
FESetup1.2 Documentation
Release 1.2.1

Hannes Loeffler

Oct 20, 2022

Contents

1 Introduction 3
1.1 Capabilities and Description . 3
1.2 General . 4
1.3 MD engines . 4
1.4 Maximum Common Substructure Search . 5
1.5 Adding hydrogens . 5
1.6 Charge parameterisation . 6

2 Installation 7
2.1 Dependencies . 8

3 Running FESetup 9
3.1 Command line . 9
3.2 Input format . 9
3.3 Explicit tagging mechanism . 10

4 Input Options 13
4.1 Full option list . 13

5 Indices and tables 19

i

ii

FESetup1.2 Documentation, Release 1.2.1

Contents:

Contents 1

FESetup1.2 Documentation, Release 1.2.1

2 Contents

CHAPTER 1

Introduction

FESetup automates the setup of relative alchemical free energy (AFE) simulations such as thermodynamic integration
(TI) and free energy perturbation (FEP). Post–processing methods like MM–PBSA and LIE are supported as well.
FESetup can also be used for general simulation setup (“equilibration”) through an abstract MD engine (currently
supported MD engines are AMBER, GROMACS, NAMD and DL_POLY). For relative AFE simulation the mapping
of corresponding atoms between the two free energy states, that is their topological similarity, is computed via a
maximum common substructure search (MCSS). This enables a maximal single topology description of the perturbed
molecule pair. Ligand molecules can automatically be parameterised using the AMBER GAFF/AM1-BCC method.
Supported force fields for biomolecules are all the modern AMBER force fields.

The AFE simulation packages that are currently supported are Sire, AMBER, GROMACS and CHARMM/PERT. All
these codes implement AFE simulation by making use of a hybrid single/dual topology description of the perturbed
region i.e. the mapped region (single topology) can be used simultaneously with an un–mapped, duplicated region
(dual topology) from each state. There is also some support for NAMD’s purely dual topology implementation but
this requires an additional PDB file to mark appearing/vanishing atoms and possibly relative restraints to keep ligands
spatially in place and/or together.

FESetup particularly aims at automation where it makes sense and is possible, ease of use and robustness of the code.
Users are very welcome to discuss on our forum, report issues and request new features. The software is licensed
under the GPL2 and such is a community effort: user contributions in any form are highly encouraged!

The basis of the current code was a collection of Python and shell scripts written previously by Julien Michel and
Christopher Woods. The FESetup1.2 code base was mainly developed by Hannes Loeffler (STFC) with contributions
from the original developers.

Please cite DOI: 10.1021/acs.jcim.5b00368 when you use FESetup.

1.1 Capabilities and Description

The sections here give a brief overview of FESetup from a general point of view i.e. topics like background informa-
tion, concepts, implementation ideas and philosophies, etc. but also the limits of the current software.

3

FESetup1.2 Documentation, Release 1.2.1

1.2 General

FESetup is currently (July 2017) mainly geared at automated setup for receptor-ligand simulations. But in principle
any biomolecular system can be set up for simulation provided the system is supported by the force field (AMBER and
AMBER/GAFF) and the ligand is not covalently bound and can reasonably be parameterised with AM1/BCC. The
latter implies that the ligand is a relatively “small” organic molecule as typically considered in the drug development
process.

Core functionality of FESetup are the parameterisation of (possibly large numbers of) ligands and the “morphing” of
a pair of ligands. Morphing describes how a molecule’s force field parameters are transformed (or “perturbed”) into
a set of parameters descriptive for a second, topological related molecule. As such FESetup is a perturbed topology
creator. Ligand parameterisation enables standard MD simulation including post-processing methods like MM-PBSA
for simplified free energy estimates. The topology file describing the morphing of the ligand pair enables alchemical
free energy simulation like Thermodynamic Integration (TI) or Free Energy Perturbation (FEP, also called EXP for
exponential formula). Currently, FESetup supports such simulation setups for Sire, AMBER, Gromacs and the PERT
module in CHARMM. In the case of AMBER the dual topology softcore approach as well as the older explicit dummy
atom approach, as implemented in both sander and pmemd, are supported.

