
FACPL Documentation
Release 2.0

Andrea Margheri

Jul 11, 2018

Contents:

1 FACPL at a glance 1
1.1 FACPL Evaluation Process . 2

2 Getting started 3
2.1 Eclipse installation . 3
2.2 Java Library . 4
2.3 FACPL Java Code Generator and Parsers . 8

3 Usage guide 9
3.1 Setting Up a FACPL Project . 9
3.2 Policy Specification . 10
3.3 Policy Evaluation . 12
3.4 Policy Analysis . 14
3.5 Plugin Commands and Facets . 14
3.6 FAQ . 15

i

ii

CHAPTER 1

FACPL at a glance

FACPL: Specifying, Analysing and Enforcing Access Control Policies

The FACPL language is a formal, easy-to-use language that permits specifying access control policies. FACPL is
the basis of a feasible and effective approach for defining access control systems. Various applications have been
proposed, varying from e-Health to autonomic computing domains.

FACPL is equipped with a powerful Integrated Development Environment (IDE) and a Java library, supporting access
control system developers in the tasks of specifying, analysing and enforcing FACPL policies. Figure 1 shows the
toolchain enabling the use of the language.

Developers can use the IDE, in the form of an Eclipse plugin, for specifying the desired policies in FACPL syntax,
by taking advantage of the supporting features provided by the environment. The IDE automatically produces a
set of Java classes enforcing the FACPL policies and of SMT-LIB files enabling the automatic analysis of policies.
The Java FACPL library provides the compile- and run-time support for validating and enforcing the generated Java
policies in real systems. The use of the SMT-LIB code and of the Z3 constraint solver offers effective analysis means.
Furthermore, the toolchain offers a (partial) interoperability with the XACML standard, commonly used to deploy

1

http://www.eclipse.org/
http://smtlib.cs.uiowa.edu/
https://github.com/Z3Prover
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

FACPL Documentation, Release 2.0

real-world access control systems. See Section 9.1 of this FACPL paper for further details on XACML vs. FACPL
interoperability.

1.1 FACPL Evaluation Process

Policies control system resources by means of a particular evaluation process, which relies on two main components:
the Policy Decision Point (PDP) and the Policy Enforcement Point (PEP). The former calculates the authorization de-
cision for an access request, and the latter enforces such decision in the system. Figure 2 shows the FACPL evaluation
process.

Each controlled resource is paired with one or more FACPL policies, which define the access control rules expressing
the credentials necessary to gain access to the resource. These policies are stored within the Policy Repository (PR)
that makes them available to the PDP (step 1), which has the task of deciding whether to grant access to resources or
not. The evaluation of a request is organized in the following steps.

• A request to access a resource is received by the PEP (step 2) and it is encoded as a FACPL request containing
the credentials expressed as attribute elements (step 3). An attribute is a pair (name, value) representing a
security-relevant information.

• The context handler sends the request to the PDP (step 4) and can add environmental attributes to the request,
as e.g. the request receiving time, which may be needed for the evaluation process.

• The PDP computes the PDP response for the request by checking the attributes, that may belong either to the
request or to the context (steps 5-8), against the controls contained in the policies. The PDP response contains
an authorization decision and, possibly, some obligations.

• The PDP response is sent to the PEP, that, by appropriate obligation services, must discharge all possibly present
obligations (steps 9-11).

• On the basis of the result of obligations discharge, the PEP computes the final decision (steps 12-13). This
decision, that could differ from the PDP one, is the overall outcome of the evaluation process.

Notably, obligations are additional actions connected to the access control system and might correspond to, e.g.,
updating a log file, sending a message, generating an event or executing an action.

2 Chapter 1. FACPL at a glance

http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_05.pdf

CHAPTER 2

Getting started

A set of FACPL examples are available in the GitHub repository together with the corresponding Java-translated
policies, in the code examples repository. The binaries and source code of the Java library and its unit tests can be
downloaded from the repository as well.

