
Find Dupes Fast Documentation
Release 0.3.6

Stephan Sokolow

Sep 27, 2017

Contents

1 API Documentation 1

2 TODO Note Index 7

3 Algorithm 9

4 Exact Comparison Mode 11

5 The --delete option 13
5.1 The --prefer and --noninteractive options . 13

6 Indices and tables 15

Python Module Index 17

i

ii

CHAPTER 1

API Documentation

Find Dupes Fast By Stephan Sokolow (ssokolow.com)

A simple script which identifies duplicate files several orders of magnitude more quickly than fdupes by using smarter
algorithms.

Todo

Figure out how to do ePyDoc-style grouping here without giving up automodule-level comfort.

fastdupes.CHUNK_SIZE = 65536
Size for chunked reads from file handles

fastdupes.DEFAULTS = {‘min_size’: 25, ‘exclude’: [’*/.svn’, ‘*/.bzr’, ‘*/.git’, ‘*/.hg’], ‘delete’: False}
Default settings used by optparse and some functions

fastdupes.HEAD_SIZE = 16384
Limit how many bytes will be read to compare headers

class fastdupes.OverWriter(fobj)
Bases: object

Output helper for handling overdrawing the previous line cleanly.

write(text, newline=False)
Use \r to overdraw the current line with the given text.

This function transparently handles tracking how much overdrawing is necessary to erase the previous line
when used consistently.

Parameters

• text (str) – The text to be outputted

• newline (bool) – Whether to start a new line and reset the length count.

1

https://docs.python.org/2/library/optparse.html#module-optparse
https://docs.python.org/2/library/functions.html#object

Find Dupes Fast Documentation, Release 0.3.6

fastdupes.compareChunks(handles, chunk_size=65536)
Group a list of file handles based on equality of the next chunk of data read from them.

Parameters

• handles – A list of open handles for file-like objects with otentially-identical contents.

• chunk_size – The amount of data to read from each handle every time this function is
called.

Returns

Two lists of lists:

• Lists to be fed back into this function individually

• Finished groups of duplicate paths. (including unique files as single-file lists)

Return type (list, list)

Attention: File handles will be closed when no longer needed

Todo

Discard chunk contents immediately once they’re no longer needed

fastdupes.delete_dupes(groups, prefer_list=None, interactive=True, dry_run=False)
Code to handle the --delete command-line option.

Parameters

• groups (iterable) – A list of groups of paths.

• prefer_list – A whitelist to be compiled by multiglob_compile() and used to
skip some prompts.

• interactive (bool) – If False, assume the user wants to keep all copies when a
prompt would otherwise be displayed.

• dry_run (bool) – If True, only pretend to delete files.

Todo

Add a secondary check for symlinks for safety.

fastdupes.find_dupes(paths, exact=False, ignores=None, min_size=0)
High-level code to walk a set of paths and find duplicate groups.

Parameters

• exact (bool) – Whether to compare file contents by hash or by reading chunks in parallel.

• paths – See getPaths()

• ignores – See getPaths()

• min_size – See sizeClassifier()

Returns A list of groups of files with identical contents

Return type [[path, ...], [path, ...]]

2 Chapter 1. API Documentation

Find Dupes Fast Documentation, Release 0.3.6

fastdupes.getPaths(roots, ignores=None)
Recursively walk a set of paths and return a listing of contained files.

Parameters

• roots (list of str) – Relative or absolute paths to files or folders.

• ignores (list of str) – A list of fnmatch globs to avoid walking and omit from
results

Returns Absolute paths to only files.

Return type list of str

Todo

Try to optimize the ignores matching. Running a regex on every filename is a fairly significant percentage of
the time taken according to the profiler.

fastdupes.groupBy(groups_in, classifier, fun_desc=’?’, keep_uniques=False, *args, **kwargs)
Subdivide groups of paths according to a function.

Parameters

• groups_in (dict of iterables) – Grouped sets of paths.

