

 Navigation

 	
 index

 	
 next |

 	fabricdocs 1.0 documentation

Welcome to Hyperledger fabric’s documentation

Warning

This build of the docs is from the “master” branch and Release “1.0“

Key Concepts

	Overview

	Why Hyperledger Fabric?

	Hyperledger Fabric Glossary
	Blockchain Network

	Permissioned Network

	Peer

	Member

	Transaction

	End User

	Ordering Service

	Consensus

	Orderer

	Endorser

	Committer

	Bootstrap

	Block

	System chain

	Channel

	Multi-channel

	Configuration Block

	Genesis Block

	Ledger

	Dynamic membership

	Query/Non-Key Value Query

	Gossip Protocol

	System Chaincode

	Lifecycle System Chaincode

	Configuration System Chaincode

	Endorsement System Chaincode

	Validation System Chaincode

	Policy

	Endorsement policy

	Proposal

	Deploy

	Invoke

	Membership Services

	Membership Service Provider

	Initialize

	appshim

	osshim

	Hyperledger Fabric Client SDK

	Chaincode

	Transaction Data Model

	Security Model

	Multichannel

	Smart Contracts

	Consensus

Getting Started

	Getting Started with v1.0 Hyperledger Fabric - App Developers
	Prerequisites and setup

	Curl the source code to create network entities

	Using Docker

	Commands

	Use Docker to spawn network entities & create/join a channel

	Curl the application source code and SDK modules

	Use node SDK to register/enroll user and deploy/invoke/query

	Manually create and join peers to a new channel

	Use cli to deploy, invoke and query

	Creating your initial channel through the cli

	Troubleshooting (optional)

	Clean up

	Helpful Docker tips

	What’s Included?

	Prerequisites and setup

	Curl the source code to create network entities

	Using Docker

	Commands

	Use Docker to spawn network entities & create/join a channel

	Curl the application source code and SDK modules

	Use node SDK to register/enroll user, followed by deploy/invoke

	Manually create and join peers to a new channel

	Use cli to deploy, invoke and query

	Creating your initial channel through the cli

	Troubleshooting (optional)

	Clean up

	Helpful Docker tips

Application Interfaces

	Node SDK

	Java SDK

	Python SDK

Running Demos

	Marbles

	Art Auction

	Commercial Paper

	Car Lease

Tutorials

	What is chaincode?
	Chaincode interfaces

	Dependencies

	Chaincode APIs

	Response

	Command Line Interfaces

	Deploy a chaincode

	Learn to write chaincode

	Docker Compose

	Sample Application

	Videos

	Administration and operations

	Debugging & Logging

	Logging Control
	Overview

	peer

	Go chaincodes

Configuration Considerations

	Recipe Book

	Starting a network

Architecture

	Architecture

	Architecture Deep Dive
	Table of contents

	1. System architecture

	2. Basic workflow of transaction endorsement

	3. Endorsement policies

	4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning)

	Endorsement policies
	Endorsement policy design

	Endorsement policy syntax in the CLI

	Specifying endorsement policies for a chaincode

	Future enhancements

	Ordering Service

	Pluggable Ordering implementations

	Ledger

	Gossip protocol

	Fabric CA User’s Guide

	Getting Started
	Prerequisites

	Install

	The Fabric CA CLI

	Fabric CA Server

	Appendix
	Postgres SSL Configuration

	MySQL SSL Configuration

	Components

	Transaction Flow

Peer nodes

	Endorsing Peer

	Committing Peer

Getting Help

	Troubleshooting

FAQs

	Chaincode (Smart Contracts and Digital Assets)

	Confidentiality
	How is the confidentiality of transactions and business logic achieved?

	Consensus Algorithm

	Identity Management (Membership Service)

	Usage

Appendix

	Releases

	Contributions Welcome!
	Getting a Linux Foundation account

	Getting help

	Requirements and Use Cases

	Reporting bugs

	Fixing issues and working stories

	Working with a local clone and Gerrit

	What makes a good change request?

	Coding guidelines

	Communication

	Maintainers

	Legal stuff

Development process and code

	Requesting a Linux Foundation Account
	Creating a Linux Foundation ID

	Configuring Gerrit to Use SSH

	Checking Out the Source Code

	Maintainers

	Using Jira to understand current work items

	Setting up the development environment
	Overview

	Prerequisites

	pip, behave and docker-compose

	Steps

	Building the fabric

	Notes

	Building the fabric
	Running the unit tests

	Running Node.js Unit Tests

	Running Behave BDD Tests

	Building outside of Vagrant
	Building on Z

	Building on Power Platform

	Configuration

	Logging

	Working with Gerrit
	Git-review

	Sandbox project

	Getting deeper into Gerrit

	Working with a local clone of the repository

	Submitting a Change

	Adding reviewers

	Reviewing Using Gerrit

	Viewing Pending Changes

	Submitting a Change to Gerrit
	Change Requirements

	Reviewing a Change

	Gerrit Recommended Practices
	Browsing the Git Tree

	Watching a Project

	Commit Messages

	Avoid Pushing Untested Work to a Gerrit Server

	Keeping Track of Changes

	Topic branches

	Creating a Cover Letter for a Topic

	Finding Available Topics

	Downloading or Checking Out a Change

	Using Draft Branches

	Using Sandbox Branches

	Updating the Version of a Change

	Rebasing

	Rebasing During a Pull

	Getting Better Logs from Git

	Testing

Sytle Guides

	Coding guidelines
	Coding Golang

	Generating gRPC code

	Adding or updating Go packages

	Still Have Questions?

	Quality

	Incubation Notice

	License

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Overview

Hyperledger Fabric is a robust and flexible blockchain network
architecture that provides enterprise-ready security, scalability,
confidentiality and performance. Its unique implementation of
distributed ledger technology ensures data integrity and consistency,
while delivering accountability, transparency and efficiency. As a
permissioned network, the fabric delivers a trusted blockchain network,
where members are assured that all transactions can be detected and
traced by authorized regulators and auditors.

Hyperledger Fabric separates chaincode execution from transaction
ordering, which limits the required levels of trust and verification
across nodes, optimizing network scalability and performance. Private
channels provide multi- lateral transactions with the high degree of
privacy and confidentiality required for competing businesses and
regulated industries to coexist on a common network. The fabric
incorporates a modular approach to blockchain, enabling network
designers to plug in their preferred implementations for components such
as ordering, identity management and encryption.

In total, Hyperledger Fabric delivers a uniquely comprehensive, elastic
and extensible architecture, distinguishing it from the alternative
blockchain solutions. Planning for the future of enterprise blockchain
requires building on a fully-vetted, open architecture; Hyperledger
Fabric is your starting point.

Attention: The Hyperledger Fabric project team is continually
working to improve the security, performance and robustness of the
released software, and frequently publishes updates. To stay current as
the project progresses, please see the Communication and Still
Have Questions? topics. Your participation in Linux Foundation
projects is welcomed and encouraged!

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Why Hyperledger Fabric?

The Hyperledger Fabric project is delivering a blockchain platform
designed to allow the exchange of an asset or the state of an asset to
be consented upon, maintained, and viewed by all parties in a
permissioned group. A key characteristic of Hyperledger Fabric is that
the asset is defined digitally, with all participants simply agreeing on
its representation/characterization. As such, Hyperledger Fabric can
support a broad range of asset types; ranging from the tangible (real
estate and hardware) to the intangible (contracts and intellectual
property).

The technology is based on a standard blockchain concept - a shared,
replicated ledger. However, Hyperledger Fabric is based on a
Hyperledger Fabric Glossary, meaning all
participants are required to be authenticated in order to participate
and transact on the blockchain. Moreover, these identities can be used
to govern certain levels of access control (e.g. this user can read the
ledger, but cannot exchange or transfer assets). This dependence on
identity is a great advantage in that varying consensus algorithms (e.g.
byzantine or crash fault tolerant) can be implemented in place of the
more compute-intensive Proof-of-Work and Proof-of-Stake varieties. As a
result, permissioned networks tend to provide higher transaction
throughput rates and performance.

Once an organization is granted access to the blockchain
network Hyperledger Fabric Glossary, it then has the ability to
create and maintain a private channel Hyperledger Fabric Glossary with
other specified members. For example, let’s assume there are four
organizations trading jewels. They may decide to use Hyperledger Fabric
because they trust each other, but not to an unconditional extent. They
can all agree on the business logic for trading the jewels, and can all
maintain a global ledger to view the current state of their jewel market
(call this the consortium channel). Additionally, two or more of these
organizations might decide to form an alternate private blockchain for a
certain exchange that they want to keep confidential (e.g. price X for
quantity Y of asset Z). They can perform this trade without affecting
their broader consortium channel, or, if desired, this private channel
can broadcast some level of reference data to their consortium channel.

This is powerful! This provides for great flexibility and potent
capabilities, along with the interoperability of multiple blockchain
ledgers within one consortium. This is the first of its kind and allows
organizations to curate Hyperledger Fabric to support the myriad use
cases for different businesses and industries. Hyperledger Fabric has
already been successfully implemented in the banking, finance, and
retail industries.

We welcome you to the Hyperledger Fabric community and are keen to learn
of your architectural and business requirements, and help determine how
Hyperledger Fabric can be leveraged to support your use cases.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Hyperledger Fabric Glossary

Note: This glossary is structured to prioritize new terms and features
specific to architecture. It makes the assumption that one already
possesses a working familiarity with the basic tenets of blockchain.

Blockchain Network

A blockchain network consists of, at minimum, one peer (responsible for
endorsing and committing transactions) leveraging an ordering service,
and a membership services component (certificate authority) that
distributes and revokes cryptographic certificates representative of
user identities and permissions.

Permissioned Network

A blockchain network where any entity (node) is required to maintain a
member identity on the network. End users must be authorized and
authenticated in order to use the network.

Peer

Peer is a component that executes, and maintains a ledger of,
transactions. There are two roles for a peer – endorser and committer.
The architecture has been designed such that a peer is always a
committer, but not necessarily always an endorser. Peers play no role in
the ordering of transactions.

Member

A Member is a participant (such as a company or organization) that
operates components - Peers, Orderers, and applications - in the
blockchain network. A member is identified by its CA certificate (i.e.
a unique enrollment). A Member’s peer will be leveraged by end users
in order to perform transaction operations on specific channels.

Transaction

Refers to an operation in which an authorized end user performs
read/write operations against the ledger. There are three unique types
of transactions - deploy, invoke, and query.

End User

An end user is someone who would interact with the blockchain through a
set of published APIs (i.e. the hfc SDK). You can have an admin user
who will typically grant permissions to the Member’s components, and a
client user, who, upon proper authentication through the admin user,
will drive chaincode applications (deploy, invoke, query) on various
channels. In the case of self-executing transactions, the application
itself can also be thought of as the end user.

Ordering Service

A centralized or decentralized service that orders transactions in a
block. You can select different implementations of the “ordering”
function - e.g “solo” for simplicity and testing, Kafka for crash fault
tolerance, or sBFT/PBFT for byzantine fault tolerance. You can also
develop your own protocol to plug into the service.

Consensus

A broader term overarching the entire transactional flow, which serves
to generate an agreement on the order and to confirm the correctness of
the set of transactions constituting a block.

Orderer

One of the network entities that form the ordering service. A collection
of ordering service nodes (OSNs) will order transactions into blocks
according to the network’s chosen ordering implementation. In the case
of “solo”, only one OSN is required. Transactions are “broadcast” to
orderers, and then “delivered” as blocks to the appropriate channel.

Endorser

A specific peer role, where the Endorser peer is responsible for
simulating transactions, and in turn preventing unstable or
non-deterministic transactions from passing through the network. A
transaction is sent to an endorser in the form of a transaction
proposal. All endorsing peers are also committing peers (i.e. they
write to the ledger).

Committer

A specific peer role, where the Committing peer appends the validated
transactions to the channel-specific ledger. A peer can act as both an
endorser and committer, but in more regulated circumstances might only
serve as a committer.

Bootstrap

The initial setup of a network. There is the bootstrap of a peer
network, during which policies, system chaincodes, and cryptographic
materials (certs) are disseminated amongst participants, and the
bootstrap of an ordering network. The bootstrap of the ordering network
must precede the bootstrap of the peer network, as a peer network is
contingent upon the presence of an ordering service. A network need only
be “bootstrapped” once.

Block

A batch of ordered transactions, potentially containing ones of an
invalid nature, that is delivered to the peers for validation and
committal.

System chain

Contains a configuration block defining the network at a system level.

The system chain lives within the ordering service, and similar to a
channel, has an initial configuration containing information such as:
root certificates for participating organizations and ordering service
nodes, policies, listening address for OSN, and configuration details.
Any change to the overall network (e.g. a new org joining or a new OSN
being added) will result in a new configuration block being added to
the system chain.

The system chain can be thought of as the common binding for a channel
or group of channels. For instance, a collection of financial
institutions may form a consortium (represented through the system
chain), and then proceed to create channels relative to their aligned
and varying business agendas.

Channel

A Channel is formed as an offshoot of the system chain; and best thought
of as a “topic” for peers to subscribe to, or rather, a subset of a
broader blockchain network. A peer may subscribe on various channels and
can only access the transactions on the subscribed channels. Each
channel will have a unique ledger, thus accommodating confidentiality
and execution of multilateral contracts.

Multi-channel

The fabric will allow for multiplechannels with a designated ledger per
channel. This capability allows for multilateral contracts where only
the restricted participants on the channel will submit, endorse, order,
or commit transactions on that channel. As such, a single peer can
maintain multiple ledgers without compromising privacy and
confidentiality.

Configuration Block

Contains the configuration data defining members and policies for a
system chain or channel(s). Any changes to the channel(s) or overall
network (e.g. a new member successfully joining) will result in a new
configuration block being appended to the appropriate chain. This block
will contain the contents of the genesis block, plus the delta. The
policy to alter or edit a channel-level configuration block is defined
through the Configuration System Chaincode (CSCC).

Genesis Block

The configuration block that initializes a blockchain network or
channel, and also serves as the first block on a chain.

Ledger

An append-only transaction log managed by peers. Ledger keeps the log
of ordered transaction batches. There are two denotations for ledger;
peer and validated. The peer ledger contains all batched transactions
coming out of the ordering service, some of which may in fact be
invalid. The validated ledger will contain fully endorsed and validated
transaction blocks. In other words, transactions in the validated ledger
have passed the entire gamut of “consensus” - i.e. they have been
endorsed, ordered, and validated.

Dynamic membership

he fabric will allow for endorsers and committers to come and go based
on membership, and the blockchain network will continue to operate.
Dynamic membership is critical when businesses grow and members need to
be added or removed for various reasons.

Query/Non-Key Value Query

using couchDB 2.0 you now have the capability to leverage an API to
perform more complex queries against combinations of variables,
including time ranges, transaction types, users, etc. This feature
allows for auditors and regulators to aggregate and mine large chunks of
data.

Gossip Protocol

A communication protocol used among peers in a channel, to maintain
their network and to elect Leaders, through which funnels all
communications with the Ordering Service. Gossip allows for data
dissemination, therein providing support for scalability due to the fact
that not all peers are required to execute transactions and communicate
with the ordering service.

System Chaincode

System Chaincode (SCC) is a chaincode built with the peer and run in the
same process as the peer. SCC is responsible for broader configurations
of fabric behavior, such as timing and naming services.

Lifecycle System Chaincode

Lifecycle System Chaincode (LSCC) is a system chaincode that handles
deployment, upgrade and termination transactions for user chaincodes.

Configuration System Chaincode

Configuration System Chaincode (CSCC) is a “management” system chaincode
that handles configuration requests to alter an aspect of a channel
(e.g. add a new member). The CSCC will interrogate the channel’s
policies to determine if a new configuration block can be created.

Endorsement System Chaincode

Endorsement System Chaincode (ESCC) is a system chaincode that andles
the endorsement policy for specific pieces of chaincode deployed on a
network, and defines the necessary parameters (percentage or combination
of signatures from endorsing peers) for a transaction proposal to
receive a successful proposal response (i.e. endorsement). Deployments
and invocations of user chaincodes both require a corresponding ESCC,
which is defined at the time of the deployment transaction proposal for
the user chaincode.

Validation System Chaincode

Validation System Chaincode (VSCC) Handles the validation policy for
specific pieces of chaincode deployed on a network. Deployments and
invocations of user chaincodes both require a corresponding VSCC, which
is defined at the time of the deployment transaction proposal for the
user chaincode. VSCC validates the specified level of “endorsement”
(i.e. endorsement policy) in order to prevent malicious or faulty
behavior from the client.

Policy

There are policies for endorsement, validation, block committal,
chaincode management and network/channel management. Policies are
defined through system chaincodes, and contain the requisite
specifications for a network action to succeed. For example, an
endorsement policy may require that 100% of endorsers achieve the same
result upon transaction simulation.

Endorsement policy

A blockchain network must establish rules that govern the endorsement
(or not) of proposed, simulated transactions. This endorsement policy
could require that a transaction be endorsed by a minimum number of
endorsing peers, a minimum percentage of endorsing peers, or by all
endorsing peers that are assigned to a specific chaincode application.
Policies can be curated based on the application and the desired level
of resilience against misbehavior (deliberate or not) by the endorsing
peers. A distinct endorsement policy for deploy transactions, which
install new chaincode, is also required.

Proposal

A transaction request sent from a client or admin user to one or more
peers in a network; examples include deploy, invoke, query, or
configuration request.

Deploy

Refers to the function through which chaincode applications are deployed
on chain. A deploy is first sent from the client SDK or CLI to a
Lifecycle System Chaincode in the form of a proposal.

Invoke

Used to call chaincode functions. Invocations are captured as
transaction proposals, which then pass through a modular flow of
endorsement, ordering, validation, committal. The structure of invoke
is a function and an array of arguments.

Membership Services

Membership Services manages user identities on a permissioned blockchain
network; this function is implemented through the fabric-ca
component. fabric-ca is comprised of a client and server, and
handles the distribution and revocation of enrollment materials
(certificates), which serve to identify and authenticate users on a
network.

The in-line MembershipSrvc code (MSP) runs on the peers themselves,
and is used by the peer when authenticating transaction processing
results, and by the client to verify/authenticate transactions.
Membership Services provides a distinction of roles by combining
elements of Public Key Infrastructure (PKI) and decentralization
(consensus). By contrast, non-permissioned networks do not provide
member-specific authority or a distinction of roles.

A permissioned blockchain requires entities to register for long-term
identity credentials (Enrollment Certificates), which can be
distinguished according to entity type. For users, an Enrollment
Certificate authorizes the Transaction Certificate Authority (TCA) to
issue pseudonymous credentials; these certificates authorize
transactions submitted by the user. Transaction certificates persist on
the blockchain, and enable authorized auditors to associate, and
identify the transacting parties for otherwise un-linkable transactions.

Membership Service Provider

The Membership Service Provider (MSP) refers to an abstract component of
the system that provides (anonymous) credentials to clients, and peers
for them to participate in a Hyperledger/fabric network. Clients use
these credentials to authenticate their transactions, and peers use
these credentials to authenticate transaction processing results
(endorsements). While strongly connected to the transaction processing
components of the systems, this interface aims to have membership
services components defined, in such a way that alternate
implementations of this can be smoothly plugged in without modifying the
core of transaction processing components of the system.

Initialize

A chaincode method to define the assets and parameters in a piece of
chaincode prior to issuing deploys and invocations. As the name
implies, this function should be used to do any initialization to the
chaincode, such as configure the initial state of a key/value pair on
the ledger.

appshim

An application client used by ordering service nodes to process
“broadcast” messages arriving from clients or peers. This shim allows
the ordering service to perform membership-related functionality checks.
In other words, is a peer or client properly authorized to perform the
requested function (e.g. upgrade chaincode or reconfigure channel
settings).

osshim

An ordering service client used by the application to process ordering
service messages (i.e. “deliver” messages) that are advertised within a
channel.

Hyperledger Fabric Client SDK

Provides a powerful set of APIs and contains myriad “methods” or “calls”
that expose the capabilities and functionalities in the Hyperledger
Fabric code base. For example, addMember, removeMember. The
Fabric SDK comes in multiple flavors - Node.js, Java, and Python, for
starters - thus, allowing developers to write application code in any of
those programming languages.

Chaincode

Embedded logic that encodes the rules for specific types of network
transactions. Developers write chaincode applications, which are then
deployed onto a chain by an appropriately authorized member. End users
then invoke chaincode through a client-side application that interfaces
with a network peer. Chaincode runs network transactions, which if
validated, are appended to the shared ledger and modify world state.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Transaction Data Model

...coming soon

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Security Model

[WIP] Hyperledger Fabric allows for different organizations and
participants in a common network to utilize their own certificate
authority, and as a byproduct, implement varying cryptographic
algorithms for signing/verifying/identity attestation. This is done
through an MSP process running on both the ordering service and channel
levels.

Membership service provider (MSP): A set of cryptographic mechanisms and
protocols for issuing and validating certificates and identities
throughout the blockchain network. Identities issued in the scope of a
membership service provider can be evaluated within that membership
service provider’s rules validation policies.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Multichannel

The fabric will allow for multiplechannels with a designated ledger per
channel (data segregation). This capability allows for multilateral
contracts where only the restricted participants on the channel will
submit, endorse, order, or commit transactions on that channel. As
such, a single peer can maintain multiple ledgers without compromising
privacy and confidentiality.

Refer to the multichannel design
document [https://docs.google.com/document/d/1eRNxxQ0P8yp4Wh__Vi6ddaN_vhN2RQHP-IruHNUwyhc/edit#heading=h.hml58k6zw29h]
for more detailed explanation on the mechanics and architecture.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Smart Contracts

[WIP] Referred to as “chaincode” in Hyperledger Fabric.

Self-executing logic that encodes the rules for specific types of
network transactions. Chaincode (currently written in Go or Java) is
installed and instantiated onto a channel’s peers by an appropriately
authorized member. End users then invoke chaincode through a client-side
application that interfaces with a network peer. Chaincode runs network
transactions, which if validated, are appended to the shared ledger and
modify world state.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Consensus

[WIP] Not to be conflated with the ordering process. Consensus in v1
architecture is a broader term overarching the entire transactional
flow, which serves to generate an agreement on the order and to confirm
the correctness of the set of transactions constituting a block.

It is achieved as a byproduct of the various steps and verifications
that occur during a transaction’s lifecycle from proposal to commitment.
More information on the high-level data flows is available
here [https://jira.hyperledger.org/browse/FAB-37].

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Getting Started with v1.0 Hyperledger Fabric - App Developers

This document demonstrates an example using the Hyperledger Fabric V1.0
architecture. The scenario will include the creation and joining of
channels, client side authentication, and the deployment and invocation
of chaincode. CLI will be used for the creation and joining of the
channel and the node SDK will be used for the client authentication, and
chaincode functions utilizing the channel.

Docker Compose will be used to create a consortium of three
organizations, each running an endorsing/committing peer, as well as a
“solo” orderer and a Certificate Authority (CA). The cryptographic
material, based on standard PKI implementation, has been pre-generated
and is included in the sfhackfest.tar.gz in order to expedite the
flow. The CA, responsible for issuing, revoking and maintaining the
crypto material represents one of the organizations and is needed by the
client (node SDK) for authentication. In an enterprise scenario, each
organization might have their own CA, with more complex security
measures implemented - e.g. cross-signing certificates, etc.

The network will be generated automatically upon execution of
docker-compose up, and the APIs for create channel and join channel
will be explained and demonstrated; as such, a user can go through the
steps to manually generate their own network and channel, or quickly
jump to the application development phase.

Prerequisites and setup

	Docker [https://www.docker.com/products/overview] - v1.13 or
higher

	Docker Compose [https://docs.docker.com/compose/overview/] - v1.8
or higher

	Node.js & npm [https://nodejs.org/en/download/] - node v6.9.5 and
npm v3.10.10 If you already have node on your machine, use the node
website to install v6.9.5 or issue the following command in your
terminal:

nvm install v6.9.5

then execute the following to see your versions:

should be 6.9.5
node -v

AND

should be 3.10.10
npm -v

Curl the source code to create network entities

	Download the cURL [https://curl.haxx.se/download.html] tool if
not already installed.

	Determine a location on your local machine where you want to place
the Fabric artifacts and application code.

mkdir -p <my_dev_workspace>/hackfest
cd <my_dev_workspace>/hackfest

Next, execute the following command:

curl -L https://raw.githubusercontent.com/hyperledger/fabric/master/examples/sfhackfest/sfhackfest.tar.gz -o sfhackfest.tar.gz 2> /dev/null; tar -xvf sfhackfest.tar.gz

This command pulls and extracts all of the necessary artifacts to set
up your network - Docker Compose script, channel generate/join
script, crypto material for identity attestation, etc. In the
/src/github.com/example_cc directory you will find the chaincode
that will be deployed.

Your directory should contain the following:

JDoe-mbp: JohnDoe$ pwd
/Users/JohnDoe
JDoe-mbp: JohnDoe$ ls
sfhackfest.tar.gz channel_test.sh src
ccenv docker-compose-gettingstarted.yml tmp

Using Docker

You do not need to manually pull any images. The images for -
fabric-peer, fabric-orderer, fabric-ca, and cli are
specified in the .yml file and will automatically download, extract, and
run when you execute the docker-compose command.

Commands

The channel commands are:

	create - create and name a channel in the orderer and get
back a genesis block for the channel. The genesis block is named in
accordance with the channel name.

	join - use the genesis block from the create command to issue
a join request to a peer.

Use Docker to spawn network entities & create/join a channel

Ensure the hyperledger/fabric-ccenv image is tagged as latest:

docker-compose -f docker-compose-gettingstarted.yml build

Create network entities, create channel, join peers to channel:

docker-compose -f docker-compose-gettingstarted.yml up -d

Behind the scenes this started six containers (3 peers, a “solo”
orderer, cli and CA) in detached mode. A script - channel_test.sh -
embedded within the docker-compose-gettingstarted.yml issued the
create channel and join channel commands within the CLI container. In
the end, you are left with a network and a channel containing three
peers - peer0, peer1, peer2.

View your containers:

if you have no other containers running, you will see six
docker ps

Ensure the channel has been created and peers have successfully joined:

docker exec -it cli bash

You should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

To view results for channel creation/join:

more results.txt

You’re looking for:

SUCCESSFUL CHANNEL CREATION
SUCCESSFUL JOIN CHANNEL on PEER0
SUCCESSFUL JOIN CHANNEL on PEER1
SUCCESSFUL JOIN CHANNEL on PEER2

To view genesis block:

more myc1.block

Exit the cli container:

exit

Curl the application source code and SDK modules

	Prior to issuing the command, make sure you are in the same working
directory where you curled the network code. AND make sure you have
exited the cli container.

	Execute the following command:

curl -OOOOOO https://raw.githubusercontent.com/hyperledger/fabric-sdk-node/v1.0-alpha/examples/balance-transfer/{config.json,deploy.js,helper.js,invoke.js,query.js,package.json}

This command pulls the javascript code for issuing your deploy, invoke
and query calls. It also retrieves dependencies for the node SDK
modules.

	Install the node modules:

You may be prompted for your root password at one or more times during this process.
npm install

You now have all of the necessary prerequisites and Fabric artifacts.

Use node SDK to register/enroll user and deploy/invoke/query

The individual javascript programs will exercise the SDK APIs to
register and enroll the client with the provisioned Certificate
Authority. Once the client is properly authenticated, the programs will
demonstrate basic chaincode functionalities - deploy, invoke, and query.
Make sure you are in the working directory where you pulled the source
code before proceeding.

Upon success of each node program, you will receive a “200” response in
the terminal.

Register/enroll & deploy chaincode (Linux or OSX):

Deploy initializes key value pairs of "a","100" & "b","200".
GOPATH=$PWD node deploy.js

Register/enroll & deploy chaincode (Windows):

Deploy initializes key value pairs of "a","100" & "b","200".
SET GOPATH=%cd%
node deploy.js

Issue an invoke. Move units 100 from “a” to “b”:

node invoke.js

Query against key value “b”:

this should return a value of 300
node query.js

Explore the various node.js programs, along with example_cc.go to
better understand the SDK and APIs.

Manually create and join peers to a new channel

Use the cli container to manually exercise the create channel and join
channel APIs.

Channel - myc1 already exists, so let’s create a new channel named
myc2.

Exec into the cli container:

docker exec -it cli bash

If successful, you should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

Send createChannel API to Ordering Service:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

This will return a genesis block - myc2.block - that you can issue
join commands with. Next, send a joinChannel API to peer0 and pass
in the genesis block as an argument. The channel is defined within the
genesis block:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer channel join -b myc2.block

To join the other peers to the channel, simply reissue the above command
with peer1 or peer2 specified. For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer1:7051 peer channel join -b myc2.block

Once the peers have all joined the channel, you are able to issues
queries against any peer without having to deploy chaincode to each of
them.

Use cli to deploy, invoke and query

Run the deploy command. This command is deploying a chaincode named
mycc to peer0 on the Channel ID myc2. The constructor
message is initializing a and b with values of 100 and 200
respectively.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer chaincode deploy -C myc2 -n mycc -p github.com/hyperledger/fabric/examples -c '{"Args":["init","a","100","b","200"]}'

Run the invoke command. This invocation is moving 10 units from a to
b.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer chaincode invoke -C myc2 -n mycc -c '{"function":"invoke","Args":["move","a","b","10"]}'

Run the query command. The invocation transferred 10 units from a to
b, therefore a query against a should return the value 90.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer chaincode query -C myc2 -n mycc -c '{"function":"invoke","Args":["query","a"]}'

You can issue an exit command at any time to exit the cli container.

Creating your initial channel through the cli

If you want to manually create the initial channel through the cli
container, you will need to edit the Docker Compose file. Use an editor
to open docker-compose-gettingstarted.yml and comment out the
channel_test.sh command in your cli image. Simply place a # to
the left of the command. (Recall that this script is executing the
create and join channel APIs when you run docker-compose up) For
example:

cli:
 container_name: cli
 <CONTENT REMOVED FOR BREVITY>
 working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer
command: sh -c './channel_test.sh; sleep 1000'
command: /bin/sh

Then use the cli commands from the prior two sections.

Troubleshooting (optional)

If you have existing containers running, you may receive an error
indicating that a port is already occupied. If this occurs, you will
need to kill the container that is using said port.

If a file cannot be located, make sure your curl commands executed
successfully and make sure you are in the directory where you pulled the
source code.

If you are receiving timeout or GRPC communication errors, make sure you
have the correct version of Docker installed - v1.13.0. Then try
restarting your failing docker process. For example:

docker stop peer0

Then:

docker start peer0

Another approach to GRPC and DNS errors (peer failing to resolve with
orderer and vice versa) is to hardcode the IP addresses for each. You
will know if there is a DNS issue, because a more results.txt
command within the cli container will display something similar to:

ERROR CREATING CHANNEL
PEER0 ERROR JOINING CHANNEL

Issue a docker inspect <container_name> to ascertain the IP address.
For example:

docker inspect peer0 | grep IPAddress

AND

docker inspect orderer | grep IPAddress

Take these values and hard code them into your cli commands. For
example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=172.21.0.2:7050 peer channel create -c myc1

AND THEN

CORE_PEER_COMMITTER_LEDGER_ORDERER=<IP_ADDRESS> CORE_PEER_ADDRESS=<IP_ADDRESS> peer channel join -b myc1.block

If you are seeing errors while using the node SDK, make sure you have
the correct versions of node.js and npm installed on your machine. You
want node v6.9.5 and npm v3.10.10.

If you ran through the automated channel create/join process (i.e. did
not comment out channel_test.sh in the
docker-compose-gettingstarted.yml), then channel - myc1 - and
genesis block - myc1.block - have already been created and exist on
your machine. As a result, if you proceed to execute the manual steps in
your cli container:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc1

Then you will run into an error similar to:

<EXACT_TIMESTAMP> UTC [msp] Sign -> DEBU 064 Sign: digest: 5ABA6805B3CDBAF16C6D0DCD6DC439F92793D55C82DB130206E35791BCF18E5F
Error: Got unexpected status: BAD_REQUEST
Usage:
 peer channel create [flags]

This occurs because you are attempting to create a channel named
myc1, and this channel already exists! There are two options. Try
issuing the peer channel create command with a different channel name -
myc2. For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

Then join:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer channel join -b myc2.block

If you do choose to create a new channel, and want to run
deploy/invoke/query with the node.js programs, you also need to edit the
“channelID” parameter in the config.json file to match the new
channel’s name. For example:

{
 "chainName":"fabric-client1",
 "chaincodeID":"mycc",
 "channelID":"myc2",
 "goPath":"../../test/fixtures",
 "chaincodePath":"github.com/example_cc",

OR, if you want your channel called - myc1 -, remove your docker
containers and then follow the same commands in the Manually create
and join peers to a new channel section.

Clean up

Shut down your containers:

docker-compose -f docker-compose-gettingstarted.yml down

Helpful Docker tips

Remove a specific docker container:

docker rm <containerID>

Force removal:

docker rm -f <containerID>

Remove all docker containers:

docker rm -f $(docker ps -aq)

This will merely kill docker containers (i.e. stop the process). You
will not lose any images.

Remove an image:

docker rmi <imageID>

Forcibly remove:

docker rmi -f <imageID>

Remove all images:

docker rmi -f $(docker images -q)

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

What’s Included?

This section demonstrates an example using the Hyperledger Fabric V1.0
architecture. The scenario will include the creation and joining of
channels, client side authentication, and the deployment and invocation
of chaincode. CLI will be used for the creation and joining of the
channel and the node SDK will be used for the client authentication, and
chaincode functions utilizing the channel.

Docker Compose will be used to create a consortium of three
organizations, each running an endorsing/committing peer, as well as a
“solo” orderer and a Certificate Authority (CA). The cryptographic
material, based on standard PKI implementation, has been pre-generated
and is included in the sfhackfest.tar.gz in order to expedite the
flow. The CA, responsible for issuing, revoking and maintaining the
crypto material, represents one of the organizations and is needed by
the client (node SDK) for authentication. In an enterprise scenario,
each organization might have their own CA, with more complex security
measures implemented - e.g. cross-signing certificates, etc.

The network will be generated automatically upon execution of
docker-compose up, and the APIs for create channel and join channel
will be explained and demonstrated; as such, a user can go through the
steps to manually generate their own network and channel, or quickly
jump to the application development phase.

It is recommended to run through this section in the order it is laid
out - node program first, followed by the CLI approach.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Prerequisites and setup

	Docker [https://www.docker.com/products/overview] - v1.13 or
higher

	Docker Compose [https://docs.docker.com/compose/overview/] - v1.8
or higher

	Node.js & npm [https://nodejs.org/en/download/] - node v6.9.5 and
npm v3.10.10 If you already have node on your machine, use the node
website to install v6.9.5 or issue the following command in your
terminal:

nvm install v6.9.5

then execute the following to see your versions:

should be 6.9.5
node -v

AND

should be 3.10.10
npm -v

Curl the source code to create network entities

	Download the cURL [https://curl.haxx.se/download.html] tool if
not already installed.

	Determine a location on your local machine where you want to place
the Fabric artifacts and application code.

mkdir -p <my_dev_workspace>/hackfest
cd <my_dev_workspace>/hackfest

Next, execute the following command:

curl -L https://raw.githubusercontent.com/hyperledger/fabric/master/examples/sfhackfest/sfhackfest.tar.gz -o sfhackfest.tar.gz 2> /dev/null; tar -xvf sfhackfest.tar.gz

This command pulls and extracts all of the necessary artifacts to set
up your network - Docker Compose script, channel generate/join
script, crypto material for identity attestation, etc. In the
/src/github.com/example_cc directory you will find the chaincode
that will be deployed.

Your directory should contain the following:

JDoe-mbp: JohnDoe$ pwd
/Users/JohnDoe
JDoe-mbp: JohnDoe$ ls
sfhackfest.tar.gz channel_test.sh src
ccenv docker-compose-gettingstarted.yml tmp

Using Docker

You do not need to manually pull any images. The images for -
fabric-peer, fabric-orderer, fabric-ca, and cli are
specified in the .yml file and will automatically download, extract, and
run when you execute the docker-compose command.

Commands

The channel commands are:

	create - create and name a channel in the orderer and get
back a genesis block for the channel. The genesis block is named in
accordance with the channel name.

	join - use the genesis block from the create command to issue
a join request to a peer.

