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Fast Depth Coding Using Deep Learning is the thesis topic. The details of the implementation are documented here
for reference.

This documentation is organized into a couple sections:

• Propose the Algorithm

• Pre-process the Data

• Train the Model

• Evaluate the Model

• Use the Learned Model

• Simulation Results

• References

Propose the Algorithm 1
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2 Propose the Algorithm



CHAPTER 1

Flow Chart

In 3D-HEVC, the wedgelet searching process in the depth map coding consumes a lot of time. We propose an
algorithm in this work to balance the trade-off between coding efficiency and computational complexity using deep
learning.

Fig. 1: Figure 1: Flowchart for Proposed Algorithm

Fig. 2: Figure 2: Detailed Flowchart for Proposed Algorithm
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CHAPTER 2

Description

step 1 Get the Luma pixel values from one depth block. (The block can be of size 8x8, 16x16, 32x32)

step 2 Feed the 2D matrix of Luma pixels into learned model for getting the top-16 predictions.

step 3 Add top 16 predictions into the RMD LIST.

step 4 Check whether mode 2 is inside RMD LIST. If yes, add mode 34 into RMD LIST; otherwise jump to step
5.

step 5 Add mode 0, 1, DMM1, DMM4 into RMD LIST.

step 6 Do RMD. For DMM1, only check the directions covered by top-16 predictions.

step 7 Add two modes into FULL RDO LIST. Do full RDO.

step 8 Obtain the best mode for the depth block.

Note: The above process can be applied to a batch of blocks, in which case the time cost of prediction can be
optimized. For details, see Time Cost of TF in C++
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6 Chapter 2. Description



CHAPTER 3

[Deprecated]Flow chart

This chart has been deprecated. Kept here only for reference.

Deprecation Summary

• For below reason 1 and reason 2, we remove edge strength analysis;

• For below reason 3, we remove the implementation to texture.

Reasons

1. Edge strength analysis is not innovative.

2. Besides, removing it from the flow chart only will decrease the accuracy of ResNet prediction by roughly
2%~3%.

3. And according to Dr.Tsang, since we are only using luma pixel values, it seems we should not apply our model
into the texture blocks.

Fig. 1: Figure D-1: Flowchart for Proposed Fast Intra Mode Decision Algorithm
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CHAPTER 4

Data Collection

This document will show you how to collect the data.

The source code of the project for processing the data is in GitHub: https://github.com/PharrellWANG/
data-processing-for-fdc

4.1 Training Data Source

We collect the data by encoding the video sequences.

Data are collected from four video sequences.

# Name of the Sequence Resolution Usage Frames
1 Balloons 1024x768 train/test/validation 300
2 kendo 1024x768 train/test/validation 300
3 poznan_street 1920x1088 train/test/validation 250
4 undo_dancer 1920x1088 train/test/validation 250

4.2 Method for Collecting the data

Based on the Effort from Ho:

When encoding the video sequences, for every block (of size 4x4, 8x8, 16x16, 32x32, 64x64):

• if DIS has been assigned (where DIS_FLAG == 1), we skip it (since none of the conventional intra modes
including DMMs will be used). Skip it means we don’t collect data from it.

• else if DIS has not been assigned (where DIS_FLAG == 0), let’s identify the partition mode:

– if HTM encoder decides to implement a partition for the block (where partition_number == 4
(NXN)):

9
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* collect the INTRA_PRED[1], INTRA_PRED[2], INTRA_PRED[3], INTRA_PRED[4] for each
sub parts along with their 1-D Depth Data.

– else if HTM encoder decides not to implement a partition:

* let’s collect the INTRA_PRED[0] along with the 1-D Depth Data.

Note:

1. 1-D Depth Data means the pixel value of the depth block being flattened into 1 dimension. For example, to
store an M x N matrix of pixel values (you can imagine those pixels forming an image, hence it is like we are
storing an image), the 1-D Depth Data (pixel values) must contain M*N values, with M rows of N contiguous
values each. That is, the 1-D data must store the matrix as: .... row 0 .... .... row 1 .... //
........... // ... row M-1 ....

2. when collecting the data, I have made it to write 35 for mode 37, and 36 for mode 38. Hence a little time/energy
is saved for the data processing.

4.3 Effort from Ho

The pdf file contributed by Ho are provided for downloading.

20170621 Fast Depth Coding Via TensorFlow (Data Collection) v1
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CHAPTER 5

Processing Steps and Statistics

After encoding the sequences, we obtained size 4x4, 8x8, 16x16, 32x32 and 64x64 for each sequence.

5.1 Step 1 Merging

Then we do the merging. i.e.,

1. Merge the data of block size 4x4 from four sequences together.

2. Merge the data of block size 8x8 from four sequences together.

3. Merge the data of block size 16x16 from four sequences together.

4. Merge the data of block size 32x32 from four sequences together.

5. Merge the data of block size 64x64 from four sequences together.

After merging, we obtained five csv files:

# Name of the Files Size Samples Usage
1 size_04.csv 206.7 MB 3675428 train/test/validation
2 size_08.csv 513.6 MB 2372324 train/test/validation
3 size_16.csv 1.25 GB 1439773 train/test/validation
4 size_32.csv 2.02 GB 567554 train/test/validation
5 size_64.csv 1.85 GB 125141 train/test/validation

Mode distribution data after merging are provided for downloading as text format.

mode distribution of block size 04x04

mode distribution of block size 08x08

mode distribution of block size 16x16

mode distribution of block size 32x32

11
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mode distribution of block size 64x64

5.2 Step 2 Removing some modes

Remove mode 0, 1, 34, 35, 36. We only do deep learning for angular modes. Mode 34 is removed because mode 34
has the same direction feature as mode 2.

