
Fennel

Matt Westcott

Aug 20, 2020

CONTENTS

1 Features 1

2 Installation 3

3 Basic Usage 5

4 Asynchronous API 7

5 Contents 9
5.1 Guide . 9
5.2 Installation . 13
5.3 Motivation . 14
5.4 Architecture . 14
5.5 CLI . 17
5.6 API Reference . 19
5.7 Changelog . 30

6 Indices and tables 33

Python Module Index 35

Index 37

i

ii

CHAPTER

ONE

FEATURES

Fennel is a task queue for Python 3.7+ based on Redis Streams with a Celery-like API.

• Supports both sync (e.g. Django, Flask) and async (e.g. Starlette, FastAPI) code.

• Sane defaults: at least once processing semantics, tasks acknowledged on completion.

• Automatic retries with exponential backoff for fire-and-forget jobs.

• Clear task statuses available (e.g. sent, executing, success).

• Automatic task discovery (defaults to using **/tasks.py).

• Exceptionally small and understandable codebase.

Note: This is an alpha release. The project is under development, breaking changes are likely.

1

Fennel

2 Chapter 1. Features

CHAPTER

TWO

INSTALLATION

pip install fennel

3

Fennel

4 Chapter 2. Installation

CHAPTER

THREE

BASIC USAGE

Run Redis and then write your code in tasks.py:

from fennel import App

app = App(name='myapp', redis_url='redis://127.0.0.1')

@app.task
def foo(n):

return n

Enqueue a task to be executed in the background by a fennel worker process.
foo.delay(7)

Meanwhile, run the worker:

$ fennel worker --app tasks:app

5

https://redis.io

Fennel

6 Chapter 3. Basic Usage

CHAPTER

FOUR

ASYNCHRONOUS API

Fennel also supports an async API. If your code is running in an event loop (e.g. via Starlette or FastAPI), you will
want to use the async interface instead:

from fennel import App

app = App(name='myapp', redis_url='redis://127.0.0.1', interface='async')

@app.task
async def bar(x):

return x

await bar.delay(5)

7

https://www.starlette.io/
https://fastapi.tiangolo.com/

Fennel

8 Chapter 4. Asynchronous API

CHAPTER

FIVE

CONTENTS

5.1 Guide

Fennel is a task queue library for Python.

It enables you to register your functions as tasks, which you can then enqueue in Redis. In the background, worker
processes will pull tasks from the queue and execute them. This follows the same basic pattern established by Celery
and other task queue systems.

5.1.1 Interfaces

We support both sync and async interfaces to the fennel system. This means you can use it in traditional web frame-
works (e.g Django, Flask), but also newer frameworks built on top of asyncio (e.g. Starlette, FastAPI, Quart). We
default to interface='sync', but you can select your interface as an option in your app configuration.

Sync

import time

from fennel import App
from fennel.client import gather

app = App(name='myapp', redis_url='redis://127.0.0.1')

@app.task
def foo(n):

time.sleep(n)
return n

x = foo.delay(4) # Enqueue a task to be executed in the background.
x.get() # Waits for completion and returns 4.

9

Fennel

Async

import asyncio

from fennel import App
from fennel.client.aio import gather

app = App(name='myapp', redis_url='redis://127.0.0.1', interface='async')

@app.task
async def foo(n):

await asyncio.sleep(n)
return n

x = await foo.delay(4) # Enqueue a task to be executed in the background.
await x.get() # Waits for completion and returns 4.

5.1.2 Two use-cases

1. Fire-and-forget

The most common way to use a task queue is to fire off background tasks while processing requests in a web applica-
tion. You have some work that needs to happen (e.g. generating image thumbnails, sending an email), but you don’t
want the user to wait for it to complete before returning a response. In this case, it’s important that the task succeeds,
but your code will not be waiting to ensure that it does. If failures happen, you may want to automatically retry the
task, or be notified through your monitoring system.

This is the default scenario expected by Fennel. We support it by automatically retrying tasks which fail, up
to fennel.settings.Settings.default_retries times. Individual tasks can be configured via the
retries kwarg:

@app.task(retries=3)
def foo(n):

time.sleep(n)
return n

Retries will occur on a schedule provided by the retry_backoff function. By default, Fennel will use an ex-
ponential backoff algorithm with jitter to avoid overloading the workers in case a large number of failures happen
simulatenously. (See fennel.utils.backoff() for more details.)

If all retries are exhausted and the task still fails, it will be placed in the ‘dead-letter queue’, see Error handling and
The dead-letter queue below for details.

10 Chapter 5. Contents

Fennel

2. Compose parallel pipelines

There is a second way to use a task queue: when you have a large amount of work you want to perform in parallel,
perhaps on dedicated high-performance machines. In this case your code may want to wait for all tasks to complete
before moving on to the next batch of work.

This scenario is also supported by Fennel. You should set retries=0 on your task (or default_retries=0 in
your app instance). The waiting primitives we supply are:

1. gather, when you want all tasks to complete and collect the results.

2. wait, to wait for a specific duration before timing out.