Use Docker to spawn network entities & create/join a channel

Ensure the hyperledger/fabric-ccenv image is tagged as latest:

docker-compose -f docker-compose-gettingstarted.yml build

Create network entities, create channel, join peers to channel:

docker-compose -f docker-compose-gettingstarted.yml up -d

Behind the scenes this started six containers (3 peers, a “solo”
orderer, cli and CA) in detached mode. A script - channel_test.sh -
embedded within the docker-compose-gettingstarted.yml issued the
create channel and join channel commands within the CLI container. In
the end, you are left with a network and a channel containing three
peers - peer0, peer1, peer2.

View your containers:

if you have no other containers running, you will see six
docker ps

Ensure the channel has been created and peers have successfully joined:

docker exec -it cli bash

You should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

To view results for channel creation/join:

more results.txt

You’re looking for:

SUCCESSFUL CHANNEL CREATION
SUCCESSFUL JOIN CHANNEL on PEER0
SUCCESSFUL JOIN CHANNEL on PEER1
SUCCESSFUL JOIN CHANNEL on PEER2

To view genesis block:

more myc1.block

Exit the cli container:

exit

Curl the application source code and SDK modules

	Prior to issuing the command, make sure you are in the same working
directory where you curled the network code. AND make sure you have
exited the cli container.

	Execute the following command:

curl -OOOOOO https://raw.githubusercontent.com/hyperledger/fabric-sdk-node/v1.0-alpha/examples/balance-transfer/{config.json,deploy.js,helper.js,invoke.js,query.js,package.json}

This command pulls the javascript code for issuing your deploy, invoke
and query calls. It also retrieves dependencies for the node SDK
modules.

	Install the node modules:

You may be prompted for your root password at one or more times during this process.
npm install

You now have all of the necessary prerequisites and Fabric artifacts.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Use node SDK to register/enroll user, followed by deploy/invoke

The individual javascript programs will exercise the SDK APIs to
register and enroll the client with the provisioned Certificate
Authority. Once the client is properly authenticated, the programs will
demonstrate basic chaincode functionalities - deploy, invoke, and query.
Make sure you are in the working directory where you pulled the source
code before proceeding.

Upon success of each node program, you will receive a “200” response in
the terminal.

Register/enroll & deploy chaincode (Linux or OSX):

Deploy initializes key value pairs of "a","100" & "b","200".
GOPATH=$PWD node deploy.js

Register/enroll & deploy chaincode (Windows):

Deploy initializes key value pairs of "a","100" & "b","200".
SET GOPATH=%cd%
node deploy.js

Issue an invoke. Move units 100 from “a” to “b”:

node invoke.js

Query against key value “b”:

this should return a value of 300
node query.js

Explore the various node.js programs, along with example_cc.go to
better understand the SDK and APIs.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Manually create and join peers to a new channel

Use the cli container to manually exercise the create channel and join
channel APIs.

Channel - myc1 already exists, so let’s create a new channel named
myc2.

Exec into the cli container:

docker exec -it cli bash

If successful, you should see the following in your terminal:

/opt/gopath/src/github.com/hyperledger/fabric/peer #

Send createChannel API to Ordering Service:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

This will return a genesis block - myc2.block - that you can issue
join commands with. Next, send a joinChannel API to peer0 and pass
in the genesis block as an argument. The channel is defined within the
genesis block:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer channel join -b myc2.block

To join the other peers to the channel, simply reissue the above command
with peer1 or peer2 specified. For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer1:7051 peer channel join -b myc2.block

Once the peers have all joined the channel, you are able to issues
queries against any peer without having to deploy chaincode to each of
them.

Use cli to deploy, invoke and query

Run the deploy command. This command is deploying a chaincode named
mycc to peer0 on the Channel ID myc2. The constructor
message is initializing a and b with values of 100 and 200
respectively.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer chaincode deploy -C myc2 -n mycc -p github.com/hyperledger/fabric/examples -c '{"Args":["init","a","100","b","200"]}'

Run the invoke command. This invocation is moving 10 units from a to
b.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer chaincode invoke -C myc2 -n mycc -c '{"function":"invoke","Args":["move","a","b","10"]}'

Run the query command. The invocation transferred 10 units from a to
b, therefore a query against a should return the value 90.

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer chaincode query -C myc2 -n mycc -c '{"function":"invoke","Args":["query","a"]}'

You can issue an exit command at any time to exit the cli container.

Creating your initial channel through the cli

If you want to manually create the initial channel through the cli
container, you will need to edit the Docker Compose file. Use an editor
to open docker-compose-gettingstarted.yml and comment out the
channel_test.sh command in your cli image. Simply place a # to
the left of the command. (Recall that this script is executing the
create and join channel APIs when you run docker-compose up) For
example:

cli:
 container_name: cli
 <CONTENT REMOVED FOR BREVITY>
 working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer
command: sh -c './channel_test.sh; sleep 1000'
command: /bin/sh

Then use the cli commands from above.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Troubleshooting (optional)

If you have existing containers running, you may receive an error
indicating that a port is already occupied. If this occurs, you will
need to kill the container that is using said port.

If a file cannot be located, make sure your curl commands executed
successfully and make sure you are in the directory where you pulled the
source code.

If you are receiving timeout or GRPC communication errors, make sure you
have the correct version of Docker installed - v1.13.0. Then try
restarting your failing docker process. For example:

docker stop peer0

Then:

docker start peer0

Another approach to GRPC and DNS errors (peer failing to resolve with
orderer and vice versa) is to hardcode the IP addresses for each. You
will know if there is a DNS issue, because a more results.txt
command within the cli container will display something similar to:

ERROR CREATING CHANNEL
PEER0 ERROR JOINING CHANNEL

Issue a docker inspect <container_name> to ascertain the IP address.
For example:

docker inspect peer0 | grep IPAddress

AND

docker inspect orderer | grep IPAddress

Take these values and hard code them into your cli commands. For
example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=172.21.0.2:7050 peer channel create -c myc1

AND THEN

CORE_PEER_COMMITTER_LEDGER_ORDERER=<IP_ADDRESS> CORE_PEER_ADDRESS=<IP_ADDRESS> peer channel join -b myc1.block

If you are seeing errors while using the node SDK, make sure you have
the correct versions of node.js and npm installed on your machine. You
want node v6.9.5 and npm v3.10.10.

If you ran through the automated channel create/join process (i.e. did
not comment out channel_test.sh in the
docker-compose-gettingstarted.yml), then channel - myc1 - and
genesis block - myc1.block - have already been created and exist on
your machine. As a result, if you proceed to execute the manual steps in
your cli container:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc1

Then you will run into an error similar to:

<EXACT_TIMESTAMP> UTC [msp] Sign -> DEBU 064 Sign: digest: 5ABA6805B3CDBAF16C6D0DCD6DC439F92793D55C82DB130206E35791BCF18E5F
Error: Got unexpected status: BAD_REQUEST
Usage:
 peer channel create [flags]

This occurs because you are attempting to create a channel named
myc1, and this channel already exists! There are two options. Try
issuing the peer channel create command with a different channel name -
myc2. For example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 peer channel create -c myc2

Then join:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:7050 CORE_PEER_ADDRESS=peer0:7051 peer channel join -b myc2.block

If you do choose to create a new channel, and want to run
deploy/invoke/query with the node.js programs, you also need to edit the
“channelID” parameter in the config.json file to match the new
channel’s name. For example:

{
 "chainName":"fabric-client1",
 "chaincodeID":"mycc",
 "channelID":"myc2",
 "goPath":"../../test/fixtures",
 "chaincodePath":"github.com/example_cc",

OR, if you want your channel called - myc1 -, remove your docker
containers and then follow the same commands in the Manually create
and join peers to a new channel section.

Clean up

Shut down your containers:

docker-compose -f docker-compose-gettingstarted.yml down

Helpful Docker tips

Remove a specific docker container:

docker rm <containerID>

Force removal:

docker rm -f <containerID>

Remove all docker containers:

docker rm -f $(docker ps -aq)

This will merely kill docker containers (i.e. stop the process). You
will not lose any images.

Remove an image:

docker rmi <imageID>

Forcibly remove:

docker rmi -f <imageID>

Remove all images:

docker rmi -f $(docker images -q)

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Node SDK

[WIP] ...coming soon

In the meantime, refer to the Hyperledger Fabric SDK design
doc [https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4/edit#heading=h.z6ne0og04bp5]
for more details on the APIs and specifications.

OR

Refer to the
fabric-sdk-node [https://github.com/hyperledger/fabric-sdk-node]
repository in the Hyperledger community.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Java SDK

[WIP] ...coming soon

In the meantime, refer to the Hyperledger Fabric SDK design
doc [https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4/edit#heading=h.z6ne0og04bp5]
for more details on the APIs and specifications.

OR

Refer to the
fabric-sdk-java [https://github.com/hyperledger/fabric-sdk-java]
repository in the Hyperledger community.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Python SDK

[WIP] ...coming soon

In the meantime, refer to the Hyperledger Fabric SDK design
doc [https://docs.google.com/document/d/1R5RtIBMW9fZpli37E5Li5_Q9ve3BnQ4q3gWmGZj6Sv4/edit#heading=h.z6ne0og04bp5]
for more details on the APIs and specifications.

OR

Refer to the
fabric-sdk-py [https://github.com/hyperledger/fabric-sdk-py]
repository in the Hyperledger community.

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Marbles

[WIP] ...coming soon

The marbles chaincode application demonstrates the ability to create
assets (marbles) with unique attributes - size, color, owner, etc... and
trade these assets with fellow participants in a blockchain network. It
is not yet stable with v1 codebase.

Learn more about the marbles chaincode and client-side application
here [https://github.com/IBM-Blockchain/marbles]

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Art Auction

[WIP] ...coming soon

Shows the provenance, attestation, and ownership of a piece of artwork
and the ensuing interaction of the various stakeholders. Not yet stable
with v1 codebase.

Learn more about the components
here [https://github.com/ITPeople-Blockchain/auction]

Learn more about the client-side application
here [https://github.com/ITPeople-Blockchain/auction-app]

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Commercial Paper

[WIP] ...coming soon

Web application demonstrating a commercial trading network and the
issuance and maturation of trades. Not yet stable with v1 codebase.

Learn more about the application and underlying chaincode
here [https://github.com/IBM-Blockchain/cp-web]

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Car Lease

[WIP] ...coming soon

Uses the blockchain to record the lifecycle of a vehicle from materials
provenance, manufacture, buyer, all the way to scrap yard. Not yet
stable with v1 codebase.

Learn more about the application and underlying chaincode
here [https://github.com/IBM-Blockchain/car-lease-demo]

 Copyright 2017, rameshthoomu.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

What is chaincode?

Chaincode is a piece of code that is written in one of the supported
languages such as Go or Java. It is installed and instantiated through
an SDK or CLI onto a network of Hyperledger Fabric peer nodes, enabling
interaction with that network’s shared ledger.

There are three aspects to chaincode development: * The interfaces that
the chaincode should implement * APIs the chaincode can use to interact
with the Fabric * A chaincode response

Chaincode interfaces

A chaincode implements the Chaincode Interface that supports two
methods: * Init * Invoke

Init()

Init is called when you first deploy your chaincode. As the name
implies, this function is used to do any initialization your chaincode
needs.

Invoke()

Invoke is called when you want to call chaincode functions to do real
work (i.e. read and write to the ledger). Invocations are captured as
transactions, which get grouped into blocks on the chain. When you need
to update or query the ledger, you do so by invoking your chaincode.

Dependencies

The import statement lists a few dependencies for the chaincode to
compile successfully. * fmt – contains Println for debugging/logging.
* errors – standard go error format. *
shim [https://github.com/hyperledger/fabric/tree/master/core/chaincode/shim]
– contains the definitions for the chaincode interface and the chaincode
stub, which you are required to interact with the ledger.

Chaincode APIs

When the Init or Invoke function of a chaincode is called, the fabric
passes the stub shim.ChaincodeStubInterface parameter and the
chaincode returns a pb.Response. This stub can be used to call APIs
to access to the ledger services, transaction context, or to invoke
other chaincodes.

The current APIs are defined in the shim package, and can be generated
with the following command:

godoc github.com/hyperledger/fabric/core/chaincode/shim

However, it also includes functions from chaincode.pb.go (protobuffer
functions) that are not intended as public APIs. The best practice is to
look at the function definitions in chaincode.go and and the
examples [https://github.com/hyperledger/fabric/tree/master/examples/chaincode/go]
directory.

Response

The chaincode response comes in the form of a protobuffer.

message Response {

 // A status code that should follow the HTTP status codes.
 int32 status = 1;

 // A message associated with the response code.
 string message = 2;

 // A payload that can be used to include metadata with this response.
 bytes payload = 3;

}

The chaincode will also return events. Message events and chaincode
events.

messageEvent {

 oneof Event {

 //Register consumer sent event
 Register register = 1;

 //producer events common.
 Block block = 2;
 ChaincodeEvent chaincodeEvent = 3;
 Rejection rejection = 4;

 //Unregister consumer sent events
 Unregister unregister = 5;

 }

}

messageChaincodeEvent {

 string chaincodeID = 1;
 string txID = 2;
 string eventName = 3;
 bytes payload = 4;

}

Once developed and deployed, there are two ways to interact with the
chaincode - through an SDK or the CLI. The steps for CLI are described
below. For SDK interaction, refer to the balance
transfer [https://github.com/hyperledger/fabric-sdk-node/tree/master/examples/balance-transfer]
samples. Note: This SDK interaction is covered in the Getting
Started section.

Command Line Interfaces

To view the currently available CLI commands, execute the following:

this assumes that you have correctly set the GOPATH variable and cloned the Fabric codebase into that path
cd /opt/gopath/src/github.com/hyperledger/fabric
build /bin/peer

You will see output similar to the example below. (NOTE: rootcommand
below is hardcoded in main.go. Currently, the build will create a peer
executable file).

Usage:
 peer [flags]
 peer [command]

 Available Commands:
 version Print fabric peer version.
 node node specific commands.
 channel channel specific commands.
 chaincode chaincode specific commands.
 logging logging specific commands

 Flags:
 --logging-level string: Default logging level and overrides, see core.yaml for full syntax
 --test.coverprofile string: Done (default “coverage.cov)
 -v, --version: Display current version of fabric peer server
 Use "peer [command] --help" for more information about a command.

The peer command supports several subcommands and flags, as shown
above. To facilitate its use in scripted applications, the peer
command always produces a non-zero return code in the event of command
failure. Upon success, many of the subcommands produce a result on
stdout as shown in the table below:

 Learn to write chaincode

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Learn to write chaincode

[WIP] ...coming soon

Teaches a developer how to write chaincode functions and implement the
necessary interfaces to create generic assets.

In the meantime, visit the learn chaincode repo
here [https://github.com/IBM-Blockchain/learn-chaincode] to
familiarize yourself with high level concepts and go code.

 Copyright 2017, rameshthoomu.

 Docker Compose

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Docker Compose

[WIP] ...coming soon

This section will explain how to use Docker Compose to stand up the
necessary components for a blockchain network. The various environment
variables correlated to each image will be explained, and different
configurations will be outlined.

 Copyright 2017, rameshthoomu.

 Sample Application

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Sample Application

[WIP] ...coming soon

In the meantime, refer to the Asset transfer through
SDK topic.

 Copyright 2017, rameshthoomu.

 Videos

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Videos

Refer to the Hyperledger Fabric libary on
youtube [https://www.youtube.com/channel/UCCFdgCWH_1vCndMPVqQlwZw].
The collection contains developers demonstrating various v1 features and
components such as: ledger, channels, gossip, SDK, chaincode, MSP, and
more...

 Copyright 2017, rameshthoomu.

 Administration and operations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Administration and operations

[WIP] ...coming soon

 Copyright 2017, rameshthoomu.

 Debugging & Logging

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Debugging & Logging

[WIP] ...coming soon

 Copyright 2017, rameshthoomu.

 Logging Control

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Logging Control

Overview

Logging in the peer application and in the shim interface to
chaincodes is programmed using facilities provided by the
github.com/op/go-logging package. This package supports

	Logging control based on the severity of the message

	Logging control based on the software module generating the message

	Different pretty-printing options based on the severity of the
message

All logs are currently directed to stderr, and the pretty-printing
is currently fixed. However global and module-level control of logging
by severity is provided for both users and developers. There are
currently no formalized rules for the types of information provided at
each severity level, however when submitting bug reports the developers
may want to see full logs down to the DEBUG level.

In pretty-printed logs the logging level is indicated both by color and
by a 4-character code, e.g, “ERRO” for ERROR, “DEBU” for DEBUG, etc. In
the logging context a module is an arbitrary name (string) given by
developers to groups of related messages. In the pretty-printed example
below, the logging modules “peer”, “rest” and “main” are generating
logs.

16:47:09.634 [peer] GetLocalAddress -> INFO 033 Auto detected peer address: 9.3.158.178:7051
16:47:09.635 [rest] StartOpenchainRESTServer -> INFO 035 Initializing the REST service...
16:47:09.635 [main] serve -> INFO 036 Starting peer with id=name:"vp1" , network id=dev, address=9.3.158.178:7051, discovery.rootnode=, validator=true

An arbitrary number of logging modules can be created at runtime,
therefore there is no “master list” of modules, and logging control
constructs can not check whether logging modules actually do or will
exist. Also note that the logging module system does not understand
hierarchy or wildcarding: You may see module names like “foo/bar” in the
code, but the logging system only sees a flat string. It doesn’t
understand that “foo/bar” is related to “foo” in any way, or that
“foo/*” might indicate all “submodules” of foo.

peer

The logging level of the peer command can be controlled from the
command line for each invocation using the --logging-level flag, for
example

peer node start --logging-level=debug

The default logging level for each individual peer subcommand can
also be set in the
core.yaml [https://github.com/hyperledger/fabric/blob/master/peer/core.yaml]
file. For example the key logging.node sets the default level for
the node subcommmand. Comments in the file also explain how the
logging level can be overridden in various ways by using environment
varaibles.

Logging severity levels are specified using case-insensitive strings
chosen from

CRITICAL | ERROR | WARNING | NOTICE | INFO | DEBUG

The full logging level specification for the peer is of the form

[<module>[,<module>...]=]<level>[:[<module>[,<module>...]=]<level>...]

A logging level by itself is taken as the overall default. Otherwise,
overrides for individual or groups of modules can be specified using the

<module>[,<module>...]=<level>

syntax. Examples of specifications (valid for all of
--logging-level, environment variable and
core.yaml [https://github.com/hyperledger/fabric/blob/master/peer/core.yaml]
settings):

info - Set default to INFO
warning:main,db=debug:chaincode=info - Default WARNING; Override for main,db,chaincode
chaincode=info:main=debug:db=debug:warning - Same as above

Go chaincodes

The standard mechanism to log within a chaincode application is to
integrate with the logging transport exposed to each chaincode instance
via the peer. The chaincode shim package provides APIs that allow a
chaincode to create and manage logging objects whose logs will be
formatted and interleaved consistently with the shim logs.

As independently executed programs, user-provided chaincodes may
technically also produce output on stdout/stderr. While naturally useful
for “devmode”, these channels are normally disabled on a production
network to mitigate abuse from broken or malicious code. However, it is
possible to enable this output even for peer-managed containers (e.g.
“netmode”) on a per-peer basis via the
CORE_VM_DOCKER_ATTACHSTDOUT=true configuration option.

Once enabled, each chaincode will receive its own logging channel keyed
by its container-id. Any output written to either stdout or stderr will
be integrated with the peer’s log on a per-line basis. It is not
recommended to enable this for production.

API

NewLogger(name string) *ChaincodeLogger - Create a logging object
for use by a chaincode

(c *ChaincodeLogger) SetLevel(level LoggingLevel) - Set the logging
level of the logger

(c *ChaincodeLogger) IsEnabledFor(level LoggingLevel) bool - Return
true if logs will be generated at the given level

LogLevel(levelString string) (LoggingLevel, error) - Convert a
string to a LoggingLevel

A LoggingLevel is a member of the enumeration

LogDebug, LogInfo, LogNotice, LogWarning, LogError, LogCritical

which can be used directly, or generated by passing a case-insensitive
version of the strings

DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL

to the LogLevel API.

Formatted logging at various severity levels is provided by the
functions

(c *ChaincodeLogger) Debug(args ...interface{})
(c *ChaincodeLogger) Info(args ...interface{})
(c *ChaincodeLogger) Notice(args ...interface{})
(c *ChaincodeLogger) Warning(args ...interface{})
(c *ChaincodeLogger) Error(args ...interface{})
(c *ChaincodeLogger) Critical(args ...interface{})

(c *ChaincodeLogger) Debugf(format string, args ...interface{})
(c *ChaincodeLogger) Infof(format string, args ...interface{})
(c *ChaincodeLogger) Noticef(format string, args ...interface{})
(c *ChaincodeLogger) Warningf(format string, args ...interface{})
(c *ChaincodeLogger) Errorf(format string, args ...interface{})
(c *ChaincodeLogger) Criticalf(format string, args ...interface{})

The f forms of the logging APIs provide for precise control over the
formatting of the logs. The non-f forms of the APIs currently
insert a space between the printed representations of the arguments, and
arbitrarily choose the formats to use.

In the current implementation, the logs produced by the shim and a
ChaincodeLogger are timestamped, marked with the logger name and
severity level, and written to stderr. Note that logging level
control is currently based on the name provided when the
ChaincodeLogger is created. To avoid ambiguities, all
ChaincodeLogger should be given unique names other than “shim”. The
logger name will appear in all log messages created by the logger. The
shim logs as “shim”.

Go language chaincodes can also control the logging level of the
chaincode shim interface through the SetLoggingLevel API.

SetLoggingLevel(LoggingLevel level) - Control the logging level of
the shim

The default logging level for the shim is LogDebug.

Below is a simple example of how a chaincode might create a private
logging object logging at the LogInfo level, and also control the
amount of logging provided by the shim based on an environment
variable.

var logger = shim.NewLogger("myChaincode")

func main() {

 logger.SetLevel(shim.LogInfo)

 logLevel, _ := shim.LogLevel(os.Getenv("SHIM_LOGGING_LEVEL"))
 shim.SetLoggingLevel(logLevel)
 ...
}

 Copyright 2017, rameshthoomu.

 Recipe Book

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Recipe Book

[WIP] ...coming soon

Intended to contain best practices and configurations for MSP, networks,
ordering service, channels, ACL, stress, policies, chaincode
development, functions, etc...

 Copyright 2017, rameshthoomu.

 Starting a network

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Starting a network

[WIP] ...coming soon

Intended to contain the recommended steps for generating prerequisite
cryptographic material and then bootstrapping an ordering service (i.e.
overall network) with participating organizations, ordering node
certificates, load balancing, configuration, policies, etc...

 Copyright 2017, rameshthoomu.

 Architecture

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Architecture

Hyperledger Fabric is a unique implementation of distributed ledger
technology (DLT) that ensures data integrity and consistency while
delivering accountability, transparency, and efficiencies unmatched by
other blockchain or DLT technology.

Hyperledger Fabric implements a specific type of
permissioned blockchain
network on which members can track,
exchange and interact with digitized assets using
transactions that are governed by smart
contracts - what we call chaincode - in a
secure and robust manner while enabling
participants in the network to interact
in a manner that ensures that their transactions and data can be
restricted to an identified subset of network participants - something
we call a channel.

The blockchain network supports the ability for members to establish
shared ledgers that contain the source of truth about those digitized
assets, and recorded transactions, that is replicated in a secure manner
only to the set of nodes participating in that channel.

The Hyperledger Fabric architecture is comprised of the following
components: peer nodes, ordering nodes and the clients applications that
are likely leveraging one of the language-specific Fabric SDKs. These
components have identities derived from certificate authorities.
Hyperledger Fabric also offers a certificate authority service,
fabric-ca but, you may substitute that with your own.

All peer nodes maintain the ledger/state by committing transactions. In
that role, the peer is called a committer.
Some peers are also responsible for simulating transactions by executing
chaincodes (smart contracts) and endorsing the result. In that role the
peer is called an endorser. A peer may be an
endorser for certain types of transactions and just a ledger maintainer
(committer) for others.

The orderers consent on the order of
transactions in a block to be committed to the ledger. In common
blockchain architectures (including earlier versions of the Hyperledger
Fabric) the roles played by the peer and orderer nodes were unified (cf.
validating peer in Hyperledger Fabric v0.6). The orderers also play a
fundamental role in the creation and management of channels.

Two or more participants may create and
join a channel, and begin to interact. Among other things, the policies
governing the channel membership and chaincode lifecycle are specified
at the time of channel creation. Initially, the members in a channel
agree on the terms of the chaincode that will govern the transactions.
When consensus is reached on the proposal to
deploy a given chaincode (as governed by the life cycle policy for the
channel), it is committed to the ledger.

Once the chaincode is deployed to the peer nodes in the channel, end
users with the right privileges can propose
transactions on the channel by using one of the language-specific client
SDKs to invoke functions on the deployed chaincode.

The proposed transactions are sent to endorsers that execute the
chaincode (also called “simulated the transaction”). On successful
execution, endorse the result using the peer’s identity and return the
result to the client that initiated the proposal.

The client application ensures that the results from the endorsers are
consistent and signed by the appropriate endorsers, according to the
endorsement policy for that chaincode and, if so, the application then
sends the transaction, comprised of the result and endorsements, to the
ordering service.

Ordering nodes order the transactions - the result and endorsements
received from the clients - into a block which is then sent to the peer
nodes to be committed to the ledger. The peers then validate the
transaction using the endorsement policy for the transaction’s chaincode
and against the ledger for consistency of result.

Some key capabilities of Hyperledger Fabric include:

	Allows for complex query for applications that need ability to handle
complex data structures.

	Implements a permissioned network, also known as a consortia network,
where all members are known to each other.

	Incorporates a modular approach to various capabilities, enabling
network designers to plug in their preferred implementations for
various capabilities such as consensus (ordering), identity
management, and encryption.

	Provides a flexible approach for specifying policies and pluggable
mechanisms to enforce them.

	Ability to have multiple channels, isolated from one another, that
allows for multi-lateral transactions amongst select peer nodes,
thereby ensuring high degrees of privacy and confidentiality required
by competing businesses and highly regulated industries on a common
network.

	Network scalability and performance are achieved through separation
of chaincode execution from transaction ordering, which limits the
required levels of trust and verification across nodes for
optimization.

For a deeper dive into the details, please visit this
document.

 Copyright 2017, rameshthoomu.

 Architecture Deep Dive

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Architecture Deep Dive

This page documents the architecture of a blockchain infrastructure with
the roles of a blockchain node separated into roles of peers (who
maintain state/ledger) and orderers (who consent on the order of
transactions included in the ledger). In common blockchain architectures
(including Hyperledger Fabric v0.6 and earlier) these roles are unified
(cf. validating peer in Hyperledger Fabric v0.6). The architecture
also introduces endorsing peers (endorsers), as special type of peers
responsible for simulating execution and endorsing transactions
(roughly corresponding to executing transactions in HL Fabric 0.6).

The architecture has the following advantages compared to the design in
which peers/orderers/endorsers are unified (e.g., HL Fabric v0.6).

	Chaincode trust flexibility. The architecture separates trust
assumptions for chaincodes (blockchain applications) from trust
assumptions for ordering. In other words, the ordering service may be
provided by one set of nodes (orderers) and tolerate some of them to
fail or misbehave, and the endorsers may be different for each
chaincode.

	Scalability. As the endorser nodes responsible for particular
chaincode are orthogonal to the orderers, the system may scale
better than if these functions were done by the same nodes. In
particular, this results when different chaincodes specify disjoint
endorsers, which introduces a partitioning of chaincodes between
endorsers and allows parallel chaincode execution (endorsement).
Besides, chaincode execution, which can potentially be costly, is
removed from the critical path of the ordering service.

	Confidentiality. The architecture facilitates deployment of
chaincodes that have confidentiality requirements with respect to
the content and state updates of its transactions.

	Consensus modularity. The architecture is modular and allows
pluggable consensus (i.e., ordering service) implementations.

This architecture drives the development of Hyperledger Fabric
post-v0.6. As detailed below, some of its aspects are to be included in
Hyperledger Fabric v1, whereas others are postponed to post-v1 versions
of Hyperledger Fabric.

Table of contents

Part I: Elements of the architecture relevant to Hyperledger Fabric
v1

	System architecture

	Basic workflow of transaction endorsement

	Endorsement policies

Part II: Post-v1 elements of the architecture

	Ledger checkpointing (pruning)

1. System architecture

The blockchain is a distributed system consisting of many nodes that
communicate with each other. The blockchain runs programs called
chaincode, holds state and ledger data, and executes transactions. The
chaincode is the central element as transactions are operations invoked
on the chaincode. Transactions have to be “endorsed” and only endorsed
transactions may be committed and have an effect on the state. There may
exist one or more special chaincodes for management functions and
parameters, collectively called system chaincodes.

1.1. Transactions

Transactions may be of two types:

	Deploy transactions create new chaincode and take a program as
parameter. When a deploy transaction executes successfully, the
chaincode has been installed “on” the blockchain.

	Invoke transactions perform an operation in the context of
previously deployed chaincode. An invoke transaction refers to a
chaincode and to one of its provided functions. When successful, the
chaincode executes the specified function - which may involve
modifying the corresponding state, and returning an output.

As described later, deploy transactions are special cases of invoke
transactions, where a deploy transaction that creates new chaincode,
corresponds to an invoke transaction on a system chaincode.

Remark: This document currently assumes that a transaction either
creates new chaincode or invokes an operation provided by *one already
deployed chaincode. This document does not yet describe: a)
optimizations for query (read-only) transactions (included in v1), b)
support for cross-chaincode transactions (post-v1 feature).*

1.2. Blockchain datastructures

1.2.1. State

The latest state of the blockchain (or, simply, state) is modeled as a
versioned key/value store (KVS), where keys are names and values are
arbitrary blobs. These entries are manipulated by the chaincodes
(applications) running on the blockchain through put and get
KVS-operations. The state is stored persistently and updates to the
state are logged. Notice that versioned KVS is adopted as state model,
an implementation may use actual KVSs, but also RDBMSs or any other
solution.

More formally, state s is modeled as an element of a mapping
K -> (V X N), where:

	K is a set of keys

	V is a set of values

	N is an infinite ordered set of version numbers. Injective
function next: N -> N takes an element of N and returns the
next version number.

Both V and N contain a special element \bot, which is in
case of N the lowest element. Initially all keys are mapped to
(\bot,\bot). For s(k)=(v,ver) we denote v by s(k).value,
and ver by s(k).version.

KVS operations are modeled as follows:

	put(k,v), for k\in K and v\in V, takes the blockchain
state s and changes it to s' such that
s'(k)=(v,next(s(k).version)) with s'(k')=s(k') for all
k'!=k.

	get(k) returns s(k).

State is maintained by peers, but not by orderers and clients.

State partitioning. Keys in the KVS can be recognized from their
name to belong to a particular chaincode, in the sense that only
transaction of a certain chaincode may modify the keys belonging to this
chaincode. In principle, any chaincode can read the keys belonging to
other chaincodes. Support for cross-chaincode transactions, that modify
the state belonging to two or more chaincodes is a post-v1 feature.

1.2.2 Ledger

Ledger provides a verifiable history of all successful state changes (we
talk about valid transactions) and unsuccessful attempts to change
state (we talk about invalid transactions), occurring during the
operation of the system.

Ledger is constructed by the ordering service (see Sec 1.3.3) as a
totally ordered hashchain of blocks of (valid or invalid)
transactions. The hashchain imposes the total order of blocks in a
ledger and each block contains an array of totally ordered transactions.
This imposes total order across all transactions.

Ledger is kept at all peers and, optionally, at a subset of orderers. In
the context of an orderer we refer to the Ledger as to
OrdererLedger, whereas in the context of a peer we refer to the
ledger as to PeerLedger. PeerLedger differs from the
OrdererLedger in that peers locally maintain a bitmask that tells
apart valid transactions from invalid ones (see Section XX for more
details).

Peers may prune PeerLedger as described in Section XX (post-v1
feature). Orderers maintain OrdererLedger for fault-tolerance and
availability (of the PeerLedger) and may decide to prune it at
anytime, provided that properties of the ordering service (see Sec.
1.3.3) are maintained.

The ledger allows peers to replay the history of all transactions and to
reconstruct the state. Therefore, state as described in Sec 1.2.1 is an
optional datastructure.

1.3. Nodes

Nodes are the communication entities of the blockchain. A “node” is only
a logical function in the sense that multiple nodes of different types
can run on the same physical server. What counts is how nodes are
grouped in “trust domains” and associated to logical entities that
control them.

There are three types of nodes:

	Client or submitting-client: a client that submits an actual
transaction-invocation to the endorsers, and broadcasts
transaction-proposals to the ordering service.

	Peer: a node that commits transactions and maintains the state
and a copy of the ledger (see Sec, 1.2). Besides, peers can have a
special endorser role.

	Ordering-service-node or orderer: a node running the
communication service that implements a delivery guarantee, such as
atomic or total order broadcast.

The types of nodes are explained next in more detail.

1.3.1. Client

The client represents the entity that acts on behalf of an end-user. It
must connect to a peer for communicating with the blockchain. The client
may connect to any peer of its choice. Clients create and thereby invoke
transactions.

As detailed in Section 2, clients communicate with both peers and the
ordering service.

1.3.2. Peer

A peer receives ordered state updates in the form of blocks from the
ordering service and maintain the state and the ledger.

Peers can additionally take up a special role of an endorsing peer,
or an endorser. The special function of an endorsing peer occurs
with respect to a particular chaincode and consists in endorsing a
transaction before it is committed. Every chaincode may specify an
endorsement policy that may refer to a set of endorsing peers. The
policy defines the necessary and sufficient conditions for a valid
transaction endorsement (typically a set of endorsers’ signatures), as
described later in Sections 2 and 3. In the special case of deploy
transactions that install new chaincode the (deployment) endorsement
policy is specified as an endorsement policy of the system chaincode.

1.3.3. Ordering service nodes (Orderers)

The orderers form the ordering service, i.e., a communication fabric
that provides delivery guarantees. The ordering service can be
implemented in different ways: ranging from a centralized service (used
e.g., in development and testing) to distributed protocols that target
different network and node fault models.

Ordering service provides a shared communication channel to clients
and peers, offering a broadcast service for messages containing
transactions. Clients connect to the channel and may broadcast messages
on the channel which are then delivered to all peers. The channel
supports atomic delivery of all messages, that is, message
communication with total-order delivery and (implementation specific)
reliability. In other words, the channel outputs the same messages to
all connected peers and outputs them to all peers in the same logical
order. This atomic communication guarantee is also called total-order
broadcast, atomic broadcast, or consensus in the context of
distributed systems. The communicated messages are the candidate
transactions for inclusion in the blockchain state.

Partitioning (ordering service channels). Ordering service may
support multiple channels similar to the topics of a
publish/subscribe (pub/sub) messaging system. Clients can connects to a
given channel and can then send messages and obtain the messages that
arrive. Channels can be thought of as partitions - clients connecting to
one channel are unaware of the existence of other channels, but clients
may connect to multiple channels. Even though some ordering service
implementations included with Hyperledger Fabric v1 will support
multiple channels, for simplicity of presentation, in the rest of this
document, we assume ordering service consists of a single channel/topic.

Ordering service API. Peers connect to the channel provided by the
ordering service, via the interface provided by the ordering service.
The ordering service API consists of two basic operations (more
generally asynchronous events):

TODO add the part of the API for fetching particular blocks under
client/peer specified sequence numbers.

	broadcast(blob): a client calls this to broadcast an arbitrary
message blob for dissemination over the channel. This is also
called request(blob) in the BFT context, when sending a request
to a service.

	deliver(seqno, prevhash, blob): the ordering service calls this
on the peer to deliver the message blob with the specified
non-negative integer sequence number (seqno) and hash of the most
recently delivered blob (prevhash). In other words, it is an
output event from the ordering service. deliver() is also
sometimes called notify() in pub-sub systems or commit() in
BFT systems.

Ledger and block formation. The ledger (see also Sec. 1.2.2)
contains all data output by the ordering service. In a nutshell, it is a
sequence of deliver(seqno, prevhash, blob) events, which form a hash
chain according to the computation of prevhash described before.

