

 Navigation

 	
 index

 	
 modules |

 	fbpca 1.0 documentation

fbpca

Functions for principal component analysis (PCA) and accuracy checks

This module contains eight functions:

	pca

	principal component analysis (singular value decomposition)

	eigens

	eigendecomposition of a self-adjoint matrix

	eigenn

	eigendecomposition of a nonnegative-definite self-adjoint matrix

	diffsnorm

	spectral-norm accuracy of a singular value decomposition

	diffsnormc

	spectral-norm accuracy of a centered singular value decomposition

	diffsnorms

	spectral-norm accuracy of a Schur decomposition

	mult

	default matrix multiplication

	set_matrix_mult

	re-definition of the matrix multiplication function “mult”

Copyright 2014 Facebook Inc.
All rights reserved.

“Software” means the fbpca software distributed by Facebook Inc.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

	Neither the name Facebook nor the names of its contributors may be
used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional grant of patent rights:

Facebook hereby grants you a perpetual, worldwide, royalty-free,
non-exclusive, irrevocable (subject to the termination provision
below) license under any rights in any patent claims owned by
Facebook, to make, have made, use, sell, offer to sell, import, and
otherwise transfer the Software. For avoidance of doubt, no license
is granted under Facebook’s rights in any patent claims that are
infringed by (i) modifications to the Software made by you or a third
party, or (ii) the Software in combination with any software or other
technology provided by you or a third party.

The license granted hereunder will terminate, automatically and
without notice, for anyone that makes any claim (including by filing
any lawsuit, assertion, or other action) alleging (a) direct,
indirect, or contributory infringement or inducement to infringe any
patent: (i) by Facebook or any of its subsidiaries or affiliates,
whether or not such claim is related to the Software, (ii) by any
party if such claim arises in whole or in part from any software,
product or service of Facebook or any of its subsidiaries or
affiliates, whether or not such claim is related to the Software, or
(iii) by any party relating to the Software; or (b) that any right in
any patent claim of Facebook is invalid or unenforceable.

	
fbpca.diffsnorm(A, U, s, Va, n_iter=20)

	2-norm accuracy of an approx to a matrix.

Computes an estimate snorm of the spectral norm (the operator norm
induced by the Euclidean vector norm) of A - U diag(s) Va, using
n_iter iterations of the power method started with a random vector;
n_iter must be a positive integer.

Increasing n_iter improves the accuracy of the estimate snorm of
the spectral norm of A - U diag(s) Va.

	Parameters:	A : array_like

first matrix in A - U diag(s) Va whose spectral norm is being
estimated

U : array_like

second matrix in A - U diag(s) Va whose spectral norm is being
estimated

s : array_like

vector in A - U diag(s) Va whose spectral norm is being
estimated

Va : array_like

fourth matrix in A - U diag(s) Va whose spectral norm is being
estimated

n_iter : int, optional

number of iterations of the power method to conduct;
n_iter must be a positive integer, and defaults to 20

	Returns:	float

an estimate of the spectral norm of A - U diag(s) Va (the
estimate fails to be accurate with exponentially low prob. as
n_iter increases; see references DM1, DM2, and DM3 below)

See also

diffsnormc, pca

Notes

To obtain repeatable results, reset the seed for the pseudorandom
number generator.

References

	[DM1]	Jacek Kuczynski and Henryk Wozniakowski, Estimating the
largest eigenvalues by the power and Lanczos methods with
a random start, SIAM Journal on Matrix Analysis and
Applications, 13 (4): 1094-1122, 1992.

	[DM2]	Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson,
Vladimir Rokhlin, and Mark Tygert, Randomized algorithms
for the low-rank approximation of matrices, Proceedings of
the National Academy of Sciences (USA), 104 (51):
20167-20172, 2007. (See the appendix.)

	[DM3]	Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark
Tygert, A fast randomized algorithm for the approximation
of matrices, Applied and Computational Harmonic Analysis,
25 (3): 335-366, 2008. (See Section 3.4.)

Examples

>>> from fbpca import diffsnorm, pca
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(100, 2))
>>> A = A.dot(uniform(low=-1.0, high=1.0, size=(2, 100)))
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (U, s, Va) = pca(A, 2, True)
>>> err = diffsnorm(A, U, s, Va)
>>> print(err)

This example produces a rank-2 approximation U diag(s) Va to A such
that the columns of U are orthonormal, as are the rows of Va, and
the entries of s are all nonnegative and are nonincreasing.
diffsnorm(A, U, s, Va) outputs an estimate of the spectral norm of
A - U diag(s) Va, which should be close to the machine precision.

	
fbpca.diffsnormc(A, U, s, Va, n_iter=20)

	2-norm approx error to a matrix upon centering.