2.1 Eclipse installation

Note: The Eclipse plugin is provided by means of the Eclipse p2 repository (the current stable version is the 2.0.5).
The repository is available in .zip format as part of the last release in GitHub here.

By using the well-known procedure “Install new software. . . ” from the Eclipse’s toolbar menu, the FACPL plugin can
be easily installed. Note that it is required to accept the Eclipse Public License in order to complete the installation.
The plugin installation requires:

• Eclipse for Java and DSL Developers version 4.* or higher version

• Xtext framework plugins

• Java 8

If the Xtext plugins are missing, they will be automatically added through the standard Eclipse update site.

Note: The plugin has been successfully tested by using the Eclipse DSL Release Neon

2.1.1 Using the tool

When the installation of the plugin has completed, we can create a FACPL project to start coding, analysing and
evaluating FACPL policies. In the Usage guide, all the needed details.

3

https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES
https://github.com/andreamargheri/FACPL/releases

FACPL Documentation, Release 2.0

2.2 Java Library

Basic examples of FACPL Java code is available in the Java code examples.

Note: FACPL is not intended to be used directly from Java, but via its high-level syntax (whose IDE is available in
the Eclipse plugin). Therefore, the way a policy is constructed is more friendly for an automated code generator than
a programmer.

2.2.1 Library Structure

The high-level type structure of FACPL policy is

| IEvaluablePolicy
| FacplPolicy
| PolicySet
| Rule

FacplPolicy abstracts obligation and target field of the PolicySet and Rule. The corresponding type structure of the
two fields are

| IObligationElement
| Obligation

| ExpressionBooleanTree
| ExpressionFunction

where the tree structure organises the functions with boolean operators. Comparison and arithmetics functions are
organised with a Factory pattern according to the input types.

Therefore, PolicySet and Rule provide the abstract structure and the evaluation methods of the FACPL policy elements.
Specifically, PolicySet includes the combining algorithm (whose specification is given by IEvaluableAlgorithm) and
the list of enclosed elements (either PolicySet or Rule), while Rule contains the decision (viz. PERMIT or DENY).

2.2.2 Creating a FACPL policy

PolicySet and Rule are abstract classes, hence to create a FACPL policy is needed to extended the corresponding class
and use the ‘setter’ methods to add the internal elements.

We report here some Java code from the examples.

Let’s start with a policy enclosing a single rule

public class PolicySet_pName extends PolicySet {
public PolicySet_pName() {

addId("pName");
// Algorithm Combining
addCombiningAlg(new it.unifi.facpl.lib.algorithm.

→˓PermitOverridesGreedy());
// PolElements
addPolicyElement(new Rule_rule1());

}

private class Rule_rule1 extends Rule {

(continues on next page)

4 Chapter 2. Getting started

https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/FACPL_JAVA_Examples
https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/

FACPL Documentation, Release 2.0

(continued from previous page)

Rule_rule1() {
addId("rule1");
// Effect
addEffect(Effect.PERMIT);

}
}

}

A more complex target can be added by using a tree structure with the following code

addTarget(new ExpressionBooleanTree(ExprBooleanConnector.AND,
new ExpressionBooleanTree(new ExpressionFunction(new it.unifi.facpl.lib.

→˓function.comparison.Equal(),
"John", new AttributeName("subject", "id"))),

new ExpressionBooleanTree(new ExpressionFunction(new it.unifi.facpl.lib.
→˓function.comparison.In(),

new AttributeName("action", "id"), new Set("read",
→˓"seek")))));

the corresponding target expression is equal(subject/id,"John") && in(action/id,{"read",
"seek"}).

To add obligations to either the rule of the policy, the following code has to be added

addObligation(new Obligation("compress", Effect.PERMIT, ObligationType.O, null));

According to the chosen obligation actions (in this case compress), a list of arguments can be inserted in place of
null. By default, the available obligation actions is

• mailTo: to send an email to a given address and text

• log: to create a log file with a given text

• compress: to zip a given text

Here an example of a log obligation

addObligation(new Obligation("log", Effect.DENY, ObligationType.M, "Subject: ",
new AttributeName("subject", "id"), new AttributeName("subject", "name

→˓")));

the use of AttributeName as obligation arguments allows to retrieve at the policy evaluation time the actual input for
discharging the action.

