
fbtest Documentation
Release 1.0.7.2

Pavel Císař

Mar 05, 2021

Contents

1 Introduction 3
1.1 Requirements . 3
1.2 Installation . 3
1.3 Test Repository Initialization . 4

2 Usage Guide 5
2.1 Test Repository . 5
2.2 Test Environment . 6
2.3 Running tests . 6
2.4 Working with remote test server . 10
2.5 Test run result analysis . 10
2.6 Using fbt_update . 15
2.7 Using fbt_archive . 16
2.8 Using fbt_db . 19

3 How to design new tests 23
3.1 Where to start . 23
3.2 The Golden Rule . 23
3.3 Making test cases into tests . 24
3.4 From drawing board to production . 25

4 Writting new tests 27
4.1 Test definitions . 27
4.2 Resource definitions . 27
4.3 Databases . 27
4.4 Database backups . 27
4.5 Other files . 27
4.6 Test editor . 27

5 fbtest Reference 29
5.1 Globals . 29
5.2 Functions . 30
5.3 Classes . 30
5.4 Script Functions . 30

6 Changelog 31
6.1 Version 1.0.7.2 . 31

i

6.2 Version 1.0.7.1 . 31
6.3 Version 1.0.7 . 31
6.4 Version 1.0.6 . 32
6.5 Version 1.0.5 . 32
6.6 Version 1.0.4 . 32
6.7 Version 1.0.3 . 32

7 Indices and tables 33

Python Module Index 35

Index 37

ii

fbtest Documentation, Release 1.0.7.2

fbtest is set of tools used for Firebird QA.

Contents:

Contents 1

fbtest Documentation, Release 1.0.7.2

2 Contents

CHAPTER 1

Introduction

1.1 Requirements

• Python version 2.7. If you have Python 3.x already installed, you may try it as FBTest should work with it, but
it was not tested with Python 3 yet.

– Linux: If you don’t have Python already installed you can get it from your distribution’s repository.

– Windows & MacOS: You may download Python installation package from python.org, or from ActiveState
(recommended).

• Distribute module.

• PIP installer. It’s not strictly necessary, but it makes you life with Python much easier.

• FDB Firebird driver for Python.

• PySVN module (optional but recommended).

Tip: On Linux you may find Subversion, PySVN, PIP, Distribute and FDB in your distribution repositories.

1.2 Installation

1. Install the Python programming language.

2. Install Distribute. On Windows and MacOS (or Linux if its not in your repository) download distribute_setup.py
and run next command:

python distribute_setup.py

You can find detailed installation instructions for Distribute here.

3

http://www.python.org
http://www.python.org/download/
http://www.activestate.com/activepython/downloads
https://pypi.python.org/pypi/distribute
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/fdb
http://pysvn.tigris.org/project_downloads.html
http://python-distribute.org/distribute_setup.py
https://pypi.python.org/pypi/distribute#installation-instructions

fbtest Documentation, Release 1.0.7.2

3. Install pip. On Windows and MacOS (or Linux if its not in your repository) download get-pip.py and run next
command:

python get-pip.py

You can find detailed installation instructions for PIP here.

4. Install FDB. If you have installed PIP, you can simply run next command:

pip install fdb

to install FDB from PyPI (Python Package Index). Otherwise you have to download FDB, unpack it and run:

python setup.py install

from directory where you unpacked it.

5. Install PySVN module.

On Linux you should find it in your distribution repository (as python-svn or pysvn). On Windows and MacOS
you need to download and install appropriate installation kit for PySVN.

Although fbtest uses Subversion to access Firebird project’s repository, you shouldn’t need to install it, as it’s part
of pysvn installation kit for Windows/MacOS and should be installed automatically on Linux (as dependency to
pysvn).

6. Install fbtest.

a) If you want to run Firebird test suite, but do not develop new tests, use next method.

If you have installed PIP, you can simply run next command:

pip install fbtest

to install it from PyPI. Otherwise you have to download it from Firebird website, unpack it and run:

python setup.py install

b) If you want to run tests and also create new ones (or develop fbtest itself), make a checkout of this path
from Firebird Subversion repository, and then run:

python setup.py develop

You should also download fbtedit - GUI Test editor for Windows.

1.3 Test Repository Initialization

Create directory where you want it stored and run next command:

fbt_update repository

It will fetch tests and all other necessary files directly from Firebird project subversion repository.

Important: If you don’t have PySVN module installed, you have to checkout Test Repository manually.

4 Chapter 1. Introduction

https://raw.github.com/pypa/pip/master/contrib/get-pip.py
http://www.pip-installer.org/en/latest/installing.html
http://pysvn.tigris.org/project_downloads.html
http://svn.code.sf.net/p/firebird/code/qa/fbtest/trunk/
http://pysvn.tigris.org/project_downloads.html

CHAPTER 2

Usage Guide

2.1 Test Repository

Test Reposotory contains Test definitions, Resource definitions, Databases, Database backups and Other files. Repos-
itory is stored in our Subversion repository at SourceForge. You will need a local copy of this repository to run any
test. To do that, you can:

a) Create directory where you want it stored, open a command prompt, change to this directory and
run next command:

fbt_update repository

b) Use Subversion client to make a checkout from trunk at central repository into directory where you
want it located.

Important: All fbtest command-line tools that work with Test Repository must be run from directory where reposi-
tory is located.

There are several subdirectories in Test repository:

• resources : Some tests use special resources, for example Firebird user definitions. This directory contains
definitions for proper initialization and finalizations of these resources.