Computes an estimate snorm of the spectral norm (the operator norm
induced by the Euclidean vector norm) of C(A) - U diag(s) Va, using
n_iter iterations of the power method started with a random vector,
where C(A) refers to A from the input, after centering its columns;
n_iter must be a positive integer.

Increasing n_iter improves the accuracy of the estimate snorm of
the spectral norm of C(A) - U diag(s) Va, where C(A) refers to A
after centering its columns.

	Parameters:	A : array_like

first matrix in the column-centered A - U diag(s) Va whose
spectral norm is being estimated

U : array_like

second matrix in the column-centered A - U diag(s) Va whose
spectral norm is being estimated

s : array_like

vector in the column-centered A - U diag(s) Va whose spectral
norm is being estimated

Va : array_like

fourth matrix in the column-centered A - U diag(s) Va whose
spectral norm is being estimated

n_iter : int, optional

number of iterations of the power method to conduct;
n_iter must be a positive integer, and defaults to 20

	Returns:	float

an estimate of the spectral norm of the column-centered A
- U diag(s) Va (the estimate fails to be accurate with
exponentially low probability as n_iter increases; see
references DC1, DC2, and DC3 below)

See also

diffsnorm, pca

Notes

To obtain repeatable results, reset the seed for the pseudorandom
number generator.

References

	[DC1]	Jacek Kuczynski and Henryk Wozniakowski, Estimating the
largest eigenvalues by the power and Lanczos methods with
a random start, SIAM Journal on Matrix Analysis and
Applications, 13 (4): 1094-1122, 1992.

	[DC2]	Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson,
Vladimir Rokhlin, and Mark Tygert, Randomized algorithms
for the low-rank approximation of matrices, Proceedings of
the National Academy of Sciences (USA), 104 (51):
20167-20172, 2007. (See the appendix.)

	[DC3]	Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark
Tygert, A fast randomized algorithm for the approximation
of matrices, Applied and Computational Harmonic Analysis,
25 (3): 335-366, 2008. (See Section 3.4.)

Examples

>>> from fbpca import diffsnormc, pca
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(100, 2))
>>> A = A.dot(uniform(low=-1.0, high=1.0, size=(2, 100)))
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (U, s, Va) = pca(A, 2, False)
>>> err = diffsnormc(A, U, s, Va)
>>> print(err)

This example produces a rank-2 approximation U diag(s) Va to the
column-centered A such that the columns of U are orthonormal, as
are the rows of Va, and the entries of s are nonnegative and
nonincreasing. diffsnormc(A, U, s, Va) outputs an estimate of the
spectral norm of the column-centered A - U diag(s) Va, which
should be close to the machine precision.

	
fbpca.diffsnorms(A, S, V, n_iter=20)

	2-norm accuracy of a Schur decomp. of a matrix.

Computes an estimate snorm of the spectral norm (the operator norm
induced by the Euclidean vector norm) of A-VSV’, using n_iter
iterations of the power method started with a random vector;
n_iter must be a positive integer.

Increasing n_iter improves the accuracy of the estimate snorm of
the spectral norm of A-VSV’.

	Parameters:	A : array_like

first matrix in A-VSV’ whose spectral norm is being estimated

S : array_like

third matrix in A-VSV’ whose spectral norm is being estimated

V : array_like

second matrix in A-VSV’ whose spectral norm is being estimated

n_iter : int, optional

number of iterations of the power method to conduct;
n_iter must be a positive integer, and defaults to 20

	Returns:	float

an estimate of the spectral norm of A-VSV’ (the estimate fails
to be accurate with exponentially low probability as n_iter
increases; see references DS1, DS2, and DS3 below)

See also

eigenn, eigens

Notes

To obtain repeatable results, reset the seed for the pseudorandom
number generator.

References

	[DS1]	Jacek Kuczynski and Henryk Wozniakowski, Estimating the
largest eigenvalues by the power and Lanczos methods with
a random start, SIAM Journal on Matrix Analysis and
Applications, 13 (4): 1094-1122, 1992.

	[DS2]	Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson,
Vladimir Rokhlin, and Mark Tygert, Randomized algorithms
for the low-rank approximation of matrices, Proceedings of
the National Academy of Sciences (USA), 104 (51):
20167-20172, 2007. (See the appendix.)