After removing 0, 1, 34, 35, 36:

# Name of the Files Size Samples Usage
1 m_size_04.csv 75.7 MB 1335970 train/test/validation
2 m_size_08.csv 130.8 MB 600187 train/test/validation
3 m_size_16.csv 377.3 MB 430302 train/test/validation
4 m_size_32.csv 708.7 GB 195943 train/test/validation
5 m_size_64.csv 1.37 GB 92034 train/test/validation

Percentage of non-angular-removed data:

size 4: (3675428 - 1335970) / 3675428.0 = 0.64

size 8: (2372324 - 600187) / 2372324.0 = 0.74

size 16: (1439773 - 430302) / 1439773.0 = 0.70

size 32: (567554 - 195943) / 567554.0 = 0.65

size 64: (125141 - 92034) / 125141.0 = 0.26

The mode distribution data are provided for downloading.

mode distribution of block size 04x04 AFTER non-angular removing

mode distribution of block size 08x08 AFTER non-angular removing

mode distribution of block size 16x16 AFTER non-angular removing

mode distribution of block size 32x32 AFTER non-angular removing

mode distribution of block size 64x64 AFTER non-angular removing

5.3 Step 3 Removing Smooth Blocks

Perform Edge Strength Analysis for each block sample of all sizes. Observing the histogram distribution.

Flat regions will trap CNN into ill condition. I decided to remove the regions where the edge strength is under 50.

And for the blocks where the edge strength is above 25000, we only consider four modes: VER, HOR, Wedgelet,
Contour.

After removing the smooth areas,

# Name of the Files Size Samples Usage
1 sm_size_04.csv 36.3 MB 616281 train/test/validation
2 sm_size_08.csv 91.2 MB 403277 train/test/validation
3 sm_size_16.csv 210.9 MB 232806 train/test/validation
4 sm_size_32.csv 235.4 MB 65481 train/test/validation
5 sm_size_64.csv 271.8 MB 19244 train/test/validation

12 Chapter 5. Processing Steps and Statistics
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Percentage of smooth-removed data:

size 4: (1335970 - 616281) / 1335970.0 = 0.54

size 8: (600187 - 403277) / 600187.0 = 0.33

size 16: (430302 - 232806) / 430302.0 = 0.46

size 32: (195943 - 65481) / 195943.0 = 0.67

size 64: (92034 - 19244) / 92034.0 = 0.79

The mode distribution data are provided for downloading.

mode distribution of block size 04x04 AFTER smooth removing

mode distribution of block size 08x08 AFTER smooth removing

mode distribution of block size 16x16 AFTER smooth removing

mode distribution of block size 32x32 AFTER smooth removing

mode distribution of block size 64x64 AFTER smooth removing

5.4 Step 4 Imbalanced Learning

Please notice we are facing a problem of imbalanced learning which means the data sizes of each class vary in a large
scale. To tackle the issue: we use equal data sizes for each class, abandon the extra data.

5.5 Step 5 Tagging

Tag the mode to start from 0, end with 31. Just use modeIdx - 2 to obtain the new index of each mode for deep
learning.

5.6 Final Data Description

# Name of the Files Size Samples Usage
1 train_04x04.csv 7.9 MB 4092*32 train
2 test_04x04.csv 1.1 MB 600*32 test
3 val_04x04.csv 1.1 MB 600*32 validation

# Name of the Files Size Samples Usage
1 train_08x08.csv 46.3 MB 6303*32 train
2 test_08x08.csv 3.8 MB 600*32 test
3 val_08x08.csv 3.8 MB 600*32 validation

# Name of the Files Size Samples Usage
1 train_16x16.csv 89.9 MB 3075*32 train
2 test_16x16.csv 15.9 MB 600*32 test
3 val_16x16.csv 15.6 MB 600*32 validation

1. After trying to train data of size 04x04, it does not learn well, only top-28 accuracy is around 0.95.

5.4. Step 4 Imbalanced Learning 13



Fast Depth Coding Using Deep Learning Documentation, Release 0.1.0

2. Too few data for size 32x32 and 64x64 after smooth removing. We resize them using Bilinear Interpolation for
employing learned model for size 16x16

14 Chapter 5. Processing Steps and Statistics



CHAPTER 6

Data Visualization

6.1 Summary

The modes are chosen based on RD cost, which is a function of distortion and coding rate.

Each CU will choose the optimal mode which has the least RD Cost.

There might be a chance to choose the mode with distortion but lower coding rate.

The distortion would also depend on the distortion of synthesized texture view if VSO is on.

6.2 Memo

Note: Please notice this visualization is for the data without any pre-processing, i.e., the data that we obtained right
after encoding the video sequences. You can get a sense of what kind of data that we are dealing with. And you
might know the reason for the techniques executed in the pre-processing steps, such as edge strength analysis for
smooth-removing.

In the python project for pre-processing the data, which is data-processing-for-fast-depth-coding, you can visualize
the collected data by typing commands from terminal:

python data_visu/visualize_blocks.py --block_size=32 --mode=2

Figure 0-1. Illustration of Intra modes [0, 34] and Figure 0-2. Examples of 8x8 luma prediction blocks generated with
all the HEVC intra prediction modes. are the illustrations of Intra modes in HEVC in case you want to refresh your
memory. (DMMs are not illustrated here).

Other figures are the visualization of some collected data.

Note: Posting all the visualization images here would be possibly overwhelming and unnecessary. However, if you
want to see all the visualizations, that is also doable (by spending a little more time running the python script then

15
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Fig. 1: Figure 0-0. running the visualization
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capturing screen). Please just let me know if there’s a need :D

Important: Please compare Figure 2-2. Intra Mode: 2, Block Size: 16x16 with Figure 2-34. Intra Mode: 34, Block
Size: 16x16. Compare the two blocks in red circle. You should be able to find the patterns are very similar to each
other while their modes are totally different. This is the reason why we need to use TOP-5 accuracy instead of TOP-1
for evaluating the machine learning model.

TOP-5 To compare models, we examine how often the model fails to predict the correct answer as one of their top 5
guesses – termed “top-5 error rate”.