• fdb : Contains special pre-made databases that some tests may require.

• fbk : Contains backup files that some tests may require.

• files : Contains other external files (SQL scripts for example) that some tests may require.

• tests : Contains all test definitions structured into suite subdirectories.

• tmp : Location for temporary databases. If it does not exists when fbt_run or fbt_server is executed, it’s
automatically created with full access rights for everyone.

5

http://svn.code.sf.net/p/firebird/code/
http://svn.code.sf.net/p/firebird/code/qa/fbt-repository/trunk/

fbtest Documentation, Release 1.0.7.2

Important: Tested Firebird server must be able to access databases in fdb directory, otherwise all tests that depend
on them will fail.

2.2 Test Environment

Test Environment consists from Test Repository, Firebird client library and Firebird command-line tools. You don’t
need any additional configuration if you want to run tests against current Firebird installation. However, if you want
to test another Firebird installation (if you have multiple Firebird installations), you have to make sure that fbtest will
use Firebird client library and command-line tools from tested Firebird installation. Scripts that work with Firebird
(fbt_run and fbt_server) have a command-line switch to specificy a directory where Firebird command-line tools are
located, and a swicth to specify Firebird client library to be used.

2.3 Running tests

You can run tests against local or remote Firebird installation. However, when you want to run tests against remote
Firebird server, you still need locally installed (or accessible) Firebird client library and command-line tools that match
the tested server.

2.3.1 Tests and test suites

Each test is designed to test only specific Firebird feature or bug fix. Tests are grouped into logical groups called
suites, and these suites could be nested. Each test and suite has a name. To identify test or suite, you have to use fully
qualified name that consists from all parent suite names plus test or suite name in a row, separated by dot. For example,
fully qualified name for test named “isql_01” in suite “isql” that’s part of suite “basic” which is part of “functional”
suite is “functional.basic.isql.isql_01”.

Note: Definition of each test is stored in Test Repository as single text file with “.fbt” extension. Each suite is
represented as directory and directory tree represents the suite nesting structure.

Important: Current implementation doesn’t allow free test file relocation between directories (suites) without ad-
justments in each moved test definition.

Single test run may run all tests in Test Repository or single test/suite. Running test suite means that all test and
sub-suites in it are executed.

Note: All tests are designed to work with specific version(s) of Firebird server. Each test contains one or more
“recipes” - how to execute and evaluate test when run in specific conditions (platform and/or Firebird version). If test
doesn’t contain recipe for actual conditions, it’s not executed, which is not considered as bug or problem because it
means that test was simply not designed to work in these conditions.

Tests are run using fdb_run script.

6 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

2.3.2 Using fbt_run

Usage:

fbt_run [-h] [-b BIN_DIR] [-d DB_DIR] [--archive] [--rerun] [-v]
[--verbosity {0,1,2}] [-q] [-x] [--remote] [-u] [-w PASSWORD]
[-o HOST] [-p PERSON] [-a ARCH] [-s SEQUENCE] [-k SKIP] [-c CLIENT]
[name]

positional arguments:
name Suite or test name

optional arguments:
-h, --help show this help message and exit
-b BIN_DIR, --bin-dir BIN_DIR

Directory where Firebird binaries tools are
-d DB_DIR, --db-dir DB_DIR

Directory to use for test databases
--archive Save last run results to archive
--rerun Run only tests that don't PASSed in last run
--untested Run only tests that were UNTESTED in last run
-v, --verbose Be more verbose
--verbosity {0,1,2} Set verbosity; --verbosity=2 is the same as -v
-q, --quiet Be less verbose
-x, --xunit Provides test results also in the standard XUnit XML

format
-e FILENAME, --expect FILENAME

Test results file to be used as expeted outcomes
--remote Connect to remote fbtest server
-u, --update Update last run results with re-run results
-w PASSWORD, --password PASSWORD

SYSDBA password
-o HOST, --host HOST Remote Firebird or fbtest host machine identification
-p PERSON, --person PERSON

QA person name
-a ARCH, --arch ARCH Firebird architecture: SS, CS, SC
-s SEQUENCE, --sequence SEQUENCE

Run sequence number for this target
-k SKIP, --skip SKIP Suite or test name or name of file with suite/test

names to skip
-c CLIENT, --client CLIENT

Use specified Firebird client library

This tool runs all or specified set of tests and collects run result from each test. This result for whole run is saved to
results.trf file in Test Repository for later reference.

During execution fbt_run gives feedback to standard output about progress in usual way for unit test programs, includ-
ing summary report.

In normal verbosity mode fbt_run prints a dot for each passed test, or letter indicating detected problem: ‘F’ for FAIL,
‘E’ for ERROR and ‘U’ for UNTESTED.

Examples:

>fbt_run functional.basic.isql
...
--
Ran 3 tests in 0.918s

(continues on next page)

2.3. Running tests 7

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

OK

>fbt_run functional.basic.isql
.F.
==
FAIL: functional.basic.isql.isql_01
--
Expected standard output from ISQL does not match actual output.

--
Ran 3 tests in 0.949s

FAILED (fails=1)

You may increase or decrease the amount of information printed using –verbose, –quiet and –verbosity options.

Example output for verbose mode:

>fbt_run -v functional.basic.isql
functional.basic.isql.isql_03 ... ok
functional.basic.isql.isql_01 ... ok
functional.basic.isql.isql_02 ... ok
--
Ran 3 tests in 0.939s

OK

>fbt_run -v functional.basic.isql
functional.basic.isql.isql_03 ... ok
functional.basic.isql.isql_01 ... FAIL
functional.basic.isql.isql_02 ... ok
==
FAIL: functional.basic.isql.isql_01
--
Expected standard output from ISQL does not match actual output.