Note: To add additional obligation action, just implement the interface IPepAction and provide the class with the
corresponding name in the PEPAction class. Details below on its usage.

2.2.3 Evaluating a policy

The evaluation of FACPL Policy correspond to invoke the method evalute given an access request in input. The
method is

public AuthorisationPDP evaluate(ContextRequest cxtRequest, Boolean extendedIndeterminate)

2.2. Java Library 5

FACPL Documentation, Release 2.0

where extendedIndeterminate set to truemeans that the extended evaluation of the indeterminate values (see
XACML semantics).

An access request is defined by a list of attributes, grouped by category, and a link to a context stub that can be used to
dynamically access to external information. A simple request is

public class ContextRequest_Name {

private static ContextRequest CxtReq;

public static ContextRequest getContextReq() {
if (CxtReq != null) {

return CxtReq;
}
// create map for each category
HashMap<String, Object> req_action = new HashMap<String, Object>();
req_action.put("id", "READ");

Request req = new Request("Name");
req.addAttribute("action", req_action);

// context stub: default-one
CxtReq = new ContextRequest(req, ContextStub_Default.getInstance());
return CxtReq;

}
}

which is formed by a single attribute named id and with category action; together represented as action/id.

The enforcement procedure is completed by the two key components PDP and PEP described in the Introduction.
Their structure is defined in the library and can be instantiated as follows

this.pdp = new PDP(new it.unifi.facpl.lib.algorithm.PermitUnlessDenyGreedy(),
→˓policies, false);
this.pep = new PEP(EnforcementAlgorithm.DENY_BIASED);

where the PDP gets the combining algorithm to use (in this case PermitUnlessDenyGreedy for the evaluation of the list
of policies; the last boolean sets the use of extendedIndeterminate. The PEP just requires the enforcement algorithm
to use for discharging the obligations.

To add additional obligations to the PEP we can use

this.pep.addPEPActions(PEPAction.getPepActions());

where the template of the class PEPAction is defined as

public class PEPAction{

public static HashMap<String, IPepAction> getPepActions() {
/*
* Set your own pep action e.g. HashMap<String,new ***** class Action

→˓extending IPepAction***()

*
* pepAction = new HashMap<String,IPepAction>();

* pepAction.put("action", Action.class); return

* pepAction;

*/
return null;

}
(continues on next page)

6 Chapter 2. Getting started

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

FACPL Documentation, Release 2.0

(continued from previous page)

}

All together, the Eclipse plugin generates a MainFACPL.java file that create a main method for the evaluation of
selected requests. Here an example

public class MainFACPL{

private PDP pdp;
private PEP pep;

public MainFACPL() {
// defined list of policies included in the PDP
LinkedList<IEvaluablePolicy> policies = new LinkedList

→˓<IEvaluablePolicy>();
policies.add(new PolicySet_PSet());
this.pdp = new PDP(new it.unifi.facpl.lib.algorithm.

→˓PermitUnlessDenyGreedy(), policies, false);

this.pep = new PEP(EnforcementAlgorithm.DENY_BIASED);

this.pep.addPEPActions(PEPAction.getPepActions());
}

/*
*ENTRY POINT FOR EVALUATION

*/
public static void main(String[] args){

//Initialise Authorisation System
MainFACPL system = new MainFACPL();

//log
StringBuffer result = new StringBuffer();
//request
LinkedList<ContextRequest> requests = new LinkedList<ContextRequest>

→˓();
requests.add(ContextRequest_Name.getContextReq());
for (ContextRequest rcxt : requests) {

result.append("---
→˓----\n");

