

FeedHQ’s documentation

FeedHQ is a web-based feed build with readability and mobility in mind. It’s
completely open-source, meaning anyone can host FeedHQ privately and
contribute to its development. A hosted service is available at
https://feedhq.org. The FeedHQ source code is available on GitHub [https://github.com/feedhq/feedhq].

Main features

	RSS/Atom support

	Readability-oriented layout on all screen sizes (mobile, tablet, desktop)

	Compatibility with the Google Reader API

	Integration with reading list services such as Wallabag, Instapaper or Pocket

	OPML export / import, Subtome integration

	Keyboard shortcuts, syntax highlighting

Contents

	The FeedHQ API
	Terminology

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

The FeedHQ API

FeedHQ implements the Google Reader API. This document, while being FeedHQ’s
API documentation, aims to be a reference for developers seeking information
about the details of this API.

The Google Reader API was never publicly released or documented but developers
have reverse-engineered it and built an ecosystem of applications that use
this API implementation for syncing mobile or desktop apps with Google Reader
accounts.

A handful of resources are available in various places of the internet but
it’s tedious for developers to get an accurate and extensive idea of how the
API works. This is FeedHQ’s attempt to fix that.

	Terminology
	Data model

	Streams

	Items

	Input formats

	Authentication

	Output formats

	POST Token

	API Reference
	user-info

	unread-count

	disable-tag

	rename-tag

	subscription/list

	subscription/edit

	subscription/quickadd

	subscription/export

	subscription/import

	subscribed

	stream/contents

	stream/items/ids

	stream/items/count

	stream/items/contents

	tag/list

	edit-tag

	mark-all-as-read

	preference/list

	preference/stream/list

	friend/list

	Undocumented / not implemented

Terminology

Before building things with the API, it’s important to understand a couple of
concepts that determine how the API works. The API is not particularly
resource-oriented, not so RESTful, but once the concepts are understood it’s
rather easy to get data out of this API.

Data model

The root element is a feed. It’s simply the URL of an RSS feed that gets
polled for fetching feed items.

Feeds can optionally belong to a label. Google reader supported multiple
labels per feed but FeedHQ only allows feeds to belong to one (or zero) label.

Feed items — or just items — are articles, news items or posts that are
extracted and stored during feed fetching.

Streams

Streams are lists of feed items. They represent a criteria that is used to
fetch a list of items, e.g.:

	the feed to which items belong to

	the label to which items belong to

	the state that items must have (starred, read)

Streams have an identifier called a Stream ID. This identifier can take
several forms:

	For a label, the string user/-/label/<name> where <name> is the
label’s name

	For a feed, the string feed/<feed url> where <feed url> is the
complete URL for the feed

	For a state, the string user/-/state/com.google/<state> where
<state> is one of read, kept-unread, broadcast,
broadcast-friends, reading-list, starred, or any other string
that gets interpreted as a tag.

	For a combination of multiple streams, the string splice/ followed by
stream IDs separated with the pipe (|) character. Splice items are
combined in an OR query. E.g.
splice/user/-/label/foo|user/-/state/com.google/starred represents all
items that are starred or in the foo label.

Furthermore, for states or labels, the user/-/ prefix can also contain the
user ID instead of the dash. user/12345/label/test is a valid stream ID,
assuming the number 12345 matches with the authenticated user making the
request.

Here is a summary of the filtering that is done for all states:

	State

	Filter

	read

	read items

	kept-unread

	unread items

	broadcast, broadcast-friends

	broadcast items

	reading-list

	all items

	starred

	starred items

broadcast is more or less a no-op: FeedHQ stores this attribute and lets you
set it but there is no public-facing feature that uses this attribute yet.

All states that are not in this table are treated as tags. Items can be
tagged and searching for user/-/state/com.google/test will look for items
having the test tag.

Items

Items are identified by a globally unique numerical ID. Item IDs can take
two forms:

	The short form, just the actual ID. E.g. 12345.

