
FDBus Documentation
Release 1.0

Jeremy ChenZhen

Nov 25, 2019

Contents

1 Authors 3

2 Introduction 5
2.1 Supported system . 6
2.2 Dependence . 6
2.3 Download . 6
2.4 Documentation & Blog . 6
2.5 How to build . 6
2.6 How to run . 9
2.7 example of toolchain.cmake for cross-compiling . 9
2.8 cmake options . 9
2.9 Security concept . 10

3 FDBus Manual 13
3.1 Abstract . 13
3.2 Background . 14
3.3 Mainstream IPC framework comparison . 16
3.4 Middleware model based on FDBus . 16
3.5 FDBus addressing and networking . 18
3.6 Security . 21
3.7 Debugging and logging . 26
3.8 FDBus internal structure . 27
3.9 Conclusion . 28

4 Indices and tables 29

i

ii

FDBus Documentation, Release 1.0

Contents:

Contents 1

FDBus Documentation, Release 1.0

2 Contents

CHAPTER 1

Authors

• Jeremy ChenZhen

3

FDBus Documentation, Release 1.0

4 Chapter 1. Authors

CHAPTER 2

Introduction

FDBus Documentation

FDBus is a middleware development framework targeting the following objectives:

• Inter-Process Communication (IPC) within single host and cross the network

• System abstraction (Windows, Linux, QNX)

• Components based on which middleware is built (job, worker, timer, watch. . .)

It is something like DBus or SOME/IP, but with its own characteristic:

• Distributed : unlike DBus, it has no central hub

• High performance : endpoints talk to each other directly

• Addressing by name : service is addressable through logic name

• Address allocation : service address is allocated dynamically

• Networking : communication inside host and cross hosts

• IDL and code generation : using protocol buffer

• Language binding : C++ Java

• Total slution : it is more than an IPC machanism. it is a middleware development framework

Its usage can be found in the following fields:

• Infotainment; instrument cluster, TBox and other ECU with posix-compatible OS running

• Inter VM communication between guest OSes in hypervisor

• SOHO Gateway

• Instrument for distributed industry control

5

https://fdbus.readthedocs.io/en/latest/?badge=latest

FDBus Documentation, Release 1.0

2.1 Supported system

• Linux

• Windows

• QNX

2.2 Dependence

• cmake - 3.1.3 or above for non-jni build

• cmake - 3.11.1 or above for jni build

• protocol buffer

• compiler supporting C++11 (gcc 4.7+ for Linux; Visual Studio for Windows)

2.3 Download

https://github.com/jeremyczhen/fdbus.git

2.4 Documentation & Blog

https://blog.csdn.net/jeremy_cz/article/details/89060291

2.5 How to build

2.5.1 For Ubuntu host version (running at host machine)

Dependence:

• cmake, gcc are installed

1. build protocol buffer

1.1 cd ~/workspace
1.2 git clone https://github.com/protocolbuffers/protobuf.git #get protobuf source
→˓code
1.3 cd protobuf;git submodule update --init --recursive
1.4 mkdir -p build/install;cd build #create directory for out-of-source build
1.5 cmake -DCMAKE_INSTALL_PREFIX=install -DBUILD_SHARED_LIBS=1 ../cmake
1.6 make -j4 install #build and install to build/install directory

2. build fdbus

2.1 cd ~/workspace
2.2 git clone https://github.com/jeremyczhen/fdbus.git #get fdbus source code
2.3 cd fdbus;mkdir -p build/install;cd build #create directory for out-of-source build

(continues on next page)

6 Chapter 2. Introduction

https://github.com/jeremyczhen/fdbus.git
https://blog.csdn.net/jeremy_cz/article/details/89060291

FDBus Documentation, Release 1.0

(continued from previous page)

2.4 cmake -DSYSTEM_ROOT=~/workspace/protobuf/build/install -DCMAKE_INSTALL_
→˓PREFIX=install ../cmake
2.5 PATH=~/workspace/protobuf/build/install/bin:$PATH make #set PATH to the directory
→˓where protoc can be found

2.5.2 For cross compiling on Ubuntu (target version)

Dependence:

• cmake, gcc and toolchain are installed

1 build protocol buffer

1.1 cd ~/workspace
1.2 create toolchain.cmake #create toolchain.cmake and set g++ and gcc for target
→˓build in cmake/toolchain.cmake (see below)
1.3 git clone https://github.com/protocolbuffers/protobuf.git protobuf-host #get
→˓protobuf source code for host build
1.4 cd protobuf-host && git submodule update --init --recursive && cd ..
1.5 cp protobuf-host protobuf-target -r #create a copy for cross compiling
1.6 cd protobuf-host;mkdir -p build/install;cd build #create directory for out-of-
→˓source build
1.7 cmake -DCMAKE_INSTALL_PREFIX=install -DBUILD_SHARED_LIBS=1 ../cmake
1.8 make -j4 install #build and install to build/install directory; now we have
→˓protoc running at host
1.9 cd ../../protobuf-target;mkdir -p build/install;cd build #create directory for
→˓out-of-source build
1.10 cmake -DCMAKE_INSTALL_PREFIX=install -DBUILD_SHARED_LIBS=1 -DCMAKE_TOOLCHAIN_
→˓FILE=../../toolchain.cmake ../cmake
1.11 PATH=~/workspace/protobuf-host/build/install/bin:$PATH make -j4 install #build
→˓and install to build/install directory