Sync:

@app.task
sync def foo(n):

time.sleep(n)
return n

results = [foo.delay(i) for i in range(6)]

Waits for completion and returns [1, 2, 3, 4, 5, 6].
gather(results)

Instead, waits for 10 seconds, returns two sets of Futures.
done, pending = wait(results, timeout=10)

Async:

@app.task
async def foo(n):

await asyncio.sleep(n)
return n

results = [await foo.delay(i) for i in range(6)]

Waits for completion and returns [1, 2, 3, 4, 5, 6]
await gather(results)

Instead, waits for 10 seconds, returns two sets of Futures.
done, pending = await wait(results, timeout=10)

5.1.3 Error handling

Fennel considers a task to have failed if any exception is raised during its execution.

If a task has retries enabled, it will be scheduled according by the retry_backoff function. By default, Fennel will
use an exponential backoff algorithm with jitter to avoid overloading the workers in case a large number of failures
happen simulatenously (see fennel.utils.backoff() for more details). When retries are exhausted the task
enters the dead-letter queue.

If you attempt to retrieve the result of a task that has failed, fennel will raise fennel.exceptions.TaskFailed
with the original exception information attached:

5.1. Guide 11

Fennel

>>> @app.task(retries=0)
>>> async def foo(n):
... raise Exception("baz")
...
>>> x = await foo.delay(3)
...
>>> try:
... result = await x.get()
>>> except TaskFailed as e:
... assert e.original_type == "Exception"
... assert e.original_args == ["baz"]

5.1.4 The dead-letter queue

The DLQ hold tasks which have failed and exhausted all their retry attempts. They now require manual intervention,
for instance you may need to redeploy your applicaiton code to fix a bug before you replay the failed tasks.

You can read, replay, or purge the contents of the DLQ as follows:

$ fennel dlq read --app mymodule:myapp
$ fennel dlq replay --app mymodule:myapp
$ fennel dlq purge --app mymodule:myapp

If you need more granular control, the Fennel client library also provides functions to interact with the DLQ program-
matically. For example you can replay all jobs matching certain criteria (using the async client):

>>> from fennel.client.aio import replay_dead
...
>>> from myapp.tasks import app # <-- Your Fennel app instance
...
>>> replay_dead(app, filter=lambda job: job.task == "tasks.mytask")
[<Job>, ...]

To understand how jobs are represented internally, see fennel.job.

5.1.5 Workers

Workers are launched via the CLI:

$ fennel worker --app mymodule:myapp

You must specify the Python module and Fennel application instance whose tasks the worker will execute. See the
CLI page for more information.

12 Chapter 5. Contents

Fennel

5.1.6 Logging

Fennel supports structured logging out of the box. You can choose whether to use a human-readable format, or JSON
via fennel.settings.Settings.log_format

5.1.7 Limitations

1. Task args and kwargs must be JSON-serialisable.

2. Return values (if results storage is enabled) must be JSON-serialisable.

3. Processing order is not guaranteed (if you want to ensure all events for a given key are processed in-order, see
https://github.com/mjwestcott/runnel).

4. Tasks will be processed at least once (we acknowledge the underlying messages when a task returns without an
exception, so any failures before then will happen again when retried).

This is similar to the approach taken by Celery, Dramatiq, and task queues in other languages. As a result, you are
advised to follow these best-practices:

• Keep task arguments and return values small (e.g. send the user_id not the User model instance)

• Ensure that tasks are idempotent – if you process them more than once, the same result will occur.

Also, Redis is not a highly durable database system – it’s durability is configurable and limited. You are advised to
read the related parts of the Redis documentation.

This is a notable section of the Streams Intro:

• AOF must be used with a strong fsync policy if persistence of messages is important in your appli-
cation.

• By default the asynchronous replication will not guarantee that XADD commands or consumer
groups state changes are replicated: after a failover something can be missing depending on the
ability of slaves to receive the data from the master.

• The WAIT command may be used in order to force the propagation of the changes to a set of slaves.
However note that while this makes very unlikely that data is lost, the Redis failover process as
operated by Sentinel or Redis Cluster performs only a best effort check to failover to the slave which
is the most updated, and under certain specific failures may promote a slave that lacks some data.

So when designing application using Redis streams and consumer groups, make sure to understand the
semantical properties your application should have during failures, and configure things accordingly, eval-
uating if it is safe enough for your use case.

5.2 Installation

pip install fennel

Fennel is tested on Python 3.7+

5.2. Installation 13

https://github.com/mjwestcott/runnel
https://redis.io/topics/persistence
https://redis.io/topics/streams-intro

Fennel

5.3 Motivation

Python needs an async/await compatible task queue library.

(And Celery is perhaps past its prime.)

5.4 Architecture

5.4.1 Fundamentals

Fennel’s architecture is similar to other job queue systems like Celery, Dramatiq, RQ:

+-Redis--------------------+
| |
| * The Job Queue |
| * The Dead-Letter Queue |
| * The Schedule |
| * Results Storage |
| * Job Metadata |
| * Worker State |
| |
+--------------------------+

^ |
| send | receive
| jobs | jobs
| |
| v

+---------------------+ +---------------------+
Your Application		Fennel Worker
+---------------------+ +---------------------+

When your application sends jobs via fennel.client.Task.delay(), they are persisted in Redis. Meanwhile
a background worker process is waiting to receive jobs and execute them using the Python function decorated with
fennel.App.task().