AuthorisationPDP resPDP = system.pdp.doAuthorisation(rcxt);
result.append("Request: "+ resPDP.getId() + "\n\n");
result.append("PDP Decision=\n " + resPDP.toString()+"\n\n");
//enforce decision
AuthorisationPEP resPEP = system.pep.doEnforcement(resPDP);
result.append("PEP Decision=\n " + resPEP.toString()+"\n");
result.append("---

→˓----\n");
}
System.out.println(result.toString());

}

public PDP getPdp() {
return pdp;

}

(continues on next page)

2.2. Java Library 7

FACPL Documentation, Release 2.0

(continued from previous page)

public PEP getPep() {
return pep;

}

}

2.3 FACPL Java Code Generator and Parsers

FACPL polices can be generated starting from FACPL code (aka the one used in the Eclipse plugin), instead of directly
using the Java library.

The (parser and) code generators are available standalone by the Eclipse plugin in the latest release. This example
project reports practical examples of the code generation, given a FACPL file, of Java, XACML and SMT_LIB code.

By way of example, given the following FACPL code

PolicySet patientConsent { permit-overrides
target: equal ("Alice" , resource / patient-id)
policies:
PolicySet ePre { permit-overrides - all

target:equal("e-Prescription",resource/type)
policies:
Rule writeDoc (permit target: equal (subject / role , "doctor")

&& equal (action / id , "write")
&& in ("e-Pre-Write" , subject / permission)
&& in ("e-Pre-Read" , subject / permission))

Rule readDoc (permit target: equal (subject / role , "doctor")
&& equal (action / id , "read")
&& in ("e-Pre-Read", subject / permission))

Rule readPha (permit target: equal (subject / role , "pharmacist")
&& equal (action / id , "read")
&& in ("e-Pre-Read" , subject / permission))

obl-p:
[M log (system / time , resource / type , subject / id , action /

→˓id)]
}
Rule denyRule (deny)
obl-d:
[M mailTo (resource / patient-id.mail , "Data requested by unauthorized

→˓subject")]
}

The code corresponding to the PolicySet ePre and parientConsent is generated.

8 Chapter 2. Getting started

https://github.com/andreamargheri/FACPL/releases/tag/2.0.1
https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/Generator
https://github.com/andreamargheri/FACPL/tree/master/EXAMPLES/Generator

CHAPTER 3

Usage guide

3.1 Setting Up a FACPL Project

A FACPL project can be created from the project menu “File -> New Project . . . ”, where the customised wizard
FACPL Development Project is available. After choosing a project name, the wizard creates a new Java Plugin-
Development Project that contains all the required libraries for the coding and evaluation tasks; note that the project
name cannot contain any blank space.

The generated FACPL project is like the one reported in Figure 3. FACPL files are generic text files having the
“.fpl” extension and, for practical convenience, are placed in the src-facpl folder; a policy demo is added to the auto-
generated project. The FACPL Java-translated policies and requests are automatically placed in the src folder. Instead,
the src-xml folder contains the generated XML files and the src-smtlib folder contains the generated SMT-LIB files.

A new FACPL file can be created either as a new generic file with extension “.fpl” or by using the FACPL File wizard
from the command File -> New. . . in the menu. The wizard permits specifying the container of the file (by selecting

9

FACPL Documentation, Release 2.0

it from the projects available in the workspace), the name of the file, and some basic code examples to add to the new
file.

3.2 Policy Specification

A FACPL file is composed of three different parts (for which the new file wizard provides basic templates):

• Policy declarations: define the access control policies and the algorithms used for calculating and enforcing
authorisation decisions.

• Request declarations: define the attributes values modeling an access attempt. The requests will be evaluated
with respect to the available policies to obtain the corresponding authorisation decisions.

• Main: defines the Policy Authorisation System (PAS), i.e. the PEP and PDP, and some options for the generation
of Java code and for request evaluation. More details on this part are presented in Plugin Commands and Facets.

An access control policy is hierarchically structured in terms of rules and policy sets, where a rule is a basic element
for specifying access controls, while a policy set is a collection of other policies.