2. build fdbus

2.1 cd ~/workspace
2.2 git clone https://github.com/jeremyczhen/fdbus.git
2.3 cd fdbus;mkdir -p build/install;cd build
2.4 cmake -DSYSTEM_ROOT=~/workspace/protobuf-target/build/install -DCMAKE_INSTALL_
→˓PREFIX=install -DCMAKE_TOOLCHAIN_FILE=../../toolchain.cmake ../cmake
2.5 PATH=~/workspace/protobuf-host/build/install/bin:$PATH make #set PATH to the
→˓directory where protoc can be found

2.5.3 For QNX

The same as cross compiling, but when building fdbus, should add the following option to cmake since QNX doesn’t
support peercred and eventfd:

-Dfdbus_SOCKET_ENABLE_PEERCRED=OFF -Dfdbus_PIPE_AS_EVENTFD=true

2.5.4 For Android NDK

Dependence:

2.5. How to build 7

FDBus Documentation, Release 1.0

• cmake, gcc are installed, also need android NDK

1 build protocol buffer

1.1 build host is the same as previously discussed
1.2 cd ./protobuf-target;mkdir -p build/install;cd build #create directory for out-of-
→˓source build
1.3 cmake -DCMAKE_INSTALL_PREFIX=install -DBUILD_SHARED_LIBS=1 -DANDROID_LINKER_FLAGS=
→˓"-landroid -llog" -Dprotobuf_BUILD_PROTOC_BINARIES=0 -Dprotobuf_BUILD_TESTS=0 -
→˓DCMAKE_TOOLCHAIN_FILE=~/android-ndk-r20/build/cmake/android.toolchain.cmake ../cmake
1.4 PATH=~/workspace/protobuf-target/build/install/bin:$PATH make -j4 install #build
→˓and install to build/install directory

2 build fdbus

2.1 cd ~/workspace
2.2 git clone https://github.com/jeremyczhen/fdbus.git
2.3 cd fdbus;mkdir -p build/install;cd build
2.4 cmake -DSYSTEM_ROOT=~/workspace/protobuf-target/build/install -DCMAKE_INSTALL_
→˓PREFIX=install -Dfdbus_ANDROID=ON -DCMAKE_TOOLCHAIN_FILE=~/android-ndk-r20/build/
→˓cmake/android.toolchain.cmake ../cmake
2.5 PATH=~/workspace/protobuf-host/build/install/bin:$PATH make #set PATH to the
→˓directory where protoc can be found

2.5.5 For Windows version

Dependence:

• cmake, msvc are installed

1 build protocol buffer

1.1 cd c:\workspace
1.2 #suppose source code of protocol buffer is already downloaded and placed at
→˓c:\workspace\protobuf
1.3 cd protobuf;mkdir -p cbuild\install;cd cbuild #create directory for out-of-source
→˓build
1.4 cmake -DCMAKE_INSTALL_PREFIX=install -Dprotobuf_WITH_ZLIB=OFF ..\cmake
1.5 open protobuf.sln in c:\workspace\protobuf\cbuild and build project INSTALL

2. build fdbus

2.1 cd ~/workspace
2.2 #suppose source code of fdbus is already downloaded and placed at
→˓c:\workspace\fdbus
2.3 cd fdbus;mkdir -p build\install;cd build #create directory for out-of-source build
2.4 cmake -DSYSTEM_ROOT=c:\workspace\protobuf\build\install -DCMAKE_INSTALL_
→˓PREFIX=install ..\cmake
2.5 copy c:\workspace\protobuf\cbuild\install\bin\protoc.exe to the directory in PATH
→˓environment variable
2.6 open fdbus.sln in c:\workspace\fdbus\build and build project INSTALL

2.5.6 For cross compiling on Windows (target version)

1. you should have cross-compiling toolchain installed (such as linaro ARM complier)

2. you should have ‘make.exe’ installed

8 Chapter 2. Introduction

FDBus Documentation, Release 1.0

3. run ‘cmake’ as before, adding “-DCMAKE_TOOLCHAIN_FILE=../../toolchain.cmake”. Makefiles will be gen-
erated.

4. if you have visual studio installed, cmake will by default generate visual studio solution rather than makefiles.
To avoid this, adding -G “Unix Makefiles” option, which forces cmake to generate makefile.

2.6 How to run

2.6.1 For single host

1. start name server:
> name_server

2. start clients/servers

2.6.2 For multi-host

1. start name server at host1:
host1> name_server

2. start host server at host1:
3. start name server at host2:

host2> name_server -u tcp://ip_of_host1:60000
4. start clients/servers at host1 and host2

2.7 example of toolchain.cmake for cross-compiling

>>>> cat toolchain.cmake
SET(CMAKE_SYSTEM_NAME Linux)
SET(CMAKE_CXX_COMPILER ~/project/android/workspace/prebuilts/gcc/linux-x86/aarch64/
→˓aarch64-linux-gnu-7.1.1/bin/aarch64-linux-gnu-g++)
SET(CMAKE_C_COMPILER ~/project/android/workspace/prebuilts/gcc/linux-x86/aarch64/
→˓aarch64-linux-gnu-7.1.1/bin/aarch64-linux-gnu-gcc)

2.8 cmake options

Note: The following options can be specified with -Dfdbus_XXX=ON/OFF when running cmake. The status with
* is set as default.