Tip: Feel free to click on the figures for inspecting their features carefully by enlarging or downloading. They are
licensed under MIT License.

6.3 Intra modes in HEVC

Fig. 2: Figure 0-1. Illustration of Intra modes [0, 34]

Fig. 3: Figure 0-2. Examples of 8x8 luma prediction blocks generated with all the HEVC intra prediction modes.

6.3. Intra modes in HEVC 17
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Fig. 4: Figure 1-0. Intra Mode: 0, Block Size: 8x8

18 Chapter 6. Data Visualization
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Fig. 5: Figure 1-1. Intra Mode: 1, Block Size: 8x8

6.3. Intra modes in HEVC 19
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Fig. 6: Figure 1-2. Intra Mode: 2, Block Size: 8x8

20 Chapter 6. Data Visualization
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Fig. 7: Figure 1-3. Intra Mode: 3, Block Size: 8x8

6.3. Intra modes in HEVC 21
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Fig. 8: Figure 1-4. Intra Mode: 4, Block Size: 8x8

22 Chapter 6. Data Visualization
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Fig. 9: Figure 1-5. Intra Mode: 5, Block Size: 8x8

6.3. Intra modes in HEVC 23



Fast Depth Coding Using Deep Learning Documentation, Release 0.1.0

Fig. 10: Figure 1-6. Intra Mode: 6, Block Size: 8x8

24 Chapter 6. Data Visualization
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Fig. 11: Figure 1-7. Intra Mode: 7, Block Size: 8x8

6.3. Intra modes in HEVC 25
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Fig. 12: Figure 1-33. Intra Mode: 33, Block Size: 8x8

26 Chapter 6. Data Visualization
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Fig. 13: Figure 1-35. Intra Mode: 35, Block Size: 8x8

6.3. Intra modes in HEVC 27
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Fig. 14: Figure 1-36. Intra Mode: 36, Block Size: 8x8

28 Chapter 6. Data Visualization
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6.4 Examples for block size 8x8

6.5 Examples for block size 16x16

Fig. 15: Figure 2-0. Intra Mode: 0, Block Size: 16x16

6.6 Examples for block size 32x32

6.7 Examples for block size 64x64

Figure 4-0. Intra Mode: 0, Block Size: 64x64

Figure 4-1. Intra Mode: 1, Block Size: 64x64

Figure 4-2. Intra Mode: 2, Block Size: 64x64

Figure 4-3. Intra Mode: 3, Block Size: 64x64

Figure 4-4. Intra Mode: 4, Block Size: 64x64

Figure 4-5. Intra Mode: 5, Block Size: 64x64

6.4. Examples for block size 8x8 29
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Fig. 16: Figure 2-1. Intra Mode: 1, Block Size: 16x16
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Fig. 17: Figure 2-2. Intra Mode: 2, Block Size: 16x16

6.7. Examples for block size 64x64 31
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Fig. 18: Figure 2-3. Intra Mode: 3, Block Size: 16x16
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Fig. 19: Figure 2-34. Intra Mode: 34, Block Size: 16x16

6.7. Examples for block size 64x64 33
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Fig. 20: Figure 3-0. Intra Mode: 0, Block Size: 32x32
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Fig. 21: Figure 3-1. Intra Mode: 1, Block Size: 32x32

6.7. Examples for block size 64x64 35
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Fig. 22: Figure 3-2. Intra Mode: 2, Block Size: 32x32
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Fig. 23: Figure 3-3. Intra Mode: 3, Block Size: 32x32

6.7. Examples for block size 64x64 37
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Fig. 24: Figure 3-30. Intra Mode: 30, Block Size: 32x32
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Fig. 25: Figure 3-33. Intra Mode: 33, Block Size: 32x32

6.7. Examples for block size 64x64 39
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Fig. 26: Figure 3-34. Intra Mode: 34, Block Size: 32x32
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Fig. 27: Figure 3-35. Intra Mode: 35, Block Size: 32x32

6.7. Examples for block size 64x64 41
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Fig. 28: Figure 3-36. Intra Mode: 36, Block Size: 32x32
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Figure 4-32. Intra Mode: 32, Block Size: 64x64

Figure 4-33. Intra Mode: 33, Block Size: 64x64

Figure 4-34. Intra Mode: 34, Block Size: 64x64

50 Chapter 6. Data Visualization
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CHAPTER 7

Edge Strength Analysis

7.1 Motivation originated from experience

To know the motivation, first you have to know some experience.

I have tried to train the data by using 37 classes, including mode [0, 1, 2, . . . , 34, DMM1, DMM4]. (2 + 33 + 2 = 37)

7.1.1 Confusion matrix obtained during training process

Confusion matrix provided for downloading.

Confusion matrix after 10342 steps

Confusion matrix after 20622 steps

Confusion matrix after 30757 steps

Confusion matrix after 40884 steps

Confusion matrix after 51009 steps

Confusion matrix after 61168 steps

7.1.2 Statistics

1. total train samples: 2900*37

2. Batch size:128

3. 61168*128/2900/37 = 73 epoch

• Refer to the confusing matrix, after 73 epochs, the model still don’t understand the features of mode 0, 1,
35, 36, which possibly means the CNN is not capable of learning features for 0, 1, 35, 36. Or it can mean
my network size is not large enough to learn the features inside mode 0, 1, 35, 36. Or it can mean CNN is
not enough for learn them. I think RNN is able to gain much lifting in classification accuracy by taking the
information related to time into consideration. But due to the limited time, i have not tried it yet.
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• Refer to the confusing matrix, the CNN must be able to distinguish between angular modes.

After visualizing the angular modes, the blocks with very weak edges for each mode are frequently observed. They
looks like the planar or DC mode.

I’ve tried to train the model while the blocks with weak edges are kept in the training data. Results are not good.