--
Ran 3 tests in 0.922s

FAILED (fails=1)

Example output for quiet mode:

>fbt_run -q functional.basic.isql
--
Ran 3 tests in 0.925s

OK

>fbt_run -q functional.basic.isql
==
FAIL: functional.basic.isql.isql_01
--
Expected standard output from ISQL does not match actual output.

(continues on next page)

8 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

--
Ran 3 tests in 0.933s

FAILED (fails=1)

Tip: You may get more detailed information about run results using fbt_view and fbt_analyze.

There is no need to use any additional command-line options for quick execution of all or selected test(s) against
current Firebird installation. However, you would need to specify some additional options in other cases:

• When SYSDBA password for tested server differs from default ‘masterkey’, you have to use --password
option.

• When tested server runs on different machine, you have to use --host, --bin-dir and --db-dir options.

• When tested server runs on local machine but on different port than default one, you have to use --host option.

• Temporary databases used by tests are created in tmp subdirectory in Test Repository. If you want temporary
databases in different location, you will need --db-dir option.

• If you want to compare test run results from several server architectures, you should specify server architecture
of tested engine using --arch option.

• If you want that test run results would be also archived, you have to specify --archive option. You should
also consider using --arch and --person options in this case.

• If you want to exclude some tests from execution, you will need --skip option. However these tests are
included into results file with outcome SKIPPED which is special kind of UNTESTED outcome.

• If you know that some tests will fail, you can either skip them altogether using --skip option, or you can run
them but set an expectation using --expect option and a result file from previous run. Test will then PASS
if test outcome and its cause will match expected one, otherwise it will FAIL. Please note that run details of
failure (like content of standard output or error output) are NOT compared, only general description of the cause
is checked. So test will fail only if cause of failure significantly changes it’s type (for example from difference
in standard output to difference in error output).

• If you want to run the same set of tests several times and compare their results using fbt_analyze, you have to
specify --sequence option. Don’t forget to copy the results.trf file to safe location after each series run, or
use --archive.

• If you want to run only tests that didn’t passed the last run, use --rerun option, and if you want the last run
results updated with results from new run, use --update option.

• Since version 1.0.4 fbt_run checks that Firebird engine is running before each test is executed by creating
a connection to Firebird services. If this attempt fails, test is not executed at all, and its outcome is set to
UNTESTED. When you fix the problem with Firebird engine, you may re-run all these tests using --untested
option that works similarly to --rerun option.

• If you want to send run results to someone, you should specify --arch and --person options.

• If you need run results also in standard XUnit XML format, use --xunit option.

Important: If your test environment is not properly configured, many (if not all) tests would fail or raise errors,
which would spoil the test run results. For example if Firebird engine wouldn’t have sufficient rights to create/access
databases in location for temporary databases, almost every test would fail as most of them use temporary databases.

2.3. Running tests 9

fbtest Documentation, Release 1.0.7.2

Tip: Test Repository contains test named check that you could run to verify that your test environment is correctly
configured before you’ll run the whole test series.

2.4 Working with remote test server

Sometimes you may need to run tests on remote Firebird server, for example to test Firebird on different platform than
is your primary platform. While you may use local fbtest installation to run against remote Firebird, it could be better
(and easier to configure) to install fbtest also on remote machine and operate it from your workstation almost like it
would be all installed locally.

Before your can connect to remote fbtest, you have to run it in “server” mode. To do that, run fbt_server on
remote machine.

fbt_server accepts command-line options --bin-dir, --db-dir, --password, --host, --arch and
--person that have the same function like fbt_run options with the same name.

Normally fbtest server listens on port 18861 and clients must know on which host it runs to contact him. Alternatively
fbtest server could anounce itself on network via remote service registry. To use this mode you must start it with
--register option.

Once remote fbtest server is up and running, you may use fbt_run to use it as test execution engine, i.e. all tests are
executed by remote server on server host, but all output is produced on client side (console output and results.trf file).

To use remote fbtest, execute fbt_run with --remote option. If fbtest server is NOT started with --register,
you must also specify host machine using --host option.

When remote fbtest engine is used, --bin-dir, --db-dir and --password options are ignored when specified.

Note: Note that --host option has different meaning when used together with –remote.

Warning: Do NOT operate fbtest server on open network! Current implementation gives full control to clients
over it, which is potential security risk.

Remote fbtest server is also used by Test editor to execute tests on other platforms than Windows.

2.5 Test run result analysis

When test execution doesn’t end with success, you need to investigate why did that happen, because fbt_run gives
only basic information: test run outcome and cause of failure if test didn’t passed. However, test run result information
(stored in results.trf) contains all details including analytical information. You may inspect these information
using fbt_view tool, or generate detailed HTML report using fbt_analyze tool, which can also compare results from
multiple runs.

2.5.1 Test run outcome

Test run may end in four different ways:

PASS Everything went just fine.

10 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

FAIL Test executed correctly, but actual outcome does not match expected one.

ERROR An error (exception) occured during test execution.

UNTESTED Test couldn’t be executed because some condition wasn’t met (typically setup of required
resource failed).

SKIPPED Test execution was suppressed using –skip switch.

2.5.2 Failure cause

Failure (or error) cause reported by fbtest explains in short why fbtest decided about test run outcome.