Most of the time, for efficiency reasons, instead of outputting
individual transactions (blobs), the ordering service will group (batch)
the blobs and output blocks within a single deliver event. In this
case, the ordering service must impose and convey a deterministic
ordering of the blobs within each block. The number of blobs in a block
may be chosen dynamically by an ordering service implementation.

In the following, for ease of presentation, we define ordering service
properties (rest of this subsection) and explain the workflow of
transaction endorsement (Section 2) assuming one blob per deliver
event. These are easily extended to blocks, assuming that a deliver
event for a block corresponds to a sequence of individual deliver
events for each blob within a block, according to the above mentioned
deterministic ordering of blobs within a blocs.

Ordering service properties

The guarantees of the ordering service (or atomic-broadcast channel)
stipulate what happens to a broadcasted message and what relations exist
among delivered messages. These guarantees are as follows:

	Safety (consistency guarantees): As long as peers are connected
for sufficiently long periods of time to the channel (they can
disconnect or crash, but will restart and reconnect), they will see
an identical series of delivered (seqno, prevhash, blob)
messages. This means the outputs (deliver() events) occur in the
same order on all peers and according to sequence number and carry
identical content (blob and prevhash) for the same sequence
number. Note this is only a logical order, and a
deliver(seqno, prevhash, blob) on one peer is not required to
occur in any real-time relation to deliver(seqno, prevhash, blob)
that outputs the same message at another peer. Put differently, given
a particular seqno, no two correct peers deliver different
prevhash or blob values. Moreover, no value blob is
delivered unless some client (peer) actually called
broadcast(blob) and, preferably, every broadcasted blob is only
delivered once.

Furthermore, the deliver() event contains the cryptographic hash
of the data in the previous deliver() event (prevhash). When
the ordering service implements atomic broadcast guarantees,
prevhash is the cryptographic hash of the parameters from the
deliver() event with sequence number seqno-1. This
establishes a hash chain across deliver() events, which is used
to help verify the integrity of the ordering service output, as
discussed in Sections 4 and 5 later. In the special case of the first
deliver() event, prevhash has a default value.

	Liveness (delivery guarantee): Liveness guarantees of the
ordering service are specified by a ordering service implementation.
The exact guarantees may depend on the network and node fault model.

In principle, if the submitting client does not fail, the ordering
service should guarantee that every correct peer that connects to the
ordering service eventually delivers every submitted transaction.

To summarize, the ordering service ensures the following properties:

	Agreement. For any two events at correct peers
deliver(seqno, prevhash0, blob0) and
deliver(seqno, prevhash1, blob1) with the same seqno,
prevhash0==prevhash1 and blob0==blob1;

	Hashchain integrity. For any two events at correct peers
deliver(seqno-1, prevhash0, blob0) and
deliver(seqno, prevhash, blob),
prevhash = HASH(seqno-1||prevhash0||blob0).

	No skipping. If an ordering service outputs
deliver(seqno, prevhash, blob) at a correct peer p, such that
seqno>0, then p already delivered an event
deliver(seqno-1, prevhash0, blob0).

	No creation. Any event deliver(seqno, prevhash, blob) at a
correct peer must be preceded by a broadcast(blob) event at some
(possibly distinct) peer;

	No duplication (optional, yet desirable). For any two events
broadcast(blob) and broadcast(blob'), when two events
deliver(seqno0, prevhash0, blob) and
deliver(seqno1, prevhash1, blob') occur at correct peers and
blob == blob', then seqno0==seqno1 and
prevhash0==prevhash1.

	Liveness. If a correct client invokes an event broadcast(blob)
then every correct peer “eventually” issues an event
deliver(*, *, blob), where * denotes an arbitrary value.

2. Basic workflow of transaction endorsement

In the following we outline the high-level request flow for a
transaction.

Remark: Notice that the following protocol *does not assume that
all transactions are deterministic, i.e., it allows for
non-deterministic transactions.*

2.1. The client creates a transaction and sends it to endorsing peers of its choice

To invoke a transaction, the client sends a PROPOSE message to a set
of endorsing peers of its choice (possibly not at the same time - see
Sections 2.1.2. and 2.3.). The set of endorsing peers for a given
chaincodeID is made available to client via peer, which in turn
knows the set of endorsing peers from endorsement policy (see Section
3). For example, the transaction could be sent to all endorsers of a
given chaincodeID. That said, some endorsers could be offline,
others may object and choose not to endorse the transaction. The
submitting client tries to satisfy the policy expression with the
endorsers available.

In the following, we first detail PROPOSE message format and then
discuss possible patterns of interaction between submitting client and
endorsers.

2.1.1. PROPOSE message format

The format of a PROPOSE message is <PROPOSE,tx,[anchor]>, where
tx is a mandatory and anchor optional argument explained in the
following.

	tx=<clientID,chaincodeID,txPayload,timestamp,clientSig>, where

	clientID is an ID of the submitting client,

	chaincodeID refers to the chaincode to which the transaction
pertains,

	txPayload is the payload containing the submitted transaction
itself,

	timestamp is a monotonically increasing (for every new
transaction) integer maintained by the client,

	clientSig is signature of a client on other fields of tx.

The details of txPayload will differ between invoke transactions
and deploy transactions (i.e., invoke transactions referring to a
deploy-specific system chaincode). For an invoke transaction,
txPayload would consist of two fields

	txPayload = <operation, metadata>, where
	operation denotes the chaincode operation (function) and
arguments,

	metadata denotes attributes related to the invocation.

For a deploy transaction, txPayload would consist of three
fields

	txPayload = <source, metadata, policies>, where
	source denotes the source code of the chaincode,

	metadata denotes attributes related to the chaincode and
application,

	policies contains policies related to the chaincode that
are accessible to all peers, such as the endorsement policy.
Note that endorsement policies are not supplied with
txPayload in a deploy transaction, but
txPayload of adeploy` contains endorsement policy ID and
its parameters (see Section 3).

	anchor contains read version dependencies, or more
specifically, key-version pairs (i.e., anchor is a subset of
KxN), that binds or “anchors” the PROPOSE request to
specified versions of keys in a KVS (see Section 1.2.). If the client
specifies the anchor argument, an endorser endorses a transaction
only upon read version numbers of corresponding keys in its local
KVS match anchor (see Section 2.2. for more details).

Cryptographic hash of tx is used by all nodes as a unique
transaction identifier tid (i.e., tid=HASH(tx)). The client
stores tid in memory and waits for responses from endorsing peers.

2.1.2. Message patterns

The client decides on the sequence of interaction with endorsers. For
example, a client would typically send <PROPOSE, tx> (i.e., without
the anchor argument) to a single endorser, which would then produce
the version dependencies (anchor) which the client can later on use
as an argument of its PROPOSE message to other endorsers. As another
example, the client could directly send <PROPOSE, tx> (without
anchor) to all endorsers of its choice. Different patterns of
communication are possible and client is free to decide on those (see
also Section 2.3.).

2.2. The endorsing peer simulates a transaction and produces an endorsement signature

On reception of a <PROPOSE,tx,[anchor]> message from a client, the
endorsing peer epID first verifies the client’s signature
clientSig and then simulates a transaction. If the client specifies
anchor then endorsing peer simulates the transactions only upon read
version numbers (i.e., readset as defined below) of corresponding
keys in its local KVS match those version numbers specified by
anchor.

Simulating a transaction involves endorsing peer tentatively executing
a transaction (txPayload), by invoking the chaincode to which the
transaction refers (chaincodeID) and the copy of the state that the
endorsing peer locally holds.

As a result of the execution, the endorsing peer computes read version
dependencies (readset) and state updates (writeset), also
called MVCC+postimage info in DB language.

Recall that the state consists of key/value (k/v) pairs. All k/v entries
are versioned, that is, every entry contains ordered version
information, which is incremented every time when the value stored under
a key is updated. The peer that interprets the transaction records all
k/v pairs accessed by the chaincode, either for reading or for writing,
but the peer does not yet update its state. More specifically:

	Given state s before an endorsing peer executes a transaction,
for every key k read by the transaction, pair
(k,s(k).version) is added to readset.

	Additionally, for every key k modified by the transaction to the
new value v', pair (k,v') is added to writeset.
Alternatively, v' could be the delta of the new value to previous
value (s(k).value).

If a client specifies anchor in the PROPOSE message then client
specified anchor must equal readset produced by endorsing peer
when simulating the transaction.

Then, the peer forwards internally tran-proposal (and possibly
tx) to the part of its (peer’s) logic that endorses a transaction,
referred to as endorsing logic. By default, endorsing logic at a
peer accepts the tran-proposal and simply signs the
tran-proposal. However, endorsing logic may interpret arbitrary
functionality, to, e.g., interact with legacy systems with
tran-proposal and tx as inputs to reach the decision whether to
endorse a transaction or not.

If endorsing logic decides to endorse a transaction, it sends
<TRANSACTION-ENDORSED, tid, tran-proposal,epSig> message to the
submitting client(tx.clientID), where:

	tran-proposal := (epID,tid,chaincodeID,txContentBlob,readset,writeset),

where txContentBlob is chaincode/transaction specific
information. The intention is to have txContentBlob used as some
representation of tx (e.g., txContentBlob=tx.txPayload).

	epSig is the endorsing peer’s signature on tran-proposal

Else, in case the endorsing logic refuses to endorse the transaction, an
endorser may send a message (TRANSACTION-INVALID, tid, REJECTED)
to the submitting client.

Notice that an endorser does not change its state in this step, the
updates produced by transaction simulation in the context of endorsement
do not affect the state!

2.3. The submitting client collects an endorsement for a transaction and broadcasts it through ordering service

The submitting client waits until it receives “enough” messages and
signatures on (TRANSACTION-ENDORSED, tid, *, *) statements to
conclude that the transaction proposal is endorsed. As discussed in
Section 2.1.2., this may involve one or more round-trips of interaction
with endorsers.

The exact number of “enough” depend on the chaincode endorsement policy
(see also Section 3). If the endorsement policy is satisfied, the
transaction has been endorsed; note that it is not yet committed. The
collection of signed TRANSACTION-ENDORSED messages from endorsing
peers which establish that a transaction is endorsed is called an
endorsement and denoted by endorsement.

If the submitting client does not manage to collect an endorsement for a
transaction proposal, it abandons this transaction with an option to
retry later.

For transaction with a valid endorsement, we now start using the
ordering service. The submitting client invokes ordering service using
the broadcast(blob), where blob=endorsement. If the client does
not have capability of invoking ordering service directly, it may proxy
its broadcast through some peer of its choice. Such a peer must be
trusted by the client not to remove any message from the endorsement
or otherwise the transaction may be deemed invalid. Notice that,
however, a proxy peer may not fabricate a valid endorsement.

2.4. The ordering service delivers a transactions to the peers

When an event deliver(seqno, prevhash, blob) occurs and a peer has
applied all state updates for blobs with sequence number lower than
seqno, a peer does the following:

	It checks that the blob.endorsement is valid according to the
policy of the chaincode (blob.tran-proposal.chaincodeID) to which
it refers.

	In a typical case, it also verifies that the dependencies
(blob.endorsement.tran-proposal.readset) have not been violated
meanwhile. In more complex use cases, tran-proposal fields in
endorsement may differ and in this case endorsement policy (Section
3) specifies how the state evolves.

Verification of dependencies can be implemented in different ways,
according to a consistency property or “isolation guarantee” that is
chosen for the state updates. Serializability is a default isolation
guarantee, unless chaincode endorsement policy specifies a different
one. Serializability can be provided by requiring the version associated
with every key in the readset to be equal to that key’s version in
the state, and rejecting transactions that do not satisfy this
requirement.

	If all these checks pass, the transaction is deemed valid or
committed. In this case, the peer marks the transaction with 1 in
the bitmask of the PeerLedger, applies
blob.endorsement.tran-proposal.writeset to blockchain state (if
tran-proposals are the same, otherwise endorsement policy logic
defines the function that takes blob.endorsement).

	If the endorsement policy verification of blob.endorsement fails,
the transaction is invalid and the peer marks the transaction with 0
in the bitmask of the PeerLedger. It is important to note that
invalid transactions do not change the state.

Note that this is sufficient to have all (correct) peers have the same
state after processing a deliver event (block) with a given sequence
number. Namely, by the guarantees of the ordering service, all correct
peers will receive an identical sequence of
deliver(seqno, prevhash, blob) events. As the evaluation of the
endorsement policy and evaluation of version dependencies in readset
are deterministic, all correct peers will also come to the same
conclusion whether a transaction contained in a blob is valid. Hence,
all peers commit and apply the same sequence of transactions and update
their state in the same way.

[image: Illustration of the transaction flow (common-case path).]
Illustration of the transaction flow (common-case path).

Figure 1. Illustration of one possible transaction flow (common-case
path).

3. Endorsement policies

3.1. Endorsement policy specification

An endorsement policy, is a condition on what endorses a
transaction. Blockchain peers have a pre-specified set of endorsement
policies, which are referenced by a deploy transaction that installs
specific chaincode. Endorsement policies can be parametrized, and these
parameters can be specified by a deploy transaction.

To guarantee blockchain and security properties, the set of endorsement
policies should be a set of proven policies with limited set of
functions in order to ensure bounded execution time (termination),
determinism, performance and security guarantees.

Dynamic addition of endorsement policies (e.g., by deploy
transaction on chaincode deploy time) is very sensitive in terms of
bounded policy evaluation time (termination), determinism, performance
and security guarantees. Therefore, dynamic addition of endorsement
policies is not allowed, but can be supported in future.

3.2. Transaction evaluation against endorsement policy

A transaction is declared valid only if it has been endorsed according
to the policy. An invoke transaction for a chaincode will first have to
obtain an endorsement that satisfies the chaincode’s policy or it will
not be committed. This takes place through the interaction between the
submitting client and endorsing peers as explained in Section 2.

Formally the endorsement policy is a predicate on the endorsement, and
potentially further state that evaluates to TRUE or FALSE. For deploy
transactions the endorsement is obtained according to a system-wide
policy (for example, from the system chaincode).

An endorsement policy predicate refers to certain variables. Potentially
it may refer to:

	keys or identities relating to the chaincode (found in the metadata
of the chaincode), for example, a set of endorsers;

	further metadata of the chaincode;

	elements of the endorsement and endorsement.tran-proposal;

	and potentially more.

The above list is ordered by increasing expressiveness and complexity,
that is, it will be relatively simple to support policies that only
refer to keys and identities of nodes.

The evaluation of an endorsement policy predicate must be
deterministic. An endorsement shall be evaluated locally by every peer
such that a peer does not need to interact with other peers, yet all
correct peers evaluate the endorsement policy in the same way.

3.3. Example endorsement policies

The predicate may contain logical expressions and evaluates to TRUE or
FALSE. Typically the condition will use digital signatures on the
transaction invocation issued by endorsing peers for the chaincode.

Suppose the chaincode specifies the endorser set
E = {Alice, Bob, Charlie, Dave, Eve, Frank, George}. Some example
policies:

	A valid signature from on the same tran-proposal from all members
of E.

	A valid signature from any single member of E.

	Valid signatures on the same tran-proposal from endorsing peers
according to the condition
(Alice OR Bob) AND (any two of: Charlie, Dave, Eve, Frank, George).

	Valid signatures on the same tran-proposal by any 5 out of the 7
endorsers. (More generally, for chaincode with n > 3f endorsers,
valid signatures by any 2f+1 out of the n endorsers, or by
any group of more than (n+f)/2 endorsers.)

	Suppose there is an assignment of “stake” or “weights” to the
endorsers, like
{Alice=49, Bob=15, Charlie=15, Dave=10, Eve=7, Frank=3, George=1},
where the total stake is 100: The policy requires valid signatures
from a set that has a majority of the stake (i.e., a group with
combined stake strictly more than 50), such as {Alice, X} with
any X different from George, or
{everyone together except Alice}. And so on.

	The assignment of stake in the previous example condition could be
static (fixed in the metadata of the chaincode) or dynamic (e.g.,
dependent on the state of the chaincode and be modified during the
execution).

	Valid signatures from (Alice OR Bob) on tran-proposal1 and valid
signatures from (any two of: Charlie, Dave, Eve, Frank, George)
on tran-proposal2, where tran-proposal1 and
tran-proposal2 differ only in their endorsing peers and state
updates.

How useful these policies are will depend on the application, on the
desired resilience of the solution against failures or misbehavior of
endorsers, and on various other properties.

4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning)

4.1. Validated ledger (VLedger)

To maintain the abstraction of a ledger that contains only valid and
committed transactions (that appears in Bitcoin, for example), peers
may, in addition to state and Ledger, maintain the Validated Ledger (or
VLedger). This is a hash chain derived from the ledger by filtering out
invalid transactions.

The construction of the VLedger blocks (called here vBlocks) proceeds
as follows. As the PeerLedger blocks may contain invalid
transactions (i.e., transactions with invalid endorsement or with
invalid version dependencies), such transactions are filtered out by
peers before a transaction from a block becomes added to a vBlock. Every
peer does this by itself (e.g., by using the bitmask associated with
PeerLedger). A vBlock is defined as a block without the invalid
transactions, that have been filtered out. Such vBlocks are inherently
dynamic in size and may be empty. An illustration of vBlock construction
is given in the figure below. [image: Illustration of the transaction flow (common-case path).]

Figure 2. Illustration of validated ledger block (vBlock) formation from
ledger (PeerLedger) blocks.

vBlocks are chained together to a hash chain by every peer. More
specifically, every block of a validated ledger contains:

	The hash of the previous vBlock.

	vBlock number.

	An ordered list of all valid transactions committed by the peers
since the last vBlock was computed (i.e., list of valid transactions
in a corresponding block).

	The hash of the corresponding block (in PeerLedger) from which
the current vBlock is derived.

All this information is concatenated and hashed by a peer, producing the
hash of the vBlock in the validated ledger.

4.2. PeerLedger Checkpointing

The ledger contains invalid transactions, which may not necessarily be
recorded forever. However, peers cannot simply discard PeerLedger
blocks and thereby prune PeerLedger once they establish the
corresponding vBlocks. Namely, in this case, if a new peer joins the
network, other peers could not transfer the discarded blocks (pertaining
to PeerLedger) to the joining peer, nor convince the joining peer of
the validity of their vBlocks.

To facilitate pruning of the PeerLedger, this document describes a
checkpointing mechanism. This mechanism establishes the validity of
the vBlocks across the peer network and allows checkpointed vBlocks to
replace the discarded PeerLedger blocks. This, in turn, reduces
storage space, as there is no need to store invalid transactions. It
also reduces the work to reconstruct the state for new peers that join
the network (as they do not need to establish validity of individual
transactions when reconstructing the state by replaying PeerLedger,
but may simply replay the state updates contained in the validated
ledger).

4.2.1. Checkpointing protocol

Checkpointing is performed periodically by the peers every CHK blocks,
where CHK is a configurable parameter. To initiate a checkpoint, the
peers broadcast (e.g., gossip) to other peers message
<CHECKPOINT,blocknohash,blockno,stateHash,peerSig>, where
blockno is the current blocknumber and blocknohash is its
respective hash, stateHash is the hash of the latest state (produced
by e.g., a Merkle hash) upon validation of block blockno and
peerSig is peer’s signature on
(CHECKPOINT,blocknohash,blockno,stateHash), referring to the
validated ledger.

A peer collects CHECKPOINT messages until it obtains enough
correctly signed messages with matching blockno, blocknohash and
stateHash to establish a valid checkpoint (see Section 4.2.2.).

Upon establishing a valid checkpoint for block number blockno with
blocknohash, a peer:

	if blockno>latestValidCheckpoint.blockno, then a peer assigns
latestValidCheckpoint=(blocknohash,blockno),

	stores the set of respective peer signatures that constitute a valid
checkpoint into the set latestValidCheckpointProof,

	stores the state corresponding to stateHash to
latestValidCheckpointedState,

	(optionally) prunes its PeerLedger up to block number blockno
(inclusive).

4.2.2. Valid checkpoints

Clearly, the checkpointing protocol raises the following questions:
When can a peer prune its ``PeerLedger``? How many ``CHECKPOINT``
messages are “sufficiently many”?. This is defined by a checkpoint
validity policy, with (at least) two possible approaches, which may
also be combined:

	Local (peer-specific) checkpoint validity policy (LCVP). A local
policy at a given peer p may specify a set of peers which peer p
trusts and whose CHECKPOINT messages are sufficient to establish
a valid checkpoint. For example, LCVP at peer Alice may define that
Alice needs to receive CHECKPOINT message from Bob, or from
both Charlie and Dave.

	Global checkpoint validity policy (GCVP). A checkpoint validity
policy may be specified globally. This is similar to a local peer
policy, except that it is stipulated at the system (blockchain)
granularity, rather than peer granularity. For instance, GCVP may
specify that:
	each peer may trust a checkpoint if confirmed by 11 different
peers.

	in a specific deployment in which every orderer is collocated with
a peer in the same machine (i.e., trust domain) and where up to
f orderers may be (Byzantine) faulty, each peer may trust a
checkpoint if confirmed by f+1 different peers collocated with
orderers.

 Copyright 2017, rameshthoomu.

 Endorsement policies

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Endorsement policies

Endorsement policies are used to instruct a peer on how to decide
whether a transaction is properly endorsed. When a peer receives a
transaction, it invokes the VSCC (Validation System Chaincode)
associated with the transaction’s Chaincode as part of the transaction
validation flow to determine the validity of the transaction. Recall
that a transaction contains one or more endorsement from as many
endorsing peers. VSCC is tasked to make the following determinations: -
all endorsements are valid (i.e. they are valid signatures from valid
certificates over the expected message) - there is an appropriate number
of endorsements - endorsements come from the expected source(s)

Endorsement policies are a way of specifying the second and third
points.

Endorsement policy design

Endorsement policies have two main components: - a principal - a
threshold gate

A principal P identifies the entity whose signature is expected.

A threshold gate T takes two inputs: an integer t (the
threshold) and a list of n principals or gates; this gate
essentially captures the expectation that out of those n principals
or gates, t are requested to be satisfied.

For example: - T(2, 'A', 'B', 'C') requests a signature from any 2
principals out of ‘A’, ‘B’ or ‘C’; - T(1, 'A', T(2, 'B', 'C'))
requests either one signature from principal A or 1 signature from
B and C each.

Endorsement policy syntax in the CLI

In the CLI, a simple language is used to express policies in terms of
boolean expressions over principals.

A principal is described in terms of the MSP that is tasked to validate
the identity of the signer and of the role that the signer has within
that MSP. Currently, two roles are supported: member and admin.
Principals are described as MSP.ROLE, where MSP is the MSP
ID that is required, and ROLE is either one of the two strings
member and admin. Examples of valid principals are
'Org0.admin' (any administrator of the Org0 MSP) or
'Org1.member' (any member of the Org1 MSP).

The syntax of the language is:

EXPR(E[, E...])

where EXPR is either AND or OR, representing the two boolean
expressions and E is either a principal (with the syntax described
above) or another nested call to EXPR.

For example: - AND('Org1.member', 'Org2.member', 'Org3.member')
requests 1 signature from each of the three principals -
OR('Org1.member', 'Org2.member') requests 1 signature from either
one of the two principals -
OR('Org1.member', AND('Org2.member', 'Org3.member')) requests either
one signature from a member of the Org1 MSP or 1 signature from a
member of the Org2 MSP and 1 signature from a member of the Org3
MSP.

Specifying endorsement policies for a chaincode

Using this language, a chaincode deployer can request that the
endorsements for a chaincode be validated against the specified policy.
NOTE - the default policy requires one signature from a member of the
DEFAULT MSP). This is used if a policy is not specified in the CLI.

The policy can be specified at deploy time using the -P switch,
followed by the policy.

For example:

peer chaincode deploy -C testchainid -n mycc -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Args":["init","a","100","b","200"]}' -P "AND('Org1.member', 'Org2.member')"

This command deploys chaincode mycc on chain testchainid with
the policy AND('Org1.member', 'Org2.member').

Future enhancements

In this section we list future enhancements for endorsement policies: -
alongside the existing way of identifying principals by their
relationship with an MSP, we plan to identify principals in terms of the
Organization Unit (OU) expected in their certificates; this is useful
to express policies where we request signatures from any identity
displaying a valid certificate with an OU matching the one requested in
the definition of the principal. - instead of the syntax AND(., .)
we plan to move to a more intuitive syntax . AND . - we plan to
expose generalized threshold gates in the language as well alongside
AND (which is the special n-out-of-n gate) and OR (which
is the special 1-out-of-n gate)

 Copyright 2017, rameshthoomu.

 Ordering Service

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Ordering Service

[WIP] ...coming soon

This topic will outline the role and functionalities of the ordering
service, and explain its place in the broader network and in the
lifecycle of a transaction.

The v1 architecture has been designed such that the ordering service
is the centralized point of trust in a decentralized network, but also
such that the specific implementation of “ordering” (solo, kafka, BFT)
becomes a pluggable component.

Refer to the design document on a Kafka-based Ordering
Service [https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4/edit]
for more information on the default v1 implementation.

 Copyright 2017, rameshthoomu.

 Pluggable Ordering implementations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Pluggable Ordering implementations

[WIP] ...coming soon

This topic is intended to explain how to configure an ordering service
such that it implements a alternate protocol from the default
kafka-based method.

This JIRA issue outlines the proposal for a Simplified Byzantine Fault
Tolerant consensus protocol -
https://jira.hyperledger.org/browse/FAB-378

 Copyright 2017, rameshthoomu.

 Ledger

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Ledger

[WIP] ...coming soon

The ledger exists as a peer process utilizing levelDB. It supports the
high level transaction flow - read-write-set simulation, endorsement,
MVCC check, file-based blockchain transaction log, and state database.

v1 architecture has been designed to support various ledger
implementations such as couchDB, where more complexity with rich
queries, pruning, archiving, etc... becomes possible.

For more information on the current state of ledger development, explore
the corresponding JIRA issue -
https://jira.hyperledger.org/browse/FAB-758

 Copyright 2017, rameshthoomu.

 Gossip protocol

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Gossip protocol

[WIP] ...coming soon

v1 architecture utilizes the well-known concept of gossip protocol. See
the design doc on Gossip-based data
dissemination [https://docs.google.com/document/d/157AvKxVRqgeaCTSpN86ICa5x-XihZ67bOrNMc5xLvEU/edit#heading=h.rrii36vrca54]
for more details on this.

 Copyright 2017, rameshthoomu.

 Fabric CA User’s Guide

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Fabric CA User’s Guide

Fabric CA is a Certificate Authority for Hyperledger Fabric.

It provides features such as:

1) registration of identities, or connects to LDAP as the user
registry;

2) issuance of Enrollment Certificates (ECerts);

3) issuance of Transaction Certificates (TCerts), providing both
anonymity and unlinkability when transacting on a Hyperledger Fabric
blockchain;

4) certificate renewal and revocation.

Fabric CA consists of both a server and a client component as described
later in this document.

For developers interested in contributing to Fabric CA, see the Fabric
CA repository [https://github.com/hyperledger/fabric-ca] for more
information.

Getting Started

Prerequisites

	Go 1.7+ installation or later

	GOPATH environment variable is set correctly

Install

To install the fabric-ca command:

go get github.com/hyperledger/fabric-ca

The Fabric CA CLI

The following shows the fabric-ca CLI usage:

fabric-ca
fabric-ca client - client related commands
fabric-ca server - server related commands
fabric-ca cfssl - all cfssl commands

For help, type "fabric-ca client", "fabric-ca server", or "fabric-ca cfssl".

The fabric-ca server and fabric-ca client commands are discussed
below.

If you would like to enable debug-level logging (for server or client),
set the FABRIC_CA_DEBUG environment variable to true.

Since fabric-ca is built on top of
CFSSL [https://github.com/cloudflare/cfssl], the fabric-ca cfssl
commands are available but are not discussed in this document. See
CFSSL [https://github.com/cloudflare/cfssl] for more information.

Fabric CA Server

This section describes the fabric-ca server.

You must initialize the Fabric CA server before starting it.

The fabric-ca server’s home directory is determined as follows:

- if the FABRIC_CA_HOME environment variable is set, use its
value;

- otherwise, if the HOME environment variable is set, use
$HOME/fabric-ca;

- otherwise, use `/var/hyperledger/fabric/dev/fabric-ca’.

For the remainder of this server section, we assume that you have set
the FABRIC_CA_HOME environment variable to
$HOME/fabric-ca/server.

Initialize the Fabric CA server as follows:

fabric-ca server init CSR-JSON-FILE

The following is a sample CSR-JSON-FILE which you can customize as
desired. The “CSR” stands for “Certificate Signing Request”.

If you are going to connect to the fabric-ca server remotely over TLS,
replace “localhost” in the CSR-JSON-FILE below with the hostname where
you will be running your fabric-ca server.

{
 "CN": "localhost",
 "key": { "algo": "ecdsa", "size": 256 },
 "names": [
 {
 "O": "Hyperledger Fabric",
 "OU": "Fabric CA",
 "L": "Raleigh",
 "ST": "North Carolina",
 "C": "US"
 }
]
}

All of the fields above pertain to the X.509 certificate which is
generated by the fabric server init command as follows:

CSR fields

	CN is the Common Name

	keys specifies the algorithm and key size as described below

	O is the organization name

	OU is the organization unit

	L is the location or city

	ST is the state

	C is the country

The fabric-ca server init command generates a self-signed X.509
certificate. It stores the certificate in the server-cert.pem file
and the key in the server-key.pem file in the Fabric CA server’s
home directory.

Algorithms and key sizes

The CSR-JSON-FILE can be customized to generate X.509 certificates and
keys that support both RSA and Elliptic Curve (ECDSA). The following
setting is an example of the implementation of Elliptic Curve Digital
Signature Algorithm (ECDSA) with curve prime256v1 and signature
algorithm ecdsa-with-SHA256:

"key": {
 "algo": "ecdsa"
 "size": 256
}

The choice of algorithm and key size are based on security needs.

Elliptic Curve (ECDSA) offers the following key size options:

	size
	ASN1 OID
	Signature Algorithm

	256
	prime256v1
	ecdsa-with-SHA256

	384
	secp384r1
	ecdsa-with-SHA384

	521
	secp521r1
	ecdsa-with-SHA512

RSA offers the following key size options:

	size
	Modulus (bits)
	Signature Algorithm

	2048
	2048
	sha256WithRSAEncryption

	4096
	4096
	sha512WithRSAEncryption

Create a file named server-config.json as shown below in your
fabric-ca server’s home directory (e.g. $HOME/fabric-ca/server).

{
 "tls_disable": false,
 "ca_cert": "server-cert.pem",
 "ca_key": "server-key.pem",
 "driver":"sqlite3",
 "data_source":"fabric-ca.db",
 "user_registry": { "max_enrollments": 0 },
 "tls": {
 "tls_cert": "server-cert.pem",
 "tls_key": "server-key.pem"
 },
 "users": {
 "admin": {
 "pass": "adminpw",
 "type": "client",
 "group": "bank_a",
 "attrs": [
 {"name":"hf.Registrar.Roles","value":"client,peer,validator,auditor"},
 {"name":"hf.Registrar.DelegateRoles", "value": "client"}
]
 }
 },
 "groups": {
 "banks_and_institutions": {
 "banks": ["bank_a", "bank_b", "bank_c"],
 "institutions": ["institution_a"]
 }
 },
 "signing": {
 "default": {
 "usages": ["cert sign"],
 "expiry": "8000h",
 "ca_constraint": {"is_ca": true}
 }
 }
}

Now you may start the Fabric CA server as follows:

cd $FABRIC_CA_HOME
fabric-ca server start -address '0.0.0.0' -config server-config.json

To cause the fabric-ca server to listen on http rather than
https, set tls_disable to true in the server-config.json
file.

To limit the number of times that the same secret (or password) can be
used for enrollment, set the max_enrollments in the
server-config.json file to the appropriate value. If you set the
value to 1, the fabric-ca server allows passwords to only be used once
for a particular enrollment ID. If you set the value to 0, the fabric-ca
server places no limit on the number of times that a secret can be
reused for enrollment. The default value is 0.

The fabric-ca server should now be listening on port 7054.

You may skip to the Fabric CA Client section if
you do not want to configure the fabric-ca server to run in a cluster or
to use LDAP.

This section describes how to configure the fabric-ca server to connect
to Postgres or MySQL databases. The default database is SQLite and the
default database file is fabric-ca.db in the Fabric CA’s home
directory.

If you don’t care about running the fabric-ca server in a cluster, you
may skip this section; otherwise, you must configure either Postgres or
MySQL as described below.

Postgres

The following sample may be added to the server-config.json file in
order to connect to a Postgres database. Be sure to customize the
various values appropriately.

"driver":"postgres",
"data_source":"host=localhost port=5432 user=Username password=Password dbname=fabric-ca sslmode=verify-full",

Specifying sslmode enables SSL, and a value of verify-full means to
verify that the certificate presented by the postgres server was signed
by a trusted CA and that the postgres server’s host name matches the one
in the certificate.

We also need to set the TLS configuration in the fabric-ca server-config
file. If the database server requires client authentication, then a
client cert and key file needs to be provided. The following should be
present in the fabric-ca server config:

"tls":{
 ...
 "db_client":{
 "ca_certfiles":["CA.pem"],
 "client":[{"keyfile":"client-key.pem","certfile":"client-cert.pem"}]
 }
},

ca_certfiles - The names of the trusted root certificate files.

certfile - Client certificate file.

keyfile - Client key file.

MySQL

The following sample may be added to the server-config.json file in
order to connect to a MySQL database. Be sure to customize the various
values appropriately.

...
"driver":"mysql",
"data_source":"root:rootpw@tcp(localhost:3306)/fabric-ca?parseTime=true&tls=custom",
...

If connecting over TLS to the MySQL server, the tls.db_client
section is also required as described in the Postgres section above.

The fabric-ca server can be configured to read from an LDAP server.

In particular, the fabric-ca server may connect to an LDAP server to do
the following:

	authenticate a user prior to enrollment, and

	retrieve a user’s attribute values which are used for authorization.

In order to configure the fabric-ca server to connect to an LDAP server,
add a section of the following form to your fabric-ca server’s
configuration file:

{
 "ldap": {
 "url": "scheme://adminDN:pass@host[:port][/base]"
 "userfilter": "filter"
 }

where: * scheme is one of ldap or ldaps; * adminDN is
the distinquished name of the admin user; * pass is the password
of the admin user;

* host is the hostname or IP address of the LDAP server; *
port is the optional port number, where default 389 for ldap and
636 for ldaps; * base is the optional root of the LDAP tree to
use for searches; * filter is a filter to use when searching to
convert a login user name to a distinquished name. For example, a
value of (uid=%s) searches for LDAP entries with the value of a
uid attribute whose value is the login user name. Similarly,
(email=%s) may be used to login with an email address.

The following is a sample configuration section for the default settings
for the OpenLDAP server whose docker image is at
https://github.com/osixia/docker-openldap.

"ldap": {
 "url": "ldap://cn=admin,dc=example,dc=org:admin@localhost:10389/dc=example,dc=org",
 "userfilter": "(uid=%s)"
},

See FABRIC_CA/testdata/testconfig-ldap.json for the complete
configuration file with this section. Also see
FABRIC_CA/scripts/run-ldap-tests for a script which starts an
OpenLDAP docker image, configures it, runs the LDAP tests in
FABRIC_CA/cli/server/ldap/ldap_test.go, and stops the OpenLDAP server.

When LDAP is configured, enrollment works as follows:

	A fabric-ca client or client SDK sends an enrollment request with a
basic authorization header.

	The fabric-ca server receives the enrollment request, decodes the
user/pass in the authorization header, looks up the DN (Distinquished
Name) associated with the user using the “userfilter” from the
configuration file, and then attempts an LDAP bind with the user’s
password. If successful, the enrollment processing is authorized and
can proceed.

When LDAP is configured, attribute retrieval works as follows:

	A client SDK sends a request for a batch of tcerts with one or more
attributes to the fabric-ca server.

	The fabric-ca server receives the tcert request and does as follows:
	extracts the enrollment ID from the token in the authorization
header (after validating the token);

	does an LDAP search/query to the LDAP server, requesting all of
the attribute names received in the tcert request;

	the attribute values are placed in the tcert as normal

You may use any IP sprayer to load balance to a cluster of fabric-ca
servers. This section provides an example of how to set up Haproxy to
route to a fabric-ca server cluster. Be sure to change hostname and port
to reflect the settings of your fabric-ca servers.

haproxy.conf

 global
 maxconn 4096
 daemon

 defaults
 mode http
 maxconn 2000
 timeout connect 5000
 timeout client 50000
 timeout server 50000

 listen http-in
 bind *:7054
 balance roundrobin
 server server1 hostname1:port
 server server2 hostname2:port
 server server3 hostname3:port

Fabric CA Client

This section describes how to use the fabric-ca client.