	[DS3]	Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark
Tygert, A fast randomized algorithm for the approximation
of matrices, Applied and Computational Harmonic Analysis,
25 (3): 335-366, 2008. (See Section 3.4.)

Examples

>>> from fbpca import diffsnorms, eigenn
>>> from numpy import diag
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(2, 100))
>>> A = A.T.dot(A)
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (d, V) = eigenn(A, 2)
>>> err = diffsnorms(A, diag(d), V)
>>> print(err)

This example produces a rank-2 approximation V diag(d) V’ to A
such that the columns of V are orthonormal and the entries of d
are nonnegative and are nonincreasing.
diffsnorms(A, diag(d), V) outputs an estimate of the spectral norm
of A - V diag(d) V’, which should be close to the machine
precision.

	
fbpca.eigenn(A, k=6, n_iter=4, l=None)

	Eigendecomposition of a NONNEGATIVE-DEFINITE matrix.

Constructs a nearly optimal rank-k approximation V diag(d) V’ to a
NONNEGATIVE-DEFINITE matrix A, using n_iter normalized power
iterations, with block size l, started with an n x l random matrix,
when A is n x n; the reference EGN below explains “nearly
optimal.” k must be a positive integer <= the dimension n of A,
n_iter must be a nonnegative integer, and l must be a positive
integer >= k.

The rank-k approximation V diag(d) V’ comes in the form of an
eigendecomposition – the columns of V are orthonormal and d is a
real vector such that its entries are nonnegative and nonincreasing.
V is n x k and len(d) = k, when A is n x n.

Increasing n_iter or l improves the accuracy of the approximation
V diag(d) V’; the reference EGN below describes how the accuracy
depends on n_iter and l. Please note that even n_iter=1 guarantees
superb accuracy, whether or not there is any gap in the singular
values of the matrix A being approximated, at least when measuring
accuracy as the spectral norm || A - V diag(d) V’ || of the matrix
A - V diag(d) V’ (relative to the spectral norm ||A|| of A).

	Parameters:	A : array_like, shape (n, n)

matrix being approximated

k : int, optional

rank of the approximation being constructed;
k must be a positive integer <= the dimension of A, and
defaults to 6

n_iter : int, optional

number of normalized power iterations to conduct;
n_iter must be a nonnegative integer, and defaults to 4

l : int, optional

block size of the normalized power iterations;
l must be a positive integer >= k, and defaults to k+2

	Returns:	d : ndarray, shape (k,)

vector of length k in the rank-k approximation V diag(d) V’
to A, such that its entries are nonnegative and nonincreasing

V : ndarray, shape (n, k)

n x k matrix in the rank-k approximation V diag(d) V’ to A,
where A is n x n

See also

diffsnorms, eigens, pca

Notes

THE MATRIX A MUST BE SELF-ADJOINT AND NONNEGATIVE DEFINITE.

To obtain repeatable results, reset the seed for the pseudorandom
number generator.

The user may ascertain the accuracy of the approximation
V diag(d) V’ to A by invoking diffsnorms(A, numpy.diag(d), V).

References

	[EGN]	Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp,
Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix
decompositions, arXiv:0909.4061 [math.NA; math.PR], 2009
(available at arXiv [http://arxiv.org/abs/0909.4061]).

Examples

>>> from fbpca import diffsnorms, eigenn
>>> from numpy import diag
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(2, 100))
>>> A = A.T.dot(A)
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (d, V) = eigenn(A, 2)
>>> err = diffsnorms(A, diag(d), V)
>>> print(err)

This example produces a rank-2 approximation V diag(d) V’ to A
such that the columns of V are orthonormal and the entries of d
are nonnegative and nonincreasing.
diffsnorms(A, diag(d), V) outputs an estimate of the spectral norm
of A - V diag(d) V’, which should be close to the machine
precision.

	
fbpca.eigens(A, k=6, n_iter=4, l=None)

	Eigendecomposition of a SELF-ADJOINT matrix.

Constructs a nearly optimal rank-k approximation V diag(d) V’ to a
SELF-ADJOINT matrix A, using n_iter normalized power iterations,
with block size l, started with an n x l random matrix, when A is
n x n; the reference EGS below explains “nearly optimal.” k must
be a positive integer <= the dimension n of A, n_iter must be a
nonnegative integer, and l must be a positive integer >= k.