Then it is natural to come to the conclusion that it is not good to mix smooth block with angular blocks for classification
under the confidence that our neural net is good in the sense of both architecture and hyper params. (The confidence
originated from the high accuracy on CIFAR-10/100 data set, and the conclusion in the paper of wide residul network
are verified clearly.)

The conclusion smooth regions will trap CNN in ill condition is also found in the journal paper
below:

CU Partition Mode Decision for HEVC Hardwired Intra Encoder Using CNN

So we decided to remove the smooth regions.

When trying to remove the smooth region, we are facing a question:

How to define the smooth regions?

Well, see below for the answer.

7.2 Algorithm designed for edge analysis

For answering the question of How to define the smooth regions, we can think like this: can we define
the sharpness of the edges?

Yes. We can.

See below code snippets for a quick understanding of how we define the edge strength:

for each sample (a row) in the collected data set (a csv file):
feature = the_pixel_data_of_a_square_block_as_a_matrix

for i in range(width_of_the_block - 1):
for j in range(width_of_the_block - 1):

#calculating the hor and ver strength
horizontal_strength = \

features[i][j] + \
features[i + 1][j] - \
features[i][j + 1] - \
features[i + 1][j + 1]

vertical_strength = \
features[i][j] + \
features[i][j + 1] - \
features[i + 1][j] - \
features[i + 1][j + 1]

# calculating the power
strength = horizontal_strength ** 2 + vertical_strength ** 2
# put each strength into an numpy array to get the
# total strength of a block (or you can say a line
# in the csv file)
data = np.append(data, np.array([strength]))
total_strength += strength

assert (data.ndim == 1)

Then calculate top (width*2 && non-zero) average.

54 Chapter 7. Edge Strength Analysis
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# calculating top (width*2 && non-zero) average.
# step1: top width*2 values in the numpy arrary
top_k = data[np.argsort(data)][data.size - RESHAPE * 2:]
assert (top_k.ndim == 1)
# step2: non-zero values (because sometimes the edge length can be
# short. We only want the sharpness. We do not want smooth regions
# to affect the sharpness.)
data = top_k[top_k.nonzero()]
# e.g., [[2, 0], [0, 0]], i exclude it from the concept of sharp
data = data[np.where(data > 8)]
# all the strength are zero. (that is to say , it is like DC mode)
if data.size == 0:

ave = 0
data = np.array([0])

else:
ave = np.mean(data)
data = np.array([ave])

# add ave of the blocks grouping by each mode.
# calculate the ave by dividing the number of blocks of each mode

We encouraging the readers to check the python codes provided below for downloading to understand the algorithm
used by us. (The python codes for the algorithm is short and easy to understand!)

Edge analysis algorithm implemented in python is provided for downloading.

Edge Analysis in Python

7.2. Algorithm designed for edge analysis 55
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CHAPTER 8

Convolutional Neural Network

Download codebase from GitHub: https://github.com/PharrellWANG/fdc_resnet_v3

ConvNet architectures make the explicit assumption that the inputs are images/blocks.

Fig. 1: Figure 1: Convolutional Neural Networks

why resnet? 1. easier to train 2. faster to converge

Fig. 2: Figure 2: Basic Unit of ResNet

Fig. 3: Figure 3: Our Neural Network Structure

57
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CHAPTER 9

Settings

• All the models are trained from scratch.

• Since the datasets for block size 32x32 and size 64x64 are too small, models are not trained for them. Instead,
we use Bilinear Interpolation to resize the block to do the prediction for them using learned model for block size
16x16.

1. No padding/cropping/flipping applied. No data augmentation applied. The orignal data is distorted enough by
nature. See Data Visualization section to get a taste.

2. Momentum optimizer 0.9.

3. Learning rate schedule: 0.01 (<20k), 0.001 (<40k), 0.0001 (<60k), 0.00001 (else).

4. Weight decay rate: 0.0002.

5. Batch size 128.

6. Filters [16, 16, 32, 64], residual units for last three layers: 5

Note:

1. Block size 4x4 is for PU, while the smallest size of CU is 8x8.

2. From below training results, our model is not so applicable to blocks of size 4x4.

3. DMM is not applied for size 64x64.

Our deep learning strategy is targeted to CU from size 8x8 to size 64x64, both texture and depth.
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CHAPTER 10

Training for blocks of size 4x4

10.1 Results

The model cannot learn well for size 4x4, only top-28 is fine.

Fig. 1: Figure 1.1 Top 20 Accuracy
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Fig. 2: Figure 1.2 Top 28 Accuracy

62 Chapter 10. Training for blocks of size 4x4



CHAPTER 11

Training for blocks of size 8x8

11.1 Results

The model indeed can learn something for size 8x8. Top 16 is fine, which can reduce the angular modes by half.

Fig. 1: Figure 2.1 Top 16 Accuracy for block size 08x08
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CHAPTER 12

Training for blocks of size 16x16

12.1 Results

The model indeed can learn something for size 16x16. Top 16 is fine, which can reduce the angular modes by half.

Fig. 1: Figure 2.1 Top 16 Accuracy for block size 16x16
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CHAPTER 13

Training for blocks of size 32x32

Dataset obtained after pre-processing is too small for using deep learning to train a model. We use Bilinear Interpola-
tion to resize the block to employ model trained for size 16x16.
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CHAPTER 14

Training for blocks of size 64x64

Dataset obtained after pre-processing is too small for using deep learning to train a model. We use Bilinear Interpola-
tion to resize the block to employ model trained for size 16x16.
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CHAPTER 15

Model trained from blocks of size 08x08

Note: This model is trained using the data of size 08x08. It is used for the predictions of blocks with size 08x08.

Statistics

1 global step 133000
2 batch size 128
3 samples each class 3075
4 number of classes 32
5 training time 16h 45m 48s
6 epoch 173

Epoch calculating

>>> 133000*128/3075/32.0
173.0081300813008

15.1 Model Performance on Validating Dataset

Evaluation batch size 100, number of batches 192.

