
Finite Documentation
Release 1.1

Yohan Giarelli

Feb 16, 2018

Contents

1 Use with Symfony 1

2 Basic graph 7

3 Events / Callbacks 11

4 Transitions properties 15

5 A PHP Finite State Machine 17

6 Overview 19

7 Contribute 21

i

ii

CHAPTER 1

Use with Symfony

1.1 Installation

$ composer require yohang/finite

1.1.1 Register the bundle

Register the bundle in your AppKernel:

<?php
// app/AppKernel.php

public function registerBundles()
{

$bundles = array(
// ...
new\Finite\Bundle\FiniteBundle\FiniteFiniteBundle(),
// ...

);
}

1.2 Defining your stateful class

As we want to track the state of an object (or the multiples states, but this example will focus on object
with single state-graph), create your class if it doesn’t already exists. This class has simply to implements
Finite\StatefulInterface.

This part is covered in Define your object.

1

Finite Documentation, Release 1.1

1.3 Configuration

finite_finite:

document_workflow:
class: MyDocument # You class FQCN
states:

draft: { type: initial, properties: { visible: false } }
proposed: { type: normal, properties: { visible: false } }
accepted: { type: final, properties: { visible: true } }
refused: { type: final, properties: { visible: false } }

transitions:
propose: { from: draft, to: proposed }
accept: { from: proposed, to: accepted }
refuse: { from: proposed, to: refused }

At this point, your graph is ready and you can start using your workflow on your object.

1.4 Controller / Service usage

Finite define several services into the Symfony DIC. The easier to use is finite.context.

1.4.1 Example

<?php

$context = $this->get('finite.context');
$context->getState($document); // return "draft", or... the current state if different
$context->getProperties($document); // array:1 ['visible' => false]
$context->getTransitions($document); // array:2 [0 => "propose", 1 => "refuse"]
$context->hasProperty($document, 'visible'); // true
$context->getFactory(); // Return an instance of FiniteFactory, used to instantiate
→˓the state machine
$context->getStateMachine($document); // Returns a initialized StateMachine instance
→˓for $document

// Throw a 404 if document isn't visible
if (!$this->get('finite.context')->getProperties($document)['visible']) {

throw $this->createNotFoundException(
sprintf('The document "%s" is not in a visible state.', $document->getName())

);
}

1.5 Twig usage

Although the Twig Extension is not Symfony-specific at all, when using the Symfony Bundle, Finite functions are
automatically accessible in your templates.

2 Chapter 1. Use with Symfony

Finite Documentation, Release 1.1

{{ dump(finite_state(document)) }} {# "draft" #}
{{ dump(finite_transitions(document)) }} {# array:2 [0 => "propose", 1 => "refuse"]
→˓#}
{{ dump(finite_properties(document)) }} {# array:1 ['visible' => false] #}
{{ dump(finite_has(document, 'visible')) }} {# true #}
{{ dump(finite_can(document, 'accept')) }} {# true #}

{# Display reachable transitions #}
{% for transition in finite_transitions(document) %}

{{ transition }}

{% endfor %}

{# Display an action if available #}
{% if finite_can(document, 'accept') %}

<button type="submit" name="accept">
Accept this document

</button>
{% endif %}

1.5.1 Example

1.6 Using callbacks

The state machine is built around a a very flexible and powerful events / callbacks system. Events dispatched with the
EventDispatcher and works as the Symfony kernel events.

1.6.1 Events

finite.set_initial_state: This event is fired when initializing a state machine with an object which does not have a
defined state. It allows you to manage the default initial state of your object.

finite.initialize: Fired when the StateMachine is initialized for an object (event if the current object state is known)

finite.test_transition: Fired when testing if a transition can be applied, when you call StateMachine#can or
StateMachine#apply. This event is an instance of Finite\Event\TransitionEvent and can be
rejected, which leads to a non-appliable transition. This is one of the most useful event, as it allows you to
introduce business code for allowing / rejecting transitions

finite.test_transition.[transition_name]: Same as finite.test_transition but with the concerned transi-
tion in the event name.

finite.test_transition.[graph].[transition_name]: Same as finite.test_transition but with the concerned
graph and transition in the event name.

finite.pre_transition: Fired before applying a transition. You can use it to prepare your object for a transition.

finite.pre_transition.[transition_name]: Same as finite.pre_transition but with the concerned transition
in the event name.

finite.pre_transition.[graph].[transition_name]: Same as finite.pre_transition but with the concerned
graph and transition in the event name.