Example causes:

Expected standard output from ISQL does not match actual output.

Test setup: Exception raised while creating database.

Reported cause isn’t automatically the real reason (problem source).

FAILure could signal a real problem (functionality was broken) or could be a “false positive” (change was intentional),
and requires further analysis to determine which case it is. The quickest way is to examine difference between expectet
test output and real output using fbt_view tool.

ERROR is typically an outcome of bad setup of your test environment, but sometimes it could also signal a real
problem (functionality was broken). The quickest way to see all details about error is using fbt_view tool.

2.5.3 Using fbt_view

This tool displays information from run result (.trf) files. It can also create XUnit XML run result reports.

Usage:

fbt_view [-h] [-x] [-c] [-d] [name]

positional arguments:
name Results file or directory with result files

optional arguments:
-h, --help show this help message and exit
-x, --xunit Save test results in the standard XUnit XML format
-c, --cause Print cause of fails and errors.
-d, --details Print details for fails and errors.

Note: fbt_view works with run result files only and thus coud be run from any directory.

Note: Without parameters or options fbt_view shows summary information for all run results files in working direc-
tory.

Example output:

2.5. Test run result analysis 11

fbtest Documentation, Release 1.0.7.2

>fbt_view

File: results.trf
Desc: Linux64 SS
Version: 2.5.2.26540
Arch: SS
Platform: Linux
CPU: 64
Sequence: 1
Person: pcisar (PC)

Passes: 2
Fails: 1
Errors: 0
Untested: 0

=== FAILS ==
functional.basic.isql.isql_01

To see also causes use --cause option:

>fbt_view --cause

File: results.trf
Desc: Linux64 SS
Version: 2.5.2.26540
Arch: SS
Platform: Linux
CPU: 64
Sequence: 1
Person: pcisar (PC)

Passes: 2
Fails: 1
Errors: 0
Untested: 0

=== FAILS ==
functional.basic.isql.isql_01

Expected standard output from ISQL does not match actual output.

To see details why tests didn’t passed use --details option. For FAIL outcome it shows difference (in standard
diff format) between expected and actual outputs:

>fbt_view --details

File: results.trf
Desc: Linux64 SS
Version: 2.5.2.26540
Arch: SS
Platform: Linux
CPU: 64
Sequence: 1
Person: pcisar (PC)

Passes: 2
Fails: 1

(continues on next page)

12 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

Errors: 0
Untested: 0

=== FAILS ==
functional.basic.isql.isql_01
--
ISQL_stripped_diff:

Owner: SYSDBA
PAGE_SIZE 4096
Number of DB pages allocated = 165
Sweep interval = 20000
Forced Writes are ON

- ODS = 11.22
? -

+ ODS = 11.2
Default Character set: NONE

For ERROR it shows detailed error information:

>fbt_view --details

File: results.trf
Desc: Linux64 SS
Version: 2.5.2.26540
Arch: SS
Platform: Linux
CPU: 64
Sequence: 1
Person: pcisar (PC)

Passes: 0
Fails: 0
Errors: 1
Untested: 0

=== ERRORS ===
functional.basic.isql.isql_01
--
exception:
ProgrammingError:
Error while creating database:
- SQLCODE: -902
- I/O error during "open O_CREAT" operation for file "/home/job/fbtrepo/tmp/
→˓functional.basic.isql.isql_02.fdb"
- Error while trying to create file
- Permission denied
-902
335544344

--
db_unable_to_create:
localhost:/home/job/fbtrepo/tmp/functional.basic.isql.isql_01.fdb
--
traceback:

File "/home/job/python/envs/pyfirebird/fbtest/fbtest.py", line 635, in run
conn = kdb.create_database(createCommand, self.sql_dialect)

(continues on next page)

2.5. Test run result analysis 13

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

File "/home/job/python/envs/pyfirebird/fdb/fdb/fbcore.py", line 704, in create_
→˓database

"Error while creating database:")

2.5.4 Using fbt_analyze

This tool analyzes run results file(s) and produces colored HTML report.

Usage:

fbt_analyze [-h] [-o OUTPUT] [name]

positional arguments:
name Results file or directory with result files

optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT

Analysis output directory
-d, --diffs-only Show only diffs on detail pages

Reports consists from summary page (index.html) and detail pages for each test that didn’t passed.

Example summary page:

As you can see, summary is presented as table with row for each test and column for each input results file. Table cells
contain test run outcome for each run. Columns are sorted and grouped by platform, CPU, Firebird architecture and
test run sequence number.

Note: Since version 1.0.4 this report contains time performance of tests.

Important: If you want to compare results from several test runs, you must specify --sequence option to fbt_run.
Similarly you have to specify --arch option to compare results from multiple Firebird architectures. If you forgot

14 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

to do so, you can add/change this information to results file later using fbt_update.

Tip: You can verify platform, CPU, Firebird architecture and run sequence number values stored in result file using
fbt_view.

Detail page contains all informations related to test run recorded by fbtest from all result files where test doesn’t
passed. Information is “grouped” by result file so only unique content is included.

Collected information for failed tests contains expected and actual outputs and their difference (in human-readable diff
format). If you are interested to see only diffs, use --diffs-only option.

Note: fbt_analyze works with run result files only and thus coud be run from any directory.

Note: Without parameters or options fbt_analyze processes all run results files and produces HTML report in current
working directory.

2.6 Using fbt_update

This tools has two purposes:

• Updates local Test Repository from central Subversion repository.

• Updates meta-information in test run results file(s).

