
fades Documentation
Release 4

Facundo Batista, Nicolás Demarchi

Mar 31, 2018

Contents

1 Contents: 1
1.1 What is fades? . 1
1.2 How to use it? . 2
1.3 How to install it . 8
1.4 Get some help, give some feedback . 10
1.5 How to develop fades itself . 10

2 Indices and tables 13

i

ii

CHAPTER 1

Contents:

1.1 What is fades?

fades is a system that automatically handles the virtualenvs in the cases normally found when writing scripts and
simple programs, and even helps to administer big projects.

fades will automagically create a new virtualenv (or reuse a previous created one), installing the necessary dependen-
cies, and execute your script inside that virtualenv, with the only requirement of executing the script with fades and
also marking the required dependencies.

(If you don’t have a clue why this is necessary or useful, I’d recommend you to read this small text about Python and
the Management of Dependencies .)

The first non-option parameter (if any) would be then the child program to execute, and any other parameters after that
are passed as is to that child script.

fades can also be executed without passing a child script to execute: in this mode it will open a Python interactive
interpreter inside the created/reused virtualenv (taking dependencies from --dependency or --requirement

1

https://travis-ci.org/PyAr/fades
https://badge.fury.io/py/fades
https://coveralls.io/github/PyAr/fades?branch=master
https://build.snapcraft.io/user/PyAr/fades
https://ci.appveyor.com/project/facundobatista/fades
https://github.com/PyAr/fades/blob/master/docs/pydepmanag.rst
https://github.com/PyAr/fades/blob/master/docs/pydepmanag.rst

fades Documentation, Release 4

options).

Contents

• What is fades?

• How to use it?

– Yes, please, I want to read

– How to execute the script with fades?

– How to mark the dependencies to be installed?

– Other ways to specify dependencies

– About different repositories

– How to control the virtualenv creation and usage?

– How to deal with packages that are upgraded in PyPI

– Under the hood options

– Setting options using config files

– How to clean up old virtualenvs?

– Some command line examples

– What if Python is updated in my system?

• How to install it

– Simplest way

– Dependencies

– For others debian and ubuntu

– Using pip if you want

– Multiplatform tarball

– Can I try it without installing it?

– What about Windows?

• Get some help, give some feedback

• How to develop fades itself

– Getting the code

– Install dependencies

– How to run the tests

– Development process

1.2 How to use it?

Click in the following image to see a video/screencast that shows most of fades
features in just 5’, but please keep reading for more detailed information. . .

2 Chapter 1. Contents:

fades Documentation, Release 4

1.2.1 Yes, please, I want to read

When you write an script, you have to take two special measures:

• need to execute it with fades (not python)

• need to mark those dependencies

At the moment you execute the script, fades will search a virtualenv with the marked dependencies, if it doesn’t exists
fades will create it, and execute the script in that environment.

1.2.2 How to execute the script with fades?

You can always call your script directly with fades:

fades myscript.py

However, for you to not forget about fades and to not execute it directly with python, it’s better if you put at the
beggining of the script the indication for the operating system that it should be executed with fades. . .

#!/usr/bin/fades

. . . and also set the executable bit in the script:

chmod +x yourscript.py

1.2.3 How to mark the dependencies to be installed?

The procedure to mark a module imported by the script as a dependency to be installed by fades is by using a comment.

This comment will normally be in the same line of the import (recommended, less confusing and less error prone in
the future), but it also can be in the previous one.

1.2. How to use it? 3

https://www.youtube.com/watch?v=BCTd_TyCm98

fades Documentation, Release 4

The simplest comment is like:

import somemodule # fades
from somepackage import othermodule # fades

The fades is mandatory, in this examples the repository is PyPI, see About different repositories below for other
examples.

With that comment, fades will install automatically in the virtualenv the somemodule or somepackage from PyPI.

Also, you can indicate a particular version condition, examples:

import somemodule # fades == 3
import somemodule # fades >= 2.1
import somemodule # fades >=2.1,<2.8,!=2.6.5

Sometimes, the project itself doesn’t match the name of the module; in these cases you can specify the project name
(optionally, before the version):

import bs4 # fades beautifulsoup4
import bs4 # fades beautifulsoup4 == 4.2

1.2.4 Other ways to specify dependencies

Apart of marking the imports in the source file, there are other ways to tell fades which dependencies to install in the
virtualenv.

One way is through command line, passing the --dependency parameter. This option can be specified multiple
times (once per dependency), and each time the format is repository::dependency. The dependency may
have versions specifications, and the repository is optional (defaults to ‘pypi’).