FESetup reads a series of coordinates for ligands and proteins. The ligands can then be parameterised with the
AM1/BCC method and can be combined with a protein (or other molecule supported by the AMBER force fields
or with user supplied parameters) into a complex. This requires the complex to be set up properly beforehand, e.g.
the complex may have been created via a previous docking run or by any other suitable method. Protein and ligand
coordinates must be supplied separately. While the protein is expected in PDB format the ligand can be in any format
supported by OpenBabel (but must have 3D coordinates). A caveat though is that OpenBabel does not read total
charge information from all file formats that support this and thus the most suitable formats are either PDB or SDF
for the ligand if a charge other than zero is needed. Internally the coordinates will be converted to the mol2 format.
If morph pairs are requested, FESetup will compute the “difference” between the two ligand molecules using a max-
imum common substructure search (MCSS) algorithm (from RDKit) as a distance metric and use this information to
create appropriate topology files and control files for alchemical free energy simulation.

1.3 MD engines

FESetup makes use of an abstract MD engine, currently for the purpose of “equilibration” of simulation systems.
This means that various popular MD simulation software packages (at the moment: AMBER, DL_POLY, NAMD
and GROMACS) can be used in a transparent fashion, that is without the need to know the specific control and
command structures of a particular simulation software. This is, of course, somewhat limited by MD software not
always providing fully equivalent features as in other software packages. But for the general purpose of carrying out
setup processes like minimization, heating, pressurizing, restraint release, etc. this is sufficient and sensible starting
structures for production MD simulation can be obtained without problems.

The MD engine mechanism allows the user to choose the specific binary (program) to be used for MD/minimisation,
e.g. with AMBER that could be any variant of sander or pmemd, with GROMACS any variant of mdrun, etc. Parallel
versions are supported to a certain extent too as described in the following. Multi-threaded binaries like mdrun with
thread-MPI or the multi-core version of NAMD will run on any single machine or “node”. MPI versions like the
AMBER binaries do also work but currently there is no support for job schedulers like PBS, LSF, etc.

Some of the limitations of abstraction are that software like GROMACS or NAMD appear to always need a mini-
mization step of a solvated system prior to MD whereas AMBER is less sensitive to this. FESetup currently includes
standard input configuration settings for minimization, random velocity assignment, heating, constant T and pressuriz-
ing. For all these, restraints can be defined by either keyword or an AMBER mask. All corresponding run-time control
parameters are created through templates and each of these steps is carried out as an individual simulation run. This is
also done for NAMD despite it having full scripting capabilities of its own. However, the abstract interface hides the
details of the actual MD engine away and thus is much easier to use. In addition, the interface is unified i.e. it appears

4 Chapter 1. Introduction

FESetup1.2 Documentation, Release 1.2.1

the same independent of the MD engine chosen. AMBER and GROMACS do no have built-in scripting facilities and
thus the separate steps are needed especially the step-wise release of restraints.

1.4 Maximum Common Substructure Search

Morph pairs are generated through a graph based maximum common substructure search (MCSS) algorithm, in partic-
ular the implementation in RDKit. By comparing the graphs of two ligands the maximum match between their atoms,
based on the topology i.e. connectivity, are found. Currently we do not distinguish between atom types or bond types,
i.e. the graph is unlabeled. Rings, on the other hand, are required to match other rings and cannot be broken. All
atoms not part of the MCS mapping (equivalent atoms between the two ligands are recorded), are considered to be
dummy atoms and coordinates are created accordingly from internal coordinates (this is not needed in the AMBER
dual topology softcore apprach).

There are, however, a few caveats to keep in mind. First, the comparison is carried out in graph space which is
essentially only two dimensional. Thus 3D features are not retained unless otherwise specified. This includes the
substitution patterns of stereogenic centres, e.g. the absolute configuration can be reverted with the scheme described
above. Symmetry related issues, e.g. molecules may have multiple MCSs but a “random” one is assigned to a given
morph pair, may appear too. Retaining specific binding modes is another problem which may be caused by symmetry
but other origins, e.g. flipping by 180 degrees or parts of a molecules preferring another binding pocket when decorated
differently, are possible too. FESetup allows the user to provide explicit atom tagging of individual atoms to overcome
these problems albeit at the expense of automation. Tagging however allows the user to overwrite the default behaviour
of FESetup and can thus guide the mapping to their own preferences.

Second, the time behaviour of MCSS algorithms may pose problems. In the worst case a search would be exponential
in time due to the need of an exhaustive search (in practice, the MCSS algorithms have clever shortcuts but there is
no universal algorithm available because NP-complete) which implies that for every additional atom the search time
would be doubled. We have found several examples where the MCS search can range from many minutes to hours to
days (in a very large system of a molecular weight of nearly 1500 with the old Python implementation of fmcs). In
practice, however, the MCS appears to be found within just a minute or so (more careful testing needed) and we have
not found any problem cases yet where the MCS would not be as expected from visual inspection. FESetup provides
a setting to limit the time spend on the MCS search.

