation

 		
 Installation

 		
 Set up the environment

 		
 Databases

 		
 Other settings

 		
 Database migration

 		
 Apache (httpd)

 		
 Settings

 		
 The different settings files

 		
 When is which settings file applied?

 		
 Translation

 		
 Create a new language to translate to

 		
 Create or update translations

 		
 Changelog

 		
 1.0.0 - dd/mm/2018

 		
 Applications in FinSL-signbank

 		
 Dictionary

 		
 Video

 		
 Glossary

 		
 Features

 		
 Requirements

 		
 Installation (in short)

 		
 Installation

 		
 Set up the environment

 		
 Git repository

 		
 Python Virtual Environment

 		
 Install dependencies with pip

 		
 Configure settings

 		
 Databases

 		
 PostgreSQL

 		
 SQLite

 		
 MySQL

 		
 Other settings

 		
 Django debug toolbar

 		
 Database migration

 		
 Apache (httpd)

 		
 Apache + mod_wsgi

 		
 Apache envvars

 		
 HTTPS

 		
 Settings

 		
 The different settings files

 		
 base.py

 		
 development.py

 		
 production.py

 		
 settings_secret.py

 		
 testing.py

 		
 When is which settings file applied?

 		
 Translation

 		
 Create a new language to translate to

 		
 Add a new translation language

 		
 Make database migrations for django-modeltranslation

 		
 Create or update translations

 		
 Create the translation file (.po)

 		
 Write the translations

 		
 Translate Flat pages

 		
 Changelog

 		
 1.0.0 - dd/mm/2018

 		
 Applications in FinSL-signbank

 		
 Dictionary

 		
 Models

 		
 Video

 		
 Models

 		
 Glossary

_static/up-pressed.png

_static/up.png