Usage:

fbt_update [-h] {result,repository} ...

optional arguments:
-h, --help show this help message and exit

Commands:
{result,repository} Use <command> --help for more information about command.
result Change result file metadata.
repository Update test repository.

fbt_update repository [-h]

Update local test repository from Firebird project Subversion repository.

optional arguments:
-h, --help show this help message and exit

fbt_update result [-h] [-a ARCH] [-p PERSON] [-s SEQUENCE] [name]

Changes metadata of result file(s).

positional arguments:
name Results file or directory with result files

(continues on next page)

2.6. Using fbt_update 15

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-a ARCH, --arch ARCH Update result(s): set ARCH
-p PERSON, --person PERSON

Update result(s): set PERSON
-s SEQUENCE, --sequence SEQUENCE

Update result(s): set SEQUENCE NUMBER

2.7 Using fbt_archive

fbtest provides simple archive for test run results files. When you specify --archive option to fbt_run, run
results file results.trf is also copied to archive in Test Repository (stored in subdirectory “archive”) in subdirectory
named as tested Firebird version number and filename that identifies run conditions:

• Number of tests executed

• Platform

• CPU

• Firebird architecture

• QA person

• Run sequence number

For example 3 tests run on 64-bit Linux Firebird v2.5.2.26540 SuperServer by pcisar without sequence number will
be stored in 2.5.2.26540/0003-Linux64-SS-PC1.trf.

Note: If filename already exists in archive, it’s replaced with new one.

While you can work with archived results files directly, fbtest also provides separate tool fbt_archive to list, save,
retrieve or delete archived results. This is particularly useful when you’re working with remote fbtest installation.

Usage:

fbt_archive [-h] [--remote] [-o HOST] {list,save,retrieve,delete} ...

optional arguments:
-h, --help show this help message and exit
--remote Connect to remote fbtest server
-o HOST, --host HOST Remote fbtest host machine identification

Commands:
{list,save,retrieve,delete}

Use <command> --help for more information about command.
list List result(s) in archive.
save Save result(s) to archive.
retrieve Retrieve result(s) from archive.
delete Delete result(s) from archive.

2.7.1 List

Usage:

16 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

fbt_archive list [-h]

List result(s) in archive.

optional arguments:
-h, --help show this help message and exit

Example:

>fbt_archive list
Files in archive:

2.1.5.18497:
0681-Linux64-CS-PC1.trf
0681-Linux64-CS-PC2.trf
0681-Linux64-SS-PC1.trf
0681-Linux64-SS-PC2.trf

2.5.2.26539:
0003-Linux64-SS-XX1.trf
0003-Linux64-SS-XX2.trf
0824-Linux64-SS-PC1.trf

2.5.2.26540:
0003-Linux64-SS-XX1.trf
0823-Linux64-SC-PC2.trf
0824-Linux64-CS-PC1.trf
0824-Linux64-CS-PC2.trf
0824-Linux64-SC-PC1.trf
0824-Linux64-SS-PC1.trf
0824-Linux64-SS-PC2.trf

2.7.2 Save

Usage:

fbt_archive save [-h] [name]

Save result(s) to archive.

positional arguments:
name Results file

optional arguments:
-h, --help show this help message and exit

When filename is not specified, file results.trf in current directory is copied.

Example:

>fbt_archive save
Results file 'results.trf' stored into archive as '2.5.2.26540/0003-Linux64-SS-XX1.trf
→˓'

2.7.3 Retrieve

Usage:

2.7. Using fbt_archive 17

fbtest Documentation, Release 1.0.7.2

fbt_archive retrieve [-h] [-v VERSION] [-c] [-o OUTPUT] [-a ARCH] [-p PERSON] [-s
→˓SEQUENCE]

Retrieve result(s) from archive.

optional arguments:
-h, --help show this help message and exit
-v VERSION, --version VERSION

Only specified Firebird version
-c, --current Only currently tested Firebird version
-o OUTPUT, --output OUTPUT

Output directory
-a ARCH, --arch ARCH Firebird architecture: SS, CS, SC
-p PERSON, --person PERSON

QA person name
-s SEQUENCE, --sequence SEQUENCE

Run sequence number

This command copies all archived results files for specified or currently tested Firebird version (either --version
or --current option is required) from archive to specified or current working directory. It’s possible to specify
additional conditions for Firebird architecture, QA person or run sequence number that must be met.

Examples:

>fbt_archive retrieve --current
Current version: 2.5.2.26540
0003-Linux64-SS-XX1.trf retrieved.
0823-Linux64-SC-PC2.trf retrieved.
0824-Linux64-CS-PC1.trf retrieved.
0824-Linux64-CS-PC2.trf retrieved.
0824-Linux64-SC-PC1.trf retrieved.
0824-Linux64-SS-PC1.trf retrieved.
0824-Linux64-SS-PC2.trf retrieved.

>fbt_archive --remote retrieve --version=2.1.5.18497 -a SS
0681-Linux64-SS-PC1.trf retrieved.
0681-Linux64-SS-PC2.trf retrieved.

2.7.4 Delete

This command deletes all archived results files for specified or currently tested Firebird version (either --version or
--current option is required) from archive. It’s possible to specify additional conditions for Firebird architecture,
QA person or run sequence number that must be met.