A rule specifies a name, the positive or negative decision of its successful evaluation (i.e., permit or deny), and a target
expression for checking the applicability with respect to a request.

A target is a boolean expression defining the conditions deciding if the enclosed policy has to authorised an incoming
request. The expressions are formed by basic relational and arithmetic operators. Such opertors define conditions on
requests by means of attribute name. The available operators and some special attribute names (e.g. to get the current
time) are provided by the auto-completion feature (e.g., for Mac/s users +Space) of the plugin. Attribute names are
of the form Identifier/Identifier, where the first identifier stands for a category name and the second for an attribute
name. For example, the name action/action-id represents the value of the attribute action-id within the category action.
Notably, the plugin provides a type inference system checking that the expressions are correctly typed.

A policy set specifies a name, the combining algorithm to be used for combining the results of the contained policies,
and a target expression for defining its applicability. The available combining algorithms are: permit-overrides, deny-
overrides, permit-unless-deny, deny-unless-permit, first-applicable, only-one-applicable, weak-consensus and strong-
consensus. The behaviour of each of them is presented in Policy Evaluation. Each algorithm is paired with a fulfilment
strategy, i.e. all or greedy, leading its evaluation (see below). In addition, if different behaviours are requested, it is
also possible to specialise the custom-algorithm. Furthermore, the command include permits to add, by means of
name reference, a policy set to another one.

Each of the previous elements can also include a list of obligations. An obligation specifies an effect, i.e. permit or
deny, for the applicability of the obligation, a type, i.e. M for Mandatory and O for Optional, and the identifier of an
action with its argument. These arguments are generic expressions possibly containing attribute names, while the set
of action identifiers understood by the PEP can be chosen, from time to time, according to the specific application.

The definition of the policy authorisation system (PAS), in addition to the access control policies defining the PDP,
defines the top-level combining algorithm for the PDP (i.e., one among the algorithms already mentioned) and the
enforcement algorithm for the PEP (i.e., one among base, permit-biased and deny-biased).

The following figure reports an example of policy declaration from an e-Health case study.

10 Chapter 3. Usage guide

http://facpl.sourceforge.net/eHealth/index.html

FACPL Documentation, Release 2.0

The policy manages all the requests for the management of the e-Prescription service of the patient named ‘Alice’.
The rules checks the credentials exposed by the requester (i.e., the permission) and the requested actions.

We briefly comment part of the reported policy. The policy named “ePre” checks, by means of its target, if the
requested service is “e-Prescription”, then the internal rules check the exposed credentials according to the requested
actions. By way of example, the rule named “writeDoc” authorises with permit (i.e., a positive authorisation) a subject
whose role is doctor (i.e., by using attribute subject/role) and whose permissions contain both the permissions “e-Pre-
Read” and “e-Pre-Write”. Notably, the rules are evaluated in the same order as they appear within the policy. Thus,
since the chosen combining algorithm is permit-overrides (see below), if the first rule evaluates correctly (i.e. it returns
permit) then the second rule is not evaluated. Finally, the obligation log is used to record in the system the authorised
access. The other rules are similarly defined, as well as the obligation mailTo.

Figure 5 reports an example of FACPL request. Specifically, it represents the “doctor” with id “Dr. House” and
credentials “e-Pre-Read” and “e-Pre-Write”, willing to “write” an “e-Prescription” for the patient with id “Alice”.
This request is authorised to permit by the previous policy.

3.2. Policy Specification 11

FACPL Documentation, Release 2.0

3.3 Policy Evaluation

The evaluation of a request with respect to a policy generates one among the following authorization decisions:

• permit: the request is granted;

• deny: the request is not granted;

• not-applicable: there is no policy that applies to the request;

• indeterminate: some errors occurred in the evaluation.

When the resulting authorisation decision is permit or deny some obligations can possibly be present.