1.6. Using callbacks 3

Finite Documentation, Release 1.1

finite.post_transition: Fired after applying a transition. You can use it to execute the business code you have to
execute when a transition is applied.

finite.post_transition.[post_transition]: Same as finite.post_transition but with the concerned transition
in the event name.

finite.post_transition.[graph].[transition_name]: Same as finite.post_transition but with the concerned
graph and transition in the event name.

1.6.2 Callbacks

Callbacks are a simplified mechanism allowing you to plug your domain services on the finite events. You can see it
as a way to listen to events without defining a listener class that just redirects the events to your services.

Using YAML configuration

finite_finite:

document_workflow:
class: MyDocument
states:

...
transitions:

...

callbacks:
before:

Will call the `sendPublicationMail` method of `@app.mailer.
→˓document` service

When the `accept` transition is applied
send_publication_mail:

disabled: false # default value
on: accept
do: [@app.mailer.document, 'sendPublicationMail']

Will call the `sendNotAnymoreProposedEmail` method of `@app.mailer.
→˓document` service

When any transition from the `proposed` state is applied.
This condition can be negated by prefixing a `-` before the state

→˓name
And the same exists for the destination transitions (with `to: `)
send_publication_mail:

disabled: false # default value
from: ['proposed']
do: [@app.mailer.document, 'sendNotAnymoreProposedEmail']

1.7 Configuration reference

finite_finite:

Prototype
name: # internal name of your graph, not used

class: ~ # Required, FQCN of your class

4 Chapter 1. Use with Symfony

Finite Documentation, Release 1.1

graph: default # Name of your graph, keep default if using
→˓a single graph

property_path: finiteState # The property of your class used to store
→˓the state

states:
Prototype
name: # Required, Name of your state

type: normal # State type, in "initial", "normal", "final"
properties: # Properties array.

Prototype
name: ~

transitions:
Prototype
name: # Required, Name of your transition

from: [] # Required, states the transition can come from
to: ~ # Required, state where the transition go
properties: # Properties array.

Prototype
name: ~

callbacks:

before: # Pre-transition callbacks
Prototype
name:

do: ~ # Required. The callback.
on: ~ # On which transition to trigger the callback.

→˓Default null
from: ~ # From which states are we triggering the callback.

→˓Default null
to: ~ # To which states are we triggering the callback.

→˓Default null
disabled: false

after: # Post-transition callbacks
Prototype
name:

on: ~
do: ~
from: ~
to: ~
disabled: false

1.7. Configuration reference 5

Finite Documentation, Release 1.1

6 Chapter 1. Use with Symfony

CHAPTER 2

Basic graph

2.1 Goal

In this example, we’ll see a basic Document workflow, following this graph :

Reject
|-----------------|

Transitions | |
v Propose | Accept

States Draft ----------> Proposed ----------> Accepted

Properties * Deletable * Printable

* Editable

2.2 Implement the document class

<?php

class Document implements Finite\StatefulInterface
{

private $state;

public function getFiniteState()
{

return $this->state;
}

public function setFiniteState($state)
{

$this->state = $state;
}

}

7

Finite Documentation, Release 1.1

2.3 Configure your graph

<?php

$loader = new Finite\Loader\ArrayLoader([
'class' => 'Document',
'states' => [

'draft' => [
'type' => Finite\State\StateInterface::TYPE_INITIAL,
'properties' => ['deletable' => true, 'editable' => true],

],
'proposed' => [

'type' => Finite\State\StateInterface::TYPE_NORMAL,
'properties' => [],

],
'accepted' => [

'type' => Finite\State\StateInterface::TYPE_FINAL,
'properties' => ['printable' => true],

]
],
'transitions' => [

'propose' => ['from' => ['draft'], 'to' => 'proposed'],
'accept' => ['from' => ['proposed'], 'to' => 'accepted'],
'reject' => ['from' => ['proposed'], 'to' => 'draft'],

],
]);

$document = new Document;
$stateMachine = new Finite\StateMachine\StateMachine($document);
$loader->load($stateMachine);
$stateMachine->initialize();

At this point, your Workflow / State graph is fully accessible to the state machine, and you can start to work with your
workflow.