The default fabric-ca client’s home directory is $HOME/fabric-ca,
but this can be changed by setting the FABRIC_CA_HOME environment
variable.

You must create a file named client-config.json in the fabric-ca
client’s home directory. The following is a sample client-config.json
file:

{
 "ca_certfiles":["server-cert.pem"],
 "signing": {
 "default": {
 "usages": ["cert sign"],
 "expiry": "8000h"
 }
 }
}

You must also copy the server’s certificate into the client’s home
directory. In the examples in this document, the server’s certificate is
at $HOME/fabric-ca/server/server-cert.pem. The file name must match
the name in the client-config.json file.

Enroll the bootstrap user

Unless the fabric-ca server is configured to use LDAP, it must be
configured with at least one pre-registered bootstrap user. In the
previous server-config.json in this document, that user has an
enrollment ID of admin with an enrollment secret of adminpw.

First, create a CSR (Certificate Signing Request) JSON file similar to

the following. Customize it as desired.

{
 "key": { "algo": "ecdsa", "size": 256 },
 "names": [
 {
 "O": "Hyperledger Fabric",
 "OU": "Fabric CA",
 "L": "Raleigh",
 "ST": "North Carolina",
 "C": "US"
 }
]
}

See CSR fields for a description of the fields in this
file. When enrolling, the CN (Common Name) field is automatically set to
the enrollment ID which is admin in this example, so it can be omitted
from the csr.json file.

The following command enrolls the admin user and stores an enrollment
certificate (ECert) in the fabric-ca client’s home directory.

export FABRIC_CA_HOME=$HOME/fabric-ca/clients/admin
fabric-ca client enroll -config client-config.json admin adminpw http://localhost:7054 csr.json

You should see a message similar to
[INFO] enrollment information was successfully stored in which
indicates where the certificate and key files were stored.

The enrollment certificate is stored at
$FABRIC_CA_ENROLLMENT_DIR/cert.pem by default, but a different path
can be specified by setting the FABRIC_CA_CERT_FILE environment
variable.

The enrollment key is stored at $FABRIC_CA_ENROLLMENT_DIR/key.pem by
default, but a different path can be specified by setting the
FABRIC_CA_KEY_FILE environment variable.

If FABRIC_CA_ENROLLMENT_DIR is not set, the value of the
FABRIC_CA_HOME environment variable is used in its place.

The user performing the register request must be currently enrolled, and
must also have the proper authority to register the type of user being
registered.

In particular, the invoker’s identity must have been registered with the
attribute “hf.Registrar.Roles”. This attribute specifies the types of
identities that the registrar is allowed to register.

For example, the attributes for a registrar might be as follows,
indicating that this registrar identity can register peer, application,
and user identities.

"attrs": [{"name":"hf.Registrar.Roles", "value":"peer,app,user"}]

To register a new identity, you must first create a JSON file similar to
the one below which defines information for the identity being
registered. This is a sample of registration information for a peer.

{
 "id": "peer1",
 "type": "peer",
 "group": "bank_a",
 "attrs": [{"name":"SomeAttrName","value":"SomeAttrValue"}]
}

The id field is the enrollment ID of the identity.

The type field is the type of the identity: orderer, peer, app, or
user.

The group field must be a valid group name as found in the
server-config.json file.

The attrs field is optional and is not required for a peer, but is
shown here as example of how you associate attributes with any identity.

Assuming you store the information above in a file named
register.json, the following command uses the admin user’s
credentials to register the peer1 identity.

export FABRIC_CA_HOME=$HOME/fabric-ca/clients/admin
cd $FABRIC_CA_HOME
fabric-ca client register -config client-config.json register.json http://localhost:7054

The output of a successful fabric-ca client register command is a
password similar to One time password: gHIexUckKpHz. Make a note of
your password to use in the following section to enroll a peer.

Now that you have successfully registered a peer identity, you may now
enroll the peer given the enrollment ID and secret (i.e. the password
from the previous section).

First, create a CSR (Certificate Signing Request) JSON file similar to
the one described in the Enrolling the bootstrap
user section. Name the file csr.json for the
following example.

This is similar to enrolling the bootstrap user except that we also
demonstrate how to use environment variables to place the key and
certificate files in a specific location. The following example shows
how to place them into a Hyperledger Fabric MSP (Membership Service
Provider) directory structure. The MSP_DIR environment variable
refers to the root directory of MSP in Hyperledger Fabric and the
$MSP_DIR/signcerts and $MSP_DIR/keystore directories must exist.

Also note that you must replace <secret> with the secret which was
returned from the registration in the previous section.

export FABRIC_CA_CERT_FILE=$MSP_DIR/signcerts/peer.pem
export FABRIC_CA_KEY_FILE=$MSP_DIR/keystore/key.pem
fabric-ca client enroll -config client-config.json peer1 <secret> https://localhost:7054 csr.json

The peer.pem and key.pem files should now exist at the locations
specified by the environment variables.

In order to revoke a certificate or user, the calling identity must have
the hf.Revoker attribute.

You may revoke a specific certificate by specifying its AKI (Authority
Key Identifier) and its serial number, as shown below.

fabric-ca client revoke -config client-config.json -aki xxx -serial yyy -reason "you're bad" https://localhost:7054

The following command disables a user’s identity and also revokes all of
the certificates associated with the identity. All future requests
received by the fabric-ca server from this identity will be rejected.

fabric-ca client revoke -config client-config.json https://localhost:7054 ENROLLMENT-ID -reason "you're really bad"

This section describes in more detail how to configure TLS for a
fabric-ca client.

The following sections may be configured in the client-config.json.

{
"ca_certfiles":["CA_root_cert.pem"],
"client":[{"keyfile":"client-key.pem","certfile":"client-cert.pem"}]
}

The ca_certfiles option is the set of root certificates trusted by
the client. This will typically just be the root fabric-ca server’s
certificate found in the server’s home directory in the
server-cert.pem file.

The client option is required only if mutual TLS is configured on
the server.

Appendix

Postgres SSL Configuration

Basic instructions for configuring SSL on Postgres server: 1. In
postgresql.conf, uncomment SSL and set to “on” (SSL=on) 2. Place
Certificate and Key files Postgress data directory.

Instructions for generating self-signed certificates for:
https://www.postgresql.org/docs/9.1/static/ssl-tcp.html

Note: Self-signed certificates are for testing purposes and should not
be used in a production environment

Postgres Server - Require Client Certificates 1. Place certificates
of the certificate authorities (CAs) you trust in the file root.crt in
the Postgres data directory 2. In postgresql.conf, set “ssl_ca_file”
to point to the root cert of client (CA cert) 3. Set the clientcert
parameter to 1 on the appropriate hostssl line(s) in pg_hba.conf.

For more details on configuring SSL on the Postgres server, please refer
to the following Postgres documentation:
https://www.postgresql.org/docs/9.4/static/libpq-ssl.html

MySQL SSL Configuration

Basic instructions for configuring SSL on MySQL server:

	Open or create my.cnf file for the server. Add or un-comment the
lines below in [mysqld] section. These should point to the key and
certificates for the server, and the root CA cert.

Instruction on creating server and client side certs:
http://dev.mysql.com/doc/refman/5.7/en/creating-ssl-files-using-openssl.html

[mysqld] ssl-ca=ca-cert.pem ssl-cert=server-cert.pem
ssl-key=server-key.pem

Can run the following query to confirm SSL has been enabled.

mysql> SHOW GLOBAL VARIABLES LIKE ‘have_%ssl’;

Should see:

+---------------+-------+ | Variable_name | Value | +---------------+-------+ | have_openssl | YES | | have_ssl | YES | +---------------+-------+

	After the server-side SSL configuration is finished, the next step is
to create a user who has a privilege to access the MySQL server over
SSL. For that, log in to the MySQL server, and type:

mysql> GRANT ALL PRIVILEGES ON . TO ‘ssluser’@’%’ IDENTIFIED BY
‘password’ REQUIRE SSL; mysql> FLUSH PRIVILEGES;

If you want to give a specific ip address from which the user will
access the server change the ‘%’ to the specific ip address.

MySQL Server - Require Client Certificates Options for secure
connections are similar to those used on the server side.

	ssl-ca identifies the Certificate Authority (CA) certificate. This
option, if used, must specify the same certificate used by the
server.

	ssl-cert identifies the client public key certificate.

	ssl-key identifies the client private key.

Suppose that you want to connect using an account that has no special
encryption requirements or was created using a GRANT statement that
includes the REQUIRE SSL option. As a recommended set of
secure-connection options, start the MySQL server with at least
–ssl-cert and –ssl-key, and invoke the fabric-ca server with
ca_certfiles option set in the fabric-ca server file.

To require that a client certificate also be specified, create the
account using the REQUIRE X509 option. Then the client must also specify
the proper client key and certificate files or the MySQL server will
reject the connection. CA cert, client cert, and client key are all
required for the fabric-ca server.

 Copyright 2017, rameshthoomu.

 Components

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Components

[WIP] ...coming soon

This topic will contain a diagram explaining the various components of a
blockchain network and their corresponding roles.

 Copyright 2017, rameshthoomu.

 Transaction Flow

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Transaction Flow

[WIP] ...coming soon

This topic will contain a diagram (currently in progress) outlining at a
high level the basic flow of a transaction(s) from Application/SDK ->
Endorsing Peers -> Back to SDK with proposal responses -> “Broadcast” to
ordering service -> “Delivered” as a block to a channel’s peers for
validation and commitment (i.e. written to the shared ledger).

In the meantime, view the high level data
flows [https://jira.hyperledger.org/browse/FAB-37] and familiarize
yourself with the concepts, components, and roles of system chaincodes.

 Copyright 2017, rameshthoomu.

 Endorsing Peer

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Endorsing Peer

[WIP] ...coming soon

This topic will explain the peer’s runtime and role as an endorser for a
certain piece of chaincode. In the meantime, refer to the high-level
data flow [https://jira.hyperledger.org/browse/FAB-37].

 Copyright 2017, rameshthoomu.

 Committing Peer

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Committing Peer

[WIP] ...coming soon

This topic will explain the peer’s runtime and role as a committer for
transactions on a channel. In the meantime, refer to the high-level
data flow [https://jira.hyperledger.org/browse/FAB-37].

 Copyright 2017, rameshthoomu.

 Troubleshooting

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Troubleshooting

[WIP] ...coming soon

This topic is intended to solve high level bugs and then direct users to
more granular FAQ topics based on their errors.

 Copyright 2017, rameshthoomu.

 Chaincode (Smart Contracts and Digital Assets)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Chaincode (Smart Contracts and Digital Assets)

 ##### Does the fabric implementation support smart contract logic?
Yes. Chaincode is the fabric’s interpretation of the smart contract
method/algorithm, with additional features.

A chaincode is programmatic code deployed on the network, where it is
executed and validated by chain validators together during the consensus
process. Developers can use chaincodes to develop business contracts,
asset definitions, and collectively-managed decentralized applications.

 ##### How do I create a business contract using the fabric? There are
generally two ways to develop business contracts: the first way is to
code individual contracts into standalone instances of chaincode; the
second way, and probably the more efficient way, is to use chaincode to
create decentralized applications that manage the life cycle of one or
multiple types of business contracts, and let end users instantiate
instances of contracts within these applications.

 ##### How do I create assets using the fabric? Users can use chaincode
(for business rules) and membership service (for digital tokens) to
design assets, as well as the logic that manages them.

There are two popular approaches to defining assets in most blockchain
solutions: the stateless UTXO model, where account balances are encoded
into past transaction records; and the account model, where account
balances are kept in state storage space on the ledger.

Each approach carries its own benefits and drawbacks. This blockchain
fabric does not advocate either one over the other. Instead, one of our
first requirements was to ensure that both approaches can be easily
implemented with tools available in the fabric.

 ##### Which languages are supported for writing chaincode? Chaincode
can be written in any programming language and executed in containers
inside the fabric context layer. We are also looking into developing a
templating language (such as Apache Velocity) that can either get
compiled into chaincode or have its interpreter embedded into a
chaincode container.

The fabric’s first fully supported chaincode language is Golang, and
support for JavaScript and Java is planned for 2016. Support for
additional languages and the development of a fabric-specific templating
language have been discussed, and more details will be released in the
near future.

 ##### Does the fabric have native currency? No. However, if you really
need a native currency for your chain network, you can develop your own
native currency with chaincode. One common attribute of native currency
is that some amount will get transacted (the chaincode defining that
currency will get called) every time a transaction is processed on its
chain.

 Copyright 2017, rameshthoomu.

 Confidentiality

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Confidentiality

How is the confidentiality of transactions and business logic achieved?

The security module works in conjunction with the membership service
module to provide access control service to any data recorded and
business logic deployed on a chain network.

When a code is deployed on a chain network, whether it is used to define
a business contract or an asset, its creator can put access control on
it so that only transactions issued by authorized entities will be
processed and validated by chain validators.

Raw transaction records are permanently stored in the ledger. While the
contents of non-confidential transactions are open to all participants,
the contents of confidential transactions are encrypted with secret keys
known only to their originators, validators, and authorized auditors.
Only holders of the secret keys can interpret transaction contents.

 ##### What if none of the stakeholders of a business contract are
validators? In some business scenarios, full confidentiality of contract
logic may be required – such that only contract counterparties and
auditors can access and interpret their chaincode. Under these
scenarios, counter parties would need to spin off a new child chain with
only themselves as validators.

 Copyright 2017, rameshthoomu.

 Consensus Algorithm

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Consensus Algorithm

 ##### Which Consensus Algorithm is used in the fabric? The fabric is
built on a pluggable architecture such that developers can configure
their deployment with the consensus module that best suits their needs.
The initial release package will offer three consensus implementations
for users to select from: 1) No-op (consensus ignored); and 2) Batch
PBFT.

 Copyright 2017, rameshthoomu.

 Identity Management (Membership Service)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Identity Management (Membership Service)

 ##### What is unique about the fabric’s Membership Service module? One
of the things that makes the Membership Service module stand out from
the pack is our implementation of the latest advances in cryptography.

In addition to ensuring private, auditable transactions, our Membership
Service module introduces the concept of enrollment and transaction
certificates. This innovation ensures that only verified owners can
create asset tokens, allowing an infinite number of transaction
certificates to be issued through parent enrollment certificates while
guaranteeing the private keys of asset tokens can be regenerated if
lost.

Issuers also have the ability revoke transaction certificates or
designate them to expire within a certain timeframe, allowing greater
control over the asset tokens they have issued.

Like most other modules on the fabric, you can always replace the
default module with another membership service option should the need
arise.

 ##### Does its Membership Service make the fabric a centralized
solution?

No. The only role of the Membership Service module is to issue digital
certificates to validated entities that want to participate in the
network. It does not execute transactions nor is it aware of how or when
these certificates are used in any particular network.

However, because certificates are the way networks regulate and manage
their users, the module serves a central regulatory and organizational
role.

 Copyright 2017, rameshthoomu.

 Usage

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Usage

 #####What are the expected performance figures for the fabric? The
performance of any chain network depends on several factors: proximity
of the validating nodes, number of validators, encryption method,
transaction message size, security level set, business logic running,
and the consensus algorithm deployed, among others.

The current performance goal for the fabric is to achieve 100,000
transactions per second in a standard production environment of about 15
validating nodes running in close proximity. The team is committed to
continuously improving the performance and the scalability of the
system.

 ##### Do I have to own a validating node to transact on a chain
network? No. You can still transact on a chain network by owning a
non-validating node (NV-node).

Although transactions initiated by NV-nodes will eventually be forwarded
to their validating peers for consensus processing, NV-nodes establish
their own connections to the membership service module and can therefore
package transactions independently. This allows NV-node owners to
independently register and manage certificates, a powerful feature that
empowers NV-node owners to create custom-built applications for their
clients while managing their client certificates.

In addition, NV-nodes retain full copies of the ledger, enabling local
queries of the ledger data.

 ##### What does the error string “state may be inconsistent, cannot
query” as a query result mean? Sometimes, a validating peer will be out
of sync with the rest of the network. Although determining this
condition is not always possible, validating peers make a best effort
determination to detect it, and internally mark themselves as out of
date.

When under this condition, rather than reply with out of date or
potentially incorrect data, the peer will reply to chaincode queries
with the error string “state may be inconsistent, cannot query”.

In the future, more sophisticated reporting mechanisms may be introduced
such as returning the stale value and a flag that the value is stale.

 Copyright 2017, rameshthoomu.

 Releases

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Releases

v0.6-preview [https://github.com/hyperledger/fabric/tree/v0.6]
September 16, 2016

A developer preview release of the Hyperledger Fabric intended to
exercise the release logistics and stabilize a set of capabilities for
developers to try out. This will be the last release under the original
architecture. All subsequent releases will deliver on the v1.0
architecture.

Key enhancements:

	8de58ed - NodeSDK doc changes – FAB-146

	62d866d - Add flow control to SYNC_STATE_SNAPSHOT

	4d97069 - Adding TLS changes to SDK

	e9d3ac2 - Node-SDK: add support for fabric events(block, chaincode,
transactional)

	7ed9533 - Allow deploying Java chaincode from remote git repositories

	4bf9b93 - Move Docker-Compose files into their own folder

	ce9fcdc - Print ChaincodeName when deploy with CLI

	4fa1360 - Upgrade go protobuf from 3-beta to 3

	4b13232 - Table implementation in java shim with example

	df741bc - Add support for dynamically registering a user with
attributes

	4203ea8 - Check for duplicates when adding peers to the chain

	518f3c9 - Update docker openjdk image

	47053cd - Add GetTxID function to Stub interface (FAB-306)

	ac182fa - Remove deprecated devops REST API

	ad4645d - Support hyperledger fabric build on ppc64le platform

	21a4a8a - SDK now properly adding a peer with an invalid URL

	1d8114f - Fix setting of watermark on restore from crash

	a98c59a - Upgrade go protobuff from 3-beta to 3

	937039c - DEVENV: Provide strong feedback when provisioning fails

	d74b1c5 - Make pbft broadcast timeout configurable

	97ed71f - Java shim/chaincode project reorg, separate java docker env

	a76dd3d - Start container with HostConfig was deprecated since v1.10
and removed since v1.12

	8b63a26 - Add ability to unregister for events

	3f5b2fa - Add automatic peer command detection

	6daedfd - Re-enable sending of chaincode events

	b39c93a - Update Cobra and pflag vendor libraries

	dad7a9d - Reassign port numbers to 7050-7060 range

v0.5-developer-preview [https://github.com/hyperledger-archives/fabric/tree/v0.5-developer-preview]
June 17, 2016

A developer preview release of the Hyperledger Fabric intended to
exercise the release logistics and stabilize a set of capabilities for
developers to try out.

Key features:

Permissioned blockchain with immediate finality Chaincode (aka smart
contract) execution environments Docker container (user chaincode)
In-process with peer (system chaincode) Pluggable consensus with PBFT,
NOOPS (development mode), SIEVE (prototype) Event framework supports
pre-defined and custom events Client SDK (Node.js), basic REST APIs and
CLIs Known Key Bugs and work in progress

	1895 - Client SDK interfaces may crash if wrong parameter specified

	1901 - Slow response after a few hours of stress testing

	1911 - Missing peer event listener on the client SDK

	889 - The attributes in the TCert are not encrypted. This work is
still on-going

 Copyright 2017, rameshthoomu.

 Contributions Welcome!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Contributions Welcome!

We welcome contributions to the Hyperledger Project in many forms, and
there’s always plenty to do!

First things first, please review the Hyperledger Project’s Code of
Conduct [https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct]
before participating. It is important that we keep things civil.

Getting a Linux Foundation account

In order to participate in the development of the Hyperledger Fabric
project, you will need a Linux Foundation
account. You will need to use your LF ID to
access to all the Hyperledger community development tools, including
Gerrit [https://gerrit.hyperledger.org],
Jira [https://jira.hyperledger.org] and the
Wiki [https://wiki.hyperledger.org/start] (for editing, only).

Setting up your SSH key

For Gerrit, before you can submit any change set for review, you will
need to register your public SSH key. Login to
Gerrit [https://gerrit.hyperledger.org] with your
LFID, and click on your name in the upper
right-hand corner of your browser window and then click ‘Settings’. In
the left-hand margin, you should see a link for ‘SSH Public Keys’.
Copy-n-paste your public SSH
key [https://help.github.com/articles/generating-an-ssh-key/] into
the window and press ‘Add’.

Getting help

If you are looking for something to work on, or need some expert
assistance in debugging a problem or working out a fix to an issue, our
community [https://www.hyperledger.org/community] is always eager to
help. We hang out on
Chat [https://chat.hyperledger.org/channel/fabric/], IRC
(#hyperledger on freenode.net) and the mailing
lists [http://lists.hyperledger.org/]. Most of us don’t bite :grin:
and will be glad to help. The only silly question is the one you don’t
ask. Questions are in fact a great way to help improve the project as
they highlight where our documentation could be clearer.

Requirements and Use Cases

We have a Requirements
WG [https://wiki.hyperledger.org/groups/requirements/requirements-wg]
that is documenting use cases and from those use cases deriving
requirements. If you are interested in contributing to this effort,
please feel free to join the discussion in
chat [https://chat.hyperledger.org/channel/requirements/].

Reporting bugs

If you are a user and you find a bug, please submit an issue using
JIRA [https://jira.hyperledger.org]. Please try to provide
sufficient information for someone else to reproduce the issue. One of
the project’s maintainers should respond to your issue within 24 hours.
If not, please bump the issue with a comment and request that it be
reviewed. You can also post to the #fabric-maintainers channel in
chat [https://chat.hyperledger.org/channel/fabric-maintainers].

Fixing issues and working stories

Review the issues
list [https://github.com/hyperledger/fabric/issues] and find
something that interests you. You could also check the
“help-wanted” [https://jira.hyperledger.org/issues/?jql=project%20%3D%20Fabric%20AND%20labels%20%3D%20help-wanted]
list. It is wise to start with something relatively straight forward and
achievable, and that no one is already assigned. If no one is assigned,
then assign the issue to yourself. Please be considerate and rescind the
assignment if you cannot finish in a reasonable time, or add a comment
saying that you are still actively working the issue if you need a
little more time.

Working with a local clone and Gerrit

We are using
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric] to
manage code contributions. If you are unfamiliar, please review this
document before proceeding.

After you have familiarized yourself with Gerrit, and maybe played
around with the lf-sandbox
project [https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox,branches],
you should be ready to set up your local development
environment.

Next, try building the project in your local
development environment to ensure that everything is set up correctly.

Logging control describes how to tweak
the logging levels of various components within the Fabric. Finally,
every source file needs to include a license
header: modified to include a copyright
statement for the principle author(s).

What makes a good change request?

	One change at a time. Not five, not three, not ten. One and only one.
Why? Because it limits the blast area of the change. If we have a
regression, it is much easier to identify the culprit commit than if
we have some composite change that impacts more of the code.

	Include a link to the JIRA story for the change. Why? Because a) we
want to track our velocity to better judge what we think we can
deliver and when and b) because we can justify the change more
effectively. In many cases, there should be some discussion around a
proposed change and we want to link back to that from the change
itself.

	Include unit and integration tests (or changes to existing tests)
with every change. This does not mean just happy path testing,
either. It also means negative testing of any defensive code that it
correctly catches input errors. When you write code, you are
responsible to test it and provide the tests that demonstrate that
your change does what it claims. Why? Because without this we have no
clue whether our current code base actually works.

	Unit tests should have NO external dependencies. You should be able
to run unit tests in place with go test or equivalent for the
language. Any test that requires some external dependency (e.g. needs
to be scripted to run another component) needs appropriate mocking.
Anything else is not unit testing, it is integration testing by
definition. Why? Because many open source developers do Test Driven
Development. They place a watch on the directory that invokes the
tests automagically as the code is changed. This is far more
efficient than having to run a whole build between code changes.

	Minimize the lines of code per CR. Why? Maintainers have day jobs,
too. If you send a 1,000 or 2,000 LOC change, how long do you think
it takes to review all of that code? Keep your changes to < 200-300
LOC if possible. If you have a larger change, decompose it into
multiple independent changess. If you are adding a bunch of new
functions to fulfill the requirements of a new capability, add them
separately with their tests, and then write the code that uses them
to deliver the capability. Of course, there are always exceptions. If
you add a small change and then add 300 LOC of tests, you will be
forgiven;-) If you need to make a change that has broad impact or a
bunch of generated code (protobufs, etc.). Again, there can be
exceptions.

	Write a meaningful commit message. Include a meaningful 50 (or less)
character title, followed by a blank line, followed my a more
comprehensive description of the change. Be sure to include the JIRA
identifier corresponding to the change (e.g. [FAB-1234]). This can be
in the title but should also be in the body of the commit message.

e.g.

[FAB-1234] fix foobar() panic

Fix [FAB-1234] added a check to ensure that when foobar(foo string) is called,
that there is a non-empty string argument.

Finally, be responsive. Don’t let a change request fester with review
comments such that it gets to a point that it requires a rebase. It only
further delays getting it merged and adds more work for you - to
remediate the merge conflicts.

Coding guidelines

Be sure to check out the language-specific style
guides before making any changes. This
will ensure a smoother review.

Communication

We use RocketChat [https://chat.hyperledger.org/] for communication
and Google Hangouts™ for screen sharing between developers. Our
development planning and prioritization is done in
JIRA [https://jira.hyperledger.org], and we take longer running
discussions/decisions to the mailing
list [http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric].

Maintainers

The project’s maintainers are responsible for
reviewing and merging all patches submitted for review and they guide
the over-all technical direction of the project within the guidelines
established by the Hyperledger Project’s Technical Steering Committee
(TSC).

Becoming a maintainer

This project is managed under an open governance model as described in
our charter [https://www.hyperledger.org/about/charter]. Projects or
sub-projects will be lead by a set of maintainers. New sub-projects can
designate an initial set of maintainers that will be approved by the
top-level project’s existing maintainers when the project is first
approved. The project’s maintainers will, from time-to-time, consider
adding or removing a maintainer. An existing maintainer can submit a
change set to the MAINTAINERS.rst file. If there are
less than eight maintainers, a majority of the existing maintainers on
that project are required to merge the change set. If there are more
than eight existing maintainers, then if five or more of the maintainers
concur with the proposal, the change set is then merged and the
individual is added to (or alternatively, removed from) the maintainers
group. explicit resignation, some infraction of the code of
conduct [https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct]
or consistently demonstrating poor judgement.

Legal stuff

Note: Each source file must include a license header for the Apache
Software License 2.0. A template of that header can be found
here [https://github.com/hyperledger/fabric/blob/master/docs/dev-setup/headers.txt].

We have tried to make it as easy as possible to make contributions. This
applies to how we handle the legal aspects of contribution. We use the
same approach—the Developer’s Certificate of Origin 1.1
(DCO)—that the Linux® Kernel
community [http://elinux.org/Developer_Certificate_Of_Origin] uses
to manage code contributions.

We simply ask that when submitting a patch for review, the developer
must include a sign-off statement in the commit message.

Here is an example Signed-off-by line, which indicates that the
submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@hisdomain.com>

You can include this automatically when you commit a change to your
local git repository using git commit -s.

 Copyright 2017, rameshthoomu.

 Requesting a Linux Foundation Account

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Requesting a Linux Foundation Account

Contributions to the Fabric code base require a Linux Foundation
account. Follow the steps below to create a Linux Foundation account.

Creating a Linux Foundation ID

	Go to the Linux Foundation ID
website [https://identity.linuxfoundation.org/].

	Select the option I need to create a Linux Foundation ID.

	Fill out the form that appears:

	Open your email account and look for a message with the subject line:
“Validate your Linux Foundation ID email”.

	Open the received URL to validate your email address.

	Verify the browser displays the message
You have successfully validated your e-mail address.

	Access Gerrit by selecting Sign In:

	Use your Linux Foundation ID to Sign In:

Configuring Gerrit to Use SSH

Gerrit uses SSH to interact with your Git client. A SSH private key
needs to be generated on the development machine with a matching public
key on the Gerrit server.

If you already have a SSH key-pair, skip this section.

As an example, we provide the steps to generate the SSH key-pair on a
Linux environment. Follow the equivalent steps on your OS.

	Create a key-pair, enter:

ssh-keygen -t rsa -C "John Doe john.doe@example.com"

Note: This will ask you for a password to protect the private key as
it generates a unique key. Please keep this password private, and DO NOT
enter a blank password.

The generated key-pair is found in: ~/.ssh/id_rsa and
~/.ssh/id_rsa.pub.

	Add the private key in the id_rsa file in your key ring, e.g.:

ssh-add ~/.ssh/id_rsa

Once the key-pair has been generated, the public key must be added to
Gerrit.

Follow these steps to add your public key id_rsa.pub to the Gerrit
account:

	Go to
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric].

	Click on your account name in the upper right corner.

	From the pop-up menu, select Settings.

	On the left side menu, click on SSH Public Keys.

	Paste the contents of your public key ~/.ssh/id_rsa.pub and click
Add key.

Note: The id_rsa.pub file can be opened with any text editor.
Ensure that all the contents of the file are selected, copied and pasted
into the Add SSH key window in Gerrit.

Note: The ssh key generation instructions operate on the assumtion
that you are using the default naming. It is possible to generate
multiple ssh Keys and to name the resulting files differently. See the
ssh-keygen [https://en.wikipedia.org/wiki/Ssh-keygen] documentation
for details on how to do that. Once you have generated non-default keys,
you need to configure ssh to use the correct key for Gerrit. In that
case, you need to create a ~/.ssh/config file modeled after the one
below.

host gerrit.hyperledger.org
 HostName gerrit.hyperledger.org
 IdentityFile ~/.ssh/id_rsa_hyperledger_gerrit
 User <LFID>

where is your Linux Foundation ID and the value of IdentityFile is the
name of the public key file you generated.

Warning: Potential Security Risk! Do not copy your private key
~/.ssh/id_rsa Use only the public ~/.ssh/id_rsa.pub.

Checking Out the Source Code

	Ensure that SSH has been set up properly. See
Configuring Gerrit to Use SSH for details.

	Clone the repository with your Linux Foundation ID ():

git clone ssh://<LFID>@gerrit.hyperledger.org:29418/fabric fabric

You have successfully checked out a copy of the source code to your
local machine.

 Copyright 2017, rameshthoomu.

 Maintainers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Maintainers

	Name
	Gerrit
	GitHub
	Slack
	email

	Binh Nguyen
	binhn
	binhn
	binhn
	binhn@us.ibm.com

	Chris Ferris
	ChristopherFerris
	christo4ferris
	cbf
	chris.ferris@gmail.com

	Gabor Hosszu
	hgabre
	gabre
	hgabor
	gabor@digitalasset.com

	Gari Singh
	mastersingh24
	mastersingh24
	garisingh
	gari.r.singh@gmail.com

	Greg Haskins
	greg.haskins
	ghaskins
	ghaskins
	gregory.haskins@gmail.com

	Jason Yellick
	jyellick
	jyellick
	jyellick
	jyellick@us.ibm.com

	Jim Zhang
	jimthematrix
	jimthematrix
	jzhang
	jim_the_matrix@hotmail.com

	Jonathan Levi
	JonathanLevi
	JonathanLevi
	JonathanLevi
	jonathan@hacera.com

	Sheehan Anderson
	sheehan
	srderson
	sheehan
	sranderson@gmail.com

	Srinivasan Muralidharan
	muralisr
	muralisrini
	muralisr
	muralisr@us.ibm.com

	Tamas Blummer
	TamasBlummer
	tamasblummer
	tamas
	tamas@digitalasset.com

	Yacov Manevich
	yacovm
	yacovm
	yacovm
	yacovm@il.ibm.com

 Copyright 2017, rameshthoomu.

 Using Jira to understand current work items

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Using Jira to understand current work items

This document has been created to give further insight into the work in
progress towards the hyperledger/fabric v1 architecture based off the
community roadmap. The requirements for the roadmap are being tracked in
Jira [https://jira.hyperledger.org/].

It was determined to organize in sprints to better track and show a
prioritized order of items to be implemented based on feedback received.
We’ve done this via boards. To see these boards and the priorities click
on Boards -> Manage Boards:

[image: Jira boards]
Jira boards

Now on the left side of the screen click on All boards:

[image: Jira boards]
Jira boards

On this page you will see all the public (and restricted) boards that
have been created. If you want to see the items with current sprint
focus, click on the boards where the column labeled Visibility is
All Users and the column Board type is labeled Scrum. For
example the Board Name Consensus:

[image: Jira boards]
Jira boards

When you click on Consensus under Board name you will be directed to
a page that contains the following columns:

[image: Jira boards]
Jira boards

The meanings to these columns are as follows:

	Backlog – list of items slated for the current sprint (sprints are
defined in 2 week iterations), but are not currently in progress

	In progress – are items currently being worked by someone in the
community.

	In Review – waiting to be reviewed and merged in Gerritt

	Done – merged and complete in the sprint.

If you want to see all items in the backlog for a given feature set
click on the stacked rows on the left navigation of the screen:

[image: Jira boards]
Jira boards

This shows you items slated for the current sprint at the top, and all
items in the backlog at the bottom. Items are listed in priority order.

If there is an item you are interested in working on, want more
information or have questions, or if there is an item that you feel
needs to be in higher priority, please add comments directly to the Jira
item. All feedback and help is very much appreciated.

 Copyright 2017, rameshthoomu.

 Setting up the development environment

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Setting up the development environment

Overview

Through the v0.6 release, the development environment utilized Vagrant
running an Ubuntu image, which in turn launched Docker containers as a
means of ensuring a consistent experience for developers who might be
working with varying platforms, such as MacOSX, Windows, Linux, or
whatever. Advances in Docker have enabled native support on the most
popular development platforms: MacOSX and Windows. Hence, we have
reworked our build to take full advantage of these advances. While we
still maintain a Vagrant based approach that can be used for older
versions of MacOSX and Windows that Docker does not support, we strongly
encourage that the non-Vagrant development setup be used.

Note that while the Vagrant-based development setup could not be used in
a cloud context, the Docker-based build does support cloud platforms
such as AWS, Azure, Google and IBM to name a few. Please follow the
instructions for Ubuntu builds, below.

Prerequisites

	Git client [https://git-scm.com/downloads]

	Go [https://golang.org/] - 1.7 or later (for releases before
v1.0, 1.6 or later)

	For MacOSX,
Xcode [https://itunes.apple.com/us/app/xcode/id497799835?mt=12]
must be installed

	Docker [https://www.docker.com/products/overview] - 1.12 or later

	Pip [https://pip.pypa.io/en/stable/installing/]

	(MacOSX) you may need to install gnutar, as MacOSX comes with bsdtar
as the default, but the build uses some gnutar flags. You can use
Homebrew to install it as follows:

brew install gnu-tar --with-default-names

	(only if using Vagrant) - Vagrant [https://www.vagrantup.com/] -
1.7.4 or later

	(only if using Vagrant) -
VirtualBox [https://www.virtualbox.org/] - 5.0 or later

	BIOS Enabled Virtualization - Varies based on hardware

	Note: The BIOS Enabled Virtualization may be within the CPU or
Security settings of the BIOS

pip, behave and docker-compose

pip install --upgrade pip
pip install behave nose docker-compose
pip install -I flask==0.10.1 python-dateutil==2.2 pytz==2014.3 pyyaml==3.10 couchdb==1.0 flask-cors==2.0.1 requests==2.4.3 pyOpenSSL==16.2.0 sha3==0.2.1

Steps

Set your GOPATH

Make sure you have properly setup your Host’s GOPATH environment
variable [https://github.com/golang/go/wiki/GOPATH]. This allows for
both building within the Host and the VM.