fdbus_BUILD_TESTS

*ON : build examples
OFF: don’t build examples

fdbus_ENABLE_LOG

*ON : enable log output of fdbus lib
OFF: disable log output of fdbus lib

fdbus_LOG_TO_STDOUT

2.6. How to run 9

FDBus Documentation, Release 1.0

ON : send fdbus log to stdout (terminal)
*OFF: fdbus log is sent to log server

fdbus_ENABLE_MESSAGE_METADATA

*ON : time stamp is included in fdbus message to track delay of message during request-reply interaction
OFF: time stamp is disabled

fdbus_SOCKET_BLOCKING_CONNECT

ON : socket method connect() will be blocked forever if server is not ready to accept
*OFF: connect() will be blocked with timer to avoid permanent blocking

fdbus_SOCKET_ENABLE_PEERCRED

*ON : peercred of UDS (Unix Domain Socket) is enabled
OFF: peercred of UDS is disabled

fdbus_ALLOC_PORT_BY_SYSTEM

ON : socket number of servers are allocated by the system
*OFF: socket number of servers are allocated by name server

fdbus_SECURITY

ON : enable security
*OFF: disable security

fdbus_BUILD_JNI

ON : build JNI shared library and jar package
*OFF: don’t build JNI artifacts

Note: The following options can be specified with -DMACRO_DEF='VARIABLE=value;VARIABLE=value'

FDB_CFG_SOCKET_PATH

specify directory of UDS file
default: /tmp

CONFIG_SOCKET_CONNECT_TIMEOUT

specify timeout of connect() when connect to socket server in ms. “0” means block forever.
default: 2000

2.9 Security concept

2.9.1 Authentication of client:

1. server registers its name to name server;
2. name server reply with URL and token;
3. server binds to the URL and holds the token;
4. client requests name resolution from name server;
5. name server authenticate client by checking peercred (SO_PEERCRED option of socket),
including UID, GID of the client
6. if success, name server gives URL and token of requested server to the client

10 Chapter 2. Introduction

FDBus Documentation, Release 1.0

7. client connects to the server with URL followed by sending the token to the server
8. server verify the token and grant the connection if pass; for unauthorized client, since it does not have
a valid token, server will drop the connection
9. name server can assign multiple tokens to server but only send one of them to the client according
to security level of the client

2.9.2 Authenication of host

TBD

2.9.3 Known issues

1. Issue: sem_timedwait() is used as notifier and blocker of event loop, leading to timer failure when
TOD is changed since sem_wait() take CLOCK_REALTIME clock for timeout control.

Solution: When creating worker thread, pass FDB_WORKER_ENABLE_FD_LOOP as
parameter, forcing poll() instead of sem_timedwait() as loop notifier and blocker

2.9. Security concept 11

FDBus Documentation, Release 1.0

12 Chapter 2. Introduction

CHAPTER 3

FDBus Manual

3.1 Abstract

This manual describes a new type of IPC mechanism: Fast Distributed Bus (FDBus). From the perspective of IPC
(Inter-Process Communication), FDBus has similarities with widely used D-Bus (Desktop Bus), but FDBus has its
own advantages, more complete functions, higher performance and convenient use. It can also be networked between
multiple hosts in addition to supporting IPC in the host. And can customize security policies to support different
security levels. FDBus is built on sockets (Unix domain and TCP) and serialized and deserialized using Google
protobuf. FDBus supports the name of a string as the server address. The name server automatically assigns a
Unix domain address and a TCP port number to the server, so that the addressing between the client and the server
through the service name can be achieved .

FDBus aims to provide a connection-oriented, scalable, secure and reliable IPC mechanism between client-servers,
and then develop into a middleware development framework for cross-platform (Windows, QNX, Linux), multi-
threaded/multi-process middleware layers which working together. The FDBus development framework is suitable
for interactive and complex distributed projects developed on customization systems, including:

• Linux-based vehicle ECU, including instrument cluster, entertainment host, TBox, domain controller connected
via Ethernet

• Communication between multiple Guest OSs on Hypervisors

• Provide cross-host IPC mechanism for Android system (currently does not support Java API)

• Small communication devices based on Linux, such as home routers

• Other Linux-based industrial equipment, smart equipment

• Automated test equipment based on Windows development

You may get the open source of FDBus with Apache License on Github: https://github.com/jeremyczhen/fdbus.
git

13

https://github.com/jeremyczhen/fdbus.git
https://github.com/jeremyczhen/fdbus.git

FDBus Documentation, Release 1.0

3.2 Background

Unlike other cores, Linux has not had its own unique and easy-to-use IPC mechanism, while Windows, Mac OS,
and QNX all have such a mechanism. Even Linux-based Android has developed a binder for IPC. The Linux
kernel only provides some of the most basic components - socket, pipe, message queue, shared memory, and so on.
This is also in line with the Linux philosophy which is that each tool only does one thing and does it well. But the
reality is often very complicated. Just doing one thing is far from solving the problems encountered in reality, let alone
product development and large commercial projects. For example, subscription-broadcasting is a basic communication
requirement, but no basic component can satisfy it.

Actually Linux has a powerful IPC: D-Bus. It has sophisticated method invocation mechanisms and event broadcast
mechanisms. It also includes advanced features such as security policies and on-demand startup of services. But the
biggest controversy about it is the performance: its performance is very low, due to the daemon relay, a request-reply
needs to replicate ten times, four message verification, and four context switches. Therefore, it can only be used to
handle control commands and message delivery with lower real-time requirements and smaller data volume, otherwise
it will have to resort to the basic IPC framework. For this reason, someone wrote D-Bus into the kernel and generated
KDBus. Although the performance is improved, the disadvantages are obvious. It can only be run on a single machine
and does not support cross-host. In this case, Android’s Binder is also sufficient, and Binder has been accepted by
the kernel. KDBus has not “turned positive” yet. In addition, whether it is DBus or KDBus, the provision is still the
basic API, and there is still a big gap from the “middleware development framework.” However, there is an increasing
demand from various industries, including the automotive industry, so that various DBus packages are produced: Qt
DBus, gDBus, commonAPI, DBus-C++. . . But these packages are either subordinate to the big frame or lack of
maintenance, in short, it is not friendly to use.