1.5 Adding hydrogens

This is a particular serious matter and attitudes among researchers vary. We strongly recommend that the user makes
sure that hydrogens are added to the ligand and protonation state as well as tautomeric state are fully determined before
FESetup is run. It is the user’s responsibility to get the chemistry right.

In principle, there is a setting in FESetup to allow addition of hydrogens in a simple valence filling fashion. But we
have found that this does not always work properly with OpenBabel, e.g. the N9 (binding to the ribose) in nucleosides
appears to be always perceived as being located within a double-bonded or aromatic ring. This results in addition of
a hydrogen and a charge of +1 on N9. However, charge parameterisation is achieved through sqm, a semi-empirical
tool in the AmberTools, which crucially depends on having the charge properly assigned, or otherwise may terminate
with an error or compute grossly wrong results.

Finding protonation and tautomeric states is even much more difficult because they depend strongly on the environ-
ment. There is currently no support for assignment of such states in FESetup. Any future work in this direction will
have to await very thorough investigations into what is possible and what not.

1.4. Maximum Common Substructure Search 5

FESetup1.2 Documentation, Release 1.2.1

1.6 Charge parameterisation

The parameterisation steps in FESetup currently carries out charge calculation for the AMBER/GAFF force field at
the AM1/BCC level with the help of the AmberTools toolchain antechamber. This method derives Mulliken charges
at the semiempirical AM1 level of theory (via sqm) and then applies bond charge corrections (BCC) to these Mulliken
charges to finally obtain charges almost equivalent to the higher level HF 6-31G* RESP charge derivation scheme.
A subsequent run through parmchk(2) will assign missing bonded parameters through a similarity search in the first
attempt or, if this cannot be achieved, an empirical approach is followed. If both methods fail the correpsonding force
field parameters will be set to zero. This is actually exploited in the case of the dummy atoms as the corresponding atom
type does not have an equivalent in the data base (the code relies on zero force field parameters for identifying dummy
atoms at various places). Lennard-Jones parameters and mixing rules will be applied as per the initial perception of
GAFF atom types (atomtype and bondtype tools).

There are a few notable limitations. Sqm carries out geometry minimizations in vacuum. This can lead to distorted
structures when highly charged groups are present, e.g. zwitterions. We have also found proton “shifts” between the
two ends of a molecule and “decarboxylation”, both in very rare cases. FESetup provides a (undocumented) option to
carry out geometry minimizations with the help of an implicit solvent model (through the QM/MM feature in sander
without an actual MM part). But we did not really find an improvement for the aforementioned problems except for
more stable SCF convergence and a smoother geometry optimisation.

Larger molecules should probably be considered to be broken into sensible smaller fragments similar to how the
biomolecules force field has been parameterised. This is beyond the scope of FESetup currently, however. More
elaborate schemes, on the other hand. like the original RESP method or possibly specialised software like R.E.D. may
be incorporated in the future.

6 Chapter 1. Introduction

CHAPTER 2

Installation

Linux, Intel 32bit and 64bit

Run the installer package from www.ccpbiosim.ac.uk/software in a convenient location (N will stand for
the release you have downloaded). You can run the installer with “–help” to see further options. Here we
describe interactive installation i.e. when run without any command line options. The installer requires
the xz compression tool to be installed on your system.

> cd /where/I/want/it # replace the path to whatever you like > ./FESetupN_Linux.sh # extract
all files into FESetupN/

The installer will automatically detect which version to extract (either 32 or 64 bit). You will be asked
to provide paths to AMBER, GROMACS, NAMD and DL_POLY. It is strongly recommended to choose
‘N’ (the default, so just press Enter) when the first question suggests to use your existing $AMBER-
HOME. Choose the internal path as suggested in the following question to avoid modifications to the
original AmberTools installation. Press Enter to accept defaults or to set an empty path if you do not
have a certain MD package. You will also be asked for a Python 2.7 interpreter (the default is “python”,
assumed to be located in the $PATH but read the note below). You will find the FESetup script in ./FES-
etupN/FesetupMM/bin after successful installation (MM is either 32 or 64 depending on your hardware).
Check that FESetup is working. You can do this by running the test set from our first tutorial or just run
the FESetup script without any command line parameters. This will write the default input parameters to
your terminal. You can copy/link the FESetup script to your PATH e.g. /usr/local/bin if you like, or create
an alias to point to the script.