2.4 Working with workflow

2.4.1 Current state

<?php
// Get the name of the current state
$stateMachine->getCurrentState()->getName();
// string(5) "draft"

// List the currently accessible properties, and their values
$stateMachine->getCurrentState()->getProperties();
// array(2) {
// 'deletable' => bool(true)
// 'editable' => bool(true)
// }

// Checks if "deletable" property is defined
$stateMachine->getCurrentState()->has('deletable');
// bool(true)

8 Chapter 2. Basic graph

Finite Documentation, Release 1.1

// Checks if "printable" property is defined
$stateMachine->getCurrentState()->has('printable');
// bool(false)

2.4.2 Available transitions

<?php

// Retrieve available transitions
var_dump($stateMachine->getCurrentState()->getTransitions());
// array(1) {
// [0] => string(7) "propose"
// }

// Check if we can apply the "propose" transition
var_dump($stateMachine->getCurrentState()->can('propose'));
// bool(true)

// Check if we can apply the "accept" transition
var_dump($stateMachine->getCurrentState()->can('accept'));
// bool(false)

2.4.3 Apply transition

<?php

// Trying to apply a not accessible transition
try {

$stateMachine->apply('accept');
} catch (\Finite\Exception\StateException $e) {

echo $e->getMessage();
}
// The "accept" transition can not be applied to the "draft" state.

// Applying a transition
$stateMachine->apply('propose');
$stateMachine->getCurrentState()->getName();
// string(7) "proposed"
$document->getFiniteState();
// string(7) "proposed"

2.4. Working with workflow 9

Finite Documentation, Release 1.1

10 Chapter 2. Basic graph

CHAPTER 3

Events / Callbacks

3.1 Overview

Finite use the Symfony EventDispatcher component to notify each actions done by the State Machine.

You can use the event system directly with callbacks in your configuration, or by attaching listeners to the event
dispatcher.

3.2 Implement your document class and define your workflow

See Basic graph.

3.3 Use callbacks

Callbacks can be defined directly in your State Machine configuration. The can be called before or after the transition
apply, and their definition use the following pattern :

<?php

$definition = [
'from' => [], // a string or an array of string that represent the initial

→˓states that trigger the callback. Empty for All.
'to' => [], // a string or an array of string that represent the target states

→˓that trigger the callback. Empty for All.
'on' => [], // a string or an array of string that represent the transition

→˓names that trigger the callback. Empty for All.
'do' => function($object, Finite\Event\TransitionEvent $e) {

// The callback
}

];

11

Finite Documentation, Release 1.1

from and to parameters can be any state names. Prefix by - to process an exclusion. By default, callbacks matchs all
the events.

3.3.1 Example :

<?php

[
'from' => ['all', '-proposed'],
'do' => function($object, Finite\Event\TransitionEvent $e) {

// callback code
}

];

Will match any transition that don’t begin on the proposed state.

3.3.2 Full example :

<?php

$loader = new Finite\Loader\ArrayLoader([
'class' => 'Document',
'states' => [

'draft' => [
'type' => Finite\State\StateInterface::TYPE_INITIAL,
'properties' => ['deletable' => true, 'editable' => true],

],
'proposed' => [

'type' => Finite\State\StateInterface::TYPE_NORMAL,
'properties' => [],

],
'accepted' => [

'type' => Finite\State\StateInterface::TYPE_FINAL,
'properties' => ['printable' => true],

]
],
'transitions' => [

'propose' => ['from' => ['draft'], 'to' => 'proposed', 'properties' => ['foo'
→˓=> 'bar']],

'accept' => ['from' => ['proposed'], 'to' => 'accepted'],
'reject' => ['from' => ['proposed'], 'to' => 'draft'],

],
'callbacks' => [

'before' => [
[

'from' => '-proposed',
'do' => function(\Finite\Event\TransitionEvent $e) {

echo 'Applying transition '.$e->getTransition()->getName(), "\n";
if ($e->has('foo')) {

echo "Parameter \"foo\" is defined\n";
}

}
],
[

'from' => 'proposed',

12 Chapter 3. Events / Callbacks

Finite Documentation, Release 1.1

'do' => function() {
echo 'Applying transition from proposed state', "\n";

}
]

],
'after' => [

[
'to' => ['accepted'], 'do' => [$document, 'display']

]
]

]
]);

$stateMachine->apply('propose');
// => "Applying transition propose"
// => "Parameter "foo" is defined"

$stateMachine->apply('reject');
// => "Applying transition from proposed state"

$stateMachine->apply('propose');
// => "Applying transition propose"
// => "Parameter "foo" is defined"

$stateMachine->apply('accept');
// => "Applying transition from proposed state"
// => "Hello, I'm a document and I'm currently at the accepted state."

3.4 Use event dispatcher

If you prefer, you can use directly the event dispatcher.