Note to Windows users

If you are running Windows, before running any git clone commands,
run the following command.

git config --get core.autocrlf

If core.autocrlf is set to true, you must set it to false by
running

git config --global core.autocrlf false

If you continue with core.autocrlf set to true, the
vagrant up command will fail with the error:

./setup.sh: /bin/bash^M: bad interpreter: No such file or directory

Cloning the Fabric project

Since the Fabric project is a Go project, you’ll need to clone the
Fabric repo to your $GOPATH/src directory. If your $GOPATH has multiple
path components, then you will want to use the first one. There’s a
little bit of setup needed:

cd $GOPATH/src
mkdir -p github.com/hyperledger
cd github.com/hyperledger

Recall that we are using Gerrit for source control, which has its
own internal git repositories. Hence, we will need to clone from
Gerrit.
For brevity, the command is as follows:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418 LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: Of course, you would want to replace LFID with your own
Linux Foundation ID.

Boostrapping the VM using Vagrant

If you are planning on using the Vagrant developer environment, the
following steps apply. Again, we recommend against its use except for
developers that are limited to older versions of MacOSX and Windows that
are not supported by Docker for Mac or Windows.

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant up

Go get coffee... this will take a few minutes. Once complete, you should
be able to ssh into the Vagrant VM just created.

vagrant ssh

Once inside the VM, you can find the peer project under
$GOPATH/src/github.com/hyperledger/fabric. It is also mounted as
/hyperledger.

Building the fabric

Once you have all the dependencies installed, and have cloned the
repository, you can proceed to build and test the fabric.

Notes

NOTE: Any time you change any of the files in your local fabric
directory (under $GOPATH/src/github.com/hyperledger/fabric), the
update will be instantly available within the VM fabric directory.

NOTE: If you intend to run the development environment behind an
HTTP Proxy, you need to configure the guest so that the provisioning
process may complete. You can achieve this via the vagrant-proxyconf
plugin. Install with vagrant plugin install vagrant-proxyconf and
then set the VAGRANT_HTTP_PROXY and VAGRANT_HTTPS_PROXY environment
variables before you execute vagrant up. More details are
available here: https://github.com/tmatilai/vagrant-proxyconf/

NOTE: The first time you run this command it may take quite a while
to complete (it could take 30 minutes or more depending on your
environment) and at times it may look like it’s not doing anything. As
long you don’t get any error messages just leave it alone, it’s all
good, it’s just cranking.

NOTE to Windows 10 Users: There is a known problem with vagrant on
Windows 10 (see
mitchellh/vagrant#6754 [https://github.com/mitchellh/vagrant/issues/6754]).
If the vagrant up command fails it may be because you do not have
the Microsoft Visual C++ Redistributable package installed. You can
download the missing package at the following address:
http://www.microsoft.com/en-us/download/details.aspx?id=8328

 Copyright 2017, rameshthoomu.

 Building the fabric

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Building the fabric

The following instructions assume that you have already set up your
development environment.

To build the Fabric:

cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

Running the unit tests

Use the following sequence to run all unit tests

cd $GOPATH/src/github.com/hyperledger/fabric
make unit-test

To run a specific test use the -run RE flag where RE is a regular
expression that matches the test case name. To run tests with verbose
output use the -v flag. For example, to run the TestGetFoo test
case, change to the directory containing the foo_test.go and
call/excecute

go test -v -run=TestGetFoo

Running Node.js Unit Tests

You must also run the Node.js unit tests to insure that the Node.js
client SDK is not broken by your changes. To run the Node.js unit tests,
follow the instructions
here [https://github.com/hyperledger/fabric-sdk-node/README.md].

Running Behave BDD Tests

Note: currently, the behave tests must be run from within in the
Vagrant environment. See the devenv setup instructions if you have not
already set up your Vagrant
environment.

Behave [http://pythonhosted.org/behave/] tests will setup networks
of peers with different security and consensus configurations and verify
that transactions run properly. To run these tests

cd $GOPATH/src/github.com/hyperledger/fabric
make behave

Some of the Behave tests run inside Docker containers. If a test fails
and you want to have the logs from the Docker containers, run the tests
with this option:

cd $GOPATH/src/github.com/hyperledger/fabric/bddtests
behave -D logs=Y

Building outside of Vagrant

It is possible to build the project and run peers outside of Vagrant.
Generally speaking, one has to ‘translate’ the vagrant setup
file [https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh]
to the platform of your choice.

Building on Z

To make building on Z easier and faster, this
script [https://github.com/hyperledger/fabric/tree/master/devenv/setupRHELonZ.sh]
is provided (which is similar to the setup
file [https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh]
provided for vagrant). This script has been tested only on RHEL 7.2 and
has some assumptions one might want to re-visit (firewall settings,
development as root user, etc.). It is however sufficient for
development in a personally-assigned VM instance.

To get started, from a freshly installed OS:

sudo su
yum install git
mkdir -p $HOME/git/src/github.com/hyperledger
cd $HOME/git/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
source fabric/devenv/setupRHELonZ.sh

From this point, you can proceed as described above for the Vagrant
development environment.

cd $GOPATH/src/github.com/hyperledger/fabric
make peer unit-test behave

Building on Power Platform

Development and build on Power (ppc64le) systems is done outside of
vagrant as outlined here. For ease
of setting up the dev environment on Ubuntu, invoke this
script [https://github.com/hyperledger/fabric/tree/master/devenv/setupUbuntuOnPPC64le.sh]
as root. This script has been validated on Ubuntu 16.04 and assumes
certain things (like, development system has OS repositories in place,
firewall setting etc) and in general can be improvised further.

To get started on Power server installed with Ubuntu, first ensure you
have properly setup your Host’s GOPATH environment
variable [https://github.com/golang/go/wiki/GOPATH]. Then, execute
the following commands to build the fabric code:

mkdir -p $GOPATH/src/github.com/hyperledger
cd $GOPATH/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
sudo ./fabric/devenv/setupUbuntuOnPPC64le.sh
cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

Configuration

Configuration utilizes the viper [https://github.com/spf13/viper]
and cobra [https://github.com/spf13/cobra] libraries.

There is a core.yaml file that contains the configuration for the
peer process. Many of the configuration settings can be overridden on
the command line by setting ENV variables that match the configuration
setting, but by prefixing with ‘CORE_’. For example, logging level
manipulation through the environment is shown below:

CORE_PEER_LOGGING_LEVEL=CRITICAL peer

Logging

Logging utilizes the go-logging [https://github.com/op/go-logging]
library.

The available log levels in order of increasing verbosity are: CRITICAL
| ERROR | WARNING | NOTICE | INFO | DEBUG

See specific logging
control [https://github.com/hyperledger/fabric/blob/master/docs/Setup/logging-control.md]
instructions when running the peer process.

 Copyright 2017, rameshthoomu.

 Working with Gerrit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Working with Gerrit

Follow these instructions to collaborate on the Hyperledger Fabric
Project through the Gerrit review system.

Please be sure that you are subscribed to the mailing
list [http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric]
and of course, you can reach out on
chat [https://chat.hyperledger.org/] if you need help.

Gerrit assigns the following roles to users:

	Submitters: May submit changes for consideration, review other
code changes, and make recommendations for acceptance or rejection by
voting +1 or -1, respectively.

	Maintainers: May approve or reject changes based upon feedback
from reviewers voting +2 or -2, respectively.

	Builders: (e.g. Jenkins) May use the build automation
infrastructure to verify the change.

Maintainers should be familiar with the review
process. However, anyone is welcome to (and
encouraged!) review changes, and hence may find that document of value.

Git-review

There’s a very useful tool for working with Gerrit called
git-review [https://www.mediawiki.org/wiki/Gerrit/git-review]. This
command-line tool can automate most of the ensuing sections for you. Of
course, reading the information below is also highly recommended so that
you understand what’s going on behind the scenes.

Sandbox project

We have created a sandbox
project [https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox]
to allow developers to familiarize themselves with Gerrit and our
workflows. Please do feel free to use this project to experiment with
the commands and tools, below.

Getting deeper into Gerrit

A comprehensive walk-through of Gerrit is beyond the scope of this
document. There are plenty of resources available on the Internet. A
good summary can be found
here [https://www.mediawiki.org/wiki/Gerrit/Tutorial]. We have also
provided a set of Best Practices that you may
find helpful.

Working with a local clone of the repository

To work on something, whether a new feature or a bugfix:

	Open the Gerrit Projects
page [https://gerrit.hyperledger.org/r/#/admin/projects/]

	Select the project you wish to work on.

	Open a terminal window and clone the project locally using the
Clone with git hook URL. Be sure that ssh is also selected,
as this will make authentication much simpler:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418 LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: if you are cloning the fabric project repository, you will
want to clone it to the $GOPATH/src/github.com/hyperledger directory
so that it will build, and so that you can use it with the Vagrant
development environment.

	Create a descriptively-named branch off of your cloned repository

cd fabric
git checkout -b issue-nnnn

	Commit your code. For an in-depth discussion of creating an effective
commit, please read this document.

git commit -s -a

Then input precise and readable commit msg and submit.

	Any code changes that affect documentation should be accompanied by
corresponding changes (or additions) to the documentation and tests.
This will ensure that if the merged PR is reversed, all traces of the
change will be reversed as well.

Submitting a Change

Currently, Gerrit is the only method to submit a change for review.
Please review the `guidelines <changes.md>`__ for making and
submitting a change.

Use git review

Note: if you prefer, you can use the git-review
tool instead of the following. e.g.

Add the following section to .git/config, and replace <USERNAME>
with your gerrit id.

[remote "gerrit"]
 url = ssh://<USERNAME>@gerrit.hyperledger.org:29418/fabric.git
 fetch = +refs/heads/*:refs/remotes/gerrit/*

Then submit your change with git review.

$ cd <your code dir>
$ git review

When you update your patch, you can commit with git commit --amend,
and then repeat the git review command.

Not Use git review

Directions for building the source code can be found
here.

When a change is ready for submission, Gerrit requires that the change
be pushed to a special branch. The name of this special branch contains
a reference to the final branch where the code should reside, once
accepted.

For the Hyperledger Fabric Project, the special branch is called
refs/for/master.

To push the current local development branch to the gerrit server, open
a terminal window at the root of your cloned repository:

cd <your clone dir>
git push origin HEAD:refs/for/master

If the command executes correctly, the output should look similar to
this:

Counting objects: 3, done.
Writing objects: 100% (3/3), 306 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: https://gerrit.hyperledger.org/r/6 Test commit
remote:
To ssh://LFID@gerrit.hyperledger.org:29418/fabric
* [new branch] HEAD -> refs/for/master

The gerrit server generates a link where the change can be tracked.

Adding reviewers

Optionally, you can add reviewers to your change.

To specify a list of reviewers via the command line, add
%r=reviewer@project.org to your push command. For example:

git push origin HEAD:refs/for/master%r=rev1@email.com,r=rev2@notemail.com

Alternatively, you can auto-configure GIT to add a set of reviewers if
your commits will have the same reviewers all at the time.

To add a list of default reviewers, open the :file:.git/config file
in the project directory and add the following line in the
[branch “master”] section:

[branch "master"] #.... push =
HEAD:refs/for/master%r=rev1@email.com,r=rev2@notemail.com`

Make sure to use actual email addresses instead of the
@email.com and @notemail.com addressses. Don’t forget to replace
origin with your git remote name.

Reviewing Using Gerrit

	Add: This button allows the change submitter to manually add
names of people who should review a change; start typing a name and
the system will auto-complete based on the list of people registered
and with access to the system. They will be notified by email that
you are requesting their input.

	Abandon: This button is available to the submitter only; it
allows a committer to abandon a change and remove it from the merge
queue.

	Change-ID: This ID is generated by Gerrit (or system). It becomes
useful when the review process determines that your commit(s) have to
be amended. You may submit a new version; and if the same Change-ID
header (and value) are present, Gerrit will remember it and present
it as another version of the same change.

	Status: Currently, the example change is in review status, as
indicated by “Needs Verified” in the upper-left corner. The list of
Reviewers will all emit their opinion, voting +1 if they agree to the
merge, -1 if they disagree. Gerrit users with a Maintainer role can
agree to the merge or refuse it by voting +2 or -2 respectively.

Notifications are sent to the email address in your commit message’s
Signed-off-by line. Visit your Gerrit
dashboard [https://gerrit.hyperledger.org/r/#/dashboard/self], to
check the progress of your requests.

The history tab in Gerrit will show you the in-line comments and the
author of the review.

Viewing Pending Changes

Find all pending changes by clicking on the All --> Changes link in
the upper-left corner, or open this
link [https://gerrit.hyperledger.org/r/#/q/project:fabric].

If you collaborate in multiple projects, you may wish to limit searching
to the specific branch through the search bar in the upper-right side.

Add the filter project:fabric to limit the visible changes to only
those from the Hyperledger Fabric Project.

List all current changes you submitted, or list just those changes in
need of your input by clicking on My --> Changes or open this
link [https://gerrit.hyperledger.org/r/#/dashboard/self]

 Copyright 2017, rameshthoomu.

 Submitting a Change to Gerrit

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Submitting a Change to Gerrit

Carefully review the following before submitting a change. These
guidelines apply to developers that are new to open source, as well as
to experienced open source developers.

Change Requirements

This section contains guidelines for submitting code changes for review.
For more information on how to submit a change using Gerrit, please see
Gerrit.

Changes are submitted as Git commits. Each commit must contain:

	a short and descriptive subject line that is 72 characters or fewer,
followed by a blank line.

	a change description with your logic or reasoning for the changes,
followed by a blank line

	a Signed-off-by line, followed by a colon (Signed-off-by:)

	a Change-Id identifier line, followed by a colon (Change-Id:). Gerrit
won’t accept patches without this identifier.

A commit with the above details is considered well-formed.

All changes and topics sent to Gerrit must be well-formed.
Informationally, commit messages must include:

	what the change does,

	why you chose that approach, and

	how you know it works – for example, which tests you ran.

Commits must build cleanly when applied in
top of each other, thus avoiding breaking bisectability. Each commit
must address a single identifiable issue and must be logically
self-contained.

For example: One commit fixes whitespace issues, another renames a
function and a third one changes the code’s functionality. An example
commit file is illustrated below in detail:

A short description of your change with no period at the end

You can add more details here in several paragraphs, but please keep each line
width less than 80 characters. A bug fix should include the issue number.

Fix Issue # 7050.

Change-Id: IF7b6ac513b2eca5f2bab9728ebd8b7e504d3cebe1
Signed-off-by: Your Name <commit-sender@email.address>

Each commit must contain the following line at the bottom of the commit
message:

Signed-off-by: Your Name <your@email.address>

The name in the Signed-off-by line and your email must match the change
authorship information. Make sure your :file:.git/config is set up
correctly. Always submit the full set of changes via Gerrit.

When a change is included in the set to enable other changes, but it
will not be part of the final set, please let the reviewers know this.

 Copyright 2017, rameshthoomu.

 Reviewing a Change

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Reviewing a Change

	Click on a link for incoming or outgoing review.

	The details of the change and its current status are loaded:

	Status: Displays the current status of the change. In the example
below, the status reads: Needs Verified.

	Reply: Click on this button after reviewing to add a final review
message and a score, -1, 0 or +1.

	Patch Sets: If multiple revisions of a patch exist, this button
enables navigation among revisions to see the changes. By default,
the most recent revision is presented.

	Download: This button brings up another window with multiple
options to download or checkout the current changeset. The button on
the right copies the line to your clipboard. You can easily paste it
into your git interface to work with the patch as you prefer.

Underneath the commit information, the files that have been changed by
this patch are displayed.

	Click on a filename to review it. Select the code base to
differentiate against. The default is Base and it will generally
be what is needed.

	The review page presents the changes made to the file. At the top of
the review, the presentation shows some general navigation options.
Navigate through the patch set using the arrows on the top right
corner. It is possible to go to the previous or next file in the set
or to return to the main change screen. Click on the yellow sticky
pad to add comments to the whole file.

The focus of the page is on the comparison window. The changes made are
presented in green on the right versus the base version on the left.
Double click to highlight the text within the actual change to provide
feedback on a specific section of the code. Press c once the code is
highlighted to add comments to that section.

	After adding the comment, it is saved as a Draft.

	Once you have reviewed all files and provided feedback, click the
green up arrow at the top right to return to the main change page.
Click the Reply button, write some final comments, and submit
your score for the patch set. Click Post to submit the review of
each reviewed file, as well as your final comment and score. Gerrit
sends an email to the change-submitter and all listed reviewers.
Finally, it logs the review for future reference. All individual
comments are saved as Draft until the Post button is clicked.

 Copyright 2017, rameshthoomu.

 Gerrit Recommended Practices

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Gerrit Recommended Practices

This document presents some best practices to help you use Gerrit more
effectively. The intent is to show how content can be submitted easily.
Use the recommended practices to reduce your troubleshooting time and
improve participation in the community.

Browsing the Git Tree

Visit
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric]
then select Projects --> List --> SELECT-PROJECT --> Branches.
Select the branch that interests you, click on gitweb located on the
right-hand side. Now, gitweb loads your selection on the Git web
interface and redirects appropriately.

Watching a Project

Visit
Gerrit [https://gerrit.hyperledger.org/r/#/admin/projects/fabric],
then select Settings, located on the top right corner. Select
Watched Projects and then add any projects that interest you.

Commit Messages

Gerrit follows the Git commit message format. Ensure the headers are at
the bottom and don’t contain blank lines between one another. The
following example shows the format and content expected in a commit
message:

Brief (no more than 50 chars) one line description.

Elaborate summary of the changes made referencing why (motivation), what
was changed and how it was tested. Note also any changes to
documentation made to remain consistent with the code changes, wrapping
text at 72 chars/line.

Jira: FAB-100

Change-Id: LONGHEXHASH

Signed-off-by: Your Name your.email@example.org

AnotherExampleHeader: An Example of another Value

The Gerrit server provides a precommit hook to autogenerate the
Change-Id which is one time use.

Recommended reading: How to Write a Git Commit
Message [http://chris.beams.io/posts/git-commit/]

Avoid Pushing Untested Work to a Gerrit Server

To avoid pushing untested work to Gerrit.

Check your work at least three times before pushing your change to
Gerrit. Be mindful of what information you are publishing.

Keeping Track of Changes

	Set Gerrit to send you emails:

	Gerrit will add you to the email distribution list for a change if a
developer adds you as a reviewer, or if you comment on a specific
Patch Set.

	Opening a change in Gerrit’s review interface is a quick way to
follow that change.

	Watch projects in the Gerrit projects section at Gerrit, select
at least New Changes, New Patch Sets, All Comments and Submitted
Changes.

Always track the projects you are working on; also see the
feedback/comments mailing list to learn and help others ramp up.

Topic branches

Topic branches are temporary branches that you push to commit a set of
logically-grouped dependent commits:

To push changes from REMOTE/master tree to Gerrit for being reviewed
as a topic in TopicName use the following command as an example:

$ git push REMOTE HEAD:refs/for/master/TopicName

The topic will show up in the review :abbr:UI and in the
Open Changes List. Topic branches will disappear from the master
tree when its content is merged.

Creating a Cover Letter for a Topic

You may decide whether or not you’d like the cover letter to appear in
the history.

	To make a cover letter that appears in the history, use this command:

git commit --allow-empty

Edit the commit message, this message then becomes the cover letter. The
command used doesn’t change any files in the source tree.

	To make a cover letter that doesn’t appear in the history follow
these steps:

	
Put the empty commit at the end of your commits list so it can be
ignored

without having to rebase.

	Now add your commits

git commit ...
git commit ...
git commit ...

	Finally, push the commits to a topic branch. The following command is
an example:

git push REMOTE HEAD:refs/for/master/TopicName

If you already have commits but you want to set a cover letter, create
an empty commit for the cover letter and move the commit so it becomes
the last commit on the list. Use the following command as an example:

git rebase -i HEAD~#Commits

Be careful to uncomment the commit before moving it. #Commits is the
sum of the commits plus your new cover letter.

Finding Available Topics

$ ssh -p 29418 gerrit.hyperledger.org gerrit query \ status:open project:fabric branch:master \
| grep topic: | sort -u

	`gerrit.hyperledger.org <>`__ Is the current URL where the project is
hosted.

	status Indicates the topic’s current status: open , merged,
abandoned, draft, merge conflict.

	project Refers to the current name of the project, in this case
fabric.

	branch The topic is searched at this branch.

	topic The name of an specific topic, leave it blank to include them
all.

	sort Sorts the found topics, in this case by update (-u).

Downloading or Checking Out a Change

In the review UI, on the top right corner, the Download link
provides a list of commands and hyperlinks to checkout or download diffs
or files.

We recommend the use of the git review plugin. The steps to install
git review are beyond the scope of this document. Refer to the git
review
documentation [https://wiki.openstack.org/wiki/Documentation/HowTo/FirstTimers]
for the installation process.

To check out a specific change using Git, the following command usually
works:

git review -d CHANGEID

If you don’t have Git-review installed, the following commands will do
the same thing:

git fetch REMOTE refs/changes/NN/CHANGEIDNN/VERSION \ && git checkout FETCH_HEAD

For example, for the 4th version of change 2464, NN is the first two
digits (24):

git fetch REMOTE refs/changes/24/2464/4 \ && git checkout FETCH_HEAD

Using Draft Branches

You can use draft branches to add specific reviewers before you
publishing your change. The Draft Branches are pushed to
refs/drafts/master/TopicName

The next command ensures a local branch is created:

git checkout -b BRANCHNAME

The next command pushes your change to the drafts branch under
TopicName:

git push REMOTE HEAD:refs/drafts/master/TopicName

Using Sandbox Branches

You can create your own branches to develop features. The branches are
pushed to the refs/sandbox/USERNAME/BRANCHNAME location.

These commands ensure the branch is created in Gerrit’s server.

git checkout -b sandbox/USERNAME/BRANCHNAME
git push --set-upstream REMOTE HEAD:refs/heads/sandbox/USERNAME/BRANCHNAME

Usually, the process to create content is:

	develop the code,

	break the information into small commits,

	submit changes,

	apply feedback,

	rebase.

The next command pushes forcibly without review:

git push REMOTE sandbox/USERNAME/BRANCHNAME

You can also push forcibly with review:

git push REMOTE HEAD:ref/for/sandbox/USERNAME/BRANCHNAME

Updating the Version of a Change

During the review process, you might be asked to update your change. It
is possible to submit multiple versions of the same change. Each version
of the change is called a patch set.

Always maintain the Change-Id that was assigned. For example, there
is a list of commits, c0...c7, which were submitted as a topic
branch:

git log REMOTE/master..master

c0
...
c7

git push REMOTE HEAD:refs/for/master/SOMETOPIC

After you get reviewers’ feedback, there are changes in c3 and
c4 that must be fixed. If the fix requires rebasing, rebasing
changes the commit Ids, see the
rebasing [http://git-scm.com/book/en/v2/Git-Branching-Rebasing]
section for more information. However, you must keep the same Change-Id
and push the changes again:

git push REMOTE HEAD:refs/for/master/SOMETOPIC

This new push creates a patches revision, your local history is then
cleared. However you can still access the history of your changes in
Gerrit on the review UI section, for each change.

It is also permitted to add more commits when pushing new versions.

Rebasing

Rebasing is usually the last step before pushing changes to Gerrit; this
allows you to make the necessary Change-Ids. The Change-Ids must be
kept the same.

	squash: mixes two or more commits into a single one.

	reword: changes the commit message.

	edit: changes the commit content.

	reorder: allows you to interchange the order of the commits.

	rebase: stacks the commits on top of the master.

Rebasing During a Pull

Before pushing a rebase to your master, ensure that the history has a
consecutive order.

For example, your REMOTE/master has the list of commits from a0
to a4; Then, your changes c0...c7 are on top of a4; thus:

git log --oneline REMOTE/master..master

a0
a1
a2
a3
a4
c0
c1
...
c7

If REMOTE/master receives commits a5, a6 and a7. Pull
with a rebase as follows:

git pull --rebase REMOTE master

This pulls a5-a7 and re-apply c0-c7 on top of them:

$ git log --oneline REMOTE/master..master
a0
...
a7
c0
c1
...
c7

Getting Better Logs from Git

Use these commands to change the configuration of Git in order to
produce better logs:

git config log.abbrevCommit true

The command above sets the log to abbreviate the commits’ hash.

git config log.abbrev 5

The command above sets the abbreviation length to the last 5 characters
of the hash.

git config format.pretty oneline

The command above avoids the insertion of an unnecessary line before the
Author line.

To make these configuration changes specifically for the current Git
user, you must add the path option --global to config as
follows:

 Copyright 2017, rameshthoomu.

 Testing

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Testing

[WIP] ...coming soon

This topic is intended to contain recommended test scenarios, as well as
current performance numbers against a variety of configurations.

 Copyright 2017, rameshthoomu.

 Coding guidelines

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Coding guidelines

Coding Golang

We code in Go™ and strictly follow the best
practices [http://golang.org/doc/effective_go.html] and will not
accept any deviations. You must run the following tools against your Go
code and fix all errors and warnings: -
golint [https://github.com/golang/lint] - go
vet [https://golang.org/cmd/vet/] -
goimports [https://godoc.org/golang.org/x/tools/cmd/goimports]

Generating gRPC code

If you modify any .proto files, run the following command to
generate/update the respective .pb.go files.

cd $GOPATH/src/github.com/hyperledger/fabric
make protos

Adding or updating Go packages

The Hyperledger Fabric Project uses Go 1.6 vendoring for package
management. This means that all required packages reside in the
vendor folder within the fabric project. Go will use packages in
this folder instead of the GOPATH when the go install or
go build commands are executed. To manage the packages in the
vendor folder, we use
Govendor [https://github.com/kardianos/govendor], which is installed
in the Vagrant environment. The following commands can be used for
package management:

Add external packages.
govendor add +external

Add a specific package.
govendor add github.com/kardianos/osext

Update vendor packages.
govendor update +vendor

Revert back to normal GOPATH packages.
govendor remove +vendor

List package.
govendor list

 Copyright 2017, rameshthoomu.

 Still Have Questions?

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Still Have Questions?

We try to maintain a comprehensive set of documentation for various
audiences. However, we realize that often there are questions that
remain unanswered. For any technical questions relating to the
Hyperledger Fabric project not answered in this documentation, please
use
StackOverflow [http://stackoverflow.com/questions/tagged/hyperledger].
If you need help finding things, please don’t hesitate to send a note to
the mailing
list [http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric],
or ask on RocketChat (an
alternative to Slack).

 Copyright 2017, rameshthoomu.

 Quality

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Quality

[WIP] ...coming soon

 Copyright 2017, rameshthoomu.

 Incubation Notice

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	fabricdocs 1.0 documentation

Incubation Notice

This project is a Hyperledger project in Incubation. It was proposed
to the community and documented here [https://goo.gl/RYQZ5N].
Information on what Incubation entails can be found in the
Hyperledger Project Lifecycle document [https://goo.gl/4edNRc].

 Copyright 2017, rameshthoomu.

 License

 Navigation

 	
 index

 	
 previous |

 	fabricdocs 1.0 documentation

License

The Hyperledger Project uses the Apache License Version
2.0 software license.

 Copyright 2017, rameshthoomu.

 Index

 Navigation

 	
 index

 	fabricdocs 1.0 documentation

Index

 Copyright 2017, rameshthoomu.

_images/sec-registration-high-level.png
Offline process

! 1. register(i, proof ofid)
—Lreaster proofolid)

-~
USEr 5 wsermame, password, TLS-CACert

Online process

i

User
3. envollusername, passvord)

4. registerCient(regRequest)
— e

5. Ecen, ECACer,
TLScert, TLSCA-Cert

6. store(Ecer, Ecertprvate ey, ECA-Cert
TiScert, TLSCertprivate ey, TLSCA.Cert)

_images/top-multi-peer.png
Application

* Loginand * Authenticate client
transact * Map client to secure
context .
+ Call RestAPIs

| Non-validating

Peer \
Validating

Maintain secure

context among peers Peer
Request services

from Member « Do consensus.
Services and * Run transactions
Validating Peer on « Maintain ledger
behalf of client - Emitevents
Deliver events to

applications

Handle AP requests

API/CLI.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Command-line Interface (CLI)

To view the currently available CLI commands, execute the following:

cd /opt/gopath/src/github.com/hyperledger/fabric
build/bin/peer

You will see output similar to the example below (NOTE: rootcommand
below is hardcoded in
main.go [https://github.com/hyperledger/fabric/blob/master/main.go].
Currently, the build will create a peer executable file).

Usage:
 peer [flags]
 peer [command]

Available Commands:
 version Print fabric peer version.
 node node specific commands.
 network network specific commands.
 chaincode chaincode specific commands.
 help Help about any command

Flags:
 -h, --help[=false]: help for peer
 --logging-level="": Default logging level and overrides, see core.yaml for full syntax
 --test.coverprofile="coverage.cov": Done
 -v, --version[=false]: Show current version number of fabric peer server

Use "peer [command] --help" for more information about a command.

The peer command supports several subcommands and flags, as shown
above. To facilitate its use in scripted applications, the peer
command always produces a non-zero return code in the event of command
failure. Upon success, many of the subcommands produce a result on
stdout as shown in the table below:

Command | stdout result in the event of success — | —
version | String form of peer.version defined in
core.yaml [https://github.com/hyperledger/fabric/blob/master/peer/core.yaml]
node start | N/A node status | String form of
StatusCode [https://github.com/hyperledger/fabric/blob/master/protos/server_admin.proto#L36]
node stop | String form of
StatusCode [https://github.com/hyperledger/fabric/blob/master/protos/server_admin.proto#L36]
network login | N/A network list | The list of network
connections to the peer node. chaincode deploy | The chaincode
container name (hash) required for subsequent chaincode invoke and
chaincode query commands chaincode invoke | The transaction ID
(UUID) chaincode query | By default, the query result is formatted
as a printable string. Command line options support writing this value
as raw bytes (-r, –raw), or formatted as the hexadecimal representation
of the raw bytes (-x, –hex). If the query response is empty then
nothing is output.

Deploy a Chaincode

Deploy creates the docker image for the chaincode and subsequently
deploys the package to the validating peer. An example is below.

peer chaincode deploy -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Function":"init", "Args": ["a","100", "b", "200"]}'

Or:

peer chaincode deploy -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Args": ["init", "a","100", "b", "200"]}'

The response to the chaincode deploy command will contain the chaincode
identifier (hash) which will be required on subsequent
chaincode invoke and chaincode query commands in order to
uniquely identify the deployed chaincode.

Note: If your GOPATH environment variable contains more than one
element, the chaincode must be found in the first one or deployment will
fail.

 © Copyright 2017, rameshthoomu.

API/ChaincodeAPI.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Chaincode APIs

When the Init, Invoke or Query function of a chaincode is
called, the fabric passes the stub *shim.ChaincodeStub parameter.
This stub can be used to call APIs to access to the ledger services,
transaction context, or to invoke other chaincodes.

The current APIs are defined in the shim
package [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim],
generated by godoc. However, it includes functions from
chaincode.pb.go [https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/chaincode.pb.go]
such as func (*Column) XXX_OneofFuncs that are not intended as
public API. The best is to look at the function definitions in
chaincode.go [https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/chaincode.go]
and chaincode
samples [https://github.com/hyperledger/fabric/tree/master/examples/chaincode]
for usage.

 © Copyright 2017, rameshthoomu.

_images/top-single-peer.png

_images/sec-request-tcerts-deployment.png
Requesting Transaction Certificates (TCerts) — Deployment time

Client Membership services
Deploy.
Transacton
3 i 7cer o= i (| & reqvesiTCertsBatchieouny _ || Transaction
Authority Local
3 - TcR) Storage
s Toerts batch, TCA-Cer
7. deploy(tx) KeyDF_Key

1 ?;’ﬁ"é‘l Tz er ls sore oot e nd KeyDF_Key

Local
Storage

API/AttributesUsage.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Attributes usage

Overview

The Attributes feature allows chaincode to make use of extended data in
a transaction certificate. These attributes are certified by the
Attributes Certificate Authority (ACA) so the chaincode can trust in the
authenticity of the attributes’ values.

To view complete documentation about attributes design please read
‘Attributes support’.

Use case: Authorizable counter

A common use case for the Attributes feature is Attributes Based Access
Control (ABAC) which allows specific permissions to be granted to a
chaincode invoker based on attribute values carried in the invoker’s
certificate.

‘Authorizable
counter’
is a simple example of ABAC, in this case only invokers whose “position”
attribute has the value ‘Software Engineer’ will be able to increment
the counter. On the other hand any invoker will be able to read the
counter value.

In order to implement this example we used
‘VerifyAttribyte’ [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim#ChaincodeStub.VerifyAttribute]
function to check the attribute value from the chaincode code.

isOk, _ := stub.VerifyAttribute("position", []byte("Software Engineer")) // Here the ABAC API is called to verify the attribute, just if the value is verified the counter will be incremented.
if isOk {
 // Increment counter code
}

The same behavior can be achieved by making use of ‘Attribute
support’ [https://godoc.org/github.com/hyperledger/fabric/core/chaincode/shim/crypto/attr]
API, in this case an attribute handler must be instantiated.

attributesHandler, _ := attr.NewAttributesHandlerImpl(stub)
isOk, _ := attributesHandler.VerifyAttribute("position", []byte("Software Engineer"))
if isOk {
 // Increment counter code
}

If attributes are accessed more than once, using attributeHandler is
more efficient since the handler makes use of a cache to store values
and keys.

In order to get the attribute value, in place of just verifying it, the
following code can be used:

attributesHandler, _ := attr.NewAttributesHandlerImpl(stub)
value, _ := attributesHandler.GetValue("position")

Enabling attributes

To make use of this feature the following property has to be set in the
membersrvc.yaml file:

		aca.enabled = true

Another way is using environment variables:

MEMBERSRVC_CA_ACA_ENABLED=true ./membersrvc

Enabling attributes encryption*

In order to make use of attributes encryption the following property has
to be set in the membersrvc.yaml file:

		tca.attribute-encryption.enabled = true

Or using environment variables:

MEMBERSRVC_CA_ACA_ENABLED=true MEMBERSRVC_CA_TCA_ATTRIBUTE-ENCRYPTION_ENABLED=true ./membersrvc

Deploy API making use of attributes

CLI

$./peer chaincode deploy --help
Deploy the specified chaincode to the network.

Usage:
 peer chaincode deploy [flags]

Global Flags:
 -a, --attributes="[]": User attributes for the chaincode in JSON format
 -c, --ctor="{}": Constructor message for the chaincode in JSON format
 -l, --lang="golang": Language the chaincode is written in
 --logging-level="": Default logging level and overrides, see core.yaml for full syntax
 -n, --name="": Name of the chaincode returned by the deploy transaction
 -p, --path="": Path to chaincode
 --test.coverprofile="coverage.cov": Done
 -t, --tid="": Name of a custom ID generation algorithm (hashing and decoding) e.g. sha256base64
 -u, --username="": Username for chaincode operations when security is enabled
 -v, --version[=false]: Display current version of fabric peer server

To deploy a chaincode with attributes “company” and “position” it should
be written in the following way:

./peer chaincode deploy -u userName -n mycc -c '{"Function":"init", "Args": []}' -a '["position", "company"]'

Or:

./peer chaincode deploy -u userName -n mycc -c '{"Args": ["init"]}' -a '["position", "company"]'

REST

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name": "mycc"
 },
 "input": {
 "function":"init",
 "args":[]
 }
 "attributes": ["position", "company"]
 },
 "id": 1
}

Invoke API making use of attributes

CLI

$./peer chaincode invoke --help
Invoke the specified chaincode.

Usage:
 peer chaincode invoke [flags]

Global Flags:
 -a, --attributes="[]": User attributes for the chaincode in JSON format
 -c, --ctor="{}": Constructor message for the chaincode in JSON format
 -l, --lang="golang": Language the chaincode is written in
 --logging-level="": Default logging level and overrides, see core.yaml for full syntax
 -n, --name="": Name of the chaincode returned by the deploy transaction
 -p, --path="": Path to chaincode
 --test.coverprofile="coverage.cov": Done
 -t, --tid="": Name of a custom ID generation algorithm (hashing and decoding) e.g. sha256base64
 -u, --username="": Username for chaincode operations when security is enabled
 -v, --version[=false]: Display current version of fabric peer server

To invoke “autorizable counter” with attributes “company” and “position”
it should be written as follows:

./peer chaincode invoke -u userName -n mycc -c '{"Function":"increment", "Args": []}' -a '["position", "company"]'

Or:

./peer chaincode invoke -u userName -n mycc -c '{"Args": ["increment"]}' -a '["position", "company"]'

REST

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name": "mycc"
 },
 "ctorMsg": {
 "function":"increment",
 "args":[]
 }
 "attributes": ["position", "company"]
 },
 "id": 1
}

Query API making use of attributes

CLI

$./peer chaincode query --help
Query using the specified chaincode.