Using validating dataset, the details are documented below:

71



Fast Depth Coding Using Deep Learning Documentation, Release 0.1.0

0.1 Name of dataset val_08x08.csv
0.2 Size of dataset 4.8 MB
0.3 Samples 600*32
0.4 Usage of dataset validation
1 top 5 accuracy 0.650
2 top 6 accuracy 0.711
3 top 7 accuracy 0.759
4 top 8 accuracy 0.823
5 top 9 accuracy 0.846
6 top 10 accuracy 0.846
7 top 11 accuracy 0.867
8 top 12 accuracy 0.884
9 top 16 accuracy 0.929
10 top 17 accuracy 0.936
11 top 18 accuracy 0.944
12 top 19 accuracy 0.950
13 top 20 accuracy 0.955
14 top 28 accuracy 0.980

15.2 Model Performance on Testing Dataset

Evaluation batch size 100, number of batches 192.

Using testing dataset, the details are documented below:

0.1 Name of dataset test_08x08.csv
0.2 Size of dataset 4.7 MB
0.3 Samples 600*32
0.4 Usage of dataset test
1 top 5 accuracy 0.651
2 top 6 accuracy 0.710
3 top 7 accuracy 0.756
4 top 8 accuracy 0.791
5 top 9 accuracy 0.820
6 top 10 accuracy 0.843
7 top 11 accuracy 0.863
8 top 12 accuracy 0.879
9 top 16 accuracy 0.922
10 top 17 accuracy 0.931
11 top 18 accuracy 0.938
12 top 19 accuracy 0.944
13 top 20 accuracy 0.951
14 top 28 accuracy 0.988
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CHAPTER 16

Model trained from blocks of size 16x16

Note: This model is trained using the data of size 16x16. But the evaluation results clearly proved: this model is
applicable to size 32x32 and size 64x64 by using Bilinear Interpolation to do resizing for the larger blocks.

Statistics

1 global step 304857
2 batch size 128
3 samples each class 3075
4 number of classes 32
5 training time 11h 47m 50s
6 epoch 396

Epoch calculating

>>> 304857*128/3075/32.0
396.53125
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CHAPTER 17

Using blocks of size 16x16

17.1 Model Performance on Validating Dataset

Evaluation batch size 100, number of batches 192.

Using validating dataset, the details are documented below:

0.1 Name of dataset val_16x16.csv
0.2 Size of dataset 15.6 MB
0.3 Samples 600*32
0.4 Usage of dataset validation
1 top 5 accuracy 0.801
2 top 6 accuracy 0.842
3 top 7 accuracy 0.873
4 top 8 accuracy 0.895
5 top 9 accuracy 0.912
6 top 10 accuracy 0.924
7 top 11 accuracy 0.934
8 top 12 accuracy 0.942
9 top 16 accuracy 0.965
10 top 17 accuracy 0.970
11 top 18 accuracy 0.974
12 top 19 accuracy 0.977
13 top 20 accuracy 0.980
14 top 28 accuracy 0.995

17.2 Model Performance on Testing Dataset

Evaluation batch size 100, number of batches 192.
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Using testing dataset, the details are documented below:

0.1 Name of dataset test_16x16.csv
0.2 Size of dataset 15.9 MB
0.3 Samples 600*32
0.4 Usage of dataset test
1 top 5 accuracy 0.739
2 top 6 accuracy 0.794
3 top 7 accuracy 0.829
4 top 8 accuracy 0.859
5 top 9 accuracy 0.877
6 top 10 accuracy 0.894
7 top 11 accuracy 0.911
8 top 12 accuracy 0.924
9 top 16 accuracy 0.958
10 top 17 accuracy 0.963
11 top 18 accuracy 0.970
12 top 19 accuracy 0.974
13 top 20 accuracy 0.977
14 top 28 accuracy 0.995
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CHAPTER 18

Using blocks of size 32x32

We have tried four resizing method:

1. Bilinear interpolation.

2. Nearest neighbor interpolation.

3. Bicubic interpolation.

4. Area interpolation.

Note: All the data for size 32x32 after pre-processing are used for evaluation. We just named it as val_32x32.csv,
no need for anther test_32x32.csv.

Evaluation batch size 100, number of batches 192.

18.1 Performance with Bilinear Interpolation

Using validating dataset, with Bilinear interpolation, the details are documented below:
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0.1 Name of dataset val_32x32.csv
0.2 Size of dataset 104.9 MB
0.3 Samples 872*32
0.4 Usage of dataset validate&test
1 top 5 accuracy 0.812
2 top 6 accuracy 0.855
3 top 7 accuracy 0.887
4 top 8 accuracy 0.908
5 top 9 accuracy 0.924
6 top 10 accuracy 0.936
7 top 11 accuracy 0.946
8 top 12 accuracy 0.954
9 top 16 accuracy 0.972
10 top 17 accuracy 0.976
11 top 18 accuracy 0.979
12 top 19 accuracy 0.982
13 top 20 accuracy 0.984
14 top 28 accuracy 0.996

18.2 Performance with Nearest Neighbor Interpolation

Almost the same performance as using Linear Interpolation! Omitted here for clarity.

18.3 Performance with Bicubic Interpolation

Almost the same performance as using Linear Interpolation! Omitted here for clarity.

18.4 Performance with Area Interpolation

Almost the same performance as using Linear Interpolation! Omitted here for clarity.
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CHAPTER 19

Using blocks of size 64x64

Based on the observations of the testing results of block size 32x32, we believe there should not be such differences
among different interpolation method.

Here we only use Bilinear Interpolation.