Other way is to specify the dependencies in a text file, one dependency per line, with each line having the format previ-
ously described for the --dependency parameter. This file is then indicated to fades through the --requirement
parameter.

In case of multiple definitions of the same dependency, command line overrides everything else, and requirements file
overrides what is specified in the source code.

Finally, you can include package names in the script docstring, after a line where “fades” is written, until the end of
the docstring; for example:

"""Script to do stuff.

It's a very important script.

We need some dependencies to run ok, installed by fades:
request
otherpackage

"""

1.2.5 About different repositories

fades supports installing the required dependencies from multiples repositories: besides PyPI, you can specify URLs
that can point to projects from GitHub, Launchpad, etc. (basically, everything that is supported by pip itself).

4 Chapter 1. Contents:

fades Documentation, Release 4

When a dependency is specified, fades deduces the proper repository. For example, in the following examples fades
will install requests from the latest revision from PyPI in the first case, and in the second case the latest revision from
the project itself from GitHub:

-d requests
-d git+https://github.com/kennethreitz/requests.git#egg=requests

If you prefer, you can be explicit about which kind of repository fades should use, prefixing the dependency with the
special token double colon (::):

-d pypi::requests
-d vcs::git+https://github.com/kennethreitz/requests.git#egg=requests

There are two basic repositories: pypi which will make fades to install the desired dependency from PyPI, and
vcs, which will make fades to treat the dependency as a URL for a version control system site. In the first case, for
PyPI, a full range of version comparators can be specified, as usual. For vcs repositories, though, the comparison is
always exact: if the very same dependency is specified, a virtualenv is reused, otherwise a new one will be created and
populated.

In both cases (specifying the repository explicitly or implicitly) there is no difference if the dependency is specified in
the command line, in a requirements.txt file, in the script’s docstring, etc. In the case of marking the import
directly in the script, it slightly different.

When marking the import it normally happens that the package itself to be installed has the name of the imported
module, and because of that it can only be found in PyPI. So, in the following cases the pypi repository is not only
deduced, but unavoidable:

import requests # fades
from foo import bar # fades
import requests # fades <= 3

But if the package is specified (normally needed because it’s different than the module name), or if a version control
system URL is specified, the same possibilities stated above are available: let fades to deduce the proper repository or
mark it explicitly:

import bs4 # fades beautifulsoup
import bs4 # fades pypi::beautifulsoup
import requests # fades git+https://github.com/kennethreitz/requests.git#egg=requests
import requests # fades vcs::git+https://github.com/kennethreitz/requests.git
→˓#egg=requests

One last detail about the vcs repository: the format to write the URLs is the same (as it’s passed without modifications)
than what pip itself supports (see pip docs for more details).

1.2.6 How to control the virtualenv creation and usage?

You can influence several details of all the virtualenv related process.

The most important detail is which version of Python will be used in the virtualenv. Of course, the corresponding
version of Python needs to be installed in your system, but you can control exactly which one to use.

No matter which way you’re executing the script (see above), you can pass a -p or --python argument, indicating
the Python version to be used just with the number (2.7), the whole name (python2.7) or the whole path (/usr/
bin/python2.7).

Other detail is the verbosity of fades when telling what is doing. By default, fades only will use stderr to tell if
a virtualenv is being created, and to let the user know that is doing an operation that requires an active network
connection (e.g. installing a new dependency).

1.2. How to use it? 5

https://pip.readthedocs.io/en/stable/reference/pip_install/#vcs-support

fades Documentation, Release 4

If you call fades with -v or --verbose, it will send all internal debugging lines to stderr, which may be very useful
if any problem arises. On the other hand if you pass the -q or --quiet parameter, fades will not show anything
(unless it has a real problem), so the original script stderr is not polluted at all.

Sometimes, you want to run a script provided by one of the dependencies installed into the virtualenv. fades supports
this via the -x (or --exec argument).

If you want to use IPython shell you need to call fades with -i or --ipython option. This option will add IPython
as a dependency to fades and it will launch this shell instead of the python one.

You can also use --system-site-packages to create a venv with access to the system libs.

1.2.7 How to deal with packages that are upgraded in PyPI

When you tell fades to create a virtualenv using one dependency and don’t specify a version, it will install the latest
one from PyPI.

For example, you do fades -d foobar and it installs foobar in version 7. At some point, there is a new version of
foobar in PyPI, version 8, but if do fades -d foobar it will just reuse previously created virtualenv, with version
7, not downloading the new version and creating a new virtualenv with it!