The rank-k approximation V diag(d) V’ comes in the form of an
eigendecomposition – the columns of V are orthonormal and d is a
vector whose entries are real-valued and their absolute values are
nonincreasing. V is n x k and len(d) = k, when A is n x n.

Increasing n_iter or l improves the accuracy of the approximation
V diag(d) V’; the reference EGS below describes how the accuracy
depends on n_iter and l. Please note that even n_iter=1 guarantees
superb accuracy, whether or not there is any gap in the singular
values of the matrix A being approximated, at least when measuring
accuracy as the spectral norm || A - V diag(d) V’ || of the matrix
A - V diag(d) V’ (relative to the spectral norm ||A|| of A).

	Parameters:	A : array_like, shape (n, n)

matrix being approximated

k : int, optional

rank of the approximation being constructed;
k must be a positive integer <= the dimension of A, and
defaults to 6

n_iter : int, optional

number of normalized power iterations to conduct;
n_iter must be a nonnegative integer, and defaults to 4

l : int, optional

block size of the normalized power iterations;
l must be a positive integer >= k, and defaults to k+2

	Returns:	d : ndarray, shape (k,)

vector of length k in the rank-k approximation V diag(d) V’
to A, such that its entries are real-valued and their absolute
values are nonincreasing

V : ndarray, shape (n, k)

n x k matrix in the rank-k approximation V diag(d) V’ to A,
where A is n x n

See also

diffsnorms, eigenn, pca

Notes

THE MATRIX A MUST BE SELF-ADJOINT.

To obtain repeatable results, reset the seed for the pseudorandom
number generator.

The user may ascertain the accuracy of the approximation
V diag(d) V’ to A by invoking diffsnorms(A, numpy.diag(d), V).

References

	[EGS]	Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp,
Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix
decompositions, arXiv:0909.4061 [math.NA; math.PR], 2009
(available at arXiv [http://arxiv.org/abs/0909.4061]).

Examples

>>> from fbpca import diffsnorms, eigens
>>> from numpy import diag
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(2, 100))
>>> A = A.T.dot(A)
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (d, V) = eigens(A, 2)
>>> err = diffsnorms(A, diag(d), V)
>>> print(err)

This example produces a rank-2 approximation V diag(d) V’ to A
such that the columns of V are orthonormal, and the entries of d
are real-valued and their absolute values are nonincreasing.
diffsnorms(A, diag(d), V) outputs an estimate of the spectral norm
of A - V diag(d) V’, which should be close to the machine
precision.

	
fbpca.mult(A, B)

	default matrix multiplication.

Multiplies A and B together via the “dot” method.

	Parameters:	A : array_like

first matrix in the product A*B being calculated

B : array_like

second matrix in the product A*B being calculated

	Returns:	array_like

product of the inputs A and B

Examples

>>> from fbpca import mult
>>> from numpy import array
>>> from numpy.linalg import norm
>>>
>>> A = array([[1., 2.], [3., 4.]])
>>> B = array([[5., 6.], [7., 8.]])
>>> norm(mult(A, B) - A.dot(B))

This example multiplies two matrices two ways – once with mult,
and once with the usual “dot” method – and then calculates the
(Frobenius) norm of the difference (which should be near 0).

	
fbpca.pca(A, k=6, raw=False, n_iter=2, l=None)

	Principal component analysis.

Constructs a nearly optimal rank-k approximation U diag(s) Va to A,
centering the columns of A first when raw is False, using n_iter
normalized power iterations, with block size l, started with a
min(m,n) x l random matrix, when A is m x n; the reference PCA
below explains “nearly optimal.” k must be a positive integer <=
the smaller dimension of A, n_iter must be a nonnegative integer,
and l must be a positive integer >= k.

The rank-k approximation U diag(s) Va comes in the form of a
singular value decomposition (SVD) – the columns of U are
orthonormal, as are the rows of Va, and the entries of s are all
nonnegative and nonincreasing. U is m x k, Va is k x n, and
len(s)=k, when A is m x n.

Increasing n_iter or l improves the accuracy of the approximation
U diag(s) Va; the reference PCA below describes how the accuracy
depends on n_iter and l. Please note that even n_iter=1 guarantees
superb accuracy, whether or not there is any gap in the singular
values of the matrix A being approximated, at least when measuring
accuracy as the spectral norm || A - U diag(s) Va || of the matrix
A - U diag(s) Va (relative to the spectral norm ||A|| of A, and
accounting for centering when raw is False).