• classifier (function(list, *args, **kwargs) -> str) – Function to
group a list of paths by some attribute.

• fun_desc (str) – Human-readable term for what the classifier operates on. (Used in log
messages)

• keep_uniques (bool) – If False, discard groups with only one member.

Returns A dict mapping classifier keys to groups of matches.

Return type dict

Attention Grouping functions generally use a set groups as extra protection against acciden-
tally counting a given file twice. (Complimentary to use of os.path.realpath() in
getPaths())

Todo

Find some way to bring back the file-by-file status text

fastdupes.groupByContent(paths)
Byte-for-byte comparison on an arbitrary number of files in parallel.

This operates by opening all files in parallel and comparing chunk-by-chunk. This has the following implica-
tions:

•Reads the same total amount of data as hash comparison.

•Performs a lot of disk seeks. (Best suited for SSDs)

•Vulnerable to file handle exhaustion if used on its own.

Parameters paths (iterable) – List of potentially identical files.

Returns A dict mapping one path to a list of all paths (self included) with the same contents.

3

https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/os.path.html#os.path.realpath

Find Dupes Fast Documentation, Release 0.3.6

Todo

Start examining the while handles: block to figure out how to minimize thrashing in situations where
read-ahead caching is active. Compare savings by read-ahead to savings due to eliminating false positives as
quickly as possible. This is a 2-variable min/max problem.

Todo

Look into possible solutions for pathological cases of thousands of files with the same size and same pre-filter
results. (File handle exhaustion)

fastdupes.groupify(function)
Decorator to convert a function which takes a single value and returns a key into one which takes a list of values
and returns a dict of key-group mappings.

Parameters function (function(value) -> key) – A function which takes a value and
returns a hash key.

Return type

function(iterable) ->
{key: set ([value, ...]), ...}

fastdupes.hashClassifier(paths, *args, **kwargs)
Sort a file into a group based on its SHA1 hash.

Parameters

• paths – See fastdupes.groupify()

• limit (__builtins__.int) – Only this many bytes will be counted in the hash. Val-
ues which evaluate to False indicate no limit.

Returns See fastdupes.groupify()

fastdupes.hashFile(handle, want_hex=False, limit=None, chunk_size=65536)
Generate a hash from a potentially long file. Digesting will obey CHUNK_SIZE to conserve memory.

Parameters

• handle – A file-like object or path to hash from.

• want_hex (bool) – If True, returned hash will be hex-encoded.

• limit (int) – Maximum number of bytes to read (rounded up to a multiple of
CHUNK_SIZE)

• chunk_size (int) – Size of read() operations in bytes.

Return type str

Returns A binary or hex-encoded SHA1 hash.

Note: It is your responsibility to close any file-like objects you pass in

fastdupes.main()
The main entry point, compatible with setuptools.

4 Chapter 1. API Documentation

Find Dupes Fast Documentation, Release 0.3.6

fastdupes.multiglob_compile(globs, prefix=False)
Generate a single “A or B or C” regex from a list of shell globs.

Parameters

• globs (iterable of str) – Patterns to be processed by fnmatch.

• prefix (bool) – If True, then match() will perform prefix matching rather than exact
string matching.

Return type re.RegexObject

fastdupes.print_defaults()
Pretty-print the contents of DEFAULTS

fastdupes.pruneUI(dupeList, mainPos=1, mainLen=1)
Display a list of files and prompt for ones to be kept.

The user may enter all or one or more numbers separated by spaces and/or commas.

Note: It is impossible to accidentally choose to keep none of the displayed files.

Parameters

• dupeList (list) – A list duplicate file paths

• mainPos (int) – Used to display “set X of Y”

• mainLen (int) – Used to display “set X of Y”

Returns A list of files to be deleted.

Return type int

fastdupes.sizeClassifier(paths, *args, **kwargs)
Sort a file into a group based on on-disk size.

Parameters

• paths – See fastdupes.groupify()

• min_size (__builtins__.int) – Files smaller than this size (in bytes) will be ig-
nored.