In the normal course of events, the job will be added to a Redis Stream (to notify workers) and a Redis Hash (to store
metadata such as the current status and number of retries to perform). When execution is finished, the return value
will be persisted in a Redis List (to allow workers to block awaiting it’s arrival) and set to expire after a configurable
duration (fennel.settings.Settings.result_ttl).

In case of execution failure (meaning an exception is raised), if the job is configured for retries it will be scheduled in
a Redis Sorted Set (so workers can poll to discover jobs whose ETA has elapsed). If retries are exhausted, the job will
be added to the dead-letter queue (another Redis Stream). From there, manual intervention is required to either purge
or replay the job.

14 Chapter 5. Contents

Fennel

5.4.2 Redis Streams

Under the hood, Fennel uses Redis Streams as the fundamental ‘queue’ data structure. This provides useful functional-
ity for distributing jobs to individual workers and keeping track of which tasks have been read and later acknowledged.

Our use of Streams is arguably non-standard. The expectation is that messages accumulate in the stream, which is
periodically trimmed to some maximum length governed by memory limits. In our case, we don’t need to maintain a
long history of messages in memory and we don’t want the trim operation to remove any unacknowledged meessages,
so we take advantage of the XDEL operation and delete messages when they are acknowledged, like a traditional job
queue.

5.4.3 The Worker

Workers are launched via the CLI. Below is a diagram representing a worker with the settings processes=2 and
concurrency=8:

+-Worker--+
| |
| +-Executor---------------------+ +-Executor---------------------+ |
	8x consumer coroutines		8x consumer coroutines	
	1x heartbeat coroutine		1x heartbeat coroutine	
	1x maintenance coroutine		1x maintenance coroutine	
	1x scheduler coroutine		1x scheduler coroutine	
+------------------------------+ +------------------------------+				
+---+

The worker process itself simply spawns 2 executor processes and monitors their health. The executors themselves run
8 consumer coroutines which are responsible for waiting to receive jobs from the queue and then executing them. If the
job is a coroutine function, it is awaited in the running asyncio event loop, otherwise it is run in a ThreadPoolExecutor
so as not to block the loop.

The other coroutines maintain the health of the system by publishing heartbeats, polling for scheduled jobs, and
responding to the death of other workers or executors.

CPU-bound tasks benefit from multiple processes. We default to running multiprocessing.cpu_count()
executors for this reason. IO-bound tasks will benefit from high executor concurrency and we default to running 8
consumer coroutines in each executor.

5.4.4 Job Lifecycle

Python functions become tasks when they are decorated with fennel.App.task(). When they are enqueued
using fennel.client.Task.delay(), they become jobs in the Fennel queue.

Jobs transition between a number of statuses according to the logic below:

+-----------+
| |
| |

5 | SUCCESS |

(continues on next page)

5.4. Architecture 15

Fennel

(continued from previous page)

+-----------+ +-----------+ +-----------+ +---->| |
| | | | | | | | |
| | 1 | | 2 | | | +-----------+
| UNKNOWN |----->| SENT |----->| EXECUTING |----+
| | | | | | |
| | | | | | | +-----------+
+-----------+ +-----------+ +-----------+ +---->| |

| ^ 6 | |
| | | DEAD |

3 | | 4 | |
| | | |
v | +-----------+

+-----------+
| |
| |
| RETRY |
| |
| |
+-----------+

1. Client code sends a job to the queue via fennel.client.Task.delay().

2. A worker reads the job from the queue and begins executing it.

3. Execution fails (an exception was raised) and the job’s max_retries has not been exceeded. The job is placed in
the schedule (a Redis sorted set), which workers periodically poll.

4. A job is pulled from the schedule and execution is attempted again. (This can repeat many times.)

5. Execution succeeds (no exceptions raised).

6. Execution fails (an exception was raised) and retries have been exhausted, so the job is now in the dead-letter
queue where it will remain until manual intervention (via the CLI or client code).

Job status can be retrieved via the AsyncResult object:

>>> import time
>>> from fennel import App
...
>>> app = App(name='myapp')
...
>>> @app.task
>>> def foo(n):
... time.sleep(n)
... return n
...
>>> x = foo.delay(4)
>>> x.status()
SENT
>>> # Wait a few moments.
>>> x.status()
EXECUTING
>>> # Wait for completion.
>>> x.get()
4
>>> x.status()
SUCCESS

16 Chapter 5. Contents

Fennel

5.5 CLI

5.5.1 fennel

fennel [OPTIONS] COMMAND [ARGS]...

dlq

Interact with the dead-letter queue. Choices for the action argument:

* read - Print all tasks from the dead-letter queue to stdout.
* replay - Move all tasks from the dead-letter queue back to the main task queue for reprocessing.
* purge - Remove all tasks from the dead-letter queue forever.

fennel dlq [OPTIONS] [read|replay|purge]

Options

-a, --app <application>
Required

Arguments

ACTION
Required argument

info

Print a JSON-encoded summary of application state.

fennel info [OPTIONS]

Options

-a, --app <application>
Required

5.5. CLI 17

Fennel

task

Print a JSON-encoded summary of job information.

fennel task [OPTIONS]

Options

-a, --app <application>
Required

-u, --uuid <uuid>
Required

worker

Run the worker.

fennel worker [OPTIONS]

Options

-a, --app <application>
Required A colon-separated string identifying the fennel.App instance for which to run a worker.

