
fast-package-file
Release 1.1

Jul 14, 2019

Contents

1 Installation 3

2 Features 5

3 Usage guide 7
3.1 Function reference . 7
3.2 Packaged data file format . 9

4 Contribute 11

5 License 13

Python Module Index 15

Index 17

i

ii

fast-package-file, Release 1.1

Package a directory to a file, with fast file access and compression support

import fast_package_file

Package a directory into a file
fast_package_file.build('a_directory', 'a_package.file')

Prepare a package file
data_package = fast_package_file.PackagedDataFile('a_package.file')

Load a file from the packed directory and save it
with open('any.file', 'wb') as any_file:

data_package.load_file('path\\to\\any.file')

Or just get the raw binary data
from PIL import Image
i = Image.open(io.BytesIO(data_package.load_file('image.png')))

Some other useful functions
data_package.load_bulk(prefix='audio\\sfx\\', postfix='.wav')
fast_package_file.oneshot('a_package.file', 'path\\to\\any.file')
fast_package_file.oneshot_bulk('a_package.file', prefix='audio\\sfx\\', postfix='.wav
→˓')

Contents 1

fast-package-file, Release 1.1

2 Contents

CHAPTER 1

Installation

From PyPI:

pip install fast-package-file

Or from Github:

pip install git+git://github.com/Kataiser/fast-package-file.git@master#egg=fast_
→˓package_file

3

fast-package-file, Release 1.1

4 Chapter 1. Installation

CHAPTER 2

Features

• Is fast because only the data needed is loaded from the package file, total package size is irrelevant

• Obfuscates files from (most) users

• Like a .zip file, but doesn’t decompress the entire thing when reading just one file

• Includes the entire directory and subdirectories, not just surface-level files

• Files are compressed with Gzip, but only if compression improves file size (per file) and is enabled (per package
file)

• Pretty good error handling when loading package files, just catch fast_package_file.PackageDataError

• A simple, open-source and documented file format that can easily be parsed and read in other languages

• Inspired by video game packaging, such as UE4’s .pak or GTA V’s .rpf formats

• Cross-platform, has CI for Linux, MacOS, and Windows

5

fast-package-file, Release 1.1

6 Chapter 2. Features

CHAPTER 3

Usage guide

3.1 Function reference

3.1.1 Building packages

fast_package_file.build(directory: str, target: str, compress: bool = True, keep_comp_threshold:
float = 0.98, hash_mode: Optional[str] = None, comp_func:
Callable[[bytes], bytes] = None, crc32_paths: bool = False, progress_bar:
bool = True, silent: bool = False)

Build a packaged data file from a directory.

Parameters

• directory – The directory to package. Includes all subdirectories.

• target – The path for the package file. If it already exists, it’s overwritten. The file
extension can be whatever you like.

• compress – Whether to compress the package, either with comp_func or Gzip by de-
fault.

• keep_comp_threshold – 0 through 1 (default is 0.98). For each input file, if compres-
sion doesn’t improve file size by this ratio, the file is instead stored uncompressed. Set to 1
to compress every file no matter what.

• hash_mode – The hash method to use to ensure file validity. Can be “md5”, “crc32”, or
“sha256”. If None (the default), only the first and last bytes are compared.

• comp_func – A supplied decompression function that takes bytes and returns bytes.
Some recommendations: LZMA, LZMA2, Deflate, BZip2, Oodle, or Zstandard.

• crc32_paths – Store file paths as crc32 numbers. Useful for obfuscating file names and
paths.

• progress_bar – Whether to show a progress bar (uses tqdm). If tqdm isn’t installed, this
is irrelevant.

7

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://github.com/tqdm/tqdm

fast-package-file, Release 1.1

• silent – Disable all prints.

3.1.2 Getting data out of packages

fast_package_file.PackagedDataFile.__init__(self, data_file_path: str, prepare: bool =
True, decomp_func: Callable[[bytes], bytes]
= None)

Prepare a packaged data file.

Parameters

• data_file_path – Location of the package.

• prepare – Whether to load, decompress (if necessary), and parse the file location header
now, or wait until the first file is loaded. Regardless, the entire package is not loaded.

• decomp_func – A supplied decompression function.

fast_package_file.PackagedDataFile.load_file(self, file: str)→ bytes
Load a single file from the package. Also loads and parses the location data header for the packge, if it hasn’t
been already.

Parameters file – The path to the file, relative to the input directory (e.g. a file at surface level
would be file.txt, and one folder in would be folder\file.txt).

Returns The file as a bytes object, uncompressed.