In the automotive field where Linux and Ethernet are used more and more widely, the lack of suitable IPC has
gradually become a prominent problem: the company’s original IPC mechanism is backward due to backward tech-
nology and obvious customization, and it has been unable to meet the requirements of distributed, high performance
and security. However, it is unable to find a suitable IPC mechanism for the new platform, let alone a middleware
development framework derived from the IPC mechanism. The application of Ethernet in vehicle have spawned
SOME/IP (Scalable service-Oriented MiddlewarE over IP). SOME/IP is also a relatively complete IPC specification,
even developed specifically for the automotive industry. But as the name implies, it is based on the IP layer and does
not perform well on a single machine. And the open sources for SOME / IP implementation are also very few. The
GENIVI organization contributed vsomeip, but the activity is very low. GENIVI itself is a loose organization with
more participants but fewer developers. Unlike DBus, SOME/IP is built for vehicle and has a narrow range of ap-
plications. It is impossible to expect an active community to gather a group of professional programmers to maintain
open source (this is probably why GENIVI is unsuccessful). Finally, it is very likely that you have to pay for closed
source software.

FDBus was developed to solve the above problems and has the following characteristics:

• Distributed: Based on TCP sockets and Unix Domain sockets (UDS), it can be used for both local IPC and
IPC between network hosts.

• Cross-platform: Currently verified on Windows, Linux and QNX

• High performance: point-to-point direct communication, not forwarded through a central hub or broker

• Security: Ability to configure different levels of access for server method calls and event broadcasts. Only
clients with high enough permissions can characterize methods and receive specific events.

• Service name resolution: The server address is identified by name, the service is registered by the
name server, and the name is resolved, so that the server can be deployed anywhere on the network.

• Support cross-platform middleware development framework, including the following components:

– 1. Thread model

– 2. Event Loop

14 Chapter 3. FDBus Manual

FDBus Documentation, Release 1.0

– 3. Inter-thread communication based on Job-Worker

– 4. Timer based on Event Loop

– 5. Watch based on Event Loop

– 6. Mutex

– 7. Semaphore

– 8. Socket

– 9. Notification

• IPC adopts Client-Server mode and supports the following communication modes:

– 1. Synchronous request - reply with timeout

– 2. Asynchronous request - reply with timeout

– 3. Unanswered command request

– 4. Registration-release mode for multicast

• IPC message implements serialization and deserialization by Protocol buffer. It supports IDL code generation
which is efficient and simple. It also supports raw data format and is convenient for large data transmission

• Reliable heartbeat and reconnection mechanisms ensure that all parties remain connected regardless of network
conditions, regardless of which service is back online or restarted

• C++ implementation, easy to develop and maintain

3.2. Background 15

FDBus Documentation, Release 1.0

3.3 Mainstream IPC framework comparison

Bottom
layer

performance

Sync
request

Asynchronous

request

Request
timed
out

Cross-
host

Message
push

Cross-

platform

security

strategy

FDBus Socket

Point-
to-point,
high

performance,
second
only to
Binder

YES YES YES

YES
with
timeout
and
heart-
beat
to
ensure
reliable

connection

YES
with
simple
string

matching

Window
Linux
QNX

YES

Developing

GDBus Socket

Turned
by
daemon,
lower

performance

YES YES YES

YES
but need

maintaining

reconnection
when
network
fails

YES
with
complex

matching

Window
Linux
QNX

YES

Developing

Binder

Binder
driver

Direct
copy,
highest

performance,

YES

YES

but need
callback
package

YES
but need
to
increase

NO

YES

but need
callback
package

Only
Linux,
requires
kernel
driver

YES

3.4 Middleware model based on FDBus

The following figure is an example of a middleware layer based on FDBus development:

16 Chapter 3. FDBus Manual

FDBus Documentation, Release 1.0

The middleware layer contains multiple processes, whether they are on the same host system or on different host
systems. Each process can run multiple threads. FDBus runs a specific event loop on a thread basis, enhancing the
generic thread to a worker thread capable of executing jobs, timers, and watches. The two communication parties
(client and server) of FDBus are collectively referred to as endpoint. Endpoints can be deployed on different workers;
multiple endpoints can also share the same worker. “Endpoint deployed on the worker” means that the event processing
of the endpoint is executed on the worker. For example, the server processes the client request on the specified worker;
the client processes the asynchronous reply and the broadcast event of the server on the specified worker. Middleware
developers can use a worker to handle multiple endpoint events according to the actual situation, avoiding consuming
too many threads, and also avoiding the “concurrency disaster” caused by multithreading. Developers can also use
multiple workers to serve one endpoint. For example, endpoint can create worker threads to complete time-consuming
file downloads, video codecs, peripheral IO operations, etc..

Multi-threaded collaborative work requires that messages and data could be transferred between threads. For example,
the endpoint should be notified for subsequent processing if the file is downloaded successfully. Because the same
address space can be accessed in the process, the best communication carrier is the object which can either carry the
data or specify the way of data processing. Job is the object that FDBus transfers between threads, FDBus realizes
inter-process communication through the transfer and execution of jobs between threads.