If a file foo.py exists at the current working directory with the following contents:

>>> from fennel import App
>>>
>>> app = App(name="myapp", redis_url="redis://127.0.0.1:6379")
>>>
>>> @app.task
>>> def f():
>>> pass

Then pass foo:app as the app option: $ fennel worker --app=foo:app

-p, --processes <processes>
How many executor processes to run in each worker. Default multiprocessing.cpu_count()

-c, --concurrency <concurrency>
How many concurrent consumers to run (we make at least this many Redis connections) in each executor pro-
cess. The default, 8, can handle 160 req/s in a single worker process if each task is IO-bound and lasts on
average 50ms. If you have long running CPU-bound tasks, you will want to run multiple executor processes.
Default 8

18 Chapter 5. Contents

Fennel

5.6 API Reference

5.6.1 fennel

class fennel.App(name: str, **kwargs)
The app is the main abstraction provided by Fennel. Python functions are decorated via @app.task to enable
background processing. All settings are configured on this object.

Parameters

• name (str) – Used to identify this application, e.g. to set which tasks a worker will execute.

• kwargs – Any settings found in fennel.settings.Settings

Examples

>>> from fennel import App
...
>>> app = App(
... name='myapp',
... redis_url='redis://127.0.0.1',
... default_retries=3,
... results_enabled=True,
... log_level='info',
... log_format='json',
... autodiscover='**/tasks.py',
... interface='sync',
...)
...
>>> @app.task(retries=1)
>>> def foo(x):
... return x
...
>>> x = foo.delay(7) # Execute in the background.
>>> x
AsyncResult(uuid=Tjr75jM3QDOHoLTLyrsY1g)
>>> x.get() # Wait for the result.
7

If your code is running in an asynchronous event loop (e.g. via Starlette, FastAPI, Quart), you will want to use
the async interface instead:

>>> import asyncio
...
>>> app = App(name='foo', interface='async')
...
>>> @app.task
>>> async def bar(x)
... await asyncio.sleep(x)
... return x
...
>>> x = await bar.delay(5)
>>> await x.status()
SENT
>>> await x.get()
5

5.6. API Reference 19

Fennel

task(func: Callable = None, *, name=None, retries=<object object>)→ Any
A decorator to register a function with the app to enable background processing via the task queue.

The worker process (see fennel.worker.worker) will need to discover all registered tasks on
startup. The means all the modules containing tasks need to be imported. Fennel will import modules
found via fennel.settings.Settings.autodiscover, which by default is '**/tasks.py'.

Parameters

• func (Callable) – The decorated function.

• name (str) – The representation used to uniquely identify this task.

• retries (int) – The number of attempts at execution after a task has failed (meaning
raised any exception).

Examples

Exposes an interface similar to Celery:

>>> @app.task(retries=1)
>>> def foo(x):
... return x

Tasks can be enqueued for processing via:

>>> foo.delay(8)
AsyncResult(uuid=q_jb6KaUT-G4tOAoyQ0yaA)

The can also be called normally, bypassing the Fennel system entirely:

>>> foo(3)
3

By default, tasks are ‘fire-and-forget’, meaning we will not wait for their completion. They will be executed
by worker process and will be retried automatically on failure (using exponential backoff), so we assume
tasks are idempotent.

You can also wait for the result:

>>> x = foo.delay(4)
>>> x.status()
SENT
>>> x.get(timeout=10)
4

If instead you have many tasks and wish to wait for them to complete you can use the waiting primitives
provided (you will want to ensure all tasks have retries=0, which you can set by default with an app
setting):

>>> from fennel.client import gather, wait
>>> results = [foo.delay(x) for x in range(10)]
>>> gathered = gather(results) # Or:
>>> done, pending = wait(results, timeout=2)

If your application is running in an event loop you can elect to use the async interface for your fennel app
(see fennel.settings.Settings.interface), which uses aioredis under the hood to enqueue
items, retrieve results, etc, so you will need to await those coroutines:

20 Chapter 5. Contents

Fennel

>>> app = App(name='foo', interface='async')
>>>
>>> @app.task
>>> async def bar(x)
... await asyncio.sleep(x)
>>>
>>> x = await bar.delay(1)
>>> await x.status()
SUCCESS

5.6.2 fennel.settings

class fennel.settings.Settings
Settings can be configured via environment variables or keyword arguments for the fennel.App instance (which
take priority).