19.1 Performance with Bilinear Interpolation

Using validating dataset, with Bilinear interpolation, the details are documented below:

Total samples: 1728

>>> 54*32
1728

Evaluation batch size 100, number of batches 17.
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0.1 Name of dataset val_64x64.csv
0.2 Size of dataset 24.5 MB
0.3 Samples 54*32
0.4 Usage of dataset validate&test
1 top 5 accuracy 0.764
2 top 6 accuracy 0.821
3 top 7 accuracy 0.868
4 top 8 accuracy 0.892
5 top 9 accuracy 0.916
6 top 10 accuracy 0.932
7 top 11 accuracy 0.946
8 top 12 accuracy 0.956
9 top 16 accuracy 0.973
10 top 17 accuracy 0.979
11 top 18 accuracy 0.982
12 top 19 accuracy 0.984
13 top 20 accuracy 0.987
14 top 28 accuracy 0.994
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CHAPTER 20

Time Cost of TF in C++

20.1 Motivation

When using Tensorflow(TF) C++ APIs, if you want to run the prediction, you have to call session->Run().
(When you call the session->Run(), TF will initialize a session and run the prediction in that session for you.)

We want to know the time cost of session->Run(), since initializing 1 session for 1 block is easier to implement
in HTM (It has already been implemented). But that can be expensive when we talk about time cost. See experiments
for details.

20.2 Experiments

The experiments in this section are performed by loading ResNet graph of size [16, 16, 32, 64], units 5.

Here we present the experiments for evaluating the time cost of session->Run().

Now we want to run predictions for blocks of size 8x8 from a frame in one video sequence.

Total 12288 predictions. (1024/8*768/8=12288)

20.2.1 Session Run

Now we only use normal CPU computing, which means our binary is not compiled with the AVX and SSE4.2 offered
by Intel CPU. (AVX and SSE4.2 are CPU infrastructures for faster matrix computations)

Two choices:

1. Running all samples from one video frame in one session (Figure 1. Running all samples in one session)

2. Running one sample in one session (Figure 2. Running one sample in one session)

Look at the time cost.
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Fig. 1: Figure 1. Running all samples in one session

Fig. 2: Figure 2. Running one sample in one session

# Scenario Time Cost the difficulty of implementation
1 Init 1 session for 12288 block 21.37 s not intuitive
2 Init 12288 sessions for 12288 blocks 47.81 s intuitive

20.2.2 Session Run with AVX, AVX2, SSE4.2

Now we are only using the benefits offered by CPU.

Two choices:

1. Running all samples from one video frame in one session (Figure 3. Running all samples in one session)

2. Running one sample in one session (Figure 4. Running one sample in one session)

Fig. 3: Figure 3. Running all samples in one session

Look at the time cost.

# Scenario Time Cost the difficulty of implementation
1 Init 1 session for 12288 block 15.56 s not intuitive
2 Init 12288 sessions for 12288 blocks 33.91 s intuitive
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Fig. 4: Figure 4. Running one sample in one session

20.2.3 Session Run with AVX, AVX2, SSE4.2 and GPU Support

Now we are using both the benefits offered by CPU and GPU.

Two choices:

1. Running all samples from one video frame in one session (Figure 5. Running all samples in one session)

2. Running one sample in one session (Figure 6. Running one sample in one session)

Fig. 5: Figure 5. Running all samples in one session

Look at the time cost.

# Scenario Time Cost the difficulty of implementation
1 Init 1 session for 12288 block 2.03 s not intuitive
2 Init 12288 sessions for 12288 blocks 55.26 s intuitive

20.3 Conclusions

Now I put the three tables above together for comparison:
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Fig. 6: Figure 6. Running one sample in one session

20.3.1 Plain CPU Config

# Scenario Time Cost the difficulty of implementation
1 Init 1 session for 12288 block 21.37 s not intuitive
2 Init 12288 sessions for 12288 blocks 47.81 s intuitive

20.3.2 Employing AVX, SSE4.2

# Scenario Time Cost the difficulty of implementation
1 Init 1 session for 12288 block 15.56 s not intuitive
2 Init 12288 sessions for 12288 blocks 33.91 s intuitive

20.3.3 Employing AVX, SSE4.2 and GPU(Parallel computing)

# Scenario Time Cost the difficulty of implementation
1 Init 1 session for 12288 block 2.03 s not intuitive
2 Init 12288 sessions for 12288 blocks 55.26 s intuitive

Apparently, the fastest way is running a large batch of predictions in a single session using GPU.

Further more, consider this situation:

• 300 frames to process.

• 12288 8x8 blocks for 1 frame. Time cost 2.03 s for such a frame.

• Then, do a calculation:

>>> 300 * 2.03 / 60
10.149999999999999 minutes
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That is to say, 10 minutes for a video sequence of 300 frames only for processing size 8x8 blocks

We also want to do predictions for size 16x16 and 32x32. Hence the time cost are roughly 30 ~ 60 minutes.

20.3. Conclusions 85



Fast Depth Coding Using Deep Learning Documentation, Release 0.1.0

86 Chapter 20. Time Cost of TF in C++



CHAPTER 21

Encoder Integration in C++

• Tensorflow r1.1 is used in this work. (Tensorflow r1.3 is the newest stable version; Tensorflow r1.1 is the last
version that Tensorflow supports Mac GPU.)

• macOS is used in this work.

Note: Linux desktop with GPU is highly recommended (Windows OS is not recommended). (Ubuntu is the first
choice since it has the largest community support.)

21.1 Pre-requisites

1. Build tensorflow from source

2. Build shared library for using the TensorFlow C++ library

Note: Archive/Static library (.a) VS Shared library (.so)

Archive libraries (.a) are statically linked i.e when you compile your program with -c option in gcc. So, if there’s any
change in library, you need to compile and build your code again.

The advantage of .so (shared object) over .a library is that they are linked during the runtime, i.e. after creation of
your .o file -o option in gcc. So, if there’s any change in .so file, you don’t need to recompile your main program. But
make sure that your main program is linked to the new .so file with in command.