Usage:
 peer chaincode query [flags]

Flags:
 -x, --hex[=false]: If true, output the query value byte array in hexadecimal. Incompatible with --raw
 -r, --raw[=false]: If true, output the query value as raw bytes, otherwise format as a printable string

Global Flags:
 -a, --attributes="[]": User attributes for the chaincode in JSON format
 -c, --ctor="{}": Constructor message for the chaincode in JSON format
 -l, --lang="golang": Language the chaincode is written in
 --logging-level="": Default logging level and overrides, see core.yaml for full syntax
 -n, --name="": Name of the chaincode returned by the deploy transaction
 -p, --path="": Path to chaincode
 --test.coverprofile="coverage.cov": Done
 -t, --tid="": Name of a custom ID generation algorithm (hashing and decoding) e.g. sha256base64
 -u, --username="": Username for chaincode operations when security is enabled
 -v, --version[=false]: Display current version of fabric peer server

To query “autorizable counter” with attributes “company” and “position”
it should be written in this way:

./peer chaincode query -u userName -n mycc -c '{"Function":"read", "Args": []}' -a '["position", "company"]'

Or:

./peer chaincode query -u userName -n mycc -c '{"Args": ["read"]}' -a '["position", "company"]'

REST

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name": "mycc"
 },
 "ctorMsg": {
 "function":"read",
 "args":[]
 }
 "attributes": ["position", "company"]
 },
 "id": 1
}

		Attributes encryption is not yet available.

 © Copyright 2017, rameshthoomu.

FAQ/index.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

FAQ

 © Copyright 2017, rameshthoomu.

protocol-spec.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Protocol Specification

Preface

This document is the protocol specification for a permissioned
blockchain implementation for industry use-cases. It is not intended to
be a complete explanation of the implementation, but rather a
description of the interfaces and relationships between components in
the system and the application.

Intended Audience

The intended audience for this specification includes the following
groups:

		Blockchain vendors who want to implement blockchain systems that
conform to this specification

		Tool developers who want to extend the capabilities of the fabric

		Application developers who want to leverage blockchain technologies
to enrich their applications
__

Table of Contents

		1.1 What is the fabric?

		1.2 Why the fabric?

		1.3 Terminology

		2.1 Architecture

		2.1.1 Membership Services

		2.1.2 Blockchain Services

		2.1.3 Chaincode Services

		2.1.4 Events

		2.1.5 Application Programming Interface
(API)

		2.1.6 Command Line Interface
(CLI)

		2.2 Topology

		2.2.1 Single Validating Peer

		2.2.2 Multiple Validating Peers

		2.2.3 Multichain

		3.1 Message

		3.1.1 Discovery Messages

		3.1.2 Transaction Messages

		3.1.2.1 Transaction Data
Structure

		3.1.2.2 Transaction
Specification

		3.1.2.3 Deploy Transaction

		3.1.2.4 Invoke Transaction

		3.1.2.5 Query Transaction

		3.1.3 Synchronization Messages

		3.1.4 Consensus Messages

		3.2 Ledger

		3.2.1 Blockchain

		3.2.1.1 Block

		3.2.1.2 Block Hashing

		3.2.1.3 NonHashData

		3.2.1.4 Transaction Execution

		3.2.2 World State

		3.2.2.1 Hashing the world state

		3.2.2.1.1 Bucket-tree

		3.3 Chaincode

		3.3.1 Virtual Machine
Instantiation

		3.3.2 Chaincode Protocol

		3.3.2.1 Chaincode Deploy

		3.3.2.2 Chaincode Invoke

		3.3.2.3 Chaincode Query

		3.3.2.4 Chaincode State

		3.4 Pluggable Consensus
Framework

		3.4.1 Consenter interface

		3.4.2 CPI interface

		3.4.3 Inquirer interface

		3.4.4 Communicator interface

		3.4.5 SecurityUtils interface

		3.4.6 LedgerStack interface

		3.4.7 Executor interface

		3.4.7.1 Beginning a transaction
batch

		3.4.7.2 Executing transactions

		3.4.7.3 Committing and rolling-back
transactions

		3.4.8 Ledger interface

		3.4.8.1 ReadOnlyLedger interface

		3.4.8.2 UtilLedger interface

		3.4.8.3 WritableLedger interface

		3.4.9 RemoteLedgers interface

		3.4.10 controller package

		3.4.10.1 controller.NewConsenter

		3.4.11 helper package

		3.4.11.1 High-level overview

		3.4.11.2 helper.ConsensusHandler

		3.4.11.3
helper.NewConsensusHandler

		3.4.11.4 helper.Helper

		3.4.11.5 helper.NewHelper

		3.4.11.6 helper.HandleMessage

		3.5 Events

		3.5.1 Event Stream

		3.5.1.1 Event Producer

		3.5.1.2 Event Consumer

		3.5.2 Event Adapters

		3.5.3 Event Structure

		4.1 Business security
requirements

		4.2 User Privacy through Membership
Services

		4.2.1 User/Client Enrollment
Process

		4.2.2 Expiration and revocation of
certificates

		4.3 Transaction security offerings at the infrastructure
level

		4.3.1 Security Lifecycle of
Transactions

		4.3.2 Transaction
confidentiality

		4.3.2.1 Confidentiality against
users

		4.3.2.2 Confidentiality against
validators

		4.3.3 Replay attack resistance

		4.4 Access control features on the
application

		4.4.1 Invocation access control

		4.4.2 Read access control

		4.5 Online wallet service

		4.6 Network security (TLS)

		4.7 Restrictions in the current
release

		4.7.1 Simplified client

		4.7.2 Simplified transaction
confidentiality

		5.1 Overview

		5.2 Core PBFT Functions

		5.2.1 newPbftCore

		6.1 REST Service

		6.2 REST API

		6.2.1 REST Endpoints

		6.2.1.1 Block API

		6.2.1.2 Blockchain API

		6.2.1.3 Chaincode API

		6.2.1.4 Network API

		6.2.1.5 Registrar API (member
services)

		6.2.1.6 Transactions API

		6.3 CLI

		6.3.1 CLI Commands

		6.3.1.1 node start

		6.3.1.2 network login

		6.3.1.3 chaincode deploy

		6.3.1.4 chaincode invoke

		6.3.1.5 chaincode query

		7.1 Composition of an
Application

		7.2 Sample Application

		8.1 Enterprise Integration

		8.2 Performance and Scalability

		8.3 Additional Consensus
Plugins

		8.4 Additional Languages

1. Introduction

This document specifies the principles, architecture, and protocol of a
blockchain implementation suitable for industrial use-cases.

1.1 What is the fabric?

The fabric is a ledger of digital events, called transactions, shared
among different participants, each having a stake in the system. The
ledger can only be updated by consensus of the participants, and, once
recorded, information can never be altered. Each recorded event is
cryptographically verifiable with proof of agreement from the
participants.

Transactions are secured, private, and confidential. Each participant
registers with proof of identity to the network membership services to
gain access to the system. Transactions are issued with derived
certificates unlinkable to the individual participant, offering a
complete anonymity on the network. Transaction content is encrypted with
sophisticated key derivation functions to ensure only intended
participants may see the content, protecting the confidentiality of the
business transactions.

The ledger allows compliance with regulations as ledger entries are
auditable in whole or in part. In collaboration with participants,
auditors may obtain time-based certificates to allow viewing the ledger
and linking transactions to provide an accurate assessment of the
operations.

The fabric is an implementation of blockchain technology, where Bitcoin
could be a simple application built on the fabric. It is a modular
architecture allowing components to be plug-and-play by implementing
this protocol specification. It features powerful container technology
to host any main stream language for smart contracts development.
Leveraging familiar and proven technologies is the motto of the fabric
architecture.

1.2 Why the fabric?

Early blockchain technology serves a set of purposes but is often not
well-suited for the needs of specific industries. To meet the demands of
modern markets, the fabric is based on an industry-focused design that
addresses the multiple and varied requirements of specific industry use
cases, extending the learning of the pioneers in this field while also
addressing issues such as scalability. The fabric provides a new
approach to enable permissioned networks, privacy, and confidentially on
multiple blockchain networks.

1.3 Terminology

The following terminology is defined within the limited scope of this
specification to help readers understand clearly and precisely the
concepts described here.

Transaction is a request to the blockchain to execute a function on
the ledger. The function is implemented by a chaincode.

Transactor is an entity that issues transactions such as a client
application.

Ledger is a sequence of cryptographically linked blocks, containing
transactions and current world state.

World State is the collection of variables containing the results of
executed transactions.

Chaincode is an application-level code (a.k.a. smart
contract [https://en.wikipedia.org/wiki/Smart_contract]) stored on
the ledger as a part of a transaction. Chaincode runs transactions that
may modify the world state.

Validating Peer is a computer node on the network responsible for
running consensus, validating transactions, and maintaining the ledger.

Non-validating Peer is a computer node on the network which
functions as a proxy connecting transactors to the neighboring
validating peers. A non-validating peer doesn’t execute transactions but
does verify them. It also hosts the event stream server and the REST
service.

Permissioned Ledger is a blockchain network where each entity or
node is required to be a member of the network. Anonymous nodes are not
allowed to connect.

Privacy is required by the chain transactors to conceal their
identities on the network. While members of the network may examine the
transactions, the transactions can’t be linked to the transactor without
special privilege.

Confidentiality is the ability to render the transaction content
inaccessible to anyone other than the stakeholders of the transaction.

Auditability of the blockchain is required, as business usage of
blockchain needs to comply with regulations to make it easy for
regulators to investigate transaction records.

2. Fabric

The fabric is made up of the core components described in the
subsections below.

2.1 Architecture

The reference architecture is aligned in 3 categories: Membership,
Blockchain, and Chaincode services. These categories are logical
structures, not a physical depiction of partitioning of components into
separate processes, address spaces or (virtual) machines.

[image: Reference architecture]
Reference architecture

2.1.1 Membership Services

Membership provides services for managing identity, privacy,
confidentiality and auditability on the network. In a non-permissioned
blockchain, participation does not require authorization and all nodes
can equally submit transactions and/or attempt to accumulate them into
acceptable blocks, i.e. there are no distinctions of roles. Membership
services combine elements of Public Key Infrastructure (PKI) and
decentralization/consensus to transform a non-permissioned blockchain
into a permissioned blockchain. In the latter, entities register in
order to acquire long-term identity credentials (enrollment
certificates), and may be distinguished according to entity type. In the
case of users, such credentials enable the Transaction Certificate
Authority (TCA) to issue pseudonymous credentials. Such credentials,
i.e., transaction certificates, are used to authorize submitted
transactions. Transaction certificates persist on the blockchain, and
enable authorized auditors to cluster otherwise unlinkable transactions.

2.1.2 Blockchain Services

Blockchain services manage the distributed ledger through a peer-to-peer
protocol, built on HTTP/2. The data structures are highly optimized to
provide the most efficient hash algorithm for maintaining the world
state replication. Different consensus (PBFT, Raft, PoW, PoS) may be
plugged in and configured per deployment.

2.1.3 Chaincode Services

Chaincode services provides a secured and lightweight way to sandbox the
chaincode execution on the validating nodes. The environment is a
“locked down” and secured container along with a set of signed base
images containing secure OS and chaincode language, runtime and SDK
layers for Go, Java, and Node.js. Other languages can be enabled if
required.

2.1.4 Events

Validating peers and chaincodes can emit events on the network that
applications may listen for and take actions on. There is a set of
pre-defined events, and chaincodes can generate custom events. Events
are consumed by 1 or more event adapters. Adapters may further deliver
events using other vehicles such as Web hooks or Kafka.

2.1.5 Application Programming Interface (API)

The primary interface to the fabric is a REST API and its variations
over Swagger 2.0. The API allows applications to register users, query
the blockchain, and to issue transactions. There is a set of APIs
specifically for chaincode to interact with the stack to execute
transactions and query transaction results.

2.1.6 Command Line Interface (CLI)

CLI includes a subset of the REST API to enable developers to quickly
test chaincodes or query for status of transactions. CLI is implemented
in Golang and operable on multiple OS platforms.

2.2 Topology

A deployment of the fabric can consist of a membership service, many
validating peers, non-validating peers, and 1 or more applications. All
of these components make up a chain. There can be multiple chains; each
one having its own operating parameters and security requirements.

2.2.1 Single Validating Peer

Functionally, a non-validating peer is a subset of a validating peer;
that is, every capability on a non-validating peer may be enabled on a
validating peer, so the simplest network may consist of a single
validating peer node. This configuration is most appropriate for a
development environment, where a single validating peer may be started
up during the edit-compile-debug cycle.

[image: Single Validating Peer]
Single Validating Peer

A single validating peer doesn’t require consensus, and by default uses
the noops plugin, which executes transactions as they arrive. This
gives the developer an immediate feedback during development.

2.2.2 Multiple Validating Peers

Production or test networks should be made up of multiple validating and
non-validating peers as necessary. Non-validating peers can take
workload off the validating peers, such as handling API requests and
processing events.

[image: Multiple Validating Peers]
Multiple Validating Peers

The validating peers form a mesh-network (every validating peer connects
to every other validating peer) to disseminate information. A
non-validating peer connects to a neighboring validating peer that it is
allowed to connect to. Non-validating peers are optional since
applications may communicate directly with validating peers.

2.2.3 Multichain

Each network of validating and non-validating peers makes up a chain.
Many chains may be created to address different needs, similar to having
multiple Web sites, each serving a different purpose.

3. Protocol

The fabric’s peer-to-peer communication is built on
gRPC [http://www.grpc.io/docs/], which allows bi-directional
stream-based messaging. It uses Protocol
Buffers [https://developers.google.com/protocol-buffers] to serialize
data structures for data transfer between peers. Protocol buffers are a
language-neutral, platform-neutral and extensible mechanism for
serializing structured data. Data structures, messages, and services are
described using proto3
language [https://developers.google.com/protocol-buffers/docs/proto3]
notation.

3.1 Message

Messages passed between nodes are encapsulated by Message proto
structure, which consists of 4 types: Discovery, Transaction,
Synchronization, and Consensus. Each type may define more subtypes
embedded in the payload.

message Message {
 enum Type {
 UNDEFINED = 0;

 DISC_HELLO = 1;
 DISC_DISCONNECT = 2;
 DISC_GET_PEERS = 3;
 DISC_PEERS = 4;
 DISC_NEWMSG = 5;

 CHAIN_STATUS = 6;
 CHAIN_TRANSACTION = 7;
 CHAIN_GET_TRANSACTIONS = 8;
 CHAIN_QUERY = 9;

 SYNC_GET_BLOCKS = 11;
 SYNC_BLOCKS = 12;
 SYNC_BLOCK_ADDED = 13;

 SYNC_STATE_GET_SNAPSHOT = 14;
 SYNC_STATE_SNAPSHOT = 15;
 SYNC_STATE_GET_DELTAS = 16;
 SYNC_STATE_DELTAS = 17;

 RESPONSE = 20;
 CONSENSUS = 21;
 }
 Type type = 1;
 bytes payload = 2;
 google.protobuf.Timestamp timestamp = 3;
}

The payload is an opaque byte array containing other objects such as
Transaction or Response depending on the type of the message.
For example, if the type is CHAIN_TRANSACTION, the payload
is a Transaction object.

3.1.1 Discovery Messages

Upon start up, a peer runs discovery protocol if
CORE_PEER_DISCOVERY_ROOTNODE is specified.
CORE_PEER_DISCOVERY_ROOTNODE is the IP address of another peer on
the network (any peer) that serves as the starting point for discovering
all the peers on the network. The protocol sequence begins with
DISC_HELLO, whose payload is a HelloMessage object,
containing its endpoint:

message HelloMessage {
 PeerEndpoint peerEndpoint = 1;
 uint64 blockNumber = 2;
}
message PeerEndpoint {
 PeerID ID = 1;
 string address = 2;
 enum Type {
 UNDEFINED = 0;
 VALIDATOR = 1;
 NON_VALIDATOR = 2;
 }
 Type type = 3;
 bytes pkiID = 4;
}

message PeerID {
 string name = 1;
}

Definition of fields:

		PeerID is any name given to the peer at start up or defined in
the config file

		PeerEndpoint describes the endpoint and whether it’s a validating
or a non-validating peer

		pkiID is the cryptographic ID of the peer

		address is host or IP address and port of the peer in the format
ip:port

		blockNumber is the height of the blockchain the peer currently
has

If the block height received upon DISC_HELLO is higher than the
current block height of the peer, it immediately initiates the
synchronization protocol to catch up with the network.

After DISC_HELLO, peer sends DISC_GET_PEERS periodically to
discover any additional peers joining the network. In response to
DISC_GET_PEERS, a peer sends DISC_PEERS with payload
containing an array of PeerEndpoint. Other discovery message types
are not used at this point.

3.1.2 Transaction Messages

There are 3 types of transactions: Deploy, Invoke and Query. A deploy
transaction installs the specified chaincode on the chain, while invoke
and query transactions call a function of a deployed chaincode. Another
type in consideration is Create transaction, where a deployed chaincode
may be instantiated on the chain and is addressable. This type has not
been implemented as of this writing.

3.1.2.1 Transaction Data Structure

Messages with type CHAIN_TRANSACTION or CHAIN_QUERY carry a
Transaction object in the payload:

message Transaction {
 enum Type {
 UNDEFINED = 0;
 CHAINCODE_DEPLOY = 1;
 CHAINCODE_INVOKE = 2;
 CHAINCODE_QUERY = 3;
 CHAINCODE_TERMINATE = 4;
 }
 Type type = 1;
 string uuid = 5;
 bytes chaincodeID = 2;
 bytes payloadHash = 3;

 ConfidentialityLevel confidentialityLevel = 7;
 bytes nonce = 8;
 bytes cert = 9;
 bytes signature = 10;

 bytes metadata = 4;
 google.protobuf.Timestamp timestamp = 6;
}

message TransactionPayload {
 bytes payload = 1;
}

enum ConfidentialityLevel {
 PUBLIC = 0;
 CONFIDENTIAL = 1;
}

Definition of fields: - type - The type of the transaction,
which is 1 of the following: - UNDEFINED - Reserved for future use.
- CHAINCODE_DEPLOY - Represents the deployment of a new chaincode. -
CHAINCODE_INVOKE - Represents a chaincode function execution that
may read and modify the world state. - CHAINCODE_QUERY - Represents
a chaincode function execution that may only read the world state. -
CHAINCODE_TERMINATE - Marks a chaincode as inactive so that future
functions of the chaincode can no longer be invoked. - chaincodeID -
The ID of a chaincode which is a hash of the chaincode source, path to
the source code, constructor function, and parameters. - payloadHash
- Bytes defining the hash of TransactionPayload.payload. -
metadata - Bytes defining any associated transaction metadata that
the application may use. - uuid - A unique ID for the transaction. -
timestamp - A timestamp of when the transaction request was received
by the peer. - confidentialityLevel - Level of data confidentiality.
There are currently 2 levels. Future releases may define more levels. -
nonce - Used for security. - cert - Certificate of the
transactor. - signature - Signature of the transactor. -
TransactionPayload.payload - Bytes defining the payload of the
transaction. As the payload can be large, only the payload hash is
included directly in the transaction message.

More detail on transaction security can be found in section 4.

3.1.2.2 Transaction Specification

A transaction is always associated with a chaincode specification which
defines the chaincode and the execution environment such as language and
security context. Currently there is an implementation that uses Golang
for writing chaincode. Other languages may be added in the future.

message ChaincodeSpec {
 enum Type {
 UNDEFINED = 0;
 GOLANG = 1;
 NODE = 2;
 }
 Type type = 1;
 ChaincodeID chaincodeID = 2;
 ChaincodeInput input = 3;
 int32 timeout = 4;
 string secureContext = 5;
 ConfidentialityLevel confidentialityLevel = 6;
 bytes metadata = 7;
}

message ChaincodeID {
 string path = 1;
 string name = 2;
}

message ChaincodeInput {
 string function = 1;
 repeated string args = 2;
}

Definition of fields: - chaincodeID - The chaincode source code
path and name. - input - Function name and argument parameters to
call. - timeout - Time in milliseconds to execute the transaction. -
confidentialityLevel - Confidentiality level of this transaction. -
secureContext - Security context of the transactor. - metadata -
Any data the application wants to pass along.

The peer, receiving the chaincodeSpec, wraps it in an appropriate
transaction message and broadcasts to the network.

3.1.2.3 Deploy Transaction

Transaction type of a deploy transaction is CHAINCODE_DEPLOY and
the payload contains an object of ChaincodeDeploymentSpec.

message ChaincodeDeploymentSpec {
 ChaincodeSpec chaincodeSpec = 1;
 google.protobuf.Timestamp effectiveDate = 2;
 bytes codePackage = 3;
}

Definition of fields: - chaincodeSpec - See section 3.1.2.2,
above. - effectiveDate - Time when the chaincode is ready to accept
invocations. - codePackage - gzip of the chaincode source.

The validating peers always verify the hash of the codePackage when
they deploy the chaincode to make sure the package has not been tampered
with since the deploy transaction entered the network.

3.1.2.4 Invoke Transaction

Transaction type of an invoke transaction is CHAINCODE_INVOKE
and the payload contains an object of ChaincodeInvocationSpec.

message ChaincodeInvocationSpec {
 ChaincodeSpec chaincodeSpec = 1;
}

3.1.2.5 Query Transaction

A query transaction is similar to an invoke transaction, but the message
type is CHAINCODE_QUERY.

3.1.3 Synchronization Messages

Synchronization protocol starts with discovery, described above in
section 3.1.1, when a peer realizes that it’s behind or its current
block is not the same with others. A peer broadcasts either
SYNC_GET_BLOCKS, SYNC_STATE_GET_SNAPSHOT, or
SYNC_STATE_GET_DELTAS and receives SYNC_BLOCKS,
SYNC_STATE_SNAPSHOT, or SYNC_STATE_DELTAS respectively.

The installed consensus plugin (e.g. pbft) dictates how synchronization
protocol is being applied. Each message is designed for a specific
situation:

SYNC_GET_BLOCKS requests for a range of contiguous blocks
expressed in the message payload, which is an object of
SyncBlockRange. The correlationId specified is included in the
SyncBlockRange of any replies to this message.

message SyncBlockRange {
 uint64 correlationId = 1;
 uint64 start = 2;
 uint64 end = 3;
}

A receiving peer responds with a SYNC_BLOCKS message whose
payload contains an object of SyncBlocks

message SyncBlocks {
 SyncBlockRange range = 1;
 repeated Block blocks = 2;
}

The start and end indicate the starting and ending blocks
inclusively. The order in which blocks are returned is defined by the
start and end values. For example, if start=3 and
end=5, the order of blocks will be 3, 4, 5. If start=5 and
end=3, the order will be 5, 4, 3.

SYNC_STATE_GET_SNAPSHOT requests for the snapshot of the current
world state. The payload is an object of
SyncStateSnapshotRequest

message SyncStateSnapshotRequest {
 uint64 correlationId = 1;
}

The correlationId is used by the requesting peer to keep track of
the response messages. A receiving peer replies with
SYNC_STATE_SNAPSHOT message whose payload is an instance of
SyncStateSnapshot

message SyncStateSnapshot {
 bytes delta = 1;
 uint64 sequence = 2;
 uint64 blockNumber = 3;
 SyncStateSnapshotRequest request = 4;
}

This message contains the snapshot or a chunk of the snapshot on the
stream, and in which case, the sequence indicate the order starting at
0. The terminating message will have len(delta) == 0.

SYNC_STATE_GET_DELTAS requests for the state deltas of a range of
contiguous blocks. By default, the Ledger maintains 500 transition
deltas. A delta(j) is a state transition between block(i) and block(j)
where i = j-1. The message payload contains an instance of
SyncStateDeltasRequest

message SyncStateDeltasRequest {
 SyncBlockRange range = 1;
}

A receiving peer responds with SYNC_STATE_DELTAS, whose payload
is an instance of SyncStateDeltas

message SyncStateDeltas {
 SyncBlockRange range = 1;
 repeated bytes deltas = 2;
}

A delta may be applied forward (from i to j) or backward (from j to i)
in the state transition.

3.1.4 Consensus Messages

Consensus deals with transactions, so a CONSENSUS message is
initiated internally by the consensus framework when it receives a
CHAIN_TRANSACTION message. The framework converts
CHAIN_TRANSACTION into CONSENSUS then broadcasts to the
validating nodes with the same payload. The consensus plugin
receives this message and process according to its internal algorithm.
The plugin may create custom subtypes to manage consensus finite state
machine. See section 3.4 for more details.

3.2 Ledger

The ledger consists of two primary pieces, the blockchain and the world
state. The blockchain is a series of linked blocks that is used to
record transactions within the ledger. The world state is a key-value
database that chaincodes may use to store state when executed by a
transaction.

3.2.1 Blockchain

3.2.1.1 Block

The blockchain is defined as a linked list of blocks as each block
contains the hash of the previous block in the chain. The two other
important pieces of information that a block contains are the list of
transactions contained within the block and the hash of the world state
after executing all transactions in the block.

message Block {
 version = 1;
 google.protobuf.Timestamp timestamp = 2;
 bytes transactionsHash = 3;
 bytes stateHash = 4;
 bytes previousBlockHash = 5;
 bytes consensusMetadata = 6;
 NonHashData nonHashData = 7;
}

message BlockTransactions {
 repeated Transaction transactions = 1;
}

		version - Version used to track any protocol changes.

		timestamp - The timestamp to be filled in by the block proposer.

		transactionsHash - The merkle root hash of the block’s
transactions.

		stateHash - The merkle root hash of the world state.

		previousBlockHash - The hash of the previous block.

		consensusMetadata - Optional metadata that the consensus may
include in a block.

		nonHashData - A NonHashData message that is set to nil before
computing the hash of the block, but stored as part of the block in
the database.

		BlockTransactions.transactions - An array of Transaction
messages. Transactions are not included in the block directly due to
their size.

3.2.1.2 Block Hashing

		The previousBlockHash hash is calculated using the following
algorithm.

		Serialize the Block message to bytes using the protocol buffer
library.

		Hash the serialized block message to 512 bits of output using the
SHA3 SHAKE256 algorithm as described in FIPS
202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

		The transactionHash is the root of the transaction merkle tree.
Defining the merkle tree implementation is a TODO.

		The stateHash is defined in section 3.2.2.1.

3.2.1.3 NonHashData

The NonHashData message is used to store block metadata that is not
required to be the same value on all peers. These are suggested values.

message NonHashData {
 google.protobuf.Timestamp localLedgerCommitTimestamp = 1;
 repeated TransactionResult transactionResults = 2;
}

message TransactionResult {
 string uuid = 1;
 bytes result = 2;
 uint32 errorCode = 3;
 string error = 4;
}

		localLedgerCommitTimestamp - A timestamp indicating when the
block was commited to the local ledger.

		TransactionResult - An array of transaction results.

		TransactionResult.uuid - The ID of the transaction.

		TransactionResult.result - The return value of the transaction.

		TransactionResult.errorCode - A code that can be used to log
errors associated with the transaction.

		TransactionResult.error - A string that can be used to log errors
associated with the transaction.

3.2.1.4 Transaction Execution

A transaction defines either the deployment of a chaincode or the
execution of a chaincode. All transactions within a block are run before
recording a block in the ledger. When chaincodes execute, they may
modify the world state. The hash of the world state is then recorded in
the block.

3.2.2 World State

The world state of a peer refers to the collection of the states of
all the deployed chaincodes. Further, the state of a chaincode is
represented as a collection of key-value pairs. Thus, logically, the
world state of a peer is also a collection of key-value pairs where key
consists of a tuple {chaincodeID, ckey}. Here, we use the term
key to represent a key in the world state i.e., a tuple
{chaincodeID, ckey} and we use the term cKey to represent a
unique key within a chaincode.

For the purpose of the description below, chaincodeID is assumed to
be a valid utf8 string and ckey and the value can be a sequence
of one or more arbitrary bytes.

3.2.2.1 Hashing the world state

During the functioning of a network, many occasions such as committing
transactions and synchronizing peers may require computing a crypto-hash
of the world state observed by a peer. For instance, the consensus
protocol may require to ensure that a minimum number of peers in the
network observe the same world state.

Since, computing the crypto-hash of the world state could be an
expensive operation, this is highly desirable to organize the world
state such that it enables an efficient crypto-hash computation of the
world state when a change occurs in the world state. Further, different
organization designs may be suitable under different workloads
conditions.

Because the fabric is expected to function under a variety of scenarios
leading to different workloads conditions, a pluggable mechanism is
supported for organizing the world state.

3.2.2.1.1 Bucket-tree

Bucket-tree is one of the implementations for organizing the world
state. For the purpose of the description below, a key in the world
state is represented as a concatenation of the two components
(chaincodeID and ckey) separated by a nil byte i.e., key
= chaincodeID+nil+cKey.

This method models a merkle-tree on top of buckets of a hash table
in order to compute the crypto-hash of the world state.

At the core of this method, the key-values of the world state are
assumed to be stored in a hash-table that consists of a pre-decided
number of buckets (numBuckets). A hash function (hashFunction)
is employed to determine the bucket number that should contain a given
key. Please note that the hashFunction does not represent a
crypto-hash method such as SHA3, rather this is a regular programming
language hash function that decides the bucket number for a given key.

For modeling the merkle-tree, the ordered buckets act as leaf nodes of
the tree - lowest numbered bucket being the left most leaf node in the
tree. For constructing the second-last level of the tree, a pre-decided
number of leaf nodes (maxGroupingAtEachLevel), starting from left,
are grouped together and for each such group, a node is inserted at the
second-last level that acts as a common parent for all the leaf nodes in
the group. Note that the number of children for the last parent node may
be less than maxGroupingAtEachLevel. This grouping method of
constructing the next higher level is repeated until the root node of
the tree is constructed.

An example setup with configuration
{numBuckets=10009 and maxGroupingAtEachLevel=10} will result in a
tree with number of nodes at different level as depicted in the
following table.

		Level
		Number of nodes

		0
		1

		1
		2

		2
		11

		3
		101

		4
		1001

		5
		10009

For computing the crypto-hash of the world state, the crypto-hash of
each bucket is computed and is assumed to be the crypto-hash of
leaf-nodes of the merkle-tree. In order to compute crypto-hash of a
bucket, the key-values present in the bucket are first serialized and
crypto-hash function is applied on the serialized bytes. For serializing
the key-values of a bucket, all the key-values with a common chaincodeID
prefix are serialized separately and then appending together, in the
ascending order of chaincodeIDs. For serializing the key-values of a
chaincodeID, the following information is concatenated: 1. Length of
chaincodeID (number of bytes in the chaincodeID) - The utf8 bytes of the
chaincodeID - Number of key-values for the chaincodeID - For each
key-value (in sorted order of the ckey) - Length of the ckey - ckey
bytes - Length of the value - value bytes

For all the numeric types in the above list of items (e.g., Length of
chaincodeID), protobuf’s varint encoding is assumed to be used. The
purpose of the above encoding is to achieve a byte representation of the
key-values within a bucket that can not be arrived at by any other
combination of key-values and also to reduce the overall size of the
serialized bytes.

For example, consider a bucket that contains three key-values namely,
chaincodeID1_key1:value1, chaincodeID1_key2:value2, and chaincodeID2_key1:value1.
The serialized bytes for the bucket would logically look as -
12 + chaincodeID1 + 2 + 4 + key1 + 6 + value1 + 4 + key2 + 6 + value2 + 12 + chaincodeID2 + 1 + 4 + key1 + 6 + value1

If a bucket has no key-value present, the crypto-hash is considered as
nil.

The crypto-hash of an intermediate node and root node are computed just
like in a standard merkle-tree i.e., applying a crypto-hash function on
the bytes obtained by concatenating the crypto-hash of all the children
nodes, from left to right. Further, if a child has a crypto-hash as
nil, the crypto-hash of the child is omitted when concatenating the
children crypto-hashes. If the node has a single child, the crypto-hash
of the child is assumed to be the crypto-hash of the node. Finally, the
crypto-hash of the root node is considered as the crypto-hash of the
world state.

The above method offers performance benefits for computing crypto-hash
when a few key-values change in the state. The major benefits include -
Computation of crypto-hashes of the unchanged buckets can be skipped -
The depth and breadth of the merkle-tree can be controlled by
configuring the parameters numBuckets and
maxGroupingAtEachLevel. Both depth and breadth of the tree has
different implication on the performance cost incurred by and resource
demand of different resources (namely - disk I/O, storage, and memory)

In a particular deployment, all the peer nodes are expected to use same
values for the configurations
numBuckets, maxGroupingAtEachLevel, and hashFunction. Further, if
any of these configurations are to be changed at a later stage, the
configurations should be changed on all the peer nodes so that the
comparison of crypto-hashes across peer nodes is meaningful. Also, this
may require to migrate the existing data based on the implementation.
For example, an implementation is expected to store the last computed
crypto-hashes for all the nodes in the tree which would need to be
recalculated.

3.3 Chaincode

Chaincode is an application-level code deployed as a transaction (see
section 3.1.2) to be distributed to the network and managed by each
validating peer as isolated sandbox. Though any virtualization
technology can support the sandbox, currently Docker container is
utilized to run the chaincode. The protocol described in this section
enables different virtualization support implementation to plug and
play.

3.3.1 Virtual Machine Instantiation

A virtual machine implements the VM interface:

type VM interface {
 build(ctxt context.Context, id string, args []string, env []string, attachstdin bool, attachstdout bool, reader io.Reader) error
 start(ctxt context.Context, id string, args []string, env []string, attachstdin bool, attachstdout bool) error
 stop(ctxt context.Context, id string, timeout uint, dontkill bool, dontremove bool) error
}

The fabric instantiates the VM when it processes a Deploy transaction or
other transactions on the chaincode while the VM for that chaincode is
not running (either crashed or previously brought down due to
inactivity). Each chaincode image is built by the build function,
started by start and stopped by stop function.

Once the chaincode container is up, it makes a gRPC connection back to
the validating peer that started the chaincode, and that establishes the
channel for Invoke and Query transactions on the chaincode.

3.3.2 Chaincode Protocol

Communication between a validating peer and its chaincodes is based on a
bidirectional gRPC stream. There is a shim layer on the chaincode
container to handle the message protocol between the chaincode and the
validating peer using protobuf message.

message ChaincodeMessage {

 enum Type {
 UNDEFINED = 0;
 REGISTER = 1;
 REGISTERED = 2;
 INIT = 3;
 READY = 4;
 TRANSACTION = 5;
 COMPLETED = 6;
 ERROR = 7;
 GET_STATE = 8;
 PUT_STATE = 9;
 DEL_STATE = 10;
 INVOKE_CHAINCODE = 11;
 INVOKE_QUERY = 12;
 RESPONSE = 13;
 QUERY = 14;
 QUERY_COMPLETED = 15;
 QUERY_ERROR = 16;
 RANGE_QUERY_STATE = 17;
 }

 Type type = 1;
 google.protobuf.Timestamp timestamp = 2;
 bytes payload = 3;
 string uuid = 4;
}

Definition of fields: - Type is the type of the message. -
payload is the payload of the message. Each payload depends on the
Type. - uuid is a unique identifier of the message.

The message types are described in the following sub-sections.

A chaincode implements the Chaincode interface, which is called by
the validating peer when it processes Deploy, Invoke or Query
transactions.

type Chaincode interface {
i Init(stub *ChaincodeStub, function string, args []string) ([]byte, error)
 Invoke(stub *ChaincodeStub, function string, args []string) ([]byte, error)
 Query(stub *ChaincodeStub, function string, args []string) ([]byte, error)
}

Init, Invoke and Query functions take function and
args as parameters to be used by those methods to support a variety
of transactions. Init is a constructor function, which will only be
invoked by the Deploy transaction. The Query function is not allowed
to modify the state of the chaincode; it can only read and calculate the
return value as a byte array.

3.3.2.1 Chaincode Deploy

Upon deploy (chaincode container is started), the shim layer sends a one
time REGISTER message to the validating peer with the payload
containing the ChaincodeID. The validating peer responds with
REGISTERED or ERROR on success or failure respectively. The shim
closes the connection and exits if it receives an ERROR.