A more important feature of FDBus is interprocess communication (IPC). Objects cannot be directly passed between
processes. Processes can only interact in the form of messages. Further more, messages need to be serialized during
transmission and deserialized after receiving. Each IPC mechanism, including Binder, SOME/IP, and DBus, has
its own serialization method. The quality of serialization directly affects communication efficiency, load, support for
data structures, and ease of use. FDBus does not have its own serialization method, just uses google protocol buffer
directly which is easy to use, full-featured, and supports idl automatic code generation. Data is communicated between
processes using sockets, including Unix Domain Sockets (UDS) and TCP sockets. The system will automatically
choose which type to be used according to the deployment of Client and Server: UDS is used if inside the same host,
otherwise TCP socket is used. For Windows, since UDS is not supported, TCP sockets are used for all.

3.4. Middleware model based on FDBus 17

FDBus Documentation, Release 1.0

3.5 FDBus addressing and networking

3.5.1 Server address

The server address is the identifier of the server in the network. Through this identifier, the client can find the specified
server and establish communication with it. As mentioned earlier, FDBus supports UDS and TCP sockets, each with
its own naming method and namespace. For unification, FDBus uses the following rules to define the server address:

• UDS: file://socket filename

• TCP socket: tcp://ip address: port number

Different from the socket server in the general sense, the FDBus server can bind multiple addresses at the same time,
and each address can accept the connection of the client. Once connected, each address provides the same service, so
the client can choose any address to establish a connection. The following figure is a schematic diagram of the FDBus
server address binding:

In the figure above, the server is bound to a UDS address: file:///tmp/fdb-ipc1. The client on the same
host can use this address to initiate a connection. Of course, it can also connect to any other address, but undoubt-
edly the most efficient one is UDS. And UDS supports peer credentials, and thus support security policies. As the
host has multiple network ports, the server can also bind one address (port number) to each network port: tcp://
192.168.1.2:60004 and tcp://192.168.0.1:60004. Each address is used to connect to the client of the
corresponding network segment.

3.5.2 Server naming and address assignment

It is inconvenient and not intuitive to use the above address to locate the server. The address will change with the
networking mode and cannot be deployed flexibly. For this reason, FDBus has added an addressing mode: server
name addressing. Each server can have its own name. A service called name server, is run to assign addresses
to the server, manage the mapping between server names and addresses, parse the server name, and issue the server
address. The name server is a bit like the DNS on the internet. To support server name addressing, a format is
added to the two URLs as the name address, as follows:

• svc://servername

The name address is a virtual address. No matter where the server is located, as long as its name and address are
unchanged, the client can establish contact with it through this address. If the server calls bind() to bind the name
address (the address starting with svc://), the name server will assign the actual address (the address starting with
tcp:// or file://) to it and register the name and address to the mapping table. If the client connects to the name address,
the name server will look up the actual address of the server according to the name and select the most appropriate
actual address to publish to the client. The client establishes a point-to-point direct connection with the server through
this address. The following figure shows the process of establishing a connection between the client and the server
using the name address with the help of the name server:

18 Chapter 3. FDBus Manual

file://socket
tcp://ip
tcp://
file://

FDBus Documentation, Release 1.0

First, the client calls connect(“svc://medisServer”) to establish a connection with the server named mediaServer. Since
the name address is used, FDBus will ask the name server for the actual address of the mediaServer. But now
mediaServer is not online yet, so the name cannot be resolved, just subscribe to the online notification of the service.
Soon after, the server calls bind(“svc://mediaServer”) to be online. Since the name address is used, the request will
also be sent to the name server. The name server registers its name, assigns UDS and TCP addresses, and
returns them to the server. The server is bound to each actual address, and the name server is notified after
success. The name server issues the server online message and the server address to the entire system: the UDS
address is broadcast to the local client, and the TCP address is broadcast to the clients on other nodes. The client
establishes a connection with the server using the received address, and both the client and the server can receive the
event notification of onOnline().

The name server uses the following rules to assign a server address:

Server TCP Address UDS Address
host server port No. 6100 /tmp/fdb-ns
name server port No. 6101 /tmp/fdb-ns
user servers

Port 61002 – Port 65535
or
Automatic system allocation

/tmp/fdb-ipc0,
/tmp/fdb-ipc1,
. . .

3.5.3 Multi-host networking

Since the address of the name server is fixed, the endpoint will automatically connect to the name server
registration (server) or resolution (client) name after the endpoint is started. If there are multiple hosts, each running
their own name server, responsible for their respective name services, then these hosts become isolated islands and
cannot be connected to each other through service names such as svc://server_name. Of course, the client can bypass
the name server and directly connect to the server with the actual address, but this cannot be flexibly deployed and
networked. In order to support name resolution across networks, a service is required to manage all hosts in the system,

3.5. FDBus addressing and networking 19

FDBus Documentation, Release 1.0

and the host information is synchronized to all name servers. These name servers can establish connections
and work together to complete the name service within the entire network. This service is the host server.

The working principle of the host server is: the entire network runs a host server, which can be located on
any host that everyone can access. All host name servers are connected to the host server, registering their own
host. The host server maintains a list of hosts containing the IP addresses of the hosts and synchronizes the tables
to all name servers on the network. The name server establishes a connection with the name server on
all hosts in the network according to the table.