	The long form, the prefix tag:google.com,2005:reader/item/ followed by
the item ID as an unsigned base 16 number and 0-padded to be always 16
characters long.

Examples:

	Short form

	Long form

	12309438943892

	tag:google.com,2005:reader/item/00000b3203bc5294

	87238913628312

	tag:google.com,2005:reader/item/00004f57e4751898

Here is some sample Python code that converts from and to long-form IDs.

import struct

def to_long_form(short_form):
 value = hex(struct.unpack("L", struct.pack("l", short_form))[0])
 if value.endswith("L"):
 value = value[:-]
 return 'tag:google.com,2005:reader/item/{0}'.format(
 value[2:].zfill(16)
)

def to_short_form(long_form):
 value = int(long_form.split('/')[-1], 16)
 return struct.unpack("l", struct.pack("L", value))[0]

When the API documentation mentions passing an item ID as a parameter,
clients are free to use the short form or the long form.

Input formats

API calls use the GET or POST HTTP methods. Some calls support both
methods, some don’t.

When using GET, parameters can be passed as querystring parameters.

When using POST, parameters can be passed in the request body, as form
data with the application/x-www-form-urlencoded encoding.

In some cases parameters can be repeated, to treat them as lists. The API
simply expects parameters to be repeated. E.g. ?i=12345&i=67890&i=….
When the API expects a list, it will understand that as
i = [12345, 67890].

Authentication

API calls are authenticated using API tokens. The API call to retrieve a token
is /accounts/ClientLogin.

This API call accepts both GET parameters and POST data, but it is
strongly recommended to use POST.

URL: /accounts/ClientLogin

Parameters:

	Email: the user’s email

	Passwd: the user’s account password

The response comes back as plain/text and contains 3 lines:

SID=...
LSID=...
Auth=<token>

Clients should store the token from the third line, following the Auth=
marker.

API tokens expire like web sessions. Clients need to renew them every now and
then. FeedHQ’s expiration time for auth tokens is 7 days. When a token
expires, the API returns HTTP 401 responses.

Once a token has been generated, it needs to be passed in the HTTP
Authorization header when making API calls, with the following format:

Authorization: GoogleLogin auth=<token>

Output formats

The API supports content negotiation for most API calls. The commonly
supported formats are:

	XML

	JSON

Additionally, some API calls support Atom. Some only support one output format
and will disregard any content negotiation. Some other calls return plain text
responses when the data to return is simple enough.

Content negotiation can be done in two ways:

	with the HTTP Accept header

	with the output querystring parameter

Here are the relevant parameters to pass to the API

	Format

	Accept header

	output parameter

	XML

	application/xml

	xml

	JSON

	application/json

	json

	Atom

	text/xml

	atom

The default output format — when nothing is specified by the client — is XML.

POST Token

Additionally to authentication, API calls that mutate data in the FeedHQ
data store and that are made using the POST method need to include a POST
token.

The POST token is a short-lived token that is used for CSRF protection. It
must be included in request bodies as a T parameter.

Retrieving a POST token is as simple as issuing a GET request to
/reader/api/0/token. The token is returned as a plain-text string and can
be used in POST requests.

When the token is required but missing, the API will return an HTTP 400
response.

When the token is present but invalid, the API will return an HTTP 401
response with a special header, X-Reader-Google-Bad-Token: true. This
header means that the token needs to be renewed by simply making a new request
to /reader/api/0/token and storing the updated token.

API Clients should use their tokens as long as they are valid, and renew them
only when they see the bad-token response.

FeedHQ’s POST tokens are valid for 30 minutes.

API Reference

This page lists all API calls implemented in the FeedHQ API. It is important
to read and understand the terminology before refering
to this API reference.

user-info

Returns various details about the user.

	URL

	/reader/api/0/user-info

	Method

	GET

	Supported formats

	XML, JSON

unread-count

Returns all streams that have unread items, along with their unread count and
the timestamp of their most recent item.