After registration, the validating peer sends INIT with the
payload containing a ChaincodeInput object. The shim calls the
Init function with the parameters from the ChaincodeInput,
enabling the chaincode to perform any initialization, such as setting up
the persistent state.

The shim responds with RESPONSE or ERROR message depending on
the returned value from the chaincode Init function. If there are no
errors, the chaincode initialization is complete and is ready to receive
Invoke and Query transactions.

3.3.2.2 Chaincode Invoke

When processing an invoke transaction, the validating peer sends a
TRANSACTION message to the chaincode container shim, which in turn
calls the chaincode Invoke function, passing the parameters from the
ChaincodeInput object. The shim responds to the validating peer with
RESPONSE or ERROR message, indicating the completion of the
function. If ERROR is received, the payload contains the error
message generated by the chaincode.

3.3.2.3 Chaincode Query

Similar to an invoke transaction, when processing a query, the
validating peer sends a QUERY message to the chaincode container
shim, which in turn calls the chaincode Query function, passing the
parameters from the ChaincodeInput object. The Query function
may return a state value or an error, which the shim forwards to the
validating peer using RESPONSE or ERROR messages respectively.

3.3.2.4 Chaincode State

Each chaincode may define its own persistent state variables. For
example, a chaincode may create assets such as TVs, cars, or stocks
using state variables to hold the assets attributes. During Invoke
function processing, the chaincode may update the state variables, for
example, changing an asset owner. A chaincode manipulates the state
variables by using the following message types:

PUT_STATE

Chaincode sends a PUT_STATE message to persist a key-value pair,
with the payload containing PutStateInfo object.

message PutStateInfo {
 string key = 1;
 bytes value = 2;
}

GET_STATE

Chaincode sends a GET_STATE message to retrieve the value whose key
is specified in the payload.

DEL_STATE

Chaincode sends a DEL_STATE message to delete the value whose key is
specified in the payload.

RANGE_QUERY_STATE

Chaincode sends a RANGE_QUERY_STATE message to get a range of
values. The message payload contains a RangeQueryStateInfo
object.

message RangeQueryState {
 string startKey = 1;
 string endKey = 2;
}

The startKey and endKey are inclusive and assumed to be in
lexical order. The validating peer responds with RESPONSE message
whose payload is a RangeQueryStateResponse object.

message RangeQueryStateResponse {
 repeated RangeQueryStateKeyValue keysAndValues = 1;
 bool hasMore = 2;
 string ID = 3;
}
message RangeQueryStateKeyValue {
 string key = 1;
 bytes value = 2;
}

If hasMore=true in the response, this indicates that additional keys
are available in the requested range. The chaincode can request the next
set of keys and values by sending a RangeQueryStateNext message with
an ID that matches the ID returned in the response.

message RangeQueryStateNext {
 string ID = 1;
}

When the chaincode is finished reading from the range, it should send a
RangeQueryStateClose message with the ID it wishes to close.

message RangeQueryStateClose {
 string ID = 1;
}

INVOKE_CHAINCODE

Chaincode may call another chaincode in the same transaction context by
sending an INVOKE_CHAINCODE message to the validating peer with the
payload containing a ChaincodeSpec object.

QUERY_CHAINCODE

Chaincode may query another chaincode in the same transaction context by
sending a QUERY_CHAINCODE message with the payload containing a
ChaincodeSpec object.

3.4 Pluggable Consensus Framework

The consensus framework defines the interfaces that every consensus
plugin implements:

		consensus.Consenter: interface that allows consensus plugin to
receive messages from the network.

		consensus.CPI: Consensus Programming Interface (CPI) is
used by consensus plugin to interact with rest of the stack. This
interface is split in two parts:
		consensus.Communicator: used to send (broadcast and unicast)
messages to other validating peers.

		consensus.LedgerStack: which is used as an interface to the
execution framework as well as the ledger.

As described below in more details, consensus.LedgerStack
encapsulates, among other interfaces, the consensus.Executor
interface, which is the key part of the consensus framework. Namely,
consensus.Executor interface allows for a (batch of) transaction to
be started, executed, rolled back if necessary, previewed, and
potentially committed. A particular property that every consensus plugin
needs to satisfy is that batches (blocks) of transactions are committed
to the ledger (via consensus.Executor.CommitTxBatch) in total order
across all validating peers (see consensus.Executor interface
description below for more details).

Currently, consensus framework consists of 3 packages consensus,
controller, and helper. The primary reason for controller
and helper packages is to avoid “import cycle” in Go (golang) and
minimize code changes for plugin to update.

		controller package specifies the consensus plugin used by a
validating peer.

		helper package is a shim around a consensus plugin that helps it
interact with the rest of the stack, such as maintaining message
handlers to other peers.

There are 2 consensus plugins provided: pbft and noops:

		pbft package contains consensus plugin that implements the PBFT
[1] consensus protocol. See section 5 for more detail.

		noops is a ‘’dummy’’ consensus plugin for development and test
purposes. It doesn’t perform consensus but processes all consensus
messages. It also serves as a good simple sample to start learning
how to code a consensus plugin.

3.4.1 Consenter interface

Definition:

type Consenter interface {
 RecvMsg(msg *pb.Message) error
}

The plugin’s entry point for (external) client requests, and consensus
messages generated internally (i.e. from the consensus module) during
the consensus process. The controller.NewConsenter creates the
plugin Consenter. RecvMsg processes the incoming transactions in
order to reach consensus.

See helper.HandleMessage below to understand how the peer interacts
with this interface.

3.4.2 CPI interface

Definition:

type CPI interface {
 Inquirer
 Communicator
 SecurityUtils
 LedgerStack
}

CPI allows the plugin to interact with the stack. It is implemented
by the helper.Helper object. Recall that this object:

		Is instantiated when the helper.NewConsensusHandler is called.

		Is accessible to the plugin author when they construct their plugin’s
consensus.Consenter object.

3.4.3 Inquirer interface

Definition:

type Inquirer interface {
 GetNetworkInfo() (self *pb.PeerEndpoint, network []*pb.PeerEndpoint, err error)
 GetNetworkHandles() (self *pb.PeerID, network []*pb.PeerID, err error)
}

This interface is a part of the consensus.CPI interface. It is used
to get the handles of the validating peers in the network
(GetNetworkHandles) as well as details about the those validating
peers (GetNetworkInfo):

Note that the peers are identified by a pb.PeerID object. This is a
protobuf message (in the protos package), currently defined as
(notice that this definition will likely be modified):

message PeerID {
 string name = 1;
}

3.4.4 Communicator interface

Definition:

type Communicator interface {
 Broadcast(msg *pb.Message) error
 Unicast(msg *pb.Message, receiverHandle *pb.PeerID) error
}

This interface is a part of the consensus.CPI interface. It is used
to communicate with other peers on the network (helper.Broadcast,
helper.Unicast):

3.4.5 SecurityUtils interface

Definition:

type SecurityUtils interface {
 Sign(msg []byte) ([]byte, error)
 Verify(peerID *pb.PeerID, signature []byte, message []byte) error
}

This interface is a part of the consensus.CPI interface. It is used
to handle the cryptographic operations of message signing (Sign) and
verifying signatures (Verify)

3.4.6 LedgerStack interface

Definition:

type LedgerStack interface {
 Executor
 Ledger
 RemoteLedgers
}

A key member of the CPI interface, LedgerStack groups
interaction of consensus with the rest of the fabric, such as the
execution of transactions, querying, and updating the ledger. This
interface supports querying the local blockchain and state, updating the
local blockchain and state, and querying the blockchain and state of
other nodes in the consensus network. It consists of three parts:
Executor, Ledger and RemoteLedgers interfaces. These are
described in the following.

3.4.7 Executor interface

Definition:

type Executor interface {
 BeginTxBatch(id interface{}) error
 ExecTXs(id interface{}, txs []*pb.Transaction) ([]byte, []error)
 CommitTxBatch(id interface{}, transactions []*pb.Transaction, transactionsResults []*pb.TransactionResult, metadata []byte) error
 RollbackTxBatch(id interface{}) error
 PreviewCommitTxBatchBlock(id interface{}, transactions []*pb.Transaction, metadata []byte) (*pb.Block, error)
}

The executor interface is the most frequently utilized portion of the
LedgerStack interface, and is the only piece which is strictly
necessary for a consensus network to make progress. The interface allows
for a transaction to be started, executed, rolled back if necessary,
previewed, and potentially committed. This interface is comprised of the
following methods.

3.4.7.1 Beginning a transaction batch

BeginTxBatch(id interface{}) error

This call accepts an arbitrary id, deliberately opaque, as a way for
the consensus plugin to ensure only the transactions associated with
this particular batch are executed. For instance, in the pbft
implementation, this id is the an encoded hash of the transactions
to be executed.

3.4.7.2 Executing transactions

ExecTXs(id interface{}, txs []*pb.Transaction) ([]byte, []error)

This call accepts an array of transactions to execute against the
current state of the ledger and returns the current state hash in
addition to an array of errors corresponding to the array of
transactions. Note that a transaction resulting in an error has no
effect on whether a transaction batch is safe to commit. It is up to the
consensus plugin to determine the behavior which should occur when
failing transactions are encountered. This call is safe to invoke
multiple times.

3.4.7.3 Committing and rolling-back transactions

RollbackTxBatch(id interface{}) error

This call aborts an execution batch. This will undo the changes to the
current state, and restore the ledger to its previous state. It
concludes the batch begun with BeginBatchTx and a new one must be
created before executing any transactions.

PreviewCommitTxBatchBlock(id interface{}, transactions []*pb.Transaction, metadata []byte) (*pb.Block, error)

This call is most useful for consensus plugins which wish to test for
non-deterministic transaction execution. The hashable portions of the
block returned are guaranteed to be identical to the block which would
be committed if CommitTxBatch were immediately invoked. This
guarantee is violated if any new transactions are executed.

CommitTxBatch(id interface{}, transactions []*pb.Transaction, transactionsResults []*pb.TransactionResult, metadata []byte) error

This call commits a block to the blockchain. Blocks must be committed to
a blockchain in total order. CommitTxBatch concludes the transaction
batch, and a new call to BeginTxBatch must be made before any new
transactions are executed and committed.

3.4.8 Ledger interface

Definition:

type Ledger interface {
 ReadOnlyLedger
 UtilLedger
 WritableLedger
}

Ledger interface is intended to allow the consensus plugin to
interrogate and possibly update the current state and blockchain. It is
comprised of the three interfaces described below.

3.4.8.1 ReadOnlyLedger interface

Definition:

type ReadOnlyLedger interface {
 GetBlock(id uint64) (block *pb.Block, err error)
 GetCurrentStateHash() (stateHash []byte, err error)
 GetBlockchainSize() (uint64, error)
}

ReadOnlyLedger interface is intended to query the local copy of the
ledger without the possibility of modifying it. It is comprised of the
following functions.

GetBlockchainSize() (uint64, error)

This call returns the current length of the blockchain ledger. In
general, this function should never fail, though in the unlikely event
that this occurs, the error is passed to the caller to decide what if
any recovery is necessary. The block with the highest number will have
block number GetBlockchainSize()-1.

Note that in the event that the local copy of the blockchain ledger is
corrupt or incomplete, this call will return the highest block number in
the chain, plus one. This allows for a node to continue operating from
the current state/block even when older blocks are corrupt or missing.

GetBlock(id uint64) (block *pb.Block, err error)

This call returns the block from the blockchain with block number
id. In general, this call should not fail, except when the block
queried exceeds the current blocklength, or when the underlying
blockchain has somehow become corrupt. A failure of GetBlock has a
possible resolution of using the state transfer mechanism to retrieve
it.

GetCurrentStateHash() (stateHash []byte, err error)

This call returns the current state hash for the ledger. In general,
this function should never fail, though in the unlikely event that this
occurs, the error is passed to the caller to decide what if any recovery
is necessary.

3.4.8.2 UtilLedger interface

Definition:

type UtilLedger interface {
 HashBlock(block *pb.Block) ([]byte, error)
 VerifyBlockchain(start, finish uint64) (uint64, error)
}

UtilLedger interface defines some useful utility functions which are
provided by the local ledger. Overriding these functions in a mock
interface can be useful for testing purposes. This interface is
comprised of two functions.

HashBlock(block *pb.Block) ([]byte, error)

Although *pb.Block has a GetHash method defined, for mock
testing, overriding this method can be very useful. Therefore, it is
recommended that the GetHash method never be directly invoked, but
instead invoked via this UtilLedger.HashBlock interface. In general,
this method should never fail, but the error is still passed to the
caller to decide what if any recovery is appropriate.

VerifyBlockchain(start, finish uint64) (uint64, error)

This utility method is intended for verifying large sections of the
blockchain. It proceeds from a high block start to a lower block
finish, returning the block number of the first block whose
PreviousBlockHash does not match the block hash of the previous
block as well as an error. Note, this generally indicates the last good
block number, not the first bad block number.

3.4.8.3 WritableLedger interface

Definition:

type WritableLedger interface {
 PutBlock(blockNumber uint64, block *pb.Block) error
 ApplyStateDelta(id interface{}, delta *statemgmt.StateDelta) error
 CommitStateDelta(id interface{}) error
 RollbackStateDelta(id interface{}) error
 EmptyState() error
}

WritableLedger interface allows for the caller to update the
blockchain. Note that this is NOT intended for use in normal operation
of a consensus plugin. The current state should be modified by executing
transactions using the Executor interface, and new blocks will be
generated when transactions are committed. This interface is instead
intended primarily for state transfer or corruption recovery. In
particular, functions in this interface should NEVER be exposed
directly via consensus messages, as this could result in violating the
immutability promises of the blockchain concept. This interface is
comprised of the following functions.

		PutBlock(blockNumber uint64, block *pb.Block) error

This function takes a provided, raw block, and inserts it into the
blockchain at the given blockNumber. Note that this intended to be an
unsafe interface, so no error or sanity checking is performed.
Inserting a block with a number higher than the current block height
is permitted, similarly overwriting existing already committed blocks
is also permitted. Remember, this does not affect the auditability or
immutability of the chain, as the hashing techniques make it
computationally infeasible to forge a block earlier in the chain. Any
attempt to rewrite the blockchain history is therefore easily
detectable. This is generally only useful to the state transfer API.

		ApplyStateDelta(id interface{}, delta *statemgmt.StateDelta) error

This function takes a state delta, and applies it to the current
state. The delta will be applied to transition a state forward or
backwards depending on the construction of the state delta. Like the
Executor methods, ApplyStateDelta accepts an opaque interface
id which should also be passed into CommitStateDelta or
RollbackStateDelta as appropriate.

		CommitStateDelta(id interface{}) error

This function commits the state delta which was applied in
ApplyStateDelta. This is intended to be invoked after the caller
to ApplyStateDelta has verified the state via the state hash
obtained via GetCurrentStateHash(). This call takes the same
id which was passed into ApplyStateDelta.

		RollbackStateDelta(id interface{}) error

This function unapplies a state delta which was applied in
ApplyStateDelta. This is intended to be invoked after the caller
to ApplyStateDelta has detected the state hash obtained via
GetCurrentStateHash() is incorrect. This call takes the same
id which was passed into ApplyStateDelta.

		EmptyState() error

This function will delete the entire current state, resulting in a
pristine empty state. It is intended to be called before loading an
entirely new state via deltas. This is generally only useful to the
state transfer API.

3.4.9 RemoteLedgers interface

Definition:

type RemoteLedgers interface {
 GetRemoteBlocks(peerID uint64, start, finish uint64) (<-chan *pb.SyncBlocks, error)
 GetRemoteStateSnapshot(peerID uint64) (<-chan *pb.SyncStateSnapshot, error)
 GetRemoteStateDeltas(peerID uint64, start, finish uint64) (<-chan *pb.SyncStateDeltas, error)
}

The RemoteLedgers interface exists primarily to enable state
transfer and to interrogate the blockchain state at other replicas. Just
like the WritableLedger interface, it is not intended to be used in
normal operation and is designed to be used for catchup, error recovery,
etc. For all functions in this interface it is the caller’s
responsibility to enforce timeouts. This interface contains the
following functions.

		GetRemoteBlocks(peerID uint64, start, finish uint64) (<-chan *pb.SyncBlocks, error)

This function attempts to retrieve a stream of *pb.SyncBlocks
from the peer designated by peerID for the range from start
to finish. In general, start should be specified with a
higher block number than finish, as the blockchain must be
validated from end to beginning. The caller must validate that the
desired block is being returned, as it is possible that slow results
from another request could appear on this channel. Invoking this call
for the same peerID a second time will cause the first channel to
close.

		GetRemoteStateSnapshot(peerID uint64) (<-chan *pb.SyncStateSnapshot, error)

This function attempts to retrieve a stream of
*pb.SyncStateSnapshot from the peer designated by peerID. To
apply the result, the existing state should first be emptied via the
WritableLedger EmptyState call, then the contained deltas in
the stream should be applied sequentially.

		GetRemoteStateDeltas(peerID uint64, start, finish uint64) (<-chan *pb.SyncStateDeltas, error)

This function attempts to retrieve a stream of
*pb.SyncStateDeltas from the peer designated by peerID for
the range from start to finish. The caller must validated
that the desired block delta is being returned, as it is possible
that slow results from another request could appear on this channel.
Invoking this call for the same peerID a second time will cause
the first channel to close.

3.4.10 controller package

3.4.10.1 controller.NewConsenter

Signature:

func NewConsenter(cpi consensus.CPI) (consenter consensus.Consenter)

This function reads the peer.validator.consensus value in
core.yaml configuration file, which is the configuration file for
the peer process. The value of the peer.validator.consensus key
defines whether the validating peer will run with the noops
consensus plugin or the pbft one. (Notice that this should
eventually be changed to either noops or custom. In case of
custom, the validating peer will run with the consensus plugin
defined in consensus/config.yaml.)

The plugin author needs to edit the function’s body so that it routes to
the right constructor for their package. For example, for pbft we
point to the pbft.GetPlugin constructor.

This function is called by helper.NewConsensusHandler when setting
the consenter field of the returned message handler. The input
argument cpi is the output of the helper.NewHelper constructor
and implements the consensus.CPI interface.

3.4.11 helper package

3.4.11.1 High-level overview

A validating peer establishes a message handler
(helper.ConsensusHandler) for every connected peer, via the
helper.NewConsensusHandler function (a handler factory). Every
incoming message is inspected on its type (helper.HandleMessage); if
it’s a message for which consensus needs to be reached, it’s passed on
to the peer’s consenter object (consensus.Consenter). Otherwise it’s
passed on to the next message handler in the stack.

3.4.11.2 helper.ConsensusHandler

Definition:

type ConsensusHandler struct {
 chatStream peer.ChatStream
 consenter consensus.Consenter
 coordinator peer.MessageHandlerCoordinator
 done chan struct{}
 peerHandler peer.MessageHandler
}

Within the context of consensus, we focus only on the coordinator
and consenter fields. The coordinator, as the name implies, is
used to coordinate between the peer’s message handlers. This is, for
instance, the object that is accessed when the peer wishes to
Broadcast. The consenter receives the messages for which
consensus needs to be reached and processes them.

Notice that fabric/peer/peer.go defines the peer.MessageHandler
(interface), and peer.MessageHandlerCoordinator (interface) types.

3.4.11.3 helper.NewConsensusHandler

Signature:

func NewConsensusHandler(coord peer.MessageHandlerCoordinator, stream peer.ChatStream, initiatedStream bool, next peer.MessageHandler) (peer.MessageHandler, error)

Creates a helper.ConsensusHandler object. Sets the same
coordinator for every message handler. Also sets the consenter
equal to: controller.NewConsenter(NewHelper(coord))

3.4.11.4 helper.Helper

Definition:

type Helper struct {
 coordinator peer.MessageHandlerCoordinator
}

Contains the reference to the validating peer’s coordinator. Is the
object that implements the consensus.CPI interface for the peer.

3.4.11.5 helper.NewHelper

Signature:

func NewHelper(mhc peer.MessageHandlerCoordinator) consensus.CPI

Returns a helper.Helper object whose coordinator is set to the
input argument mhc (the coordinator field of the
helper.ConsensusHandler message handler). This object implements the
consensus.CPI interface, thus allowing the plugin to interact with
the stack.

3.4.11.6 helper.HandleMessage

Recall that the helper.ConsensusHandler object returned by
helper.NewConsensusHandler implements the peer.MessageHandler
interface:

type MessageHandler interface {
 RemoteLedger
 HandleMessage(msg *pb.Message) error
 SendMessage(msg *pb.Message) error
 To() (pb.PeerEndpoint, error)
 Stop() error
}

Within the context of consensus, we focus only on the HandleMessage
method. Signature:

func (handler *ConsensusHandler) HandleMessage(msg *pb.Message) error

The function inspects the Type of the incoming Message. There
are four cases:

		Equal to pb.Message_CONSENSUS: passed to the handler’s
consenter.RecvMsg function.

		Equal to pb.Message_CHAIN_TRANSACTION (i.e. an external
deployment request): a response message is sent to the user first,
then the message is passed to the consenter.RecvMsg function.

		Equal to pb.Message_CHAIN_QUERY (i.e. a query): passed to the
helper.doChainQuery method so as to get executed locally.

		Otherwise: passed to the HandleMessage method of the next handler
down the stack.

3.5 Events

The event framework provides the ability to generate and consume
predefined and custom events. There are 3 basic components: - Event
stream - Event adapters - Event structures

3.5.1 Event Stream

An event stream is a gRPC channel capable of sending and receiving
events. Each consumer establishes an event stream to the event framework
and expresses the events that it is interested in. the event producer
only sends appropriate events to the consumers who have connected to the
producer over the event stream.

The event stream initializes the buffer and timeout parameters. The
buffer holds the number of events waiting for delivery, and the timeout
has 3 options when the buffer is full:

		If timeout is less than 0, drop the newly arriving events

		If timeout is 0, block on the event until the buffer becomes
available

		If timeout is greater than 0, wait for the specified timeout and drop
the event if the buffer remains full after the timeout

3.5.1.1 Event Producer

The event producer exposes a function to send an event,
Send(e *pb.Event), where Event is either a pre-defined Block
or a Generic event. More events will be defined in the future to
include other elements of the fabric.

message Generic {
 string eventType = 1;
 bytes payload = 2;
}

The eventType and payload are freely defined by the event
producer. For example, JSON data may be used in the payload. The
Generic event may also be emitted by the chaincode or plugins to
communicate with consumers.

3.5.1.2 Event Consumer

The event consumer enables external applications to listen to events.
Each event consumer registers an event adapter with the event stream.
The consumer framework can be viewed as a bridge between the event
stream and the adapter. A typical use of the event consumer framework
is:

adapter = <adapter supplied by the client application to register and receive events>
consumerClient = NewEventsClient(<event consumer address>, adapter)
consumerClient.Start()
...
...
consumerClient.Stop()

3.5.2 Event Adapters

The event adapter encapsulates three facets of event stream interaction:
- an interface that returns the list of all events of interest - an
interface called by the event consumer framework on receipt of an event
- an interface called by the event consumer framework when the event bus
terminates

The reference implementation provides Golang specific language binding.

EventAdapter interface {
 GetInterestedEvents() ([]*ehpb.Interest, error)
 Recv(msg *ehpb.Event) (bool,error)
 Disconnected(err error)
}

Using gRPC as the event bus protocol allows the event consumer framework
to be ported to different language bindings without affecting the event
producer framework.

3.5.3 Event Structure

This section details the message structures of the event system.
Messages are described directly in Golang for simplicity.

The core message used for communication between the event consumer and
producer is the Event.

message Event {
 oneof Event {
 //consumer events
 Register register = 1;

 //producer events
 Block block = 2;
 Generic generic = 3;
 }
}

Per the above definition, an event has to be one of Register,
Block or Generic.

As mentioned in the previous sections, a consumer creates an event bus
by establishing a connection with the producer and sending a
Register event. The Register event is essentially an array of
Interest messages declaring the events of interest to the consumer.

message Interest {
 enum ResponseType {
 //don't send events (used to cancel interest)
 DONTSEND = 0;
 //send protobuf objects
 PROTOBUF = 1;
 //marshall into JSON structure
 JSON = 2;
 }
 string eventType = 1;
 ResponseType responseType = 2;
}

Events can be sent directly as protobuf structures or can be sent as
JSON structures by specifying the responseType appropriately.

Currently, the producer framework can generate a Block or a
Generic event. A Block is a message used for encapsulating
properties of a block in the blockchain.

4. Security

This section discusses the setting depicted in the figure below. In
particular, the system consists of the following entities: membership
management infrastructure, i.e., a set of entities that are responsible
for identifying an individual user (using any form of identification
considered in the system, e.g., credit cards, id-cards), open an account
for that user to be able to register, and issue the necessary
credentials to successfully create transactions and deploy or invoke
chaincode successfully through the fabric. [image: figure-architecture] *
Peers, that are classified as validating peers, and non-validating
peers. Validating peers (also known as validators) order and process
(check validity, execute, and add to the blockchain) user-messages
(transactions) submitted to the network. Non validating peers (also
known as peers) receive user transactions on behalf of users, and after
some fundamental validity checks, they forward the transactions to their
neighboring validating peers. Peers maintain an up-to-date copy of the
blockchain, but in contradiction to validators, they do not execute
transactions (a process also known as transaction validation). * End
users of the system, that have registered to our membership service
administration, after having demonstrated ownership of what is
considered identity in the system, and have obtained credentials to
install the client-software and submit transactions to the system. *
Client-software, the software that needs to be installed at the client
side for the latter to be able to complete his registration to our
membership service and submit transactions to the system. * Online
wallets, entities that are trusted by a user to maintain that user’s
credentials, and submit transactions solely upon user request to the
network. Online wallets come with their own software at the client-side,
that is usually light-weight, as the client only needs to authenticate
himself and his requests to the wallet. While it can be the case that
peers can play the role of online wallet for a set of users, in the
following sessions the security of online wallets is detailed
separately.

Users who wish to make use of the fabric, open an account at the
membership management administration, by proving ownership of identity
as discussed in previous sections, new chaincodes are announced to the
blockchain network by the chaincode creator (developer) through the
means of a deployment transaction that the client-software would
construct on behalf of the developer. Such transaction is first received
by a peer or validator, and afterwards circulated in the entire network
of validators, this transaction is executed and finds its place to the
blockchain network. Users can also invoke a function of an already
deployed chain-code through an invocation transaction.

The next section provides a summary of the business goals of the system
that drive the security requirements. We then overview the security
components and their operation and show how this design fulfills the
security requirements.

4.1 Business security requirements

This section presents business security requirements that are relevant
to the context of the fabric. Incorporation of identity and role
management.

In order to adequately support real business applications it is
necessary to progress beyond ensuring cryptographic continuity. A
workable B2B system must consequently move towards addressing
proven/demonstrated identities or other attributes relevant to
conducting business. Business transactions and consumer interactions
with financial institutions need to be unambiguously mapped to account
holders. Business contracts typically require demonstrable affiliation
with specific institutions and/or possession of other specific
properties of transacting parties. Accountability and non-frameability
are two reasons that identity management is a critical component of such
systems.

Accountability means that users of the system, individuals, or
corporations, who misbehave can be traced back and be set accountable
for their actions. In many cases, members of a B2B system are required
to use their identities (in some form) to participate in the system, in
a way such that accountability is guaranteed. Accountability and
non-frameability are both essential security requirements in B2B systems
and they are closely related. That is, a B2B system should guarantee
that an honest user of such system cannot be framed to be accused as
responsible for transactions originated by other users.

In addition a B2B system should be renewable and flexible in order to
accommodate changes of participants’s roles and/or affiliations.

Transactional privacy.

In B2B relationships there is a strong need for transactional privacy,
i.e., allowing the end-user of a system to control the degree to which
it interacts and shares information with its environment. For example, a
corporation doing business through a transactional B2B system requires
that its transactions are not visible to other corporations or
industrial partners that are not authorized to share classified
information with.

Transactional privacy in the fabric is offered by the mechanisms to
achieve two properties with respect to non authorized users:

		Transaction anonymity, where the owner of a transaction is hidden
among the so called anonymity set, which in the fabric, is the set
of users.

		Transaction unlinkability, where two or more transactions of the same
user should not be linked as such.

Clearly depending on the context, non-authorized users can be anyone
outside the system, or a subset of users.

Transactional privacy is strongly associated to the confidentiality of
the content of a contractual agreement between two or more members of a
B2B system, as well as to the anonymity and unlinkability of any
authentication mechanism that should be in place within transactions.

Reconciling transactional privacy with identity management.

As described later in this document, the approach taken here to
reconcile identity management with user privacy and to enable
competitive institutions to transact effectively on a common blockchain
(for both intra- and inter-institutional transactions) is as follows:

		add certificates to transactions to implement a “permissioned”
blockchain

		utilize a two-level system:

		(relatively) static enrollment certificates (ECerts), acquired via
registration with an enrollment certificate authority (CA).

		transaction certificates (TCerts) that faithfully but pseudonymously
represent enrolled users, acquired via a transaction CA.

		offer mechanisms to conceal the content of transactions to
unauthorized members of the system.

Audit support. Commercial systems are occasionally subjected to
audits. Auditors in such cases should be given the means to check a
certain transaction, or a certain group of transactions, the activity of
a particular user of the system, or the operation of the system itself.
Thus, such capabilities should be offered by any system featuring
transactions containing contractual agreements between business
partners.

4.2 User Privacy through Membership Services

Membership Services consists of an infrastructure of several entities
that together manage the identity and privacy of users on the network.
These services validate user’s identity, register the user in the
system, and provide all the credentials needed for him/her to be an
active and compliant participant able to create and/or invoke
transactions. A Public Key Infrastructure (PKI) is a framework based on
public key cryptography that ensures not only the secure exchange of
data over public networks but also affirms the identity of the other
party. A PKI manages the generation, distribution and revocation of keys
and digital certificates. Digital certificates are used to establish
user credentials and to sign messages. Signing messages with a
certificate ensures that the message has not been altered. Typically a
PKI has a Certificate Authority (CA), a Registration Authority (RA), a
certificate database, and a certificate storage. The RA is a trusted
party that authenticates users and vets the legitimacy of data,
certificates or other evidence submitted to support the user’s request
for one or more certificates that reflect that user’s identity or other
properties. A CA, upon advice from an RA, issues digital certificates
for specific uses and is certified directly or hierarchically by a root
CA. Alternatively, the user-facing communications and due diligence
responsibilities of the RA can be subsumed as part of the CA. Membership
Services is composed of the entities shown in the following figure.
Introduction of such full PKI reinforces the strength of this system for
B2B (over, e.g. Bitcoin).

[image: Figure 1]
Figure 1

Root Certificate Authority (Root CA): entity that represents the trust
anchor for the PKI scheme. Digital certificates verification follows a
chain of trust. The Root CA is the top-most CA in the PKI hierarchy.

Registration Authority (RA): a trusted entity that can ascertain the
validity and identity of users who want to participate in the
permissioned blockchain. It is responsible for out-of-band communication
with the user to validate his/her identity and role. It creates
registration credentials needed for enrollment and information on root
of trust.

Enrollment Certificate Authority (ECA): responsible for issuing
Enrollment Certificates (ECerts) after validating the registration
credentials provided by the user.

Transaction Certificate Authority (TCA): responsible for issuing
Transaction Certificates (TCerts) after validating the enrollment
credentials provided by the user.

TLS Certificate Authority (TLS-CA): responsible for issuing TLS
certificates and credentials that allow the user to make use of its
network. It validates the credential(s) or evidence provided by the user
that justifies issuance of a TLS certificate that includes specific
information pertaining to the user.

In this specification, membership services is expressed through the
following associated certificates issued by the PKI:

Enrollment Certificates (ECerts) ECerts are long-term certificates.
They are issued for all roles, i.e. users, non-validating peers, and
validating peers. In the case of users, who submit transactions for
candidate incorporation into the blockchain and who also own TCerts
(discussed below), there are two possible structure and usage models for
ECerts:

		Model A: ECerts contain the identity/enrollmentID of their owner and
can be used to offer only nominal entity-authentication for TCert
requests and/or within transactions. They contain the public part of
two key pairs – a signature key-pair and an encryption/key agreement
key-pair. ECerts are accessible to everyone.

		Model B: ECerts contain the identity/enrollmentID of their owner and
can be used to offer only nominal entity-authentication for TCert
requests. They contain the public part of a signature key-pair, i.e.,
a signature verification public key. ECerts are preferably accessible
to only TCA and auditors, as relying parties. They are invisible to
transactions, and thus (unlike TCerts) their signature key pairs do
not play a non-repudiation role at that level.

Transaction Certificates (TCerts) TCerts are short-term certificates
for each transaction. They are issued by the TCA upon authenticated
user-request. They securely authorize a transaction and may be
configured to not reveal the identities of who is involved in the
transaction or to selectively reveal such identity/enrollmentID
information. They include the public part of a signature key-pair, and
may be configured to also include the public part of a key agreement key
pair. They are issued only to users. They are uniquely associated to the
owner – they may be configured so that this association is known only by
the TCA (and to authorized auditors). TCerts may be configured to not
carry information of the identity of the user. They enable the user not
only to anonymously participate in the system but also prevent
linkability of transactions.

However, auditability and accountability requirements assume that the
TCA is able to retrieve TCerts of a given identity, or retrieve the
owner of a specific TCert. For details on how TCerts are used in
deployment and invocation transactions see Section 4.3, Transaction
Security offerings at the infrastructure level.

TCerts can accommodate encryption or key agreement public keys (as well
as digital signature verification public keys). If TCerts are thus
equipped, then enrollment certificates need not also contain encryption
or key agreement public keys.

Such a key agreement public key, Key_Agreement_TCertPub_Key, can be
generated by the transaction certificate authority (TCA) using a method
that is the same as that used to generate the
Signature_Verification_TCertPub_Key, but using an index value of
TCertIndex + 1 rather than TCertIndex, where TCertIndex is hidden within
the TCert by the TCA for recovery by the TCert owner.

The structure of a Transaction Certificate (TCert) is as follows: *
TCertID – transaction certificate ID (preferably generated by TCA
randomly in order to avoid unintended linkability via the Hidden
Enrollment ID field). * Hidden Enrollment ID:
AES_EncryptK(enrollmentID), where key K = [HMAC(Pre-K, TCertID)]256-bit
truncation and where three distinct key distribution scenarios for Pre-K
are defined below as (a), (b) and (c). * Hidden Private Keys
Extraction: AES_EncryptTCertOwner_EncryptKey(TCertIndex || known
padding/parity check vector) where || denotes concatenation, and where
each batch has a unique (per batch) time-stamp/random offset that is
added to a counter (initialized at 1 in this implementation) in order to
generate TCertIndex. The counter can be incremented by 2 each time in
order to accommodate generation by the TCA of the public keys and
recovery by the TCert owner of the private keys of both types, i.e.,
signature key pairs and key agreement key pairs. * Sign Verification
Public Key – TCert signature verification public key. * Key Agreement
Public Key – TCert key agreement public key. * Validity period – the
time window during which the transaction certificate can be used for the
outer/external signature of a transaction.

There are at least three useful ways to consider configuring the key
distribution scenario for the Hidden Enrollment ID field: (a) Pre-K is
distributed during enrollment to user clients, peers and auditors, and
is available to the TCA and authorized auditors. It may, for example, be
derived from Kchain (described subsequently in this specification) or be
independent of key(s) used for chaincode confidentiality.

(b) Pre-K is available to validators, the TCA and authorized auditors.
K is made available by a validator to a user (under TLS) in response to
a successful query transaction. The query transaction can have the same
format as the invocation transaction. Corresponding to Example 1 below,
the querying user would learn the enrollmentID of the user who created
the Deployment Transaction if the querying user owns one of the TCerts
in the ACL of the Deployment Transaction. Corresponding to Example 2
below, the querying user would learn the enrollmentID of the user who
created the Deployment Transaction if the enrollmentID of the TCert used
to query matches one of the affiliations/roles in the Access Control
field of the Deployment Transaction.

Example 1:

[image: Example 1]
Example 1

Example 2:

[image: Example 2]
Example 2

(c) Pre-K is available to the TCA and authorized auditors. The
TCert-specific K can be distributed the TCert owner (under TLS) along
with the TCert, for each TCert in the batch. This enables targeted
release by the TCert owner of K (and thus trusted notification of the
TCert owner’s enrollmentID). Such targeted release can use key agreement
public keys of the intended recipients and/or PKchain where SKchain is
available to validators as described subsequently in this specification.
Such targeted release to other contract participants can be incorporated
into a transaction or done out-of-band.