Returns See fastdupes.groupify()

Todo

Rework the calling of stat() to minimize the number of calls. It’s a fairly significant percentage of the time
taken according to the profiler.

5

https://docs.python.org/2/library/fnmatch.html#module-fnmatch
https://docs.python.org/2/library/re.html#re.RegexObject.match
https://docs.python.org/2/library/re.html#re.RegexObject
https://docs.python.org/2/library/os.html#os.stat

Find Dupes Fast Documentation, Release 0.3.6

6 Chapter 1. API Documentation

CHAPTER 2

TODO Note Index

Todo

Figure out how to do ePyDoc-style grouping here without giving up automodule-level comfort.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes, line 26.)

Todo

Discard chunk contents immediately once they’re no longer needed

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.compareChunks, line 18.)

Todo

Add a secondary check for symlinks for safety.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.delete_dupes, line 16.)

Todo

Try to optimize the ignores matching. Running a regex on every filename is a fairly significant percentage of the time
taken according to the profiler.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.getPaths, line 13.)

7

Find Dupes Fast Documentation, Release 0.3.6

Todo

Find some way to bring back the file-by-file status text

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.groupBy, line 26.)

Todo

Start examining the while handles: block to figure out how to minimize thrashing in situations where read-ahead
caching is active. Compare savings by read-ahead to savings due to eliminating false positives as quickly as possible.
This is a 2-variable min/max problem.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.groupByContent, line 16.)

Todo

Look into possible solutions for pathological cases of thousands of files with the same size and same pre-filter results.
(File handle exhaustion)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.groupByContent, line 21.)

Todo

Rework the calling of stat() to minimize the number of calls. It’s a fairly significant percentage of the time taken
according to the profiler.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/fastdupes/checkouts/latest/fastdupes.py:docstring
of fastdupes.sizeClassifier, line 10.) Find Dupes Fast (A.K.A. fastdupes.py) is a simple script which identifies
duplicate files several orders of magnitude more quickly than fdupes by using smarter algorithms.

It was originally inspired by Dave Bolton’s dedupe.py and Reasonable Software’s NoClone and has no external de-
pendencies beyond the Python 2.x standard library.

Full API documentation is available on ReadTheDocs and, pending proper end user documentation, the --help
option is being constantly improved.

8 Chapter 2. TODO Note Index

https://docs.python.org/2/library/os.html#os.stat
https://packages.debian.org/stable/fdupes
http://davebolton.net/blog/?p=173
http://noclone.net/
http://fastdupes.readthedocs.org/en/latest/apidocs.html
https://github.com/ssokolow/fastdupes/issues/24

CHAPTER 3

Algorithm

The default mode of operation is as follows:

1. The given paths are recursively walked (subject to --exclude) to gather a list of files.

2. Files are grouped by size (because stat() is fast compared to read()) and single-entry groups are pruned
away.

3. Groups are subdivided and pruned by hashing the first 16KiB of each file.

4. Groups are subdivided and pruned again by hashing full contents.

5. Any groups which remain are sets of duplicates.

Because this multi-pass approach eliminates files from consideration as early as possible, it reduces the amount of disk
I/O that needs to be performed by at least an order of magnitude, greatly speeding up the process.

Here are the final status messages from a cold-cache run I did on my machine to root out cases where my manual
approach to backing up things that don’t change left duplicates lying around:

$ python fastdupes.py /srv/Burned/Music /srv/Burned_todo/Music /srv/fservroot/music
Found 72052 files to be compared for duplication.
Found 7325 sets of files with identical sizes. (72042 files examined)
Found 1197 sets of files with identical header hashes. (38315 files examined)
Found 1197 sets of files with identical hashes. (2400 files examined)

Those ... files examined numbers should show its merits. The total wall clock runtime was 280.155 seconds.

Memory efficiency is also kept high by building full-content hashes incrementally in 64KiB chunks so that full files
never need to be loaded into memory.