Once the name servers on all hosts are connected in pairs, the service name resolution and service online notifi-
cation can be completed through a set of internal protocols. For example, when a client on a host requests the local
name server to resolve the address corresponding to the service name, the local name server can broadcast the
request to all connected name servers to find services in the entire network. The following is an example diagram
of the entire system networking:

In the above figure, a star connection is established between the name server and the host server, and the
name server and the name server are connected one by one to form a network. In this system, the main tasks
of the name server and host server are:

• Name server connects to the host server, and the host is registered to the host server.

• The host server collects all host information to form a host address table.

• The host server broadcasts the host address table to all name servers.

• Name server gets the address of the name servers on the other hosts through the table and establish the
connection with it.

• All servers are connected to the local name server and register the service name with them. The local
name server broadcasts the newly registered service to the local client and all other name servers in the
network.

20 Chapter 3. FDBus Manual

FDBus Documentation, Release 1.0

• After the other name server receives the broadcast, it also makes a broadcast locally and notifies all clients.
In this way, the service online message is spread to the entire network.

• All clients are connected to the local name server and apply for service name resolution. The local name
server searches its own server address mapping table and sends the application to all other name servers.

• After receiving the application, other name servers search their respective server address mapping tables
and return the result to the name server that initiated the application.

• The name server forwards the received return result to the client that initiated the application, and the client
establishes a direct connection with the service using the actual address in the result. In this way, you can find
all services on all hosts.

As can be seen from the above figure, once the connection is established between the client and the server, all commu-
nication is completed through this connection without forwarding through the intermediate link.

3.5.4 Uniqueness of the service name

Since each host has its own name server, the service cannot be renamed inside the host, but it can be renamed on
different hosts. In this case, when the client requests name resolution, it may receive feedback from different hosts.
The client can customize the connection policy: always connect to the new server, only connect to the first server, or
only connect to the specified server.

3.5.5 Heartbeat detection, reconnection and online, offline detection

In order to make the whole system run reliably and ensure that any service can be gracefully restarted (the entire
system still works normally after restarting), FDBus has perfect heartbeat detection and online and offline detection
mechanisms:

• There is a reconnection mechanism between endpoints and name server to ensure that the endpoint can
always establish a connection with the name server after restarting.

• There is heartbeat detection between the name server and the host server. Once the heartbeat dis-
appears, the name server will try to reconnect with the host server to ensure the reliability of the
connection between the name server and the host server.

• The connection between the name server and the name server is established by the host server:
When the name server goes online, the host server notifies all other name servers to establish
a connection with it, and also informs the name server to establish a connection with all other name
servers.

• The connection between the client and the server is established by the name server: When the server goes
online, the name server notifies the client to establish a connection with it.

3.6 Security

As systems become more complex and open, security has become the focus of system architecture design. An open
system means that there may be intruders, and once an intruder accesses a resource that should not be accessed, it may
cause information leakage or destruction. On the other hand, the security of a system is based on the chain of trust,
and only by satisfying the necessary security foundation can build its own security capabilities. For FDBus, there are
two prerequisites:

The most basic premise is the integrity of the FDBus itself: the FDBus library running in the system, the name
server, and the host server are all legal and have not been tampered with or replaced, otherwise security

3.6. Security 21

FDBus Documentation, Release 1.0

cannot be guaranteed anyway. This is ensured by the operating system with rights management, secure boot,
DM-verity/FS-verity, security upgrade, SELinux and other mechanisms.

Secondly, on the network, the FDBus message is delivered in plain text. Once someone illegally listens to the
network message, it may cause information leakage and security loopholes. Therefore, another premise to discuss the
security of FDBus is that the intruder cannot intercept the network packet and obtain the data transmitted by the
FDBus on the link. Key data such as tokens will be encrypted in the future, but it has not been implemented yet.

Based on these assumptions, the attacks faced by FDBus mainly come from three aspects:

1) An illegal host connects to the FDBus bus and runs an illegal client to access the server on other hosts;
2) Runs an illegal client on a legitimate host to access the FDBus server in the host
3) A legal client is running on a legal host, but tries to get data without permission or perform an operation without
permission.

Based on the above attacks, FDBus ensures the safe operation of the system from the following aspects:

• Authentication of the host node: All hosts joining the FDBus are divided into different security levels.

• Authentication of service access: All clients are divided into different security levels

• Access restrictions: The server’s method calls and event broadcasts are divided into different security levels,
so that the client can call the method that matches the server security level and the event broadcast that matches
the registration.

3.6.1 Host node authentication

A host must establish a connection with the host server if it wants to join the FDBus. The host server can
authenticate the host by checking the host’s IP address or MAC address, and can also determine the validity of the host
through the public-private key pair. For a legitimate host, the host server will issue an “ID card” for accessing
other hosts. After holding the ID card, the hosts can identify each other and give each other access rights.

“ID card” is implemented by token. When the name server on the host initiates a connection, the host
server will assign multiple tokens to it, and each token corresponds to a security level. The following table shows
the token assignments for each host in a system:

Security Level 0 Security Level 1 Security Level 2 Security Level 3
host 1 token10 token11 token12 token13
host 2 token20 token21 token22 token23
host 3 token30 token31 token32 token33

There are four security levels in the table. For host 1, the tokens corresponding to each security level are token10,
token11, token12, and token13. For other hosts, and so on. When the name server of the host 2 is connected to
the name server of the host 1, it needs to hold one of the four tokens of the host 1. For example, host 2 uses token
11 to connect to host 1, then in the eyes of host 1, the security level of host 2 is 1; if token13 is used, the security level
of host 2 is 3, and so on. The number of security levels can be configured according to the project.