The evaluation of a policy with respect to a request starts by checking its applicability to the request, which is done
by evaluating the expression defining its target. Evaluating expressions amounts to apply operators and to resolve
the attribute names occurring within, that is to determine the value corresponding to each such name. If this is not
possible, i.e. an attribute with that name is missing in the request and cannot be retrieved through the context handler,
the special value is returned. This value can be explicitly managed by the various operators. The evaluation of a
policy has indeed the following cases:

• Let us suppose that the applicability holds, i.e. the expression evaluates to true. In case of rules, the rule effect
is returned. In case of policy sets, the result is obtained by evaluating the contained policies and combining their
evaluation results through the specified algorithm. In both cases, the evaluation ends with the fulfilment of the
enclosed obligations.

• Let us suppose now that the applicability does not hold. If the expression evaluates to false or , the policy
evaluation returns not-applicable, while if the expression returns an error or a non-boolean value, the policy
evaluation returns indeterminate.

Clearly, a policy with target expression true (resp., false) applies to all (resp., no) requests. The evaluation process of
rules and policy sets is summarised, respectively, in Tables 1 and 2.

Target Obligation Rule Result
true fulfilled rule effect + FO
true fulfilment error indeterminate
false or • not-applicable

error or non-boolean value - indeterminate

Table 1. Rule evaluation (where FO stands for ‘fulfilled obligations’)

Target Combining Algorithm Obligation Policy Set Result
true permit (resp., deny) fulfilled permit (resp., deny) + FO
true not-applicable • not-applicable

true indeterminate • indeterminate

true permit (resp., deny) fulfilment error indeterminate
false or • • not-applicable

error or non-boolean
value

- • indeterminate

Table 2. Policy set evaluation (where FO stands for ‘fulfilled obligations’)

12 Chapter 3. Usage guide

FACPL Documentation, Release 2.0

Concerning the evaluation of expressions, it takes into account the types of the operators arguments, and possibly
returns the special value and error. In details, if the arguments are of the expected type, the operator is applied, else,
i.e. at least one argument is error, error is returned; otherwise, i.e. at least one argument is and none is error, is
returned. The expression operators and and or enforce a different treatment of these special values. Specifically, and
returns true if both operands are true, false if at least one operand is false, if at least one operand is and none is false
or error, and error otherwise (e.g. when an operand is not a boolean value). The operator or is the dual of and. Hence,
and and or may mask and error. Instead, the unary operator not only swaps values true and false and leaves and error
unchanged. The other expression operators have the expected semantics (e.g., operator equal checks if the arguments
are equal) and enforce the management strategy for the special values and error possibly resulting from the evaluation
of their arguments. Indeed, they establish that error takes precedence over and is returned every time the operator
arguments have unexpected types; whereas is returned when at least an argument is and there is no error.

The evaluation of a policy includes the fulfilment of the enclosed obligations whose applicability effect coincides
with the decision calculated for the policy. The fulfilment of an obligation consists in evaluating all the expression
arguments of the enclosed action. If an error occurs, the policy decision is changed to indet. Otherwise, the fulfilled
obligations are paired with the policy decision to form the PDP response.

The behaviour of the combining algorithms available in the plugin is as follows:

• deny-overrides (specular to permit-overrides): if the processing of a policy returns deny, then the result is
deny. In other words, deny takes precedence, regardless of the result of processing any other policy. Instead, if at
least a policy returns permit and all others return not-applicable or permit, then the result is permit. If all policies
return not-applicable, then the result is not-applicable. In the remaining cases, the result is indeterminate.

• deny-unless-permit (specular to permit-unless-deny): this algorithm gives precedence to permit over deny,
but never returns not-applicable or indeterminate because, if a request is not evaluated as permit, then it is
evaluated as deny.

• first-applicable: in this case, the combined result is the same as the result of processing the first policy in the se-
quence of policies whose target is applicable to the request, if such result is either permit, deny or indeterminate.
If all policies return not-applicable, then the result is not-applicable.

• only-one-applicable: this algorithm ensures that one and only one policy is applicable by virtue of its target.
If no policy applies, the algorithm returns not-applicable, while if more than one policy is applicable, it returns
indeterminate. When exactly one policy is applicable, the result of the algorithm is that of the applicable policy.