If the TCerts are used in conjunction with ECert Model A above, then
using (c) where K is not distributed to the TCert owner may suffice. If
the TCerts are used in conjunction with ECert Model A above, then the
Key Agreement Public Key field of the TCert may not be necessary.

The Transaction Certificate Authority (TCA) returns TCerts in batches,
each batch contains the KeyDF_Key (Key-Derivation-Function Key) which
is not included within every TCert but delivered to the client with the
batch of TCerts (using TLS). The KeyDF_Key allows the TCert owner to
derive TCertOwner_EncryptKey which in turn enables recovery of
TCertIndex from AES_EncryptTCertOwner_EncryptKey(TCertIndex || known
padding/parity check vector).

TLS-Certificates (TLS-Certs) TLS-Certs are certificates used for
system/component-to-system/component communications. They carry the
identity of their owner and are used for network level security.

This implementation of membership services provides the following basic
functionality: there is no expiration/revocation of ECerts; expiration
of TCerts is provided via the validity period time window; there is no
revocation of TCerts. The ECA, TCA, and TLS CA certificates are
self-signed, where the TLS CA is provisioned as a trust anchor.

4.2.1 User/Client Enrollment Process

The next figure has a high-level description of the user enrollment
process. It has an offline and an online phase.

[image: Registration]
Registration

Offline Process: in Step 1, each user/non-validating peer/validating
peer has to present strong identification credentials (proof of ID) to a
Registration Authority (RA) offline. This has to be done out-of-band to
provide the evidence needed by the RA to create (and store) an account
for the user. In Step 2, the RA returns the associated username/password
and trust anchor (TLS-CA Cert in this implementation) to the user. If
the user has access to a local client then this is one way the client
can be securely provisioned with the TLS-CA certificate as trust anchor.

Online Phase: In Step 3, the user connects to the client to request to
be enrolled in the system. The user sends his username and password to
the client. On behalf of the user, the client sends the request to the
PKI framework, Step 4, and receives a package, Step 5, containing
several certificates, some of which should correspond to private/secret
keys held by the client. Once the client verifies that the all the
crypto material in the package is correct/valid, it stores the
certificates in local storage and notifies the user. At this point the
user enrollment has been completed.

[image: Figure 4]
Figure 4

Figure 4 shows a detailed description of the enrollment process. The PKI
framework has the following entities – RA, ECA, TCA and TLS-CA. After
Step 1, the RA calls the function “AddEntry” to enter the
(username/password) in its database. At this point the user has been
formally registered into the system database. The client needs the
TLS-CA certificate (as trust anchor) to verify that the TLS handshake is
set up appropriately with the server. In Step 4, the client sends the
registration request to the ECA along with its enrollment public key and
additional identity information such as username and password (under the
TLS record layer protocol). The ECA verifies that such user really
exists in the database. Once it establishes this assurance the user has
the right to submit his/her enrollment public key and the ECA will
certify it. This enrollment information is of a one-time use. The ECA
updates the database marking that this registration request information
(username/password) cannot be used again. The ECA constructs, signs and
sends back to the client an enrollment certificate (ECert) that contains
the user’s enrollment public key (Step 5). It also sends the ECA
Certificate (ECA-Cert) needed in future steps (client will need to prove
to the TCA that his/her ECert was created by the proper ECA). (Although
the ECA-Cert is self-signed in the initial implementation, the TCA and
TLS-CA and ECA are co-located.) The client verifies, in Step 6, that the
public key inside the ECert is the one originally submitted by the
client (i.e. that the ECA is not cheating). It also verifies that all
the expected information within the ECert is present and properly
formed.

Similarly, In Step 7, the client sends a registration request to the
TLS-CA along with its public key and identity information. The TLS-CA
verifies that such user is in the database. The TLS-CA generates, and
signs a TLS-Cert that contains the user’s TLS public key (Step 8).
TLS-CA sends the TLS-Cert and its certificate (TLS-CA Cert). Step 9 is
analogous to Step 6, the client verifies that the public key inside the
TLS Cert is the one originally submitted by the client and that the
information in the TLS Cert is complete and properly formed. In Step 10,
the client saves all certificates in local storage for both
certificates. At this point the user enrollment has been completed.

In this implementation the enrollment process for validators is the same
as that for peers. However, it is possible that a different
implementation would have validators enroll directly through an on-line
process.

[image: Figure 5] [image: Figure 6]

Client: Request for TCerts batch needs to include (in addition to
count), ECert and signature of request using ECert private key (where
Ecert private key is pulled from Local Storage).

TCA generates TCerts for batch: Generates key derivation function key,
KeyDF_Key, as HMAC(TCA_KDF_Key, EnrollPub_Key). Generates each TCert
public key (using TCertPub_Key = EnrollPub_Key + ExpansionValue G,
where 384-bit ExpansionValue = HMAC(Expansion_Key, TCertIndex) and
384-bit Expansion_Key = HMAC(KeyDF_Key, “2”)). Generates each
AES_EncryptTCertOwner_EncryptKey(TCertIndex || known padding/parity
check vector), where || denotes concatenation and where
TCertOwner_EncryptKey is derived as [HMAC(KeyDF_Key, “1”)]256-bit
truncation.

Client: Deriving TCert private key from a TCert in order to be able to
deploy or invoke or query: KeyDF_Key and ECert private key need to be
pulled from Local Storage. KeyDF_Key is used to derive
TCertOwner_EncryptKey as [HMAC(KeyDF_Key, “1”)]256-bit truncation;
then TCertOwner_EncryptKey is used to decrypt the TCert field
AES_EncryptTCertOwner_EncryptKey(TCertIndex || known padding/parity
check vector); then TCertIndex is used to derive TCert private key:
TCertPriv_Key = (EnrollPriv_Key + ExpansionValue) modulo n, where
384-bit ExpansionValue = HMAC(Expansion_Key, TCertIndex) and 384-bit
Expansion_Key = HMAC(KeyDF_Key, “2”).

4.2.2 Expiration and revocation of certificates

It is practical to support expiration of transaction certificates. The
time window during which a transaction certificate can be used is
expressed by a ‘validity period’ field. The challenge regarding support
of expiration lies in the distributed nature of the system. That is, all
validating entities must share the same information; i.e. be consistent
with respect to the expiration of the validity period associated with
the transactions to be executed and validated. To guarantee that the
expiration of validity periods is done in a consistent manner across all
validators, the concept of validity period identifier is introduced.
This identifier acts as a logical clock enabling the system to uniquely
identify a validity period. At genesis time the “current validity
period” of the chain gets initialized by the TCA. It is essential that
this validity period identifier is given monotonically increasing values
over time, such that it imposes a total order among validity periods.

A special type of transactions, system transactions, and the validity
period identified are used together to announce the expiration of a
validity period to the Blockchain. System transactions refer to
contracts that have been defined in the genesis block and are part of
the infrastructure. The validity period identified is updated
periodically by the TCA invoking a system chaincode. Note that only the
TCA should be allowed to update the validity period. The TCA sets the
validity period for each transaction certificate by setting the
appropriate integer values in the following two fields that define a
range: ‘not-before’ and ‘not-after’ fields.

TCert Expiration: At the time of processing a TCert, validators read
from the state table associated with the ledger the value of ‘current
validity period’ to check if the outer certificate associated with the
transaction being evaluated is currently valid. That is, the current
value in the state table has to be within the range defined by TCert
sub-fields ‘not-before’ and ‘not-after’. If this is the case, the
validator continues processing the transaction. In the case that the
current value is not within range, the TCert has expired or is not yet
valid and the validator should stop processing the transaction.

ECert Expiration: Enrollment certificates have different validity period
length(s) than those in transaction certificates.

Revocation is supported in the form of Certificate Revocation Lists
(CRLs). CRLs identify revoked certificates. Changes to the CRLs,
incremental differences, are announced through the Blockchain.

4.3 Transaction security offerings at the infrastructure level

Transactions in the fabric are user-messages submitted to be included in
the ledger. As discussed in previous sections, these messages have a
specific structure, and enable users to deploy new chaincodes, invoke
existing chaincodes, or query the state of existing chaincodes.
Therefore, the way transactions are formed, announced and processed
plays an important role to the privacy and security offerings of the
entire system.

On one hand our membership service provides the means to authenticate
transactions as having originated by valid users of the system, to
disassociate transactions with user identities, but while efficiently
tracing the transactions a particular individual under certain
conditions (law enforcement, auditing). In other words, membership
services offer to transactions authentication mechanisms that marry
user-privacy with accountability and non-repudiation.

On the other hand, membership services alone cannot offer full privacy
of user-activities within the fabric. First of all, for privacy
provisions offered by the fabric to be complete, privacy-preserving
authentication mechanisms need to be accompanied by transaction
confidentiality. This becomes clear if one considers that the content of
a chaincode, may leak information on who may have created it, and thus
break the privacy of that chaincode’s creator. The first subsection
discusses transaction confidentiality.

Enforcing access control for the invocation of chaincode is an important
security requirement. The fabric exposes to the application (e.g.,
chaincode creator) the means for the application to perform its own
invocation access control, while leveraging the fabric’s membership
services. Section 4.4 elaborates on this.

Replay attacks is another crucial aspect of the security of the
chaincode, as a malicious user may copy a transaction that was added to
the Blockchain in the past, and replay it in the network to distort its
operation. This is the topic of Section 4.3.3.

The rest of this Section presents an overview of how security mechanisms
in the infrastructure are incorporated in the transactions’ lifecycle,
and details each security mechanism separately.

4.3.1 Security Lifecycle of Transactions

Transactions are created on the client side. The client can be either
plain client, or a more specialized application, i.e., piece of software
that handles (server) or invokes (client) specific chaincodes through
the blockchain. Such applications are built on top of the platform
(client) and are detailed in Section 4.4.

Developers of new chaincodes create a new deploy transaction by passing
to the fabric infrastructure: * the confidentiality/security version or
type they want the transaction to conform with, * the set of users who
wish to be given access to parts of the chaincode and a proper
representation of their (read) access rights * the chaincode
specification, * code metadata, containing information that should be
passed to the chaincode at the time of its execution (e.g.,
configuration parameters), and * transaction metadata, that is attached
to the transaction structure, and is only used by the application that
deployed the chaincode.

Invoke and query transactions corresponding to chaincodes with
confidentiality restrictions are created using a similar approach. The
transactor provides the identifier of the chaincode to be executed, the
name of the function to be invoked and its arguments. Optionally, the
invoker can pass to the transaction creation function, code invocation
metadata, that will be provided to the chaincode at the time of its
execution. Transaction metadata is another field that the application of
the invoker or the invoker himself can leverage for their own purposes.

Finally transactions at the client side, are signed by a certificate of
their creator and released to the network of validators. Validators
receive the confidential transactions, and pass them through the
following phases: * pre-validation phase, where validators validate
the transaction certificate against the accepted root certificate
authority, verify transaction certificate signature included in the
transaction (statically), and check whether the transaction is a replay
(see, later section for details on replay attack protection). *
consensus phase, where the validators add this transaction to the
total order of transactions (ultimately included in the ledger) *
pre-execution phase, where validators verify the validity of the
transaction / enrollment certificate against the current validity
period, decrypt the transaction (if the transaction is encrypted), and
check that the transaction’s plaintext is correctly formed(e.g.,
invocation access control is respected, included TCerts are correctly
formed); mini replay-attack check is also performed here within the
transactions of the currently processed block. * execution phase,
where the (decrypted) chaincode is passed to a container, along with the
associated code metadata, and is executed * commit phase, where
(encrypted) updates of that chaincodes state is committed to the ledger
with the transaction itself.

4.3.2 Transaction confidentiality

Transaction confidentiality requires that under the request of the
developer, the plain-text of a chaincode, i.e., code, description, is
not accessible or inferable (assuming a computational attacker) by any
unauthorized entities(i.e., user or peer not authorized by the
developer). For the latter, it is important that for chaincodes with
confidentiality requirements the content of both deploy and invoke
transactions remains concealed. In the same spirit, non-authorized
parties, should not be able to associate invocations (invoke
transactions) of a chaincode to the chaincode itself (deploy
transaction) or these invocations to each other.

Additional requirements for any candidate solution is that it respects
and supports the privacy and security provisions of the underlying
membership service. In addition, it should not prevent the enforcement
of any invocation access control of the chain-code functions in the
fabric, or the implementation of enforcement of access-control
mechanisms on the application (See Subsection 4.4).

In the following is provided the specification of transaction
confidentiality mechanisms at the granularity of users. The last
subsection provides some guidelines on how to extend this functionality
at the level of validators. Information on the features supported in
current release and its security provisions, you can find in Section
4.7.

The goal is to achieve a design that will allow for granting or
restricting access to an entity to any subset of the following parts of
a chain-code: 1. chaincode content, i.e., complete (source) code of the
chaincode, 2. chaincode function headers, i.e., the prototypes of the
functions included in a chaincode, 3. chaincode [invocations &] state,
i.e., successive updates to the state of a specific chaincode, when one
or more functions of its are invoked 4. all the above

Notice, that this design offers the application the capability to
leverage the fabric’s membership service infrastructure and its public
key infrastructure to build their own access control policies and
enforcement mechanisms.

4.3.2.1 Confidentiality against users

To support fine-grained confidentiality control, i.e., restrict
read-access to the plain-text of a chaincode to a subset of users that
the chaincode creator defines, a chain is bound to a single long-term
encryption key-pair (PKchain, SKchain). Though initially this key-pair
is to be stored and maintained by each chain’s PKI, in later releases,
however, this restriction will be moved away, as chains (and the
associated key-pairs) can be triggered through the Blockchain by any
user with special (admin) privileges (See, Section 4.3.2.2).

Setup. At enrollment phase, users obtain (as before) an enrollment
certificate, denoted by Certui for user ui, while each validator vj
obtain its enrollment certificate denoted by Certvj. Enrollment would
grant users and validators the following credentials:

		Users:

		claim and grant themselves signing key-pair (spku, ssku),

		claim and grant themselves encryption key-pair (epku, esku),

		obtain the encryption (public) key of the chain PKchain

		Validators:

		claim and grant themselves signing key-pair (spkv, sskv),

		claim and grant themselves an encryption key-pair (epkv, eskv),

		obtain the decryption (secret) key of the chain SKchain

Thus, enrollment certificates contain the public part of two key-pairs:
* one signature key-pair [denoted by (spkvj,sskvj) for validators and
by (spkui, sskui) for users], and * an encryption key-pair [denoted by
(epkvj,eskvj) for validators and (epkui, eskui) for users]

Chain, validator and user enrollment public keys are accessible to
everyone.

In addition to enrollment certificates, users who wish to anonymously
participate in transactions issue transaction certificates. For
simplicity transaction certificates of a user ui are denoted by
TCertui. Transaction certificates include the public part of a
signature key-pair denoted by

(tpkui,tskui).

The following section provides a high level description of how
transaction format accommodates read-access restrictions at the
granularity of users.

Structure of deploy transaction. The following figure depicts the
structure of a typical deploy transaction with confidentiality enabled.

[image: FirstRelease-deploy]
FirstRelease-deploy

One can notice that a deployment transaction consists of several
sections: * Section general-info: contains the administration details
of the transaction, i.e., which chain this transaction corresponds to
(chained), the type of transaction (that is set to ‘’deplTrans’‘), the
version number of confidentiality policy implemented, its creator
identifier (expressed by means of transaction certificate TCert of
enrollment certificate Cert), and a Nonce, that facilitates primarily
replay-attack resistance techniques. * Section code-info: contains
information on the chain-code source code, and function headers. As
shown in the figure below, there is a symmetric key used for the
source-code of the chaincode (KC), and another symmetric key used for
the function prototypes (KH). A signature of the creator of the
chaincode is included on the plain-text code such that the latter cannot
be detached from the transaction and replayed by another party. *
Section chain-validators: where appropriate key material is passed to
the validators for the latter to be able to (i) decrypt the chain-code
source (KC), (ii) decrypt the headers, and (iii) encrypt the state when
the chain-code has been invoked accordingly(KS). In particular, the
chain-code creator generates an encryption key-pair for the chain-code
it deploys (PKC, SKC). It then uses PKC to encrypt all the keys
associated to the chain-code:

[(‘’code’‘,KC) ,(‘’headr’‘,KH),(‘’code-state’‘,KS), SigTCertuc(*)]PKc,

and passes the secret key SKC to the validators using the chain-specific
public key:

[(‘’chaincode’‘,SKC), SigTCertuc(*)]PKchain.

		Section contract-users: where the public encryption keys of the
contract users, i.e., users who are given read-access to parts of the
chaincode, are used to encrypt the keys associated to their access
rights:

		SKc for the users to be able to read any message associated to that
chain-code (invocation, state, etc),

		KC for the user to be able to read only the contract code,

		KH for the user to only be able to read the headers,

		KS for the user to be able to read the state associated to that
contract.

Finally users are given the contract’s public key PKc, for them to be
able to encrypt information related to that contract for the validators
(or any in possession of SKc) to be able to read it. Transaction
certificate of each contract user is appended to the transaction and
follows that user’s message. This is done for users to be able to easily
search the blockchain for transactions they have been part of. Notice
that the deployment transaction also appends a message to the creator uc
of the chain-code, for the latter to be able to retrieve this
transaction through parsing the ledger and without keeping any state
locally.

The entire transaction is signed by a certificate of the chaincode
creator, i.e., enrollment or transaction certificate as decided by the
latter. Two noteworthy points: * Messages that are included in a
transaction in an encrypted format, i.e., code-functions, code-hdrs, are
signed before they are encrypted using the same TCert the entire
transaction is signed with, or even with a different TCert or the ECert
of the user (if the transaction deployment should carry the identity of
its owner. A binding to the underlying transaction carrier should be
included in the signed message, e.g., the hash of the TCert the
transaction is signed, such that mix&match attacks are not possible.
Though we detail such attacks in Section 4.4, in these cases an attacker
who sees a transaction should not be able to isolate the ciphertext
corresponding to, e.g., code-info, and use it for another transaction of
her own. Clearly, such an ability would disrupt the operation of the
system, as a chaincode that was first created by user A, will now also
belong to malicious user B (who is not even able to read it). * To
offer the ability to the users to cross-verify they are given access to
the correct key, i.e., to the same key as the other contract users,
transaction ciphertexts that are encrypted with a key K are accompanied
by a commitment to K, while the opening of this commitment value is
passed to all users who are entitled access to K in contract-users, and
chain-validator sections. In this way, anyone who is entitled access to
that key can verify that the key has been properly passed to it. This
part is omitted in the figure above to avoid confusion.

Structure of invoke transaction. A transaction invoking the
chain-code triggering the execution of a function of the chain-code with
user-specified arguments is structured as depicted in the figure below.

[image: FirstRelease-deploy]
FirstRelease-deploy

Invocation transaction as in the case of deployment transaction consists
of a general-info section, a code-info section, a section for the
chain-validators, and one for the contract users, signed altogether
with one of the invoker’s transaction certificates.

		General-info follows the same structure as the corresponding section
of the deployment transaction. The only difference relates to the
transaction type that is now set to ‘’InvocTx’‘, and the chain-code
identifier or name that is now encrypted under the chain-specific
encryption (public) key.

		Code-info exhibits the same structure as the one of the deployment
transaction. Code payload, as in the case of deployment transaction,
consists of function invocation details (the name of the function
invoked, and associated arguments), code-metadata provided by the
application and the transaction’s creator (invoker’s u) certificate,
TCertu. Code payload is signed by the transaction certificate TCertu
of the invoker u, as in the case of deploy transactions. As in the
case of deploy transactions, code-metadata, and tx-metadata, are
fields that are provided by the application and can be used (as
described in Section 4.4), for the latter to implement their own
access control mechanisms and roles.

		Finally, contract-users and chain-validator sections provide the key
the payload is encrypted with, the invoker’s key, and the chain
encryption key respectively. Upon receiving such transactions, the
validators decrypt [code-name]PKchain using the chain-specific secret
key SKchain and obtain the invoked chain-code identifier. Given the
latter, validators retrieve from their local storage the chaincode’s
decryption key SKc, and use it to decrypt chain-validators’ message,
that would equip them with the symmetric key KI the invocation
transaction’s payload was encrypted with. Given the latter,
validators decrypt code-info, and execute the chain-code function
with the specified arguments, and the code-metadata attached(See,
Section 4.4 for more details on the use of code-metadata). While the
chain-code is executed, updates of the state of that chain-code are
possible. These are encrypted using the state-specific key Ks that
was defined during that chain-code’s deployment. In particular, Ks is
used the same way KiTx is used in the design of our current release
(See, Section 4.7).

Structure of query transaction. Query transactions have the same
format as invoke transactions. The only difference is that Query
transactions do not affect the state of the chaincode, and thus there is
no need for the state to be retrieved (decrypted) and/or updated
(encrypted) after the execution of the chaincode completes.

4.3.2.2 Confidentiality against validators

This section deals with ways of how to support execution of certain
transactions under a different (or subset) sets of validators in the
current chain. This section inhibits IP restrictions and will be
expanded in the following few weeks.

4.3.3 Replay attack resistance

In replay attacks the attacker “replays” a message it “eavesdropped” on
the network or ‘’saw’’ on the Blockchain. Replay attacks are a big
problem here, as they can incur into the validating entities re-doing a
computationally intensive process (chaincode invocation) and/or affect
the state of the corresponding chaincode, while it requires minimal or
no power from the attacker side. To make matters worse, if a transaction
was a payment transaction, replays could potentially incur into the
payment being performed more than once, without this being the original
intention of the payer. Existing systems resist replay attacks as
follows: * Record hashes of transactions in the system. This solution
would require that validators maintain a log of the hash of each
transaction that has ever been announced through the network, and
compare a new transaction against their locally stored transaction
record. Clearly such approach cannot scale for large networks, and could
easily result into validators spending a lot of time to do the check of
whether a transaction has been replayed, than executing the actual
transaction. * Leverage state that is maintained per user identity
(Ethereum). Ethereum keeps some state, e.g., counter (initially set to
1) for each identity/pseudonym in the system. Users also maintain their
own counter (initially set to 0) for each identity/pseudonym of theirs.
Each time a user sends a transaction using an identity/pseudonym of his,
he increases his local counter by one and adds the resulting value to
the transaction. The transaction is subsequently signed by that user
identity and released to the network. When picking up this transaction,
validators check the counter value included within and compare it with
the one they have stored locally; if the value is the same, they
increase the local value of that identity’s counter and accept the
transaction. Otherwise, they reject the transaction as invalid or
replay. Although this would work well in cases where we have limited
number of user identities/pseudonyms (e.g., not too large), it would
ultimately not scale in a system where users use a different identifier
(transaction certificate) per transaction, and thus have a number of
user pseudonyms proportional to the number of transactions.

Other asset management systems, e.g., Bitcoin, though not directly
dealing with replay attacks, they resist them. In systems that manage
(digital) assets, state is maintained on a per asset basis, i.e.,
validators only keep a record of who owns what. Resistance to replay
attacks come as a direct result from this, as replays of transactions
would be immediately be deemed as invalid by the protocol (since can
only be shown to be derived from older owners of an asset/coin). While
this would be appropriate for asset management systems, this does not
abide with the needs of a Blockchain systems with more generic use than
asset management.

In the fabric, replay attack protection uses a hybrid approach. That is,
users add in the transaction a nonce that is generated in a different
manner depending on whether the transaction is anonymous (followed and
signed by a transaction certificate) or not (followed and signed by a
long term enrollment certificate). More specifically:

		Users submitting a transaction with their enrollment certificate
should include in that transaction a nonce that is a function of the
nonce they used in the previous transaction they issued with the same
certificate (e.g., a counter function or a hash). The nonce included
in the first transaction of each enrollment certificate can be either
pre-fixed by the system (e.g., included in the genesis block) or
chosen by the user. In the first case, the genesis block would need
to include nonceall , i.e., a fixed number and the nonce used by user
with identity IDA for his first enrollment certificate signed
transaction would be

nonceround0IDA <- hash(IDA, nonceall),

where IDA appears in the enrollment certificate. From that point
onward successive transactions of that user with enrollment
certificate would include a nonce as follows

nonceroundiIDA <- hash(nonceround{i-1}IDA),

that is the nonce of the ith transaction would be using the hash of
the nonce used in the {i-1}th transaction of that certificate.
Validators here continue to process a transaction they receive, as
long as it satisfies the condition mentioned above. Upon successful
validation of transaction’s format, the validators update their
database with that nonce.

Storage overhead:

		on the user side: only the most recently used nonce,

		on validator side: O(n), where n is the number of users.

		Users submitting a transaction with a transaction certificate should
include in the transaction a random nonce, that would guarantee that
two transactions do not result into the same hash. Validators add the
hash of this transaction in their local database if the transaction
certificate used within it has not expired. To avoid storing large
amounts of hashes, validity periods of transaction certificates are
leveraged. In particular validators maintain an updated record of
received transactions’ hashes within the current or future validity
period.

Storage overhead (only makes sense for validators here): O(m), where
m is the approximate number of transactions within a validity period and
corresponding validity period identifier (see below).

4.4 Access control features on the application

An application, is a piece of software that runs on top of a Blockchain
client software, and, performs a special task over the Blockchain, i.e.,
restaurant table reservation. Application software have a version of
developer, enabling the latter to generate and manage a couple of
chaincodes that are necessary for the business this application serves,
and a client-version that would allow the application’s end-users to
make use of the application, by invoking these chain-codes. The use of
the Blockchain can be transparent to the application end-users or not.

This section describes how an application leveraging chaincodes can
implement its own access control policies, and guidelines on how our
Membership services PKI can be leveraged for the same purpose.

The presentation is divided into enforcement of invocation access
control, and enforcement of read-access control by the application.

4.4.1 Invocation access control

To allow the application to implement its own invocation access control
at the application layer securely, special support by the fabric must be
provided. In the following we elaborate on the tools exposed by the
fabric to the application for this purpose, and provide guidelines on
how these should be used by the application for the latter to enforce
access control securely.

Support from the infrastructure. For the chaincode creator, let it
be, uc, to be able to implement its own invocation access control at
the application layer securely, special support by the fabric must be
provided. More specifically fabric layer gives access to following
capabilities:

		The client-application can request the fabric to sign and verify any
message with specific transaction certificates or enrollment
certificate the client owns; this is expressed via the Certificate
Handler interface

		The client-application can request the fabric a unique binding to
be used to bind authentication data of the application to the
underlying transaction transporting it; this is expressed via the
Transaction Handler interface

		Support for a transaction format, that allows for the application to
specify metadata, that are passed to the chain-code at deployment,
and invocation time; the latter denoted by code-metadata.

The Certificate Handler interface allows to sign and verify any
message using signing key-pair underlying the associated certificate.
The certificate can be a TCert or an ECert.

// CertificateHandler exposes methods to deal with an ECert/TCert
type CertificateHandler interface {

 // GetCertificate returns the certificate's DER
 GetCertificate() []byte

 // Sign signs msg using the signing key corresponding to the certificate
 Sign(msg []byte) ([]byte, error)

 // Verify verifies msg using the verifying key corresponding to the certificate
 Verify(signature []byte, msg []byte) error

 // GetTransactionHandler returns a new transaction handler relative to this certificate
 GetTransactionHandler() (TransactionHandler, error)
}

The Transaction Handler interface allows to create transactions and
give access to the underlying binding that can be leveraged to link
application data to the underlying transaction. Bindings are a concept
that have been introduced in network transport protocols (See,
https://tools.ietf.org/html/rfc5056), known as channel bindings, that
allows applications to establish that the two end-points of a secure
channel at one network layer are the same as at a higher layer by
binding authentication at the higher layer to the channel at the lower
layer. This allows applications to delegate session protection to lower
layers, which has various performance benefits. Transaction bindings
offer the ability to uniquely identify the fabric layer of the
transaction that serves as the container that application data uses to
be added to the ledger.

// TransactionHandler represents a single transaction that can be uniquely determined or identified by the output of the GetBinding method.
// This transaction is linked to a single Certificate (TCert or ECert).
type TransactionHandler interface {

 // GetCertificateHandler returns the certificate handler relative to the certificate mapped to this transaction
 GetCertificateHandler() (CertificateHandler, error)

 // GetBinding returns a binding to the underlying transaction (container)
 GetBinding() ([]byte, error)

 // NewChaincodeDeployTransaction is used to deploy chaincode
 NewChaincodeDeployTransaction(chaincodeDeploymentSpec *obc.ChaincodeDeploymentSpec, uuid string) (*obc.Transaction, error)

 // NewChaincodeExecute is used to execute chaincode's functions
 NewChaincodeExecute(chaincodeInvocation *obc.ChaincodeInvocationSpec, uuid string) (*obc.Transaction, error)

 // NewChaincodeQuery is used to query chaincode's functions
 NewChaincodeQuery(chaincodeInvocation *obc.ChaincodeInvocationSpec, uuid string) (*obc.Transaction, error)
}

For version 1, binding consists of the hash(TCert, Nonce), where
TCert, is the transaction certificate used to sign the entire
transaction, while Nonce, is the nonce number used within.

The Client interface is more generic, and offers a mean to get
instances of the previous interfaces.

type Client interface {

 ...

 // GetEnrollmentCertHandler returns a CertificateHandler whose certificate is the enrollment certificate
 GetEnrollmentCertificateHandler() (CertificateHandler, error)

 // GetTCertHandlerNext returns a CertificateHandler whose certificate is the next available TCert
 GetTCertificateHandlerNext() (CertificateHandler, error)

 // GetTCertHandlerFromDER returns a CertificateHandler whose certificate is the one passed
 GetTCertificateHandlerFromDER(der []byte) (CertificateHandler, error)

}

To support application-level access control lists for controlling
chaincode invocation, the fabric’s transaction and chaincode
specification format have an additional field to store
application-specific metadata. This field is depicted in both figures 1,
by code-metadata. The content of this field is decided by the
application, at the transaction creation time. The fabric layer treats
it as an unstructured stream of bytes.

message ChaincodeSpec {

 ...

 ConfidentialityLevel confidentialityLevel;
 bytes metadata;

 ...
}

message Transaction {
 ...

 bytes payload;
 bytes metadata;

 ...
}

To assist chaincode execution, at the chain-code invocation time, the
validators provide the chaincode with additional information, like the
metadata and the binding.

Application invocation access control. This section describes how
the application can leverage the means provided by the fabric to
implement its own access control on its chain-code functions. In the
scenario considered here, the following entities are identified:

		C: is a chaincode that contains a single function, e.g., called
hello;

		uc: is the C deployer;

		ui: is a user who is authorized to invoke C‘s functions. User
uc wants to ensure that only ui can invoke the function hello.

Deployment of a Chaincode: At deployment time, uc has full control on
the deployment transaction’s metadata, and can be used to store a list
of ACLs (one per function), or a list of roles that are needed by the
application. The format which is used to store these ACLs is up to the
deployer’s application, as the chain-code is the one who would need to
parse the metadata at execution time. To define each of these
lists/roles, uc can use any TCerts/Certs of the ui (or, if applicable,
or other users who have been assigned that privilege or role). Let this
be TCertui. The exchange of TCerts or Certs among the developer and
authorized users is done through an out-of-band channel.

Assume that the application of uc’s requires that to invoke the hello
function, a certain message M has to be authenticated by an authorized
invoker (ui, in our example). One can distinguish the following two
cases:

		M is one of the chaincode’s function arguments;

		M is the invocation message itself, i.e., function-name,
function-arguments.

Chaincode invocation: To invoke C, ui’s application needs to sign M
using the TCert/ECert, that was used to identify ui’s participation in
the chain-code at the associated deployment transaction’s metadata,
i.e., TCertui. More specifically, ui’s client application does the
following:

		Retrieves a CertificateHandler for Certui, cHandler;

		obtains a new TransactionHandler to issue the execute transaction,
txHandler relative to his next available TCert or his ECert;

		gets txHandler‘s binding by invoking txHandler.getBinding();

		signs ‘M* || txBinding’* by invoking cHandler.Sign(‘M*
|| txBinding’)*, let *sigma* be the output of the signing
function;

		issues a new execute transaction by invoking,
txHandler.NewChaincodeExecute(...). Now, sigma can be included in
the transaction as one of the arguments that are passed to the
function (case 1) or as part of the code-metadata section of the
payload(case 2).

Chaincode processing: The validators, who receive the execute
transaction issued ui, will provide to hello the following
information:

		The binding of the execute transaction, that can be independently
computed at the validator side;

		The metadata of the execute transaction (code-metadata section of
the transaction);

		The metadata of the deploy transaction (code-metadata component of
the corresponding deployment transaction).

Notice that sigma is either part of the arguments of the invoked
function, or stored inside the code-metadata of the invocation
transaction (properly formatted by the client-application). Application
ACLs are included in the code-metadata section, that is also passed to
the chain-code at execution time. Function hello is responsible for
checking that sigma is indeed a valid signature issued by TCertui, on
‘M || txBinding’.

4.4.2 Read access control

This section describes how the fabric’s infrastructure offers support to
the application to enforce its own read-access control policies at the
level of users. As in the case of invocation access control, the first
part describes the infrastructure features that can be leveraged by the
application for this purpose, and the last part details on the way
applications should use these tools.

For the purpose of this discussion, we leverage a similar example as
before, i.e.,

		C: is a chaincode that contains a single function, e.g., called
hello;

		uA: is the C‘s deployer, also known as application;

		ur: is a user who is authorized to read C‘s functions. User
uA wants to ensure that only ur can read the function hello.

Support from the infrastructure. For uA to be able to implement
its own read access control at the application layer securely, our
infrastructure is required to support the transaction format for code
deployment and invocation, as depicted in the two figures below.

More specifically fabric layer is required to provide the following
functionality:

		Provide minimal encryption capability such that data is only
decryptable by a validator’s (infrastructure) side; this means that
the infrastructure should move closer to our future version, where an
asymmetric encryption scheme is used for encrypting transactions.
More specifically, an asymmetric key-pair is used for the chain,
denoted by Kchain in the Figures above, but detailed in Section
Transaction Confidentiality.

		The client-application can request the infrastructure sitting on the
client-side to encrypt/decrypt information using a specific public
encryption key, or that client’s long-term decryption key.

		The transaction format offers the ability to the application to store
additional transaction metadata, that can be passed to the
client-application after the latter’s request. Transaction metadata,
as opposed to code-metadata, is not encrypted or provided to the
chain-code at execution time. Validators treat these metadata as a
list of bytes they are not responsible for checking validity of.

Application read-access control. For this reason the application may
request and obtain access to the public encryption key of the user
ur; let that be PKur. Optionally, ur may be providing uA
with a certificate of its, that would be leveraged by the application,
say, TCertur; given the latter, the application would, e.g., be able to
trace that user’s transactions w.r.t. the application’s chain-codes.
TCertur, and PKur, are exchanged in an out-of-band channel.

At deployment time, application uA performs the following steps:

		Uses the underlying infrastructure to encrypt the information of
C, the application would like to make accessible to ur, using
PKur. Let Cur be the resulting ciphertext.

		(optional) Cur can be concatenated with TCertur

		Passes the overall string as ‘’Tx-metadata’’ of the confidential
transaction to be constructed.

At invocation time, the client-application on ur’s node, would be able,
by obtaining the deployment transaction to retrieve the content of
C. It just needs to retrieve the tx-metadata field of the
associated deployment transaction, and trigger the decryption
functionality offered by our Blockchain infrastrucure’s client, for Cur.
Notice that it is the application’s responsibility to encrypt the
correct C for ur. Also, the use of tx-metadata field can be
generalized to accommodate application-needs. E.g., it can be that
invokers leverage the same field of invocation transactions to pass
information to the developer of the application, etc.

Important Note: It is essential to note that validators do not
provide any decryption oracle to the chain-code throughout its
execution. Its infrastructure is though responsible for decrypting the
payload of the chain-code itself (as well as the code-metadata fields
near it), and provide those to containers for deployment/execution.

4.5 Online wallet service

This section describes the security design of a wallet service, which in
this case is a node with which end-users can register, store their key
material and through which they can perform transactions. Because the
wallet service is in possession of the user’s key material, it is clear
that without a secure authorization mechanism in place a malicious
wallet service could successfully impersonate the user. We thus
emphasize that this design corresponds to a wallet service that is
trusted to only perform transactions