The security level of the host is specified after the host server identifies and authenticates the host. As mentioned
above, the host server can identify the host identity according to the host’s MAC address or other means, and
then use the following configuration table to publish the tokens used by the hosts to access each other:

22 Chapter 3. FDBus Manual

FDBus Documentation, Release 1.0

host 1 host 2 host 3
host 1 (MAC address1) NA token22 token31
host 2 (MAC address2) token13 NA token33
host 3 (MAC address3) token12 token23 NA

For example:

1) Host 1 connects to host 2 using token22, that is, for host 2, host 1 has a security level of 2;
2) when host 1 connects to host 3, token31 is used, that is, for host 3, The security level of host 1 is level 1.

And so on. For hosts that are not in the table, the host server will not reject the connection for the sake of
openness, but will not issue a token for it. For hosts that do not have a token, the security level is considered to be -1
and there is no level.

3.6.2 Service access authentication

Just as the host server is responsible for host authentication, the name server is responsible for the authen-
tication of the service access, and also uses the certification authentication + token issuing method. When the server
registers the service name with the name server, the name server allocates multiple tokens at the same time
as the address is assigned, and each token corresponds to a security level, as shown in the following table:

Security Level 0 Security Level 1 Security Level 2 Security Level 3
server 1 token10 token11 token12 token13
server 2 token20 token21 token22 token23
server 3 token30 token31 token32 token33

There are four security levels in the table. For server1, the tokens corresponding to each security level are token10,
token11, token12, and token13. For other servers, and so on. When the client connects to server1, it needs to hold
one of the four tokens of server1. For example, if the client uses token11 to connect to server1, then in the eyes of
server1, the client’s security level is 1. If token13 is used, then the client’s security level is 3, and so on. The number
of security levels can be configured as appropriate.

The security level of the host is specified after the host server identifies and authenticates the host. When the
client connects to the name server through the UDS, the UDS will also send the client’s credentials to the name
server, including the client’s uid and guid. Windows does not support UDS, so it doesn’t support service ac-
cess authentication. For QNX, although UDS is supported, service access authentication is not supported because the
SO_PEERCRED option is not supported. So currently only Linux can support, and the credentials are attached by
the operating system which is trustworthy, the client can not fake an identity. According to uid and guid, the name
server can identify the identity of the client, and publish the token used to access other servers through the following
configuration table:

server1 server2 server3 server4
client1 (uid1:guid1) token12 token22 token31 token43
client2 (uid2:guid2) token13 token21 token33 token43
client3 (uid3:guid3) token12 token23 token33 token41

For example:

3.6. Security 23

FDBus Documentation, Release 1.0

1) Client1 connects to server1 using token12, that is, for server1, client1 has a security level of 2;
2) Client1 connects to server2 using token22, that is, for server2, client1 has a security level of 2 .

And so on. For clients that are not in the table, the name server will not reject the connection for the sake of
openness,but will not issue tokens for it. For clients without a token, the security level is considered to be -1, the
lowest level.

When the security policy is enabled, the process of establishing a connection between the client and the server increases
the client authentication and token issuance process, as shown in the following figure:

Compared with the previous timing, in the above figure, the name server issues tokens to the server and the client
respectively: all the security level tokens T0-T3 are issued to the server; only the token matching the security level is
issued to the client. When the client connects to the server, it will also send the token to the server. The server finds
that the received token is consistent with T1 by comparison, so that the client’s security level is 1. Suppose a malicious
client also connects to the same server: Since the name server can not recognize its UID, it will not be assigned a
token. When the client trying to connect to the server, the server sets its security level to -1 because the token cannot
be given, that is, no security level, . In this case, by configuring the server, the client can only be allowed to access to
a limited API, so that the access control is realized.

3.6.3 Security level and access rights

When determining the security level of the client, the server needs to integrate the security level of the client itself
and the security level of the host where the client is located: the highest security level of the client does not exceed
the security level of the host where it resides. With a security level, the server can define different levels of access: at
which levels, which methods can be called, and which broadcast messages are monitored. The following figure shows
the partitioning of a server’s access rights:

24 Chapter 3. FDBus Manual

FDBus Documentation, Release 1.0

Each server can define access rights corresponding to different security levels through the configuration file. The spe-
cific method is to segment the method ID and the notification ID, and the IDs falling in different segments correspond
to different security levels. For the method call, if the security level of the client does not reach the required level, the
server will refuse to execute; for the message notification, if the client does not have the permission, the message of
the high security level cannot be registered, and thus the change notification of the message will not be received.

3.6.4 Security policy configuration file

The security policy file is located under /etc/fdbus by default.

Parameter configuration file /etc/fdbus/fdbus.fdb

This file configures the overall security parameters, including the following fields:

• number_of_secure_levels: number type, how many security levels are configured

• token_length: number type, configured for the length of the token in bytes.

Host configuration file /etc/fdbus/host.fdb

This file configures the security parameters of each host, including the following fields:

• host: object type, the key of each element is the host name (“host_name”), and the value is the array type, which
contains the security policy of the corresponding host.

• host.”host_name”[. . .]: object type, which indicates the configuration of a security level.

• host.”host_name”[. . .].level: number type, indicating the security level.

• host.”host_name”[. . .].ip: array type, each element is the host ID represented by the IP address, meaning:
the host with these IP addresses, the security level is host."host_name"[...].level. If the IP is a
“default” string, it means that there is no default security level for the host in the configuration file.

• host.”host_name”[. . .].mac: array type, each element is the host ID represented by the MAC address, meaning
the same as host."host_name"[...].ip.