You can tell fades to do otherwise, just do:

fades -d foobar --check-updates

. . . and fades will search updates for the package on PyPI, and as it will found version 8, will create a new virtualenv
using the latest version.

From this moment on, if you request fades -d foobar it will bring the virtualenv with the new version. If you
want to get a virtualenv with not-the-latest version for any dependency, just specify the proper versions.

You can even use the --check-updates parameter when specifying the package version. Say you call fades
-d foobar==7, fades will install version 7 no matter which one is the latest. But if you do:

fades -d foobar==7 --check-updates

. . . it will still use version 7, but will inform you that a new version is available!

1.2.8 Under the hood options

For particular use cases you can send specifics arguments to virtualenv, pip and python. using the
--virtuaenv-options, --pip-options and --python-options respectively. You have to use that argu-
ment for each argument sent.

Examples:

fades -d requests --virtualenv-options="--always-copy" --virtualenv-options="--extra-search-dir=/
tmp"

fades -d requests --pip-options="--index-url='http://example.com'"

fades --python-options=-B foo.py

1.2.9 Setting options using config files

You can also configure fades using .ini config files. fades will search config files in /etc/fades/fades.ini, the path
indicated by xdg for your system (for example ~/config/fades/fades.ini) and .fades.ini.

6 Chapter 1. Contents:

fades Documentation, Release 4

So you can have different settings at system, user and project level.

With fades installed you can get your config dir running:

python -c "from fades.helpers import get_confdir; print(get_confdir())"

The config files are in .ini format. (configparser) and fades will search for a [fades] section.

You have to use the same configurations that in the CLI. The only difference is with the config options with a dash, it
has to be replaced with a underscore.:

[fades]
ipython=true
verbose=true
python=python3
check_updates=true
dependency=requests;django>=1.8 # separated by semicolon

There is a little difference in how fades handle these settings: “dependency”, “pip-options” and “virtualenv-options”.
In these cases you have to use a semicolon separated list.

The most important thing is that these options will be merged. So if you configure in /etc/fades/fades.ini “depen-
dency=requests” you will have requests in all the virtualenvs created by fades.

1.2.10 How to clean up old virtualenvs?

When using fades virtual environments are something you should not have to think about. fades will do the right thing
and create a new virtualenv that matches the required dependencies. There are cases however when you’ll want to do
some clean up to remove unnecessary virtual environments from disk.

By running fades with the --rm argument, fades will remove the virtualenv matching the provided uuid if such a
virtualenv exists.

Another way to clean up the cache is to remove all venvs that haven’t been used for some time. In order to do this
you need to call fades with --clean-unused-venvs. When fades it’s called with this option, it runs in mantain
mode, this means that fades will exit after finished this task. All virtualenvs that haven’t been used for more days than
the value indicated in param will be removed.

It is recommended to have some automatically way of run this option; ie, add a cron task that perform this command:

fades --clean-unused-venvs=42

1.2.11 Some command line examples

fades foo.py --bar

Executes foo.py under fades, passing the --bar parameter to the child program, in a virtualenv with the dependen-
cies indicated in the source code.

fades -v foo.py

Executes foo.py under fades, showing all the fades messages (verbose mode).

fades -d dependency1 -d dependency2>3.2 foo.py --bar

Executes foo.py under fades (passing the --bar parameter to it), in a virtualenv with the dependencies indicated
in the source code and also dependency1 and dependency2 (any version > 3.2).

fades -d dependency1

1.2. How to use it? 7

fades Documentation, Release 4

Executes the Python interactive interpreter in a virtualenv with dependency1 installed.

fades -r requirements.txt

Executes the Python interactive interpreter in a virtualenv after installing there all dependencies taken from the
requirements.txt file.

fades -d django -x django-admin.py startproject foo

Uses the django-admin.py script to start a new project named foo, without having to have django previously
installed.

fades --rm 89a2bf83-c280-4918-a78d-c35506efd69d

Removes a virtualenv matching the given uuid from disk and cache index.

1.2.12 What if Python is updated in my system?

The virtualenvs created by fades depend on the Python version used to create them, considering its major and minor
version.

This means that if run fades with a Python version and then run it again with a different Python version, it may need
to create a new virtualenv.

Let’s see some examples. Let’s say you run fades with python, which is a symlink in your /usr/bin/ to
python3.4 (running it directly by hand or because fades is installed to use that Python version).

If you have Python 3.4.2 installed in your system, and it’s upgraded to Python 3.4.3, fades will keep reusing the already
created virtualenvs, as only the micro version changed, not minor or major.