Examples

For environment variables, the prefix is FENNEL_, for instance:

FENNEL_REDIS_URL=redis://127.0.0.1:6379

FENNEL_DEFAULT_RETRIES=3

FENNEL_RESULTS_ENABLED=true

Or via App kwargs:

>>> from fennel import App
...
>>> app = App(
... name='myapp',
... redis_url='redis://127.0.0.1',
... default_retries=3,
... results_enabled=True,
... log_level='info',
... log_format='json',
... autodiscover='**/tasks.py',
... interface='sync',
...)

Parameters

• redis_url (str) – Redis URL. Default 'redis://127.0.0.1:6369'

• interface (str) – Which client interface should we use – sync or async? Default
'sync'

• processes (int) – How many executor processes to run in each worker. Default
multiprocessing.cpu_count()

• concurrency (int) – How many concurrent consumers to run (we make at least this
many Redis connections) in each executor process. The default, 8, can handle 160 req/s in
a single executor process if each task is IO-bound and lasts on average 50ms. If you have

5.6. API Reference 21

Fennel

long running CPU-bound tasks, you will want to run multiple executor processes (and set
heartbeat_timeout to greater than your maximum expected task duration). Default 8

• default_retries (int) – How many times to retry a task in case it raises an exception
during execution. With 10 retries and the default fennel.utils.backoff() function,
this will be approximately 30 days of retries. Default 10

• retry_backoff (Callable) – Which algorithm to use to determine the retry schedule.
The default is exponential backoff via fennel.utils.backoff().

• read_timeout (int) – How many milliseconds to wait for messages in the main task
queue. Default 4000

• prefetch_count (int) – How many messages to read in a single call to XREAD-
GROUP. Default 1

• heartbeat_timeout (float) – How many seconds before an executor is considered
dead if heartbeats are missed. If you have long-running CPU-bound tasks, this value should
be greater than your maximum expected task duration. Default 60

• heartbeat_interval (float) – How many seconds to sleep between heartbeats are
stored for each executor process. Default 6

• schedule_interval (float) – How many seconds to sleep between polling for
scheduled tasks. Default 4

• maintenance_interval (float) – How many seconds to sleep between running the
maintenance script. Default 8

• task_timeout (int) – How long to wait for results to be computed when calling .get(),
seconds. Default 10

• grace_period (int) – How many seconds to wait for in-flight tasks to complete before
forcefully exiting. Default: 30

• restults_enabled (bool) – Whether to store results. Can be disabled if your only
use-case is ‘fire-and-forget’. Default True

• results_ttl (int) – How long before expiring results in seconds. Default 3600 (one
hour).

• log_format (str) – Whether to pretty print a human-readable log (“console”) or JSON
(“json”). Default 'console'

• log_level (str) – The minimum log level to emit. Default 'debug'

• autodiscover (str) – The pattern for pathlib.Path.glob() to find modules con-
taining task-decorated functions, which the worker must import on startup. Will be called
relative to current working directory. Can be set to the empty string to disable. Default
'**/tasks.py'

22 Chapter 5. Contents

Fennel

5.6.3 fennel.worker

fennel.worker.worker.start(app, exit='signal')
The main entrypoint for the worker.

The worker will create and monitor N fennel.worker.Executor processes. Each Executor will spawn
M coroutines via an asyncio event loop. N and M are controlled by fennel.settings.Settings.
processes and fennel.settings.Settings.concurrency respectively.

CPU-bound tasks benefit from multiple processes. IO-bound tasks will benefit from high executor concurrency.

Parameters

• app (fennel.App) – The application instance for which to start a background worker.

• exit (str) – The exit strategy. EXIT_SIGNAL is used when the worker should only stop
on receipt of a interrupt or termination signal. EXIT_COMPLETE is used in tests to exit
when all tasks from the queue have completed.

Notes

signal.SIGINT and signal.SIGTERM are handled by gracefully shutting down, which means giving the executor
processes a chance to finish their current tasks.

class fennel.worker.executor.Executor(app)
The Executor is responsible for reading jobs from the Redis queue and executing them.

Heartbeats are sent from the executor periodically (controlled by fennel.settings.Settings.
heartbeat_interval). If they are missing for more than fennel.settings.Settings.
heartbeat_timeout seconds, the executor will be assumed dead and all of its pending messages will be
reinserted to the stream by another worker’s maintenance function.

Parameters app (fennel.App) – The application instance for which to start an Executor.

start(exit: str = 'signal', queue: multiprocessing.context.BaseContext.Queue = None)→ None
Begin the main executor loop.

Parameters

• exit (str) – The exit strategy. EXIT_SIGNAL is used when the worker should only stop
on receipt of a interrupt or termination signal. EXIT_COMPLETE is used in tests to exit
when all tasks from the queue have completed.

• queue (multiprocessing.Queue) – A QueueHandler will be used to send logs to
this queue to avoid interleaving from multiple processes.