• weak-consensus: this algorithm returns permit (resp., deny) if some policies return permit (resp., deny) and no
other policy returns deny (resp., permit); if both decisions are returned by different policies in the sequence, the
algorithm returns indeterminate. If only not-applicable and indeterminate decisions are returned, indeterminate
takes precedence. When all policies return not-applicable then the result is not-applicable.

• strong-consensus: this algorithm is the stronger version of the previous one, in the sense that to obtain permit
(resp., deny) all policies have to return permit (resp., deny), otherwise indeterminate is returned. If all policies
return not-applicable then the result is not-applicable.

Each algorithm is paired with a fulfilment strategy, i.e. one between all and greedy.

• The all strategy requires evaluation of all the occurring policies and returns the fulfilled obligations pertaining
to all decisions.

• The greedy strategy prescribes that, as soon as a decision is obtained that cannot change due to evaluation of
subsequent policies in the input sequence, the execution halts. Hence, the result will not consider the possibly
remaining policies and only contains the obligations already fulfilled. Therefore, the fulfilment strategies mainly
affect the amount of fulfilled obligations possibly returned.

The greedy strategy may significantly improve the evaluation performance of a sequence of several policies.

Finally, the custom-algorithm doesn’t implement any behaviour; when the Java code is generated, it only returns a
“template” for implementing a customised combining algorithm.

3.3. Policy Evaluation 13

FACPL Documentation, Release 2.0

The authorisation decision resulting from the PDP evaluation is then enforced by means of the chosen enforcement
algorithm according to the results of the execution of obligations. The behaviour of each enforcement algorithm is as
follows:

• base: it allows (resp. forbids) access only if the decision is permit (resp. deny) and all obligations are success-
fully discharged, otherwise it enforces indeterminate;

• deny-biased: if the decision is permit and all obligations are successfully discharged, the access is granted,
otherwise it is forbidden;

• permit-biased: if the decision is deny and all obligations are successfully discharged, the access is forbidden,
otherwise it is granted.

Notably, errors possibly occurring while discharging optional obligations are ignored, so that they do not affect the
enforcement process.

3.4 Policy Analysis

To analyse FACPL policies, it is used an approach based on constraints. The automatic verification of such constraints
is obtained through an SMT solver, like, e.g., Z3. For additional details on how such constraints are generated see this
FACPL paper The type of properties we can check on policies by means of such constraints are:

• Authorisation Properties These properties permit to statically reason on the result of the evaluation of a policy
with respect to a specific request. Additionally, the properties MAY and MUST permit also to take into account
the role of additional attributes that can be possibly introduced in the request at run-time and that might lead to
unexpected authorisations. The properties are

– EVAL: check if a policy evaluates a request to a certain decision.

– MAY: check if a policy evaluates a request and ANY of its possible extensions (i.e., where additional
attributes are present) to a certain decision.

– MUST: check if a policy evaluates a request and ALL its possible extensions (i.e., where additional at-
tributes are present) to a certain decision.

• Structural Properties These properties permit to statically reason on the whole set of authorisations enforced
by one or more policies. The properties are

– COMPLETE: a policy is complete if it applies to all requests, i.e. it does not return not-applicable

– DISJOINT: two policies are disjoint if there is no request for which both policies evaluate to permit or
deny

– COVER: a policy p covers a policy p’ if the for each request for which p’ evaluates to permit or deny, the
policy p evaluates such requests to the same decision.

3.5 Plugin Commands and Facets

The FACPL plugin offers many facets to support policy development, from the organisation of code to commands for
generating Java and XML code.

Navigation and formatting. The multi-page editor highlights FACPL keywords and policies’ structure defining
various formatting layouts for policy elements (i.e., combining algorithms, keywords, effects, and literals), and an
auto-indentation command for FACPL code. The latter command can be invoked by using the classical Eclipse shortcut
+Shift+F (or Ctrl+Shift+F for Window’s users). Furthermore, the structure of policies can be also navigated by means
of the Outline View specifically designed for FACPL specifications.

