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Functions for principal component analysis (PCA) and accuracy checks

This module contains eight functions:

pca principal component analysis (singular value decomposition)

eigens eigendecomposition of a self-adjoint matrix

eigenn eigendecomposition of a nonnegative-definite self-adjoint matrix

diffsnorm spectral-norm accuracy of a singular value decomposition

diffsnormc spectral-norm accuracy of a centered singular value decomposition

diffsnorms spectral-norm accuracy of a Schur decomposition

mult default matrix multiplication

set_matrix_mult re-definition of the matrix multiplication function “mult”

Copyright 2014 Facebook Inc. All rights reserved.

“Software” means the fbpca software distributed by Facebook Inc.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions, and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

Additional grant of patent rights:

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive, irrevocable (subject to the termina-
tion provision below) license under any rights in any patent claims owned by Facebook, to make, have made, use,
sell, offer to sell, import, and otherwise transfer the Software. For avoidance of doubt, no license is granted under
Facebook’s rights in any patent claims that are infringed by (i) modifications to the Software made by you or a third
party, or (ii) the Software in combination with any software or other technology provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice, for anyone that makes any claim
(including by filing any lawsuit, assertion, or other action) alleging (a) direct, indirect, or contributory infringement or
inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or affiliates, whether or not such claim is
related to the Software, (ii) by any party if such claim arises in whole or in part from any software, product or service
of Facebook or any of its subsidiaries or affiliates, whether or not such claim is related to the Software, or (iii) by any
party relating to the Software; or (b) that any right in any patent claim of Facebook is invalid or unenforceable.
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fbpca.diffsnorm(A, U, s, Va, n_iter=20)
2-norm accuracy of an approx to a matrix.

Computes an estimate snorm of the spectral norm (the operator norm induced by the Euclidean vector norm)
of A - U diag(s) Va, using n_iter iterations of the power method started with a random vector; n_iter must be a
positive integer.

Increasing n_iter improves the accuracy of the estimate snorm of the spectral norm of A - U diag(s) Va.

Parameters A : array_like

first matrix in A - U diag(s) Va whose spectral norm is being estimated

U : array_like

second matrix in A - U diag(s) Va whose spectral norm is being estimated

s : array_like

vector in A - U diag(s) Va whose spectral norm is being estimated

Va : array_like

fourth matrix in A - U diag(s) Va whose spectral norm is being estimated

n_iter : int, optional

number of iterations of the power method to conduct; n_iter must be a positive integer,
and defaults to 20

Returns float

an estimate of the spectral norm of A - U diag(s) Va (the estimate fails to be accurate
with exponentially low prob. as n_iter increases; see references DM1, DM2, and DM3
below)

See also:

diffsnormc, pca

Notes

To obtain repeatable results, reset the seed for the pseudorandom number generator.

References

[DM1], [DM2], [DM3]

Examples

>>> from fbpca import diffsnorm, pca
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(100, 2))
>>> A = A.dot(uniform(low=-1.0, high=1.0, size=(2, 100)))
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (U, s, Va) = pca(A, 2, True)
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>>> err = diffsnorm(A, U, s, Va)
>>> print(err)

This example produces a rank-2 approximation U diag(s) Va to A such that the columns of U are orthonormal,
as are the rows of Va, and the entries of s are all nonnegative and are nonincreasing. diffsnorm(A, U, s, Va)
outputs an estimate of the spectral norm of A - U diag(s) Va, which should be close to the machine precision.

fbpca.diffsnormc(A, U, s, Va, n_iter=20)
2-norm approx error to a matrix upon centering.

Computes an estimate snorm of the spectral norm (the operator norm induced by the Euclidean vector norm)
of C(A) - U diag(s) Va, using n_iter iterations of the power method started with a random vector, where C(A)
refers to A from the input, after centering its columns; n_iter must be a positive integer.

Increasing n_iter improves the accuracy of the estimate snorm of the spectral norm of C(A) - U diag(s) Va,
where C(A) refers to A after centering its columns.

Parameters A : array_like

first matrix in the column-centered A - U diag(s) Va whose spectral norm is being esti-
mated

U : array_like

second matrix in the column-centered A - U diag(s) Va whose spectral norm is being
estimated

s : array_like

vector in the column-centered A - U diag(s) Va whose spectral norm is being estimated

Va : array_like

fourth matrix in the column-centered A - U diag(s) Va whose spectral norm is being
estimated

n_iter : int, optional

number of iterations of the power method to conduct; n_iter must be a positive integer,
and defaults to 20

Returns float

an estimate of the spectral norm of the column-centered A - U diag(s) Va (the estimate
fails to be accurate with exponentially low probability as n_iter increases; see references
DC1, DC2, and DC3 below)

See also:

diffsnorm, pca

Notes

To obtain repeatable results, reset the seed for the pseudorandom number generator.