Usage:

fbt_archive delete [-h] [-v VERSION] [-c] [-a ARCH] [-p PERSON] [-s SEQUENCE]

Delete result(s) from archive.

optional arguments:
-h, --help show this help message and exit
-v VERSION, --version VERSION

Only specified Firebird version
-c, --current Only currently tested Firebird version
-a ARCH, --arch ARCH Firebird architecture: SS, CS, SC

(continues on next page)

18 Chapter 2. Usage Guide

https://docs.python.org/3/using/cmdline.html#cmdoption-version
https://docs.python.org/3/using/cmdline.html#cmdoption-version

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

-p PERSON, --person PERSON
QA person name

-s SEQUENCE, --sequence SEQUENCE
Run sequence number

Examples:

>fbt_archive delete --current -a SS -s 2
Current version: 2.5.2.26540
0824-Linux64-SS-PC2.trf deleted.

>fbt_archive --remote delete --version=2.1.5.18497 -a SS
0681-Linux64-SS-PC1.trf deleted.
0681-Linux64-SS-PC2.trf deleted.

2.8 Using fbt_db

Beside simple results archive fbtest also supports archival of results in Firebird database(s).

Archive database must have next structure:

Table 1: Table RUNS - Information about suite run
Column Name Type Description
PK BIGINT Primary key (autoincrement)
CREATED TIMESTAMP Date and time when result file was imported.
VER VARCHAR(15) Firebird version (format: x.x.x)
BUILD BIGINT Firebird build number
ARCH CHAR(2) Firebird architecture (SS, CS, SC)
PLATFORM CHAR(1) Firebird platform code (L=Linux,W=Windows,F=FreeBSD,S=Solaris,H=HP-

UX)
CPU VARCHAR(7) CPU architecture (32 or 64)
PERSON_ID CHAR(2) QA person ID
PERSON VARCHAR(25) QA person name
SEQ INTEGER Run sequential number
DESCRIPTION VARCHAR(30) Run description

Table 2: Table TESTS - Information about tests
Column Name Type Description
PK BIGINT Primary key (autoincrement)
NAME VARCHAR(300) Test ID

2.8. Using fbt_db 19

fbtest Documentation, Release 1.0.7.2

Table 3: Table ANN_TYPES - Information about annotation types
Column Name Type Description
PK BIGINT Primary key (autoincrement)
NAME VARCHAR(70) Annotation type name

Table 4: Table OUTCOMES - Information about test run outcomes
Column Name Type Description
PK BIGINT Primary key (autoincrement)
RUN_ID BIGINT FK to RUNS
TEST_ID BIGINT FK to TESTS
KIND CHAR(3) Outcome type (TST=Test run, Resource setup=R-S, resource

cleanup=R-C)
OUTCOME CHAR(1) Outcome (P=PASS, F=FAIL, E=ERROR, U=UNTESTED,

S=SKIPPED)
RUN_TIME TIME Run time

Table 5: Table ANNOTATIONS - Information about outcome annota-
tions

Column Name Type Description
PK BIGINT Primary key (autoincrement)
ANN_TYPE_ID BIGINT FK to ANN_TYPES
OUTCOME_ID BIGINT FK to OUTCOMES
ANNOTATION BLOB sub_type text Annotation value

To create such archive database you can use the fbt_db utility. This utility can also import result files into database.

Usage:

fbt_db [-h] [-w PASSWORD] [-o HOST] -d DATABASE {import,create} ...

optional arguments:
-h, --help show this help message and exit
-w PASSWORD, --password PASSWORD

SYSDBA password
-o HOST, --host HOST Firebird host machine identification
-d DATABASE, --database DATABASE

Archive database name
-c CLIENT, --client CLIENT

Use specified Firebird client library
(continues on next page)

20 Chapter 2. Usage Guide

fbtest Documentation, Release 1.0.7.2

(continued from previous page)

Commands:
{import,create} Use <command> --help for more information about

command.
create Creates archive database.
import Import result(s) to database.

2.8.1 Create

This command creates empty archive database. This operation fails if specified database already exists.

Usage:

fbt_db [-w PASSWORD] [-o HOST] -d DATABASE create [-h]

Create archive database.

optional arguments:
-w PASSWORD, --password PASSWORD

SYSDBA password
-o HOST, --host HOST Firebird host machine identification
-d DATABASE, --database DATABASE

Archive database name
-c CLIENT, --client CLIENT

Use specified Firebird client library
-h, --help show this help message and exit

2.8.2 Import

This command imports resul file(s) into archive database.

Usage:

fbt_db [-w PASSWORD] [-o HOST] -d DATABASE import [-h] [name]

Import result(s) to database.

positional arguments:
name Results file or directory with result files

optional arguments:
-w PASSWORD, --password PASSWORD

SYSDBA password
-o HOST, --host HOST Firebird host machine identification
-d DATABASE, --database DATABASE

Archive database name
-c CLIENT, --client CLIENT

Use specified Firebird client library
-h, --help show this help message and exit

2.8. Using fbt_db 21

fbtest Documentation, Release 1.0.7.2

22 Chapter 2. Usage Guide

CHAPTER 3

How to design new tests

3.1 Where to start

First, it’s important to identify what you want to test. To avoid collision with others, take a look at our list of tests, and
check if your beloved one is not already created! Then let us know about your intention in firebird-test mailing list.

If you want to create functionality tests, then you’ll need Firebird SQL Reference Guide. Unfortunately, there isn’t any
complete and freely available Firebird-specific SQL reference documentation right now, but you can use InterBase 6.0
Language Reference Guide together with Language Reference Update documents.

If you want to create regression tests, please refer to Firebird Project Tracker for all bug-related informations. It’s also
advised to consult Firebird QA team.