	URL

	/reader/api/0/unread-count

	Method

	GET

	Supported formats

	XML, JSON

Sample JSON output:

{
 "max": 1000,
 "unreadcounts": [
 {
 "count": 1,
 "id": "feed/http://rss.slashdot.org/Slashdot/slashdot",
 "newestItemTimestampUsec": "1405452360000000"
 },
 {
 "count": 1,
 "id": "feed/http://feeds.feedburner.com/alistapart/main",
 "newestItemTimestampUsec": "1405432727000000"
 },
 {
 "count": 2,
 "id": "user/1/label/Tech",
 "newestItemTimestampUsec": "1405432727000000"
 },
 {
 "count": 2,
 "id": "user/1/state/com.google/reading-list",
 "newestItemTimestampUsec": "1405432727000000"
 }
]
}

disable-tag

Deletes a category or a tag. Feeds that belong to the category being deleted
are moved to the top-level.

	URL

	/reader/api/0/disable-tag

	Method

	POST

	Supported formats

	Returns “OK” in plain text

	POST token required

	Yes

Required POST data:

	s the category’s stream ID, or t, the category (label) name.

rename-tag

Renames a category.

	URL

	/reader/api/0/rename-tag

	Method

	POST

	Supported formats

	Returns “OK” in plain text

	POST token required

	Yes

Required POST data:

	s the category’s stream ID, or t, the category (label) name.

	dest, the new label name, in its stream ID form: user/-/label/<new
label>.

subscription/list

Lists all your subscriptions (feeds).

	URL

	/reader/api/0/subscription/list

	Method

	GET

	Supported formats

	XML, JSON

Sample JSON output:

{
 "subscriptions": [
 {
 "title": "A List Apart",
 "firstitemmsec": "1373999174000",
 "htmlUrl": "http://alistapart.com",
 "sortid": "B0000000",
 "id": "feed/http://feeds.feedburner.com/alistapart/main",
 "categories": [
 {
 "id": "user/1/label/Tech",
 "label": "Tech"
 }
]
 }
]
}

subscription/edit

Creates, edits or deletes a subscription (feed).

	URL

	/reader/api/0/subscription/edit

	Method

	POST

	Supported formats

	Returns “OK” in plain text

	POST token required

	Yes

POST data for each action:

	Creation:

	ac: the string subscribe

	s: the stream ID to create (feed/<feed url>).

	t: the name for this subscription.

	(optional) a: the stream ID of a category. If the category doesn’t
exist, it will be created.

	Edition:

	ac: the string edit

	s: the stream ID to edit (feed/<feed url>).

	r or a: the stream ID of a category. r moves the feed out of
the category, a adds the feed to the category.

	t a new title for the feed.

	Deletion:

	ac: the string unsubscribe

	s: the stream ID to delete (feed/<feed url>).

subscription/quickadd

Adds a new subscription (feed), given only the feed’s URL.

	URL

	/reader/api/0/subscription/quickadd

	Method

	POST

	Supported formats

	XML, JSON

	POST token required

	Yes

POST data:

	quickadd: the URL of the feed, as a stream ID or just a standard URL.

Sample JSON output:

{
 "numResults": 1,
 "query": "http://feeds.feedburner.com/alistapart/main",
 "streamId": "feed/http://feeds.feedburner.com/alistapart/main",
}

subscription/export

Returns the list of subscriptions in OPML (XML) format.

	URL

	/reader/api/0/subscription/export

	Method

	GET

	Supported formats

	XML (OPML)

subscription/import

Imports all subscriptions from an OPML file.

	URL

	/reader/api/0/subscription/import

	Method

	POST

	Supported formats

	Returns “OK: <count>” in plain text

Instead of form data, this API call expects the contents of the OPML file to
be provided directly in the request body.

subscribed

Returns whether the user is subscribed to a given feed.