21.2 Integrate the model into HTM

Download codebase from GitHub: https://github.com/PharrellWANG/HTM162-Bazel-Cmake

There are two Apps in the above project.
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• TAppClassifier

• TAppEncoder

TAppClassifier is the skeleton code which can help you understand how to load graph in C++ and run the prediction
using Tensorflow. It is a self-contained c++ Application which can be built from both Bazel and CMake.

ResNet engine has been integrated to TAppEncoder for depth map angular modes [2, 34] prediction and the DMM1
searching process.

For the DMM1 searching process, we are making use of wedgelet slope to reduce the number of wedgelet candidates
to be evaluated in DMM1 searching process. If top-16 is used, then almost half of the candidates will be skipped.
Hence the time reduction for wedgelet decision shall be reduced roughly by half.

Note: If have time, try to estimate the time cost of ResNet size [4, 4, 8, 16], units 3. Prediction accuracy will be
decreased by 2%~3%. But since flops has been reduced from 600k to 130k, the speed of prediction in c++ should be
faster.
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CHAPTER 22

Simulation Results

We have integrated the learned ResNet model into HTM16.2 (which is the reference software of 3D-HEVC).

Several simulations are carried out to further evaluate the performance of the proposed algorithm.

BD-BR and BD-PSNR metrics [REF2] are employed.

22.1 Simulation Environments

22.1.1 Device

• Macbook Pro (15-inch, Mid 2015)

• Processor 2.2GHz Intel Core i7

• Memory 16GB 1600MHz DDR3

• Nvidia GTX980, Memory 4GB (External GPU)

22.1.2 Video Sequences

Data are collected from four video sequences.

(This table is copied from Training Data Source)

# Name of the Sequence Resolution Usage Frames
1 Balloons 1024x768 train/test/validation 300
2 Kendo 1024x768 train/test/validation 300
3 PoznanStreet 1920x1088 train/test/validation 250
4 UndoDancer 1920x1088 train/test/validation 250

We want to make sure every sample that will be predicted has never been seen by the learned model. Otherwise it will
be cheating.
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Anther four sequences which have never been seen by the learned ResNet model are used for simulation:

# Name of the Sequence Resolution Usage Frames
1 Newspaper 1024x768 Simulation 300
2 GhostTownFly 1920x1088 Simulation 250
3 PoznanHall2 1920x1088 Simulation 200
4 Shark 1920x1088 Simulation 300

22.2 Configuration

The common test condition defined in [REF1] are used.

All the sequences are encoded as I-Frame.

22.3 Simulation Results

Fig. 1: Figure 1. Time Saving for DMM1 Wedgelet Searching and Coding Performance of the Proposed Method
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Fig. 2: Figure 1. Time Saving for the total encoding process and Coding Performance of the Proposed Method
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CHAPTER 23

About Compilation

23.1 Debug and Release

• Typically Release mode is used to run multiple binaries simultaneously for collecting the data. Speed matters.

• Debug mode is used for inspecting/debugging the codebase. You can stop at breakpoint and check values of
vars.

Few points to notice:

1. In TypeDef.h, the MAC_DEBUG_PATH need to be toggled for configuring the path when you switch from debug
mode and release mode.

2. Remember to toggle the Release/Debug Config in AppCode.
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CHAPTER 24

About GPU

24.1 NVIDIA vs AMD

For machine learning, just two words: choose NVIDIA.

24.2 GPU-Accelerated Computing

NVDIA has a good explanation about What is GPU-Accelerated Computing.

In summary, GPU-accelerated computing offloads compute-intensive portions of the application to the GPU, while the
remainder of the code still runs on the CPU. From a user’s perspective, applications simply run much faster.

24.3 Performance

There is a video (length: 1m 33s) GPU VS CPU. It might have been exaggerated for marketing purpose. However
the acceleration provided by GPU is something that you cannot deny/ignore if you are doing serious work using deep
learning.

24.3.1 Time Saving for Training

The speed of acceleration for training a deep neural network depends on the GPU model.

According to my experience, typically the training process will be accelerated 4~6 times with NVIDIA GTX980 if
you are training a 50 layer Convolutional Neural Network.

24.3.2 Time Saving for Prediction

I’ve documented the prediction acceleration in Time Cost of TF in C++. Please check it out.
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Here’s a quick note (prediction using CPU Intel Quad-Core i7 vs GPU NVIDIA GTX980):

Intel Quad-Core i7 (CPU) 15.56 s
NVIDIA GTX 980 (GPU) 2.03 s

24.4 CUDA and cuDNN

NVIDIA Official Blog has a good explanation about What is CUDA.

Note: CUDA is a parallel computing platform and programming model that makes using a GPU for general purpose
computing simple and elegant. The developer still programs in the familiar C, C++, Fortran, or an ever expanding
list of supported languages, and incorporates extensions of these languages in the form of a few basic keywords.
These keywords let the developer express massive amounts of parallelism and direct the compiler to the portion of the
application that maps to the GPU.

CUDA stands for Compute Unified Device Architecture developed by Nvidia . In CUDA basic idea is to use GPU
(Graphical Processing Unit) for parallel programming which provides better performance for solving complex prob-
lems.

• CUDA : the API/language you talk to Nvidia GPUs.

• cuDNN: library for Deep Learning using CUDA.

You could use CUDA/cuDNN directly yourself, but other libraries like TensorFlow already have built abstractions
backed by cuDNN. Tensorflow will handle the device assignments for you as long as you provide a little configurations
by writing a few lines of codes.

24.5 Computation Capabilities of CUDA GPUs

Readers may refer to CUDA GPUs to know the computation capability of each type of CUDA GPUs.

In short, The high-end GPU models such as Tesla P series will be suitable for data centre; Tesla K series will be
suitable for work station. Geforce series will have some entertainment elements inside the design. Tesla series is
recommended while Geforce is not recommended if you are not going to play video games.
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CHAPTER 25

Thesis

25.1 Outline

The outline below is subjected to further modifications whenever needed.