References

[DC1], [DC2], [DC3]
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Examples

>>> from fbpca import diffsnormc, pca
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(100, 2))
>>> A = A.dot(uniform(low=-1.0, high=1.0, size=(2, 100)))
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (U, s, Va) = pca(A, 2, False)
>>> err = diffsnormc(A, U, s, Va)
>>> print(err)

This example produces a rank-2 approximation U diag(s) Va to the column-centered A such that the columns of
U are orthonormal, as are the rows of Va, and the entries of s are nonnegative and nonincreasing. diffsnormc(A,
U, s, Va) outputs an estimate of the spectral norm of the column-centered A - U diag(s) Va, which should be
close to the machine precision.

fbpca.diffsnorms(A, S, V, n_iter=20)
2-norm accuracy of a Schur decomp. of a matrix.

Computes an estimate snorm of the spectral norm (the operator norm induced by the Euclidean vector norm)
of A-VSV’, using n_iter iterations of the power method started with a random vector; n_iter must be a positive
integer.

Increasing n_iter improves the accuracy of the estimate snorm of the spectral norm of A-VSV’.

Parameters A : array_like

first matrix in A-VSV’ whose spectral norm is being estimated

S : array_like

third matrix in A-VSV’ whose spectral norm is being estimated

V : array_like

second matrix in A-VSV’ whose spectral norm is being estimated

n_iter : int, optional

number of iterations of the power method to conduct; n_iter must be a positive integer,
and defaults to 20

Returns float

an estimate of the spectral norm of A-VSV’ (the estimate fails to be accurate with
exponentially low probability as n_iter increases; see references DS1, DS2, and DS3
below)

See also:

eigenn, eigens

Notes

To obtain repeatable results, reset the seed for the pseudorandom number generator.

4 Contents



fbpca Documentation, Release 1.0

References

[DS1], [DS2], [DS3]

Examples

>>> from fbpca import diffsnorms, eigenn
>>> from numpy import diag
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(2, 100))
>>> A = A.T.dot(A)
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (d, V) = eigenn(A, 2)
>>> err = diffsnorms(A, diag(d), V)
>>> print(err)

This example produces a rank-2 approximation V diag(d) V’ to A such that the columns of V are orthonormal
and the entries of d are nonnegative and are nonincreasing. diffsnorms(A, diag(d), V) outputs an estimate of the
spectral norm of A - V diag(d) V’, which should be close to the machine precision.

fbpca.eigenn(A, k=6, n_iter=4, l=None)
Eigendecomposition of a NONNEGATIVE-DEFINITE matrix.

Constructs a nearly optimal rank-k approximation V diag(d) V’ to a NONNEGATIVE-DEFINITE matrix A,
using n_iter normalized power iterations, with block size l, started with an n x l random matrix, when A is n x
n; the reference EGN below explains “nearly optimal.” k must be a positive integer <= the dimension n of A,
n_iter must be a nonnegative integer, and l must be a positive integer >= k.

The rank-k approximation V diag(d) V’ comes in the form of an eigendecomposition – the columns of V are
orthonormal and d is a real vector such that its entries are nonnegative and nonincreasing. V is n x k and len(d)
= k, when A is n x n.

Increasing n_iter or l improves the accuracy of the approximation V diag(d) V’; the reference EGN below de-
scribes how the accuracy depends on n_iter and l. Please note that even n_iter=1 guarantees superb accuracy,
whether or not there is any gap in the singular values of the matrix A being approximated, at least when mea-
suring accuracy as the spectral norm || A - V diag(d) V’ || of the matrix A - V diag(d) V’ (relative to the spectral
norm ||A|| of A).