Server Configuration file /etc/fdbus/server/server_name.fdb

The Server configuration file is located in the /etc/fdbus/server directory. Each server has a configuration file.
The file name specification is: server_name+.fdb suffix, which contains the following fields:

• method: array type, the security policy that the configuration method calls.

• method[. . .]: object type, defines the security policy for a collection of methods.

• method[. . .].level: number type, indicating the security level

3.6. Security 25

FDBus Documentation, Release 1.0

• method[. . .].from: number type, which represents the minimum value of the method set. If it is a “default”
string, it means that there is no default security level for the configuring method.

• method[. . .].to: number type, which represents the maximum value of the method set. The overall meaning is:
If a method ID is greater than or equal to method[. . .].from, less than or equal to method[. . .].to, its security
level is method[. . .].level. Only clients with a security level greater than or equal to this level can call methods
in this range.

• event: array type, similar to the method except that it is configured with a security policy for broadcast moni-
toring. Only clients that meet the security level have the right to listen to the corresponding event.

• permission: array type, configuring the access permissions of the server.

• permission[. . .]: object type, which defines the configuration of a security level.

• permission[. . .].level: number type, indicating the security level.

• permission[. . .].gid: array type, if the element is string type, it means group name, if it is number type, it means
group id. The meaning of the security policy is: If a client is in a certain group specified by the array, its security
level is permission[. . .].level. If the field is a “default” string, it means that the client’s default security level
cannot be found for the security policy.

• permission[. . .].uid: array type, if the element is string type, it means user name, if it is number type, it means
user id. The meaning of the security policy is: If the client id of a client is contained in an array, its security
level is permission[. . .].level.

3.7 Debugging and logging

The DBus monitor from DBus is impressive: it can crawl all the messages on the DBus bus, and it can also set filters
to crawl specific messages. The captured messages are very readable, and various data structures and field names can
be displayed. Similarly, FDBus also provides a tool for crawling messages - log server, and its function is stronger. In
addition to FDBus messages, it also supports debugging log output, and combines FDBus messages and debug logs
to facilitate timing analysis.

The log server is a normal server that mounted on the FDBus. Each endpoint contains its client, as shown in the
following figure:

Like the normal server, the log server runs up and registers with the name server, which broadcasts the LogClient
in each endpoint. Later, when the endpoint sends an FDBus message, it will also send a copy to the log server through

26 Chapter 3. FDBus Manual

FDBus Documentation, Release 1.0

LogClient. In addition to the FDBus message content, the sent data also includes:

• Timestamp

• Transmitter and receiver names

• Message type (request, reply, broadcast, subscription, etc.)

The protocol buffer is transmitted in binary format on the line and cannot be printed directly. For debugging conve-
nience, the protocol buffer can convert the message into a text format that is easy to read, visually display the name
and value of each member in the message, and expand the array type (repeated type) and nested type.

For debug log output, FDBus has its own API and supports the following output levels (In ascending order of priority):

• Debug

• Information

• Warning

• Error

• Fatal

As long as the log server is started, when the endpoint prints the debug log through the API, these logs are sent to the
log server through LogClient. The log server can combine the debug log and the FDBus message to output, or can
choose to output specific content separately.

Regardless of which host the endpoint is deployed on, the log server can collect its FDBus messages and debug logs.
The entire system can only run one log server, which is not convenient for distributed debugging. To this end, FDBus
has another tool - log viewer, multiple log viewers can be started at the same time, all connected to the log server, get
the current log information, and print on the standard output.

3.8 FDBus internal structure

The following figure is a block diagram of the internal components of FDBus:

3.8. FDBus internal structure 27

FDBus Documentation, Release 1.0

• Base platform abstraction layer - contains system-independent abstractions for adapting to different operating
systems

• Advanced platform abstraction layer - a middleware process model that contains the basic components that
make up a process

• IPC layer - interprocess communication model, including the basic components for implementing IPC com-
munication

• Server layer - provides service name resolution, networking, logging and debugging services

3.9 Conclusion

FDBus provides a distributed IPC communication mechanism to support client-server communication across hosts,
using service names instead of physical addresses as addressing modes, ensuring connectivity dynamics and reliabil-
ity through various services and heartbeat reconnection mechanisms, thereby ensuring the nodes inside the system
can be dynamically added and deleted, dynamically deployed, and arbitrarily restarted without managing the startup
sequence and dependencies, thereby binding the separate modules together to form a solid whole. As an important
part of IPC, protocol buffer supports a variety of complex data types, can define interfaces with idl and support auto-
matic code generation, greatly reducing the job of serialization and deserialization. FDBus supports security policies,
differentiates security levels from access, and ensures the security of the entire system.

FDBus is not only an IPC mechanism, but also a middleware development framework, which contains common
components and basic models that are often used in the development of middleware, providing cross-platform and
powerful support for middleware development.

The source code of FDBus is open now, which expects more developers to use, test and improve, and become one of
the options for many middleware development frameworks.

28 Chapter 3. FDBus Manual

CHAPTER 4

Indices and tables

• genindex

• search

29

	Authors
	Introduction
	Supported system
	Dependence
	Download
	Documentation & Blog
	How to build
	How to run
	example of toolchain.cmake for cross-compiling
	cmake options
	Security concept

	FDBus Manual
	Abstract
	Background
	Mainstream IPC framework comparison
	Middleware model based on FDBus
	FDBus addressing and networking
	Security
	Debugging and logging
	FDBus internal structure
	Conclusion

	Indices and tables