3.2 The Golden Rule

Test case should be really simple, and should cover only one aspect of single feature / command in discrete conditions.

Lets take the SELECT statement as an example. SELECT statement is quite complex, so you’ll need to break it into
clauses and choose one, for example the FIRST/SKIP. Then you need to identify all the features of that statement you
want to test.

1. SKIP only

2. FIRST only

3. FIRST and SKIP together

Then you can go to design test cases that would cover these features. Focus on testing all legal paths first (positive
test) — i.e. does it work correctly as specified? If there are any behaviour-switching value boundaries, concentrate
your work around them!

For example positive test cases for FIRST .. SKIP for feature “3. FIRST and SKIP together” could be defined as
checking result from “select skip 10 first 5. . . ” in next conditions:

1. with no data — No data is an important condition for all DML commands

23

http://www.ibphoenix.com/files/60LangRef.zip
http://www.ibphoenix.com/files/60LangRef.zip
http://www.firebirdsql.org/file/documentation/reference_manuals/reference_material/html/langrefupd25.html
http://tracker.firebirdsql.org

fbtest Documentation, Release 1.0.7.2

2. with 10 rows — Behaviour-switching value boundary for SKIP

3. with 11 rows — Behaviour-switching value boundary for SKIP and FIRST

4. with 16 rows — Behaviour-switching value boundary for FIRST

When you have these basic test cases, you can specify various work conditions and combine these test cases with them
to produce final set of test cases:

1. Data taken from single table without WHERE predicate, i.e. table contains specified number of rows.

2. Data taken from single table, larger resultset narrowed by WHERE predicate to specified number of rows.

3. Data taken from joined tables, where result of this join has required number of rows.

4. Data taken from stored procedure that generates required number of rows.

5. SORTED result from any source of data listed above (there is no need to spawn another dimension in the matrix,
as dependancy on source of data is already covered in other groups).

When legal paths are explored and covered, look at important illegal paths (negative tests) - does it correctly signal an
error when wrong values are submitted? Because negative tests are endless, focus only on most important / expected
points of failure. For example:

1. Negative value for SKIP

2. Negative value for FIRST

You should also define test cases for special “bizarre” values that are legal (so they do not raise an error), but are not
“right” in common sense. They are used rarely, so they are often overlooked by test designers, but as they are typically
behaviour-switching boundary values, their verification is very important. In case of FIRST and SKIP, this “bizarre”
parameter value is zero.

Each test case has its own requirements for running environment: database schema and content, tools etc. These
requirements must be a part of test case specification.

All tests have common basic structure:

1. Requirements for running environment: database schema and content, tools etc.

2. Tested command(s). If test cases are well defined, then each has one and only one directly tested command.
Its outcome is verified by expected output (if any), and / or with additional checks (check for right content in
system tables for example).

3. Expected output from tested command(s). It could be standard command output or error message. The best
way to describe it is as standard ISQL output when command(s) is executed (You can use ISQL OUTPUT
command to grab it). But you can define it in any other way you see fit for you and the purpose.

4. Additional checks. If the direct output from tested command is not enough to verify its correctness (some
commands even don’t produce any “visible” output), you must use additional means (check the content in
system tables, check presence of file on disk etc.)

3.3 Making test cases into tests

In ideal world, each test case would be implemented as single test. This setup would provide most value for QA team,
as test failure could be easily analyzed, and broken part of the engine (or in test itself) could be tracked down more
precisely. Unfortunately, test implementation could require a lot of work, because each test needs its own running
environment created independently from other tests. So if several test cases are closely related and use the same
working environment, it could be more practical to give up on fine-grained evidence in test outcome in favour of
simplified implementation, and merge them into single test.

24 Chapter 3. How to design new tests

fbtest Documentation, Release 1.0.7.2

In case of “FIRST 5 SKIP 10” we crumbled before into approx. 20 test cases we can implement some groups of test
cases that use the same database and source of data in single test. For example group of test cases that take data from
single table, with larger resultset narrowed by WHERE predicate to none, 10, 11 and 16 rows can easily use the same
setup (database, table and table content), so we can create it as single test.

When you decide to wrap up several test cases into single test, keep clear what are individual test cases, i.e. don’t try
to make any “shortcuts” or “optimizations” in them. They should share only the common environment, nothing more.
It should be also clearly stated and documented, that this paricular test contains multiple tests cases, and which they
are.

3.4 From drawing board to production

Once the test design is finished, it’s time to implement it. If you do not want to mess up with fbtest and implement it
yourself, you can simply write the specification for test and send it over to us.

In this case, the test specification document should contain next information:

Test ID Tests have hierarchical, dot-separated names / ID’s, that must be unique in whole Firebird test
suite. Take a look at test IDs in Test Repository for test ID examples. It would be great if test ID
would conform to common schema used by Firebird QA team so it could persist, but don’t worry too
much about it, as it could be easily adjusted later, and the main purpose for Test ID in specification
document is to have a tag that could be used to refer on test in communication between you and the
QA team.

Author Your name and e-mail

Description Clear specification what is checked by this test. If test contains more than one test case (see
above), then all test cases should be described separately.

Dependencies Your test would very likely depend on other SQL commands, tools or Firebird features
beside tested ones, so they must work correctly if the test outcome should not be spoiled. Because
these features are checked by other tests, we can simply run tests in dependancy order to get un-
spoiled results. Of course, we could extract this information from other parts of specification, but
separate list of dependencies would make the whole specification more clear and concise, and save
us some time we would need to figure it out. You can simply describe these dependencies by words,
or you can look up IDs for tests that must be run before this one (but it’s not necessary)

Prerequisites Any special conditions, tools or environment required for this test (except the test database
and standard tools). Most tests do not have any special requirement beyond single work database
and availability of standard Firebird command-line tools, so these requirements are fulfiled automat-
ically. But if your test needs anything else beyond that, you must enlist it here.