14 Chapter 3. Usage guide

https://github.com/Z3Prover
http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_05.pdf
http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_05.pdf

FACPL Documentation, Release 2.0

Scope and Import. The scope of a file is the set of requests and policies defined inside the file. The scope is used to
check the references of requests and policies in the Eval Request option and in the include command, respectively.

The plugin allows the developers to split the code in different modules and, by using import commands, to create
cross-file scope for policies and requests. The import is defined as the command import ‘name_file.fpl’ and can access
all the FACPL files in the current folder. Therefore, the scope of the file where the import is defined is extended with
the scope of the imported files. Specifically, all requests and policies defined in the imported file are also visible in the
current file.

Name checks. For policies and policy sets it is ensured the uniqueness of names. This check is performed among
policy items together with policy set ones, because both of them can be used in an include command. Moreover, when
an import command is present, the name check verifies uniqueness of local items with respect to the imported ones.

Generation parameters. The meaning of the attributes defined in the Main Attributes section of the FACPL code is
as follows:

• Combined Decision (optional): if multiple requests have to be evaluated, we can require that only one combined
decision will be returned.

• Extended Indeterminate: it activates an additional features for the management of indeterminate; we advice to
put this option to false.

• Java Package: it specifies the Java package where the generated Java-translated policies and requests will be
placed (if empty, it is assigned the default Java package).

• Requests To Evaluate: it defines the name of the requests to evaluate (each request name must be visible within
the file scope).

When these options are properly selected, the generation of Java code defines, in the PEP Java class, the main method
for running requests’ evaluation.

Generation of Java Code. To generate the corresponding Java code of a FACPL specification, the IDE provides the
command Generate Java Code from FACPL in the pop-up menu (right click in the editor or on the specific file in the
package explorer view) and in the FACPL toolbar menu. The resulting Java classes will be included in the package
defined in the main attributes. If there are one or more imported files, the generation command is recursively executed
on those FACPL files.

Generation of XACML (XML) policies. From the FACPL code it is also possible to generate the corresponding
XACML files written as XML code. The command Generate XACML Code from FACPL in the pop-up menu or in the
FACPL toolbar menu generates the corresponding XML files into the src-xml folder.

Generation of SMT-LIB. From the FACPL code it is also possible to generate the corresponding SMT-LIB code.
The command Generate SMT-LIB Code from FACPL in the pop-up menu or in the FACPL toolbar menu generates the
corresponding SMT-LIB file into the src-smtlib folder. This file can then pass as input to an SMT solver like, e.g., Z3.

Policy Analysis. The menu commands Create Authorisation Property. . . and Create Structural Property. . . provide a
guided interface to create the SMT-LIB file needed to check the satisfiability of the chosen authorisation and structural
property, respectively.

3.6 FAQ

• Which additional action are available for FACPL obligations? The PEP implementation provides by default
log and mailTo actions. Other actions can be easily defined by using the Java class PEPAction that results from
the generation of Java code.

• May I code with FACPL directly in Java? Yes, the Java libraries can be found on the web-site and they can
be easily added as additional reference libraries to a Java project.

3.6. FAQ 15

https://github.com/Z3Prover

FACPL Documentation, Release 2.0

• How can I update the Eclipse plugin? The Eclipse plugin can be automatically updated (if a new version will
be available) by using the Eclipse command Check for Updates.

Note: For any problem or questions, add an issue to the GitHub repository or mail to margheri.andrea@gmail.com.

16 Chapter 3. Usage guide

https://github.com/andreamargheri/FACPL/issues
mailto:margheri.andrea@gmail.com

	FACPL at a glance
	FACPL Evaluation Process

	Getting started
	Eclipse installation
	Java Library
	FACPL Java Code Generator and Parsers

	Usage guide
	Setting Up a FACPL Project
	Policy Specification
	Policy Evaluation
	Policy Analysis
	Plugin Commands and Facets
	FAQ