Note: File paths stored within a package file are modified to always use backslashes as path seperators, re-
gardless of what OS is used to build or load the package. Be sure to either escape the backslashes or use raw
strings.

fast_package_file.PackagedDataFile.load_bulk(self, prefix: str = ”, postfix: str = ”) →
Dict[str, bytes]

Load multiple files at once, based on a prefix and/or a postfix for the file path (uses .startswith and .
endswith).

Parameters

• prefix – File path prefix (e.g. a subdirectory).

• postfix – File path postfix (e.g. a file extension).

Returns A dict, formatted as {'path': bytes}.

Note: Doesn’t support packages using crc32 file paths.

3.1.3 Helpers

fast_package_file.oneshot(data_file_path: str, file: str, decomp_func: Callable[[bytes], bytes] =
None)→ bytes

Load a single file from a package file.

Parameters

• data_file_path – Location of the package.

• file – The path to the file, relative to the input directory (same as load_file()).

8 Chapter 3. Usage guide

fast-package-file, Release 1.1

• decomp_func – A supplied decompression function.

Returns The file as bytes, uncompressed.

Note: If you’re planning on ever loading another file from the same package, it’s recommended to use
PackagedDataFile explicitly since it caches the file location data.

fast_package_file.oneshot_bulk(data_file_path: str, prefix: str = ”, postfix: str = ”, decomp_func:
Callable[[bytes], bytes] = None)→ Dict[str, bytes]

Combines oneshot() and load_bulk(). Same note as oneshot().

Parameters

• data_file_path – Location of the package.

• prefix – Same as load_bulk().

• postfix – Same as load_bulk().

• decomp_func – A supplied decompression function.

Returns A dict, formatted as {'path': bytes}.

Note: Doesn’t support packages using crc32 file paths.

fast_package_file.PackagedDataFile.file_data
A dictionary containing the file location data.

Type dict: {'path': (offset, length, compressed (1 or 0), first
byte, last byte)}

fast_package_file.PackagedDataFile.__repr__(self)
Includes path, number of files, and total file size.

Returns str

exception fast_package_file.PackageDataError

3.2 Packaged data file format

Although the builder and loader for this format are implemented in Python, the format can of course be read by any
languange.

• 0x00 (2-byte unsigned little-endian int): File format version.

• 0x01 (8-byte unsigned little-endian int): Size of the file location header, in bytes, as stored in the file (i.e. after
compression).

• 0x09 (1-byte bool): Whether the header is compressed (not including these first 10 bytes, which are never
compressed).

• 0x0A (1-byte bool): Whether the file paths use crc32 encoding.

• 0x0B (UTF-8 string): The file location header, as JSON.

• The rest is file data, placed end-to-end.

3.2. Packaged data file format 9

fast-package-file, Release 1.1

3.2.1 File location header (JSON)

{"folder\\file1.txt":
[file location, relative to the end of the entire header (int),
file size, after compression if enabled (int),
file is compressed (bool),
first byte of file (int),
last byte of file (int)],

"folder\\file2.txt": [...], ...}

Note: This example is multi-line for readability, but the actual format has no newlines.

Note: File paths are stored as actual double backslashes (\\). Python’s JSON loader handles this automatically,
make sure yours does or reformat the string.

Note: If using crc32 file paths, they are stored as strings of integers.

10 Chapter 3. Usage guide

CHAPTER 4

Contribute

• Issue Tracker: https://github.com/Kataiser/fast-package-file/issues

• Source Code: https://github.com/Kataiser/fast-package-file

11

https://github.com/Kataiser/fast-package-file/issues
https://github.com/Kataiser/fast-package-file

fast-package-file, Release 1.1

12 Chapter 4. Contribute

CHAPTER 5

License

The project is licensed under the MIT license.

13

fast-package-file, Release 1.1

14 Chapter 5. License

Python Module Index

f
fast_package_file, 7

15

fast-package-file, Release 1.1

16 Python Module Index

Index

Symbols
__init__() (in module

fast_package_file.PackagedDataFile), 8
__repr__() (in module

fast_package_file.PackagedDataFile), 9

B
build() (in module fast_package_file), 7

F
fast_package_file (module), 7
file_data (in module

fast_package_file.PackagedDataFile), 9

L
load_bulk() (in module

fast_package_file.PackagedDataFile), 8
load_file() (in module

fast_package_file.PackagedDataFile), 8

O
oneshot() (in module fast_package_file), 8
oneshot_bulk() (in module fast_package_file), 9

P
PackageDataError, 9

17

	Installation
	Features
	Usage guide
	Function reference
	Packaged data file format

	Contribute
	License
	Python Module Index
	Index