• Abstract

• Acknowledgements

• List of Tables (shall not be shown in TOC)

• List of Figures (shall not be shown in TOC)

• Abbreviations (shall not be shown in TOC)

• Introduction

– Motivation and the Proposed Algorithm

– Contributions and Organization of the Following Chapters

• Background

– Video Coding

– Deep Learning

– Related Work

• Prepare the Data for Deep Learning

– Introduction

– Collecting the Data

– Pre-processing the Data

– Visualizing the Data

– Discussion

– Conclusion
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• Train the Deep Model for Prediction

– Introduction

– The Architecture of the Deep Convolutional Neural Network

– The Hyper-parameters of the Deep Convolutional Neural Network

– Stopping criteria and Training Results

– Discussion

– Conclusion

• Evaluate the Learned Deep Model

– Introduction

– Evaluate the Deep Model trained using blocks of size 08x08

– Evaluate the Deep Model trained using blocks of size 16x16

* Evaluate the Deep Model on blocks of size 16x16

* Evaluate the Deep Model on blocks of size 32x32

– Discussion

– Conclusion

• Employ the Learned Deep Model

– Introduction

– The Analysis and Optimisation for the Time of Prediction

– The Integration of the Learned Model

– Simulation Results

– Discussion

– Conclusion

• Conclusion

• Bibliography

25.2 Abstract

The Abstract below is subjected to further modifications whenever needed.
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Fig. 1: Figure 1. Abstract Screen Capture.
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CHAPTER 26

How to write thesis

26.1 How to write abstract

Ref: [REF3]

26.1.1 What is an Abstract

1. It is a summary of the whole thesis.

2. It presents all the major elements of your work in a highly condensed form.

3. It often functions, together with the thesis title, as a stand-alone text.

4. In addition to prepare the reader for the thesis, it must be capable of substituting for the whole thesis when there
is insufficient time and space for the full text.

26.1.2 Size and Structure

1. PolyU requirements for MSc thesis is 200 to 500 words for abstract.

2. Currently, the maximum sizes for abstracts submitted to Canada’s National Archive are 150 words (Masters
thesis) and 350 words (Doctoral dissertation).

3. To preserve visual coherence, you may wish to limit the abstract for your doctoral dissertation to one double-
spaced page, about 280 words.

4. The structure of the abstract should mirror the structure of the whole thesis, and should represent all its major
elements.

5. For example, if your thesis has five chapters (introduction, literature review, methodology, results, conclusion),
there should be one or more sentences assigned to summarize each chapter.

6. Clearly Specify Your Research Questions
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26.1.3 Don’t Forget the Results

1. The most common error in abstracts is failure to present results.

2. The primary function of your thesis (and by extension your abstract) is not to tell readers what you did, it is to
tell them what you discovered.

3. Approximately the last half of the abstract should be dedicated to summarizing and interpreting your results.

26.2 How to write the Introduction

Ref: [REF4]

You need to get your introduction sorted. You need to get your brain in gear.

You need to know:

• What the purpose of an introduction is

• How it should work in the first place

Well,

1. An introduction should introduce.

2. It needs to explain what’s coming, and

3. What the reader can expect. Similarly,

4. It needs to explain why the work that’s been done has been worth doing,

5. What new contribution to knowledge this thesis is going to make

6. What does the reader get out of reading it.

To let the reader know what to expect,

1. Provide key concepts, defining terms, explaining basic theory

2. Explain your scope limitations, e.g., clear it up that I am dealing with mode decision rather than CU depth decision.
3. Highlight key themes and ideas that unite the chapters as a whole; the introduction should flag up the Important
Ideas in a general form so that the reader has a vague idea of the shape that the chapters are going to take.

The final part of the introduction is the road map. Here is a list of the chapters with a paragraph summary of what you
will find in each.

Another way to think about what you need to cover in your introduction is to consider your scope, your aims and your
methodology. That sounds a bit scary, but can be broken down into simple questions – what are you talking about?
What were you trying to find out? How were you trying to find it out? Once I’d written my introduction, I went back
and made sure I had answered those questions to the best of my ability, rather than trying to write to answer them in
the first place, which seemed the more helpful way of going about it. I should also note that methodology is a word
that tends to put my nerves on edges, because I am a text-based analysis person. My methodology – I look at texts, I
analyse, what more do you want? Obviously methodology is more important in fields where the ways of doing things
are less fixed, even in classics, but it’s still important to talk about how you did the research you are going to tell people
about, and what your guiding principles are.

To sum up – introductions lay the ground, highlight the important ideas, argue the case for the importance of the work,
lay out the stall, sell the product. They also, as subtly as possible, make it clear what a work is not going to offer – but
an introduction is not apologetic or flimsy. That said, neither is it overbearing and arrogant, convinced it’s introducing
the most important piece of writing on the topic ever written. It makes a calm, considered case for the value of what
the reader is about to read, and should whet said reader’s appetite to find out more about the details of this Important
Idea. An introduction should be an invitation, like an appetizer that makes you want to see what else the chef can do.
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CHAPTER 27

How to Obtain BD-BR & BD-PSNR

PSNR and bitrate are two important metrics to obtain the BDBR, BDPSNR which are two common criteria for mea-
suring the average PSNR differences between RD-curves.

step 1

use TAppRenderer to synthesize intermediate views using

• original YUVs

• (four QPs) the YUVs obtained by your method

• (four QPs) the YUVs obtained by standard method (or any other method that you want to compare with)

separately.

step 2

1. (four QPs) Calculate PSNR using [synthesized_views_from_origin, synthesized_views_from_your_method]

2. (four QPs) Calculate PSNR using [synthesized_views_from_origin, synthesized_views_from_ref_method]

step 3

calculate BD-BR, BD-PSNR for each sequence.
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CHAPTER 28

Terms

1. Bitrate: Bitrate refers to the number of bits or the amount of data that are processed over a certain amount of
time.
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CHAPTER 29

References
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