Parameters A : array_like, shape (n, n)

matrix being approximated

k : int, optional

rank of the approximation being constructed; k must be a positive integer <= the dimen-
sion of A, and defaults to 6

n_iter : int, optional

number of normalized power iterations to conduct; n_iter must be a nonnegative integer,
and defaults to 4

l : int, optional

block size of the normalized power iterations; l must be a positive integer >= k, and
defaults to k+2
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Returns d : ndarray, shape (k,)

vector of length k in the rank-k approximation V diag(d) V’ to A, such that its entries
are nonnegative and nonincreasing

V : ndarray, shape (n, k)

n x k matrix in the rank-k approximation V diag(d) V’ to A, where A is n x n

See also:

diffsnorms, eigens, pca

Notes

THE MATRIX A MUST BE SELF-ADJOINT AND NONNEGATIVE DEFINITE.

To obtain repeatable results, reset the seed for the pseudorandom number generator.

The user may ascertain the accuracy of the approximation V diag(d) V’ to A by invoking diffsnorms(A,
numpy.diag(d), V).

References

[EGN]

Examples

>>> from fbpca import diffsnorms, eigenn
>>> from numpy import diag
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(2, 100))
>>> A = A.T.dot(A)
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (d, V) = eigenn(A, 2)
>>> err = diffsnorms(A, diag(d), V)
>>> print(err)

This example produces a rank-2 approximation V diag(d) V’ to A such that the columns of V are orthonormal
and the entries of d are nonnegative and nonincreasing. diffsnorms(A, diag(d), V) outputs an estimate of the
spectral norm of A - V diag(d) V’, which should be close to the machine precision.

fbpca.eigens(A, k=6, n_iter=4, l=None)
Eigendecomposition of a SELF-ADJOINT matrix.

Constructs a nearly optimal rank-k approximation V diag(d) V’ to a SELF-ADJOINT matrix A, using n_iter
normalized power iterations, with block size l, started with an n x l random matrix, when A is n x n; the
reference EGS below explains “nearly optimal.” k must be a positive integer <= the dimension n of A, n_iter
must be a nonnegative integer, and l must be a positive integer >= k.

The rank-k approximation V diag(d) V’ comes in the form of an eigendecomposition – the columns of V are
orthonormal and d is a vector whose entries are real-valued and their absolute values are nonincreasing. V is n
x k and len(d) = k, when A is n x n.
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Increasing n_iter or l improves the accuracy of the approximation V diag(d) V’; the reference EGS below de-
scribes how the accuracy depends on n_iter and l. Please note that even n_iter=1 guarantees superb accuracy,
whether or not there is any gap in the singular values of the matrix A being approximated, at least when mea-
suring accuracy as the spectral norm || A - V diag(d) V’ || of the matrix A - V diag(d) V’ (relative to the spectral
norm ||A|| of A).

Parameters A : array_like, shape (n, n)

matrix being approximated

k : int, optional

rank of the approximation being constructed; k must be a positive integer <= the dimen-
sion of A, and defaults to 6

n_iter : int, optional

number of normalized power iterations to conduct; n_iter must be a nonnegative integer,
and defaults to 4

l : int, optional

block size of the normalized power iterations; l must be a positive integer >= k, and
defaults to k+2

Returns d : ndarray, shape (k,)

vector of length k in the rank-k approximation V diag(d) V’ to A, such that its entries
are real-valued and their absolute values are nonincreasing

V : ndarray, shape (n, k)

n x k matrix in the rank-k approximation V diag(d) V’ to A, where A is n x n

See also:

diffsnorms, eigenn, pca

Notes

THE MATRIX A MUST BE SELF-ADJOINT.

To obtain repeatable results, reset the seed for the pseudorandom number generator.

The user may ascertain the accuracy of the approximation V diag(d) V’ to A by invoking diffsnorms(A,
numpy.diag(d), V).

References

[EGS]

Examples

>>> from fbpca import diffsnorms, eigens
>>> from numpy import diag
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(2, 100))
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>>> A = A.T.dot(A)
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (d, V) = eigens(A, 2)
>>> err = diffsnorms(A, diag(d), V)
>>> print(err)

This example produces a rank-2 approximation V diag(d) V’ to A such that the columns of V are orthonormal,
and the entries of d are real-valued and their absolute values are nonincreasing. diffsnorms(A, diag(d), V)
outputs an estimate of the spectral norm of A - V diag(d) V’, which should be close to the machine precision.

fbpca.mult(A, B)
default matrix multiplication.

Multiplies A and B together via the “dot” method.