	Parameters:	A : array_like, shape (m, n)

matrix being approximated

k : int, optional

rank of the approximation being constructed;
k must be a positive integer <= the smaller dimension of A,
and defaults to 6

raw : bool, optional

centers A when raw is False but does not when raw is True;
raw must be a Boolean and defaults to False

n_iter : int, optional

number of normalized power iterations to conduct;
n_iter must be a nonnegative integer, and defaults to 2

l : int, optional

block size of the normalized power iterations;
l must be a positive integer >= k, and defaults to k+2

	Returns:	U : ndarray, shape (m, k)

m x k matrix in the rank-k approximation U diag(s) Va to A or
C(A), where A is m x n, and C(A) refers to A after centering
its columns; the columns of U are orthonormal

s : ndarray, shape (k,)

vector of length k in the rank-k approximation U diag(s) Va to
A or C(A), where A is m x n, and C(A) refers to A after
centering its columns; the entries of s are all nonnegative and
nonincreasing

Va : ndarray, shape (k, n)

k x n matrix in the rank-k approximation U diag(s) Va to A or
C(A), where A is m x n, and C(A) refers to A after centering
its columns; the rows of Va are orthonormal

See also

diffsnorm, diffsnormc, eigens, eigenn

Notes

To obtain repeatable results, reset the seed for the pseudorandom
number generator.

The user may ascertain the accuracy of the approximation
U diag(s) Va to A by invoking diffsnorm(A, U, s, Va), when raw is
True. The user may ascertain the accuracy of the approximation
U diag(s) Va to C(A), where C(A) refers to A after centering its
columns, by invoking diffsnormc(A, U, s, Va), when raw is False.

References

	[PCA]	Nathan Halko, Per-Gunnar Martinsson, and Joel Tropp,
Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix
decompositions, arXiv:0909.4061 [math.NA; math.PR], 2009
(available at arXiv [http://arxiv.org/abs/0909.4061]).

Examples

>>> from fbpca import diffsnorm, pca
>>> from numpy.random import uniform
>>> from scipy.linalg import svd
>>>
>>> A = uniform(low=-1.0, high=1.0, size=(100, 2))
>>> A = A.dot(uniform(low=-1.0, high=1.0, size=(2, 100)))
>>> (U, s, Va) = svd(A, full_matrices=False)
>>> A = A / s[0]
>>>
>>> (U, s, Va) = pca(A, 2, True)
>>> err = diffsnorm(A, U, s, Va)
>>> print(err)

This example produces a rank-2 approximation U diag(s) Va to A such
that the columns of U are orthonormal, as are the rows of Va, and
the entries of s are all nonnegative and are nonincreasing.
diffsnorm(A, U, s, Va) outputs an estimate of the spectral norm of
A - U diag(s) Va, which should be close to the machine precision.

	
fbpca.set_matrix_mult(newmult)

	re-definition of the matrix multiplication function “mult”.

Sets the matrix multiplication function “mult” used in fbpca to be
the input “newmult” – which must return the product A*B of its two
inputs A and B, i.e., newmult(A, B) must be the product of A and B.

	Parameters:	newmult : callable

matrix multiplication replacing mult in fbpca; newmult must
return the product of its two array_like inputs

	Returns:	None

Examples

>>> from fbpca import set_matrix_mult
>>>
>>> def newmult(A, B):
... return A*B
...
>>> set_matrix_mult(newmult)

This example redefines the matrix multiplication used in fbpca to
be the entrywise product.

 Copyright 2014, Facebook..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	fbpca 1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 fbpca	

 Copyright 2014, Facebook..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	fbpca 1.0 documentation

Index

 D
 | E
 | F
 | M
 | P
 | S

D

 	

 	diffsnorm() (in module fbpca)

 	diffsnormc() (in module fbpca)

 	

 	diffsnorms() (in module fbpca)

E

 	

 	eigenn() (in module fbpca)

 	

 	eigens() (in module fbpca)

F

 	

 	fbpca (module)

M

 	

 	mult() (in module fbpca)

P

 	

 	pca() (in module fbpca)

S

 	

 	set_matrix_mult() (in module fbpca)

 Copyright 2014, Facebook..
 Created using Sphinx 1.2.2.

 _static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		fbpca 1.0 documentation »

 All modules for which code is available

		fbpca

 © Copyright 2014, Facebook..
 Created using Sphinx 1.2.2.

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		fbpca 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Facebook..
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