Here is the available events :

finite.initialize => Dispatched at State Machine initialization
finite.test_transition => Dispatched when testing if a transition can be applied
finite.pre_transition => Dispatched before a transition
finite.post_transition => Dispatched after a transition

finite.test_transition.{transitionName} => Dispatched when testing if a specific
→˓transition can be applied
finite.pre_transition.{transitionName} => Dispatched before a specific transition
finite.post_transition.{transitionName} => Dispatched after a specific transition

finite.test_transition.{graph}.{transitionName} => Dispatched when testing if a
→˓specific transition in a specific graph can be applied
finite.pre_transition.{graph}.{transitionName} => Dispatched before a specific
→˓transition in a specific graph
finite.post_transition.{graph}.{transitionName} => Dispatched after a specific
→˓transition in a specific graph

3.4. Use event dispatcher 13

Finite Documentation, Release 1.1

3.4.1 Example :

<?php

$stateMachine->getDispatcher()->addListener('finite.pre_transition',
→˓function(\Finite\Event\TransitionEvent $e) {

echo 'This is a pre transition', "\n";
});
$stateMachine->apply('propose');
// => "This is a pre transition"

3.4.2 Example testing transitions:

<?php

$stateMachine->getDispatcher()->addListener('finite.test_transition',
→˓function(\Finite\Event\TransitionEvent $e) {

$e->reject();
});

try {
$stateMachine->apply('propose');

}
catch (Finite\StateMachine\Exception\StateException $e) {

echo 'The transition did not apply', "\n";
}

// => "The transition did not apply"

14 Chapter 3. Events / Callbacks

CHAPTER 4

Transitions properties

As the second argument, StateMachine#apply and StateMachine#test will accept an array of properties to be passed to
the dispatched event, and accessible by the listeners.

Default properties can be defined with your state graph.

$stateManager->apply('some_event', array('something' => $value));

In your listeners you just have to call `$event->getProperties()` to access the passed data.

<?php

namespace My\AwesomeBundle\EventListener;

use Finite\Event\TransitionEvent;

class TransitionListener
{

/**
* @param TransitionEvent $event

*/
public function someEvent(TransitionEvent $event)
{

$entity = $event->getStateMachine()->getObject();
$params = $event->getProperties();

$entity->setSomething($params['something']);
}

}

15

Finite Documentation, Release 1.1

4.1 Default properties

'transitions' => array(
'finish' => array(

'from' => array('middle'),
'to' => 'end',
'properties' => array('foo' => 'bar'),
'configure_properties' => function (OptionsResolver $resolver) {

$resolver->setRequired('baz');
}

)
)

16 Chapter 4. Transitions properties

CHAPTER 5

A PHP Finite State Machine

Finite is a state machine library that gives you ability to manage the state of a PHP object through a graph of states
and transitions.

17

Finite Documentation, Release 1.1

18 Chapter 5. A PHP Finite State Machine

CHAPTER 6

Overview

6.1 Define your workflow / state graph

<?php

$document = new MyDocument;
$stateMachine = new Finite\StateMachine\StateMachine;
$loader = new Finite\Loader\ArrayLoader([

'class' => 'MyDocument',
'states' => [

'draft' => ['type' => 'initial', 'properties' => []],
'proposed' => ['type' => 'normal', 'properties' => []],
'accepted' => ['type' => 'final', 'properties' => []],
'refused' => ['type' => 'final', 'properties' => []],

],
'transitions' => [

'propose' => ['from' => ['draft'], 'to' => 'proposed'],
'accept' => ['from' => ['proposed'], 'to' => 'accepted'],
'refuse' => ['from' => ['proposed'], 'to' => 'refused'],

]
]);

$loader->load($stateMachine);
$stateMachine->setObject($document);
$stateMachine->initialize();

6.2 Define your object

<?php

class MyDocument implements Finite\StatefulInterface
{

19

Finite Documentation, Release 1.1

private $state;
public function getFiniteState()
{

return $this->state;
}
public function setFiniteState($state)
{

$this->state = $state;
}

}

6.3 Work with states & transitions

<?php

echo $stateMachine->getCurrentState();
// => "draft"

var_dump($stateMachine->can('accept'));
// => bool(false)

var_dump($stateMachine->can('propose'));
// => bool(true)

$stateMachine->apply('propose');
echo $stateMachine->getCurrentState();
// => "proposed"

20 Chapter 6. Overview

CHAPTER 7

Contribute

Contributions are welcome !

Finite follows PSR-2 code, and accept pull-requests on the GitHub repository.

If you’re a beginner, you will find some guidelines about code contributions at Symfony.

21

https://github.com/yohang/Finite
http://symfony.com/doc/current/contributing/code/patches.html

	Use with Symfony
	Basic graph
	Events / Callbacks
	Transitions properties
	A PHP Finite State Machine
	Overview
	Contribute