But if Python 3.5 is installed in your system, and the default python is pointed to this new one, fades will start
creating all the virtualenvs again, with this new version.

This is a good thing, because you want that the dependencies installed with one specific Python in the virtualenv are
kept being used by the same Python version.

However, if you want to avoid this behaviour, be sure to always call fades with the specific Python version (/usr/
bin/python3.4 or python3.4, for example), so it won’t matter if a new version is available in the system.

1.3 How to install it

Several instructions to install fades in different platforms.

1.3.1 Simplest way

In some systems you can install fades directly, no needing to install previously any dependency.

If you are in debian unstable or testing, just do (but probably you will not get the latest version, see below for alternative
installation methods):

sudo apt-get install fades

For Arch linux:

yaourt -S fades

In systems with Snaps:

snap install fades

8 Chapter 1. Contents:

fades Documentation, Release 4

For Mac OS X (and Homebrew):

brew install fades

Else, keep reading to know how to install the dependencies first, and fades in your system next.

1.3.2 Dependencies

Besides needing Python 3.3 or greater, fades depends also on the pkg_resources package, that comes in with
setuptools. It’s installed almost everywhere, but in any case, you can install it in Ubuntu/Debian with:

apt-get install python3-setuptools

And on Archlinux with:

pacman -S python-setuptools

It also depends on python-xdg package. This package should be installed on any GNU/Linux OS wiht a freedesk-
top.org GUI. However it is an optional dependency.

You can install it in Ubuntu/Debian with:

apt-get install python3-xdg

And on Archlinux with:

pacman -S python-xdg

Fades also needs the virtualenv <https://virtualenv.pypa.io/en/latest/> package to support different Python versions
for child execution. (see –python argument.)

1.3.3 For others debian and ubuntu

If you are NOT in debian unstable or testing (if you are, see above for better instructions), you can use this .deb.

Download it and install doing:

sudo dpkg -i fades-latest.deb

1.3.4 Using pip if you want

pip3 install fades

1.3.5 Multiplatform tarball

Finally you can always get the multiplatform tarball and install it in the old fashion way:

wget http://taniquetil.com.ar/fades/fades-latest.tar.gz
tar -xf fades-latest.tar.gz
cd fades-*
sudo ./setup.py install

1.3. How to install it 9

http://brew.sh/
http://taniquetil.com.ar/fades/fades-latest.deb

fades Documentation, Release 4

1.3.6 Can I try it without installing it?

Yes! Branch the project and use the executable:

git clone https://github.com/PyAr/fades.git
cd fades
bin/fades your_script.py

1.3.7 What about Windows?

Windows is a platform supported by fades.

However, we don’t have a proper Windows installer (a .exe or .msi), but you can install it using pip, or from the
tarball, or try it directly from the project. All these options are properly described above.

We do want to have a Windows installer. If you can help us in this regard, please contact us. Also we would want a
Travis running in Windows so that GitHub runs all the tests in this platform too before landing any code. Thanks!

1.4 Get some help, give some feedback

You can ask any question or send any recommendation or request to the mailing list.

Come chat with us on IRC. The #fades channel is located at the Freenode network.

Also, you can open an issue here (please do if you find any problem!).

Thanks in advance for your time.

1.5 How to develop fades itself

Quick guide to get you up and running in fades development.

1.5.1 Getting the code

Clone the project:

git clone git@github.com:PyAr/fades.git

1.5.2 Install dependencies

fades manages it’s own dependencies, so there is nothing extra you need to install.

To try it, just do:

bin/fades -V

10 Chapter 1. Contents:

http://listas.python.org.ar/mailman/listinfo/fades
http://freenode.net/
https://github.com/PyAr/fades/issues/new

fades Documentation, Release 4

1.5.3 How to run the tests

When starting development, at all times, and specially before wrapping up a new branch, you need to be sure that all
tests pass ok.

This is very simple, actually, just run:

./test

That will not only check test cases, but also that the code complies with aesthetic recommendations, and that the
README document has a proper format.

If you want to run one particular test, just specify it. Example:

./test tests.test_main:DepsMergingTestCase.test_two_different

1.5.4 Development process

Just pick an issue from the list.

Develop, assure ./test is happy, commit, push, create a pull request, etc.

Please, if you aim for creating a Pull Request with new code (functionality or fixes), include tests for your changes.

Thanks! Enjoy.

1.5. How to develop fades itself 11

https://github.com/PyAr/fades/issues

fades Documentation, Release 4

12 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

13

	Contents:
	What is fades?
	How to use it?
	How to install it
	Get some help, give some feedback
	How to develop fades itself

	Indices and tables