Our packages are self-contained and come with all relevant tools from AmberTools 16 including sander (pmemd still
requires a full AMBER license). To carry out standard MD simulations, in particular equilibration of your system, the
abstract MD engine supports AMBER (both sander and pmemd), NAMD, GROMACS and DL_POLY. Please note
that currently we do not directly support NAMD’s alchemical free energy methods though there is support for dual
topology runs with AMBER inputs in NAMD (an additional PDB file is required to mark appearing/vanishing atoms,
see NAMD manual). Standard MD is supported for NAMD though.

Also note that you should use the standard Python interpreter (e.g. the one that comes as a package with your OS
distribution or you download and compile from python.org). Python versions that come with a package management
systems of their own may break the assumptions that our installer makes with regards to shared libraries. Specifially,
anaconda appears to mess with the library search path and seems to disregard the setup in the FESetup script.

7

FESetup1.2 Documentation, Release 1.2.1

2.1 Dependencies

FESetup depends on various third-party software. All of these are included in the installer package. Here a list of
dependencies for those who want to compile everything themselves. Not listed are some dependencies which can be
installed through the operating sytem’s package management software. Some secondary dependencies are listed too.
Debian based systems have most libraries, toolkits and tools pre-compiled and ready to install through their package
managment system.

Python 2.7

Sire/corelib 0.0.1, Sire/Python2 0.0.1: Qt4, Boost, GSL, BLAS/LAPACK, pcre3

Ambertools 16

OpenBabel 2.3.x: eigen, swig, xml2

RDKit 2016: numpy, Boost

8 Chapter 2. Installation

CHAPTER 3

Running FESetup

The script FESetup in the release is the command line tool for the end-user. This shell script sets a few environment
variables and eventually calls dGprep.py. dGprep.py is the actually code running the routines for AFE setup.

Note: this manual describes options used as of Release 1.2.

3.1 Command line

Default values for all key–value pairs are written to stdout for each of the four sections when FESetup is called
without any command-line parameters. Calling FESetup with ‘–help’ gives information of all possible command line
parameters. Currently all options are for information purposes only so will not affect the setup in any way. The option
–tracebacklimit is really only of use for debugging. As noted above FESetup is the front-end script to the Python code
dGprep.py.

> FESetup --help

usage: dGprep.py [-h] [-v] [--tracebacklimit N] [infile]

positional arguments:
infile input file in INI format, if not given then just output defaults

optional arguments:
-h, --help show this help message and exit
-v, --version full version information
--tracebacklimit N set the Python traceback limit (for debugging)

3.2 Input format

The input file format for the FESetup script (dGprep.py) is an INI like format, popular in the MS-DOS/Windows
world. It is not exactly the same format but a simplified version of it.

9

FESetup1.2 Documentation, Release 1.2.1

The input file may contain four sections where the section names are delimited with brackets:

The four sections of the INI file

1. [globals] global settings, the section name is optional if it is the first section in the file

2. [ligand] settings for the ligand

3. [protein] settings for the protein

4. [complex] settings for the complex

Each section consists of various key-value pairs which are two strings separated with an equal sign (“=”). The key
must not contain any whitespace.:

a typical key-value pair
morph_pairs = p-aminophenol > o-cresol

Lines may be continued with an initial whitespace (normal space, TAB) on the following line:

multiple continuation lines
morph_pairs = ethane > methanol, ethane > tbutane, ethane > propane,

tbutane > propane, tbutane > acetone,
propane > acetone, propane > methane

However, list pairs must always appear on the same line because each line is parsed individually. So the following will
cause an error:

this will result in an error
morph_pairs = ethane > methanol, ethane > tbutane, ethane >

propane, # the string "propane" must appear in the previous line!

Comments are either empty lines or lines starting with ‘#’ or ‘;’ (leading whitespace is removed). Inline comments
are allowed too provided the comment character is preceded by a space. Otherwise the string is part of the preceding
string, e.g:

basedir = smallmols # this is an inline comment
basedir = smallmol#foo # the valid string and directory name 'smallmol#foo'

3.3 Explicit tagging mechanism

In some cases it may be necessary to explicitly map certain atoms to one another e.g. to preserve a certain spatial
rearrangment as for binding modes. This means that the default mapping algorithm (maximum common substructure
search, MCSS) can be given additional hints. In the following example the benzofuran is oriented in the way outlined
by forcing a certain mapping. As should be evident there are twelve ways of mapping the two molecules but if e.g. the
binding mode is known a prior the user has here a chance to preserve it!:

[ligand]
basedir = smallmols
morph_pairs = benzol > benzofuran /1=3/2=2 # indices start from 1

An alternative mechanism is to create a special file in basedir (as set in the [ligand] section). The name of the file must
be in the form ligand1~ligand2.map, e.g. if the input reads:

[ligand]
basedir = smallmols
morph_pairs = benzol > benzofuran

10 Chapter 3. Running FESetup

FESetup1.2 Documentation, Release 1.2.1

then the map file must be in smallmols i.e. smallmols/benzol~benzofuran.map .

The map file has a two column format indicating which atom index in the initial state maps to which atom index in the
final state. Atom indexes start from 1:

example mapping file benzol~benzofuran.map in the basedir smallmols/
explicitly map the following atom indexes onto each other
1 3 # this mapping and...
2 2 # ...this one will fix the orientation of benzofuran in space

3.3. Explicit tagging mechanism 11

FESetup1.2 Documentation, Release 1.2.1

12 Chapter 3. Running FESetup

CHAPTER 4

Input Options

4.1 Full option list

4.1.1 Options unique to each section

The following tables list all options unique to each section. Note that empty strings (denoted as ‘none’ in the table)
means that the user has to use appropriate values. ‘molecules’ will be overwritten i.e. ignored when ‘morph_pairs’
are used in [ligand]. The default for complex building is to combine every protein with every ligand. If you do no
want that, you must explicitly list all pairs using the ‘pairs’ key. Please note that your file and directory names must
not contain the characters ‘:’ (colon), ‘>’ (right angle bracket), ‘”’ (double quote) and ‘~’ (tilde). The comma ‘,’ is
permited as long as the filename is enclosed in double quotes, e.g.

morph_pairs = “1,2-dichloroethane” > E-dichloroethene, E-dichloroethene > “1,2-dichloroethane”

[globals]

13

FESetup1.2 Documentation, Release 1.2.1

Key Values, default listed
first

Type Explanation

AFE.type Sire, sander/dummy,
sander/softcore, gro-
macs, pmemd/softcore,
pmemd/dummy
charmm/pert

string free energy type, deter-
mines which MD package
the input files are cre-
ated for (for backwards
compatability AMBER
= sander/dummy and
AMBER/softcore =
sander/softcore)

AFE.separate_vdw_elec True, False bool separate the Coulomb
(charge) transformation
from the vdW+bonded
transformation

forcefield amber, ff14SB, tip3p, hfe list of strings ff family, subtype of ff,
water ff, divalent ion set

ff_addons empty list of strings additional force fields
like GLYCAM_06j-1 or
lipid14

gaff gaff1, gaff2 string Choice for the small
molecules forcefield,
either GAFF 1.x or
GAFF2.x

logfile dGprep.log string name of the debug log file
mdengine amber, sander; am-

ber,pmemd; gromacs,
mdrun namd, namd2

list of 2 strings program for minimisation
and MD, the first in the
list is the MD package, the
second is the actual binary

mdengine.prefix empty string the string preceding the
mdengine binary com-
mand, e.g. mpirun -np 4
(for MPI programs)

mdengine.postfix empty string the string following
the mdengine binary
command, e.g. +p2 +iso-
malloc_sync (for namd
multicore)

parmchk_version 2, 1 integer parmchk version
mcs.timeout 60.0 float

timeout in seconds for fmcs,
0 means no timeout

remake False, True bool remake already done
molecules (excluding
morphs)

overwrite False, True bool by default no files are ever
overwritten in the _ direc-
tories, use this to change
this behaviour

user_params False, True bool read user force field pa-
rameter files, i.e. all .fr-
mod, .preb and .lib (OFF
format) files are read in

14 Chapter 4. Input Options

FESetup1.2 Documentation, Release 1.2.1

[ligand]

Key Values, default
listed first

Type Explanation

basedir none, must be set by
user

string base directory to find ligands

file.name ligand.pdb string ligand input file name
file.format none, determined

from extension of
filename

string format of file.name, can be used to overwrite if file extension is
different from actual file format

ions.conc 0.0 float sets the NaCl concentration in mol/l
ions.dens 1.0 float density for which the ion concentration is wanted
calc_charge False, True bool Force calculation of molecule’s formal charge, required e.g. for

mol2 format for which Openbabel computes the charge only in
select cases.