Parameters A : array_like

first matrix in the product A*B being calculated

B : array_like

second matrix in the product A*B being calculated

Returns array_like

product of the inputs A and B

Examples

>>> from fbpca import mult
>>> from numpy import array
>>> from numpy.linalg import norm
>>>
>>> A = array([[1., 2.], [3., 4.]])
>>> B = array([[5., 6.], [7., 8.]])
>>> norm(mult(A, B) - A.dot(B))

This example multiplies two matrices two ways – once with mult, and once with the usual “dot” method – and
then calculates the (Frobenius) norm of the difference (which should be near 0).

fbpca.pca(A, k=6, raw=False, n_iter=2, l=None)
Principal component analysis.

Constructs a nearly optimal rank-k approximation U diag(s) Va to A, centering the columns of A first when raw
is False, using n_iter normalized power iterations, with block size l, started with a min(m,n) x l random matrix,
when A is m x n; the reference PCA below explains “nearly optimal.” k must be a positive integer <= the smaller
dimension of A, n_iter must be a nonnegative integer, and l must be a positive integer >= k.

The rank-k approximation U diag(s) Va comes in the form of a singular value decomposition (SVD) – the
columns of U are orthonormal, as are the rows of Va, and the entries of s are all nonnegative and nonincreasing.
U is m x k, Va is k x n, and len(s)=k, when A is m x n.

Increasing n_iter or l improves the accuracy of the approximation U diag(s) Va; the reference PCA below de-
scribes how the accuracy depends on n_iter and l. Please note that even n_iter=1 guarantees superb accuracy,
whether or not there is any gap in the singular values of the matrix A being approximated, at least when mea-
suring accuracy as the spectral norm || A - U diag(s) Va || of the matrix A - U diag(s) Va (relative to the spectral
norm ||A|| of A, and accounting for centering when raw is False).
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Parameters A : array_like, shape (m, n)

matrix being approximated

k : int, optional

rank of the approximation being constructed; k must be a positive integer <= the smaller
dimension of A, and defaults to 6

raw : bool, optional

centers A when raw is False but does not when raw is True; raw must be a Boolean and
defaults to False

n_iter : int, optional

number of normalized power iterations to conduct; n_iter must be a nonnegative integer,
and defaults to 2

l : int, optional

block size of the normalized power iterations; l must be a positive integer >= k, and
defaults to k+2

Returns U : ndarray, shape (m, k)

m x k matrix in the rank-k approximation U diag(s) Va to A or C(A), where A is m x n,
and C(A) refers to A after centering its columns; the columns of U are orthonormal

s : ndarray, shape (k,)

vector of length k in the rank-k approximation U diag(s) Va to A or C(A), where A is m
x n, and C(A) refers to A after centering its columns; the entries of s are all nonnegative
and nonincreasing

Va : ndarray, shape (k, n)

k x n matrix in the rank-k approximation U diag(s) Va to A or C(A), where A is m x n,
and C(A) refers to A after centering its columns; the rows of Va are orthonormal

See also:

diffsnorm, diffsnormc, eigens, eigenn

Notes

To obtain repeatable results, reset the seed for the pseudorandom number generator.

The user may ascertain the accuracy of the approximation U diag(s) Va to A by invoking diffsnorm(A, U, s, Va),
when raw is True. The user may ascertain the accuracy of the approximation U diag(s) Va to C(A), where C(A)
refers to A after centering its columns, by invoking diffsnormc(A, U, s, Va), when raw is False.

References

[PCA]

Examples
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>>> from fbpca import diffsnorm, pca
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(100, 2))
>>> A = A.dot(uniform(low=-1.0, high=1.0, size=(2, 100)))
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (U, s, Va) = pca(A, 2, True)
>>> err = diffsnorm(A, U, s, Va)
>>> print(err)

This example produces a rank-2 approximation U diag(s) Va to A such that the columns of U are orthonormal,
as are the rows of Va, and the entries of s are all nonnegative and are nonincreasing. diffsnorm(A, U, s, Va)
outputs an estimate of the spectral norm of A - U diag(s) Va, which should be close to the machine precision.

fbpca.set_matrix_mult(newmult)
re-definition of the matrix multiplication function “mult”.

Sets the matrix multiplication function “mult” used in fbpca to be the input “newmult” – which must return the
product A*B of its two inputs A and B, i.e., newmult(A, B) must be the product of A and B.

Parameters newmult : callable

matrix multiplication replacing mult in fbpca; newmult must return the product of its
two array_like inputs

Returns None

Examples

>>> from fbpca import set_matrix_mult
>>>
>>> def newmult(A, B):
... return A*B
...
>>> set_matrix_mult(newmult)

This example redefines the matrix multiplication used in fbpca to be the entrywise product.
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