Database specification It’s very likely that your test works with a database. You can give us a backup
file for it (if the schema is complex or database must contain a lot of data), or you can specify how
it could be created. By default, each test can get a new dialect 3 database owned by SYSDBA, with
character set NONE and with page size 4K, so you don’t need to specify these parameters if they are
not different.If you would need this database with certain schema and populated with data, provide
an ISQL script for it here. You can also refer to a database/script used in another test by test ID

Test command(s) Self-explanatory.

Expected result from tested command (returned data or error code etc.)

Additional checks (if any) - verification from database content (for INSERT statement and the likes).
DDL commands are checked against system tables. Check may query more than one table, but it’s
necessary to list each command and its expected output (captured output from ISQL is enough).

Example:

3.4. From drawing board to production 25

fbtest Documentation, Release 1.0.7.2

Test ID: domain.alter.02
Author: Slavomir Skopalik (skopalik at hlubocky.del.cz)

Description:
Checks ALTER DOMAIN...DROP DEFAULT for VARCHAR defaults

Dependencies:

CREATE DOMAIN
Simple SELECT

Prerequisites: NONE

Database specification: Standard.
Initialization:
CREATE DOMAIN test VARCHAR(63) DEFAULT 'test string';

Tested command: ALTER DOMAIN test DROP DEFAULT;
Expected result: No stdout or stderr.

Additional checks:
command:
SELECT RDB$FIELD_NAME, RDB$DEFAULT_SOURCE FROM rdb$fields WHERE RDB$FIELD_NAME = 'TEST
→˓';
Output:
RDB$FIELD_NAME RDB$DEFAULT_SOURCE
=============================== ==================
TEST null

If you have any suggestions or criticism please drop us an e-mail in Firebird-test mailing list.

26 Chapter 3. How to design new tests

CHAPTER 4

Writting new tests

4.1 Test definitions

4.2 Resource definitions

4.3 Databases

4.4 Database backups

4.5 Other files

4.6 Test editor

27

fbtest Documentation, Release 1.0.7.2

28 Chapter 4. Writting new tests

CHAPTER 5

fbtest Reference

5.1 Globals

fbtest.script_runner
ScriptRunner instance.

29

fbtest Documentation, Release 1.0.7.2

5.2 Functions

5.3 Classes

5.3.1 TestVersion class

5.3.2 Test class

5.3.3 Resource class

5.3.4 UserResource class

5.3.5 Suite class

5.3.6 Repository class

5.3.7 Archive class

5.3.8 Result class

5.3.9 RunResults class

5.3.10 Runner class

5.3.11 ScriptRunner class

5.4 Script Functions

30 Chapter 5. fbtest Reference

CHAPTER 6

Changelog

• Version 1.0.7.2 (14.5.2019)

• Version 1.0.7.1 (14.5.2019)

• Version 1.0.7 (2.12.2016)

• Version 1.0.6 (2.12.2016)

• Version 1.0.5 (30.11.2016)

• Version 1.0.4 (29.4.2016)

• Version 1.0.3 (31.3.2016)

6.1 Version 1.0.7.2

• Added pull request from Artyom Smirnov (better support for Python test debugging).

6.2 Version 1.0.7.1

• Added titles of tests in analysis HTML report.

6.3 Version 1.0.7

• Fixed issues with documentation.

• Added CLI option -c, –client to fbt_db utility.

31

fbtest Documentation, Release 1.0.7.2

6.4 Version 1.0.6

• Broken release, deleted.

6.5 Version 1.0.5

• New utility fbt_db for managing Firebird database with test results.

6.6 Version 1.0.4

• (fbt_run) Include SKIPPED tests into results file with spec. outcome

• (fbt_run) Check that Firebird is running before test execution

• (fbt_analyze) Show time performance of tests

6.7 Version 1.0.3

• (fbt_run) Allow use of custom FB client library

• (fbt_run) Return proper errorlevel (0 = all passed, 1 = otherwise)

• Allow specification of repository location. Now you can use environment variable FBT_REPO to specify direc-
tory where fbtest Repository is located.

32 Chapter 6. Changelog

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

33

fbtest Documentation, Release 1.0.7.2

34 Chapter 7. Indices and tables

Python Module Index

f
fbtest, 29

35

fbtest Documentation, Release 1.0.7.2

36 Python Module Index

Index

F
fbtest (module), 29

S
script_runner (in module fbtest), 29

37

	Introduction
	Requirements
	Installation
	Test Repository Initialization

	Usage Guide
	Test Repository
	Test Environment
	Running tests
	Working with remote test server
	Test run result analysis
	Using fbt_update
	Using fbt_archive
	Using fbt_db

	How to design new tests
	Where to start
	The Golden Rule
	Making test cases into tests
	From drawing board to production

	Writting new tests
	Test definitions
	Resource definitions
	Databases
	Database backups
	Other files
	Test editor

	fbtest Reference
	Globals
	Functions
	Classes
	Script Functions

	Changelog
	Version 1.0.7.2
	Version 1.0.7.1
	Version 1.0.7
	Version 1.0.6
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3

	Indices and tables
	Python Module Index
	Index