Notes

Intended to run via fennel.worker.worker.start() which will supervise multiple Executor pro-
cesses.

signal.SIGINT and signal.SIGTERM are handled by gracefully shutting down, which means giving the
executor processes a chance to finish their current tasks.

is_running()

5.6. API Reference 23

Fennel

5.6.4 fennel.client

A collection of synchronous classes and functions to interact with the Fennel system.

fennel.client.purge_dead(app, filter=<function <lambda>>, batchsize=100)
Iterate over the dead-letter queue and delete any jobs for which filter(job) evaluates to True. The default is to
delete all jobs.

fennel.client.read_dead(app, batchsize=100)
Iterate over the dead-letter queue and return all job data.

fennel.client.replay_dead(app, filter=<function <lambda>>, batchsize=100)
Iterate over the dead-letter queue and replay any jobs for which filter(job) evaluates to True. The default is to
replay all jobs.

class fennel.client.AsyncResult(job: fennel.job.Job, app)
A handle for a task that is being processed by workers via the task queue.

Conceptually similar to the AsyncResult from the mutliprocessing library.

status()
Return the status of the task execution.

Examples

>>> @app.task
>>> def bar(x)
... time.sleep(x)
... return x
...
>>> x = bar.delay(5)
>>> x.status()
SENT
>>> x.status() # After roughly 5 seconds...
SUCCESS

get(timeout: int = <object object>)→ Any
Wait for the result to become available and return it.

Raises

• fennel.exceptions.TaskFailed – If the original function raised an exception.

• fennel.exceptions.Timeout – If > timeout seconds elapse before a result is avail-
able.

Examples

>>> @app.task(retries=0)
>>> def foo(x):
... return x
...
>>> x = foo.delay(7)
>>> x.get() # Wait for the result.
7

24 Chapter 5. Contents

Fennel

Warning: You must have results storage enabled (fennel.settings.Settings.
results_enabled)

If you have retries enabled, they may be rescheduled many times, so you may prefer to use retries=0
for tasks whose result you intend to wait for.

class fennel.client.Task(name: str, func: Callable, retries: int, app)

delay(*args: Any, **kwargs: Any)→ fennel.client.results.AsyncResult
Traditional Celery-like interface to enqueue a task for execution by the workers.

The args and kwargs will be passed through to the task when executed.

Examples

>>> @app.task
>>> def foo(x, bar=None):
... time.sleep(x)
... if bar == "mystr":
... return False
... return True
...
>>> foo.delay(1)
>>> foo.delay(2, bar="mystr")

__call__(*args: Any, **kwargs: Any)→ Any
Call the task-decorated function as a normal Python function. The fennel system will be completed by-
passed.

Examples

>>> @app.task
>>> def foo(x):
... return x
...
>>> foo(7)
7

fennel.client.gather(results: Iterable[fennel.client.results.AsyncResult], task_timeout=10, re-
turn_exceptions=True)

Multi-result version of .get() – wait for all tasks to complete and return all of their results in order.

Has the same semantics as asyncio.gather.

fennel.client.wait(results: Iterable[fennel.client.results.AsyncResult], timeout: int, re-
turn_when='ALL_COMPLETED')

Wait for all tasks to complete and return two sets of Futures (done, pending).

Has the same semantics as asyncio.wait.

5.6. API Reference 25

Fennel

5.6.5 fennel.aio.client

A collection of asynchronous classes and functions, expected to be run in an asyncio-compatible event loop, to interact
with the Fennel system.

async fennel.client.aio.purge_dead(app, filter=<function <lambda>>, batchsize=100)
Iterate over the dead-letter queue and delete any jobs for which filter(job) evaluates to True. The default is to
delete all jobs.

async fennel.client.aio.read_dead(app, batchsize=100)
Iterate over the dead-letter queue and return all job data.

async fennel.client.aio.replay_dead(app, filter=<function <lambda>>, batchsize=100)
Iterate over the dead-letter queue and replay any jobs for which filter(job) evaluates to True. The default is to
replay all jobs.

class fennel.client.aio.AsyncResult(job: fennel.job.Job, app)
A handle for a task that is being processed by workers via the task queue.

Conceptually similar to the AsyncResult from the mutliprocessing library.

async status()
Return the status of the task execution.

Examples

>>> @app.task
>>> async def bar(x)
... await asyncio.sleep(x)
... return x
...
>>> x = await bar.delay(5)
>>> await x.status()
SENT
>>> await x.status() # After roughly 5 seconds...
SUCCESS

async get(timeout: int = <object object>)→ Any
Wait for the result to become available and return it.

Raises

• fennel.exceptions.TaskFailed – If the original function raised an exception.

• fennel.exceptions.Timeout – If > timeout seconds elapse before a result is avail-
able.

Examples

>>> @app.task(retries=0)
>>> def foo(x):
... return x
...
>>> x = await foo.delay(7)
>>> await x.get() # Wait for the result.
7

26 Chapter 5. Contents

Fennel

Warning: You must have results storage enabled (fennel.settings.Settings.
results_enabled)

If you have retries enabled, they may be rescheduled many times, so you may prefer to use retries=0
for tasks whose result you intend to wait for.

class fennel.client.aio.Task(name: str, func: Callable, retries: int, app)

async delay(*args: Any, **kwargs: Any)→ fennel.client.aio.results.AsyncResult
Enqueue a task for execution by the workers.

Similar to asyncio.create_task (but also works with non-async functions and runs on our Redis-backed task
queue with distributed workers, automatic retry, and result storage with configurable TTL).