conf_search.conj_econv1e-06 float conformation search option
conf_search.conj_steps250 inte-

ger
conformation search option

conf_search.ffieldmmff94 string conformation search option
conf_search.geomsteps5 inte-

ger
conformation search option

conf_search.numconf0 inte-
ger

conformation search option

conf_search.steep_econv0.0001 float conformation search option
conf_search.steep_steps100 inte-

ger
conformation search option

molecules none, must be set by
user

list of
strings

list of molecules

morph.absoluteFalse, True bool write absolute transformation MORPH.pert files for Sire
morph_pairs none, must be set by

user
list of
strings

list of pairs in the form lig1 > lig2, overwrites ‘molecules’, do not
use ‘>’ in file names

neutralize False, True bool neutralize the solvation box by adding minimum couterions re-
quired

skip_param False, True bool skip the parameterisation step, useful in conjunction with
user_params or ff_addons see [globals]

[protein]

Key Values, default listed
first

Type Explanation

align_axes False, True bool align protein along principal axes before hydrating
basedir none, must be set by

user
string base directory to proteins

ions.conc 0.0 float sets the NaCl concentration in mol/l
ions.dens 1.0 float density for which the ion concentration is wanted
molecules none, must be set by

user
list of
strings

list of molecules

neutral-
ize

False, True bool neutralize the solvation box by adding minimum couterions
required

propka False, True bool use ProPKA to protonate protein
propka.pH 7.0 float pH for ProPKA

4.1. Full option list 15

FESetup1.2 Documentation, Release 1.2.1

[complex]

Key Values, default listed
first

Type Explanation

align_axes False, True bool align protein along princi-
pal axes before hydrating

ions.conc 0.0 float sets the NaCl concentra-
tion in mol/l

ions.dens 1.0 float density for which the ion
concentration is wanted

neutralize False, True bool neutralize the solvation
box by adding minimum
couterions required

flatten_rings False, True bool make aromatic rings fully
planar, for MC with Sire

pairs none, must be set by user list of strings
list of pairs in the form protein:ligand, do not use

‘:’ in file names

4.1.2 The minimisation and MD options

The following options are the minimsation and MD options for molecule setup common to ligands, proteins and
complexes. To allow minimisation and MD ‘box.type’ has to be set explicilty which also creates a water box. If
‘box.type’ is not set by the user then no box will be created and minimisation or MD will not be carried out. To
actually run a minimsation or simulation you will need to set any of the ‘.nsteps’ keys to a value larger than 0. The
only difference is relaxation where setting ‘md.relax.nrestr’ to a value larger than 0 will trigger restraint relaxation.
The order of simulation protocols is fixed as heating (md.heat.*), constant volume and temperature (md.constT.*),
pressurising = density adjustment (md.press.*), relaxation at NpT conditions (md.relax.*). If any of those steps are
not needed set ‘.nsteps’ to 0 but be aware that there are no further sanity checks. The MD protocol can be preceded by
a minimisation step (min.*).

16 Chapter 4. Input Options

FESetup1.2 Documentation, Release 1.2.1

Key Values, default listed first Type Explanation
box.typeempty string = no box cre-

ated, rectangular, octahe-
dron (limited support)

string creates a box of water

box.length10.0 float the distance in Ångström between solute and the box edges, NOTE:
the TIP3P box will create a system of low density and thus this dis-
tance will decrease on pressuring the sytem.

min.ncyc0 in-
te-
ger

number of steepest decent steps in minimisation

.nsteps 0 in-
te-
ger

number of steps; e.g. min.nsteps

.re-
str_force

10.0 float restraint force; e.g. md.heat.restr_force

.re-
straint

protein, backbone, heavy,
notligand, notsolvent

string restraint type, if other string then in the list it is the restraintmask for
sander; e.g. md.constT.restraint

.T 300.0 float temperature; e.g. md.press.T

.p 1.0 float pressure; e.g. md.relax.p
md.relax.nrestr0 in-

te-
ger

number of relaxation steps, needed to trigger restraint relaxation

4.1. Full option list 17

FESetup1.2 Documentation, Release 1.2.1

18 Chapter 4. Input Options

CHAPTER 5

Indices and tables

19

	Introduction
	Capabilities and Description
	General
	MD engines
	Maximum Common Substructure Search
	Adding hydrogens
	Charge parameterisation

	Installation
	Dependencies

	Running FESetup
	Command line
	Input format
	Explicit tagging mechanism

	Input Options
	Full option list

	Indices and tables