	URL

	/reader/api/0/subscribed

	Method

	GET

	Supported formats

	Returns “true” or “false” in plain text

Querystring parameters:

	s: the stream ID of the feed to check.

stream/contents

Returns paginated, detailed items for a given stream.

	URL

	/reader/api/0/stream/contents/<stream ID>

	Method

	GET

	Supported formats

	XML, JSON, Atom

The stream ID is part of the URL. Additionally, the following querystring
parameters are supported:

	r: sort criteria. Items are sorted by date (descending by default),
r=o inverts the order.

	n: the number of items per page. Default: 20.

	c: the continuation string (see below).

	xt: a stream ID to exclude from the list.

	it: a steam ID to include in the list.

	ot: an epoch timestamp. Items older than this timestamp are filtered
out.

	nt: an epoch timestamp. Items newer than this timestamp are filtered
out.

Continuation is used for pagination. When FeedHQ returns a page, it contains
a continuation key that can be passed as a c parameter to fetch the
next page.

Sample JSON output:

{
 "direction": "ltr",
 "author": "brutasse",
 "title": "brutasse's reading list on FeedHQ",
 "updated": 1405538866,
 "continuation": "page2",
 "id": "user/1/state/com.google/reading-list"
 "self": [{
 "href": "https://feedhq.org/reader/api/0/stream/contents/user/-/state/com.google/reading-list?output=json"
 }],
 "items": []
}

items contains the list of feed items. Each item has the following
structure:

{
 "origin": {
 },
 "updated": 1405538866,
 "id": "tag:google.com,2005:reader/item/0000000009067698",
 "categories": [
 "user/1/state/com.google/reading-list",
 "user/1/label/Tech"
],
 "author": "Somebody",
 "alternate": [{
 "href": "http://example.com/href.html",
 "type": "text/html"
 }]
 "timestampUsec": "1405538280000000",
 "content": {
 "direction": "ltr",
 "content": "actual content",
 },
 "crawlTimeMsec": "1405538280000",
 "published": 1405538280,
 "title": "Example item test title"
}

You’ll notice that epoch timestamps are integers but when dates are expressed
in miliseconds (Msec) or microseconds (Usec) they are returned as strings.

stream/items/ids

Returns item IDs for a given stream ID.

	URL

	/reader/api/0/stream/items/ids

	Method

	GET

	Supported formats

	XML, JSON

Querystring parameters:

	s: the stream ID.

	n the number of item IDs per page to return.

	(optional) includeAllDirectStreamIds: set it to true to include
stream IDs in items.

	(optional) c: the continuation string when requesting a page.

	(optional) xt, it, nt and ot are supported like in the
stream/contents API call.

stream/items/count

Returns the number of items in a given stream.

	URL

	/reader/api/0/stream/items/count

	Method

	GET

	Supported formats

	Returns the count in plain text

Querystring parameters:

	s: the stream ID.

	(optional) a: set it to true to also get the date of the latest item
in the stream.

Sample output, without a:

20174

Sample output, with a:

20174#July 16, 2014

stream/items/contents

Returns the details about requested feed items.

	URL

	/reader/api/0/stream/items/contents

	Method

	GET, POST

	Supported formats

	XML, JSON, Atom

Items are requested via the i querystring parameter or post parameter. It
can be repeated as many times as needed. When requesting a large number of
items, it is recommended to use POST to avoid hitting URI length limits.

tag/list

Returns the list of special tags and labels.

	URL

	/reader/api/0/tag/list

	Method

	GET

	Supported formats

	XML, JSON

Sample JSON output:

{
 "tags": [
 {
 "id": "user/1/state/com.google/starred",
 "sortid": "A0000001"

 },
 {
 "id": "user/1/states/com.google/broadcast",
 "sortid": "A0000002"

 },
 {
 "id": "user/1/label/Tech",
 "sortid": "A0000003"
 },
]
}

edit-tag

Adds or remove tags from items. This API call is used to mark items as read or
unread or star / unstar items.