The args and kwargs will be passed through to the task when executed.

Examples

>>> @app.task(retries=1)
>>> async def foo(x, bar=None):
... asyncio.sleep(x)
... if bar == "mystr":
... return False
... return True
...
>>> await foo.delay(1)
>>> await foo.delay(2, bar="mystr")

__call__(*args: Any, **kwargs: Any)→ Any
Call the task-decorated function as a normal Python function. The fennel system will be completed by-
passed.

Examples

>>> @app.task
>>> def foo(x):
... return x
...
>>> foo(7)
7

async fennel.client.aio.gather(results: Iterable[fennel.client.aio.results.AsyncResult],
task_timeout=10, return_exceptions=True)

Multi-result version of .get() – wait for all tasks to complete and return all of their results in order.

Has the same semantics as asyncio.gather.

async fennel.client.aio.wait(results: Iterable[fennel.client.aio.results.AsyncResult], timeout: int,
return_when='ALL_COMPLETED')

Wait for all tasks to complete and return two sets of Futures (done, pending).

Has the same semantics as asyncio.wait.

5.6. API Reference 27

Fennel

5.6.6 fennel.status

Jobs have a number of statuses through their lifecycle. This module contains the constants. If you have enqueued a
task for execution, then you can obtain its status as follows:

>>> x = mytask.delay()
>>> x.status()
EXECUTING

fennel.status.UNKNOWN = 'UNKNOWN'
The job’s status is not stored in Redis. Presumably no action has been taken on the job.

fennel.status.SENT = 'SENT'
The job has been sent to Redis, but execution has not yet started.

fennel.status.EXECUTING = 'EXECUTING'
A worker has received the job from the queue and has begun executing it.

fennel.status.SUCCESS = 'SUCCESS'
Execution was successful and the job’s result is ready (if results storage is enabled).

fennel.status.RETRY = 'RETRY'
Execution was not successful (an exception was raised) and a retry is scheduled to occur in the future.

fennel.status.DEAD = 'DEAD'
Execution was not successful (an exception was raised) and retries have been exhausted, so the job is now in the
dead-letter queue where it will remain until manual intervention (via the CLI or client code).

5.6.7 fennel.exceptions

exception fennel.exceptions.FennelException

exception fennel.exceptions.TaskFailed(original_type: str, original_args: List)
This exception is returned by worker processes which experienced an exception when executing a task.

Parameters

• original_type (str) – The name of the original exception, e.g. 'ValueError'.

• original_args (List) – The arguments given to the original exception, e.g. ['Not
found']

Examples

>>> @app.task(retries=0)
>>> async def foo(n):
... raise Exception("baz")
...
>>> x = await foo.delay(3)
>>> try:
... result = await x.get()
>>> except TaskFailed as e:
... assert e.original_type == "Exception"
... assert e.original_args == ["baz"]

exception fennel.exceptions.ResultsDisabled
Raised when results_enabled=False and code attempts to access a tasks result via .get().

28 Chapter 5. Contents

Fennel

exception fennel.exceptions.UnknownTask
Raised by a worker process if it is unable to find a Python function corresponding to the task it has read from
the queue.

exception fennel.exceptions.Timeout
Raised by client code when a given timeout is exceeded when waiting for results to arrive.

exception fennel.exceptions.JobNotFound
Raised by client code when attempting to retrieve job information that cannot be found in Redis.

exception fennel.exceptions.Chaos
Used in tests to ensure failures are handled properly.

exception fennel.exceptions.Completed
Used internally to shutdown an Executor if the exit condition is completing all tasks.

5.6.8 fennel.utils

fennel.utils.backoff(retries: int, jitter: bool = True)→ int
Compute duration (seconds) to wait before retrying using exponential backoff with jitter based on the number
of retries a message has already experienced.

The minimum returned value is 1s The maximum returned value is 604800s (7 days)

With max_retries=9, you will have roughly 30 days to fix and redeploy the the task code.

Parameters

• retries (int) – How many retries have already been attemped.

• jitter (bool) – Whether to add random noise to the return value (recommended).

Notes

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

5.6.9 fennel.job

class fennel.job.Job(task: str, args: List, kwargs: Dict, tries: int = 0, max_retries: int = 9, exception:
Dict = <factory>, return_value: Any = None, status: str = 'UNKNOWN', uuid:
str = <factory>)

The internal representation of a job.

Parameters

• task (str) – The name of the task. By default will use f"{func.__module__}.
{func.__qualname__}", where func is the Python callable.

• args (List) – The job’s args.

• kwargs (Dict) – The job’s kwargs.

• tries (int) – The number of attempted executions.

• max_retries (int) – The maximum number of retries to attempt after failure.

• exception (Dict) – Exception information for the latest failure, contains ‘original_type’
(str, e.g. ‘ValueError’) and ‘original_args’ (List, e.g. [‘Not found’]).

• return_value (Any) – The return value of the Python callable when execution succeeds.

5.6. API Reference 29

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Fennel

• status (str) – One of fennel.status, the current lifecycle stage.