9

Find Dupes Fast Documentation, Release 0.3.6

10 Chapter 3. Algorithm

CHAPTER 4

Exact Comparison Mode

If the -E switch is provided on the command line, the final full-content SHA1 hashing will be omitted. Instead, all of
the files in each group will be read from the disk in parallel, comparing chunk-by-chunk and subdividing the group as
differences appear.

This greatly increases the amount of disk seeking and offers no benefits in the vast majority of use cases. However, if
you are storing many equally-sized files on an SSD and their headers are identical but they do vary, the incremental
nature of this comparison may save you time by allowing the process to stop reading a given file as soon as it becomes
obvious that it’s unique.

The other use for this (avoiding the risk of hash collisions in files that have identical sizes and do not differ in their
first 16KiB of data but are different elsewhere) is such a tiny risk that very few people will need it.

(Yes, it’s a fact that, because files are longer than hashes, collisions are possible... but only an astronomically small
number of the possible combinations of bytes are meaningful data that you’d find in a file on your hard drive.)

11

Find Dupes Fast Documentation, Release 0.3.6

12 Chapter 4. Exact Comparison Mode

CHAPTER 5

The --delete option

Like fdupes, fastdupes.py provides a --delete option which produces interactive prompts for removing duplicates.

However, unlike with fdupes, these prompts make it impossible to accidentally delete every copy of a file. (Bugs
excepted, of course. A full unit test suite to ensure this behaviour is still on the TODO list.)

• The --delete UI asks you which files you’d like to keep and won’t accept an empty response.

• Specifying a directory more than once on the command line will not result in a file being listed as a duplicate of
itself. Nor will specifying a directory and its ancestor.

• A --symlinks option will not be added until safety can be guaranteed.

The --prefer and --noninteractive options

Often, when deduplicating with --delete, you already know that files in one directory tree should be preferred over
files in another.

For example, if you have a folder named To Burn and another named Burned, then you shouldn’t have to tell your
deduplicator that files in the former should be deleted.

By specifying --prefer=*/Burned on the command-line, you can skip the prompts in such a situation while still
receiving prompts for other files.

Furthermore, if you’d like a fully unattended deduplication run, include the --noninteractive option and
fastdupes will assume that you want to keep all copies (do nothing) when it would otherwise prompt.

Finally, a --dry-run option is provided in case you need to test the effects of a --delete setup without risk to
your files.

13

Find Dupes Fast Documentation, Release 0.3.6

14 Chapter 5. The --delete option

CHAPTER 6

Indices and tables

• genindex

• modindex

• TODO Note Index

• search

15

Find Dupes Fast Documentation, Release 0.3.6

16 Chapter 6. Indices and tables

Python Module Index

f
fastdupes, 1

17

Find Dupes Fast Documentation, Release 0.3.6

18 Python Module Index

Index

C
CHUNK_SIZE (in module fastdupes), 1
compareChunks() (in module fastdupes), 1

D
DEFAULTS (in module fastdupes), 1
delete_dupes() (in module fastdupes), 2

F
fastdupes (module), 1
find_dupes() (in module fastdupes), 2

G
getPaths() (in module fastdupes), 2
groupBy() (in module fastdupes), 3
groupByContent() (in module fastdupes), 3
groupify() (in module fastdupes), 4

H
hashClassifier() (in module fastdupes), 4
hashFile() (in module fastdupes), 4
HEAD_SIZE (in module fastdupes), 1

M
main() (in module fastdupes), 4
multiglob_compile() (in module fastdupes), 4

O
OverWriter (class in fastdupes), 1

P
print_defaults() (in module fastdupes), 5
pruneUI() (in module fastdupes), 5

S
sizeClassifier() (in module fastdupes), 5

W
write() (fastdupes.OverWriter method), 1

19

	API Documentation
	TODO Note Index
	Algorithm
	Exact Comparison Mode
	The --delete option
	The --prefer and --noninteractive options

	Indices and tables
	Python Module Index