	URL

	/reader/api/0/edit-tag

	Method

	POST

	Supported formats

	Returns “OK” in plain text

	POST token required

	Yes

POST parameters:

	i: ID of the item to edit. Can be repeated to edit multiple items at
once.

	a: tag to add to the items. Can be repeated to add multiple tags at
once.

	r: tag to remove from the items. Can be repeated to remove multiple tags
at once.

Possible tags are:

	user/-/state/com.google/kept-unread

	user/-/state/com.google/starred

	user/-/state/com.google/broadcast

	user/-/state/com.google/read

For example, to mark an item as read and star it at the same time:

i=12345&a=user/-/state/com.google/starred&a=user/-/state/com.google/read

mark-all-as-read

Marks all items in a stream as read.

	URL

	/reader/api/0/mark-all-as-read

	Method

	POST

	Supported formats

	Returns “OK” in plain text

	POST token required

	Yes

POST parameters:

	s the stream ID to act on.

	(optional) ts: an epoch timestamp in microseconds. When provided,
only items older than this timestamp are marked as read.

preference/list

	URL

	/reader/api/0/preference/list

	Method

	GET

	Supported formats

	XML, JSON

Returns a static response:

{
 "prefs": [{
 "id": "lhn-prefs",
 "value": "{\"subscriptions\":{\"ssa\":\"true\"}}"
 }]
}

Yes, value is JSON-encoded JSON. ssa=true tells clients that
subscriptions are sorted alphabetically. FeedHQ doesn’t support custom
sorting.

preference/stream/list

	URL

	/reader/api/0/preference/stream/list

	Method

	GET

	Supported formats

	XML, JSON

Returns a static response:

{
 "streamprefs": { }
}

friend/list

	URL

	/reader/api/0/friend/list

	Method

	GET

	Supported formats

	XML, JSON

Returns a single friend, the authenticated user:

{
 "friends": [{
 "p": "",
 "contactId": "-1",
 "flags": 1,
 "stream": "user/1/state/com.google/broadcast",
 "hasSharedItemsOnProfile": false,
 "profileIds": [
 "1"
],
 "userIds": [
 "1"
],
 "givenName": "brutasse",
 "displayName": "brutasse",
 "n": ""
 }]
}

Undocumented / not implemented

The following API calls are known to exist in the Google Reader API but
haven’t been implemented in the FeedHQ API:

	/related/list

	/stream/details

	/item/edit

	/item/delete

	/item/likers

	/friend/groups

	/friend/acl

	/friend/edit

	/friend/feeds

	/people/search

	/people/suggested

	/people/profile

	/comment/edit

	/conversation/edit

	/shorten-url

	/preference/set

	/preference/stream/set

	/search/items/ids

	/recommendation/edit

	/recommendation/list

	/list-user-bundle

	/edit-bundle

	/get-bundle

	/delete-bundle

	/bundles

	/list-friends-bunle

	/list-featured-bundle

Index

 nav.xhtml

 Table of Contents

 		
 FeedHQ’s documentation

 		
 The FeedHQ API

 		
 Terminology

 		
 Data model

 		
 Streams

 		
 Items

 		
 Input formats

 		
 Authentication

 		
 Output formats

 		
 POST Token

 		
 API Reference

 		
 user-info

 		
 unread-count

 		
 disable-tag

 		
 rename-tag

 		
 subscription/list

 		
 subscription/edit

 		
 subscription/quickadd

 		
 subscription/export

 		
 subscription/import

 		
 subscribed

 		
 stream/contents

 		
 stream/items/ids

 		
 stream/items/count

 		
 stream/items/contents

 		
 tag/list

 		
 edit-tag

 		
 mark-all-as-read

 		
 preference/list

 		
 preference/stream/list

 		
 friend/list

 		
 Undocumented / not implemented

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