• uuid (str) – Base64-encoded unique identifier.

5.7 Changelog

5.7.1 v0.3.0 (2020-08-20)

• Added configurable grace period before shutting down

• Exceptions now have a common superclass

• Switched async Redis driver from aioredis to aredis

• Adopted AnyIO for better async primitives

5.7.2 v0.2.4 (2020-07-03)

• Fixed multiprocessing bug for thread listener

5.7.3 v0.2.3 (2020-07-02)

• Bump pydantic major version

5.7.4 v0.2.2 (2020-07-02)

• Bump structlog major version

5.7.5 v0.2.1 (2020-07-02)

• Improved testing for CPU-bound tasks

5.7.6 v0.2.0 (2020-06-14)

• Added Python 3.8 support

5.7.7 v0.1.2 (2019-10-06)

• Fixed typo maintenence -> maintenance

30 Chapter 5. Contents

Fennel

5.7.8 v0.1.1 (2019-10-03)

• Fixed CLI and autodiscovery bugs

5.7.9 v0.1.0 (2019-10-03)

• Initial release

5.7. Changelog 31

Fennel

32 Chapter 5. Contents

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

33

Fennel

34 Chapter 6. Indices and tables

PYTHON MODULE INDEX

f
fennel, 19
fennel.client, 24
fennel.client.aio, 26
fennel.exceptions, 28
fennel.job, 29
fennel.settings, 21
fennel.status, 28
fennel.utils, 29
fennel.worker.executor, 23
fennel.worker.worker, 23

35

Fennel

36 Python Module Index

INDEX

Symbols
__call__() (fennel.client.Task method), 25
__call__() (fennel.client.aio.Task method), 27
--app <application>

fennel-dlq command line option, 17
fennel-info command line option, 17
fennel-task command line option, 18
fennel-worker command line option,

18
--concurrency <concurrency>

fennel-worker command line option,
18

--processes <processes>
fennel-worker command line option,

18
--uuid <uuid>

fennel-task command line option, 18
-a

fennel-dlq command line option, 17
fennel-info command line option, 17
fennel-task command line option, 18
fennel-worker command line option,

18
-c

fennel-worker command line option,
18

-p
fennel-worker command line option,

18
-u

fennel-task command line option, 18

A
ACTION

fennel-dlq command line option, 17
App (class in fennel), 19
AsyncResult (class in fennel.client), 24
AsyncResult (class in fennel.client.aio), 26

B
backoff() (in module fennel.utils), 29

C
Chaos, 29
Completed, 29

D
DEAD (in module fennel.status), 28
delay() (fennel.client.aio.Task method), 27
delay() (fennel.client.Task method), 25

E
EXECUTING (in module fennel.status), 28
Executor (class in fennel.worker.executor), 23

F
fennel (module), 19
fennel.client (module), 24
fennel.client.aio (module), 26
fennel.exceptions (module), 28
fennel.job (module), 29
fennel.settings (module), 21
fennel.status (module), 28
fennel.utils (module), 29
fennel.worker.executor (module), 23
fennel.worker.worker (module), 23
fennel-dlq command line option

--app <application>, 17
-a, 17
ACTION, 17

fennel-info command line option
--app <application>, 17
-a, 17

fennel-task command line option
--app <application>, 18
--uuid <uuid>, 18
-a, 18
-u, 18

fennel-worker command line option
--app <application>, 18
--concurrency <concurrency>, 18
--processes <processes>, 18
-a, 18
-c, 18

37

Fennel

-p, 18
FennelException, 28

G
gather() (in module fennel.client), 25
gather() (in module fennel.client.aio), 27
get() (fennel.client.aio.AsyncResult method), 26
get() (fennel.client.AsyncResult method), 24

I
is_running() (fennel.worker.executor.Executor

method), 23

J
Job (class in fennel.job), 29
JobNotFound, 29

P
purge_dead() (in module fennel.client), 24
purge_dead() (in module fennel.client.aio), 26

R
read_dead() (in module fennel.client), 24
read_dead() (in module fennel.client.aio), 26
replay_dead() (in module fennel.client), 24
replay_dead() (in module fennel.client.aio), 26
ResultsDisabled, 28
RETRY (in module fennel.status), 28

S
SENT (in module fennel.status), 28
Settings (class in fennel.settings), 21
start() (fennel.worker.executor.Executor method), 23
start() (in module fennel.worker.worker), 23
status() (fennel.client.aio.AsyncResult method), 26
status() (fennel.client.AsyncResult method), 24
SUCCESS (in module fennel.status), 28

T
Task (class in fennel.client), 25
Task (class in fennel.client.aio), 27
task() (fennel.App method), 19
TaskFailed, 28
Timeout, 29

U
UNKNOWN (in module fennel.status), 28
UnknownTask, 28

W
wait() (in module fennel.client), 25
wait() (in module fennel.client.aio), 27

38 Index

	Features
	Installation
	Basic Usage
	Asynchronous API
	Contents
	Guide
	Installation
	Motivation
	Architecture
	CLI
	API Reference
	Changelog

	Indices and tables
	Python Module Index
	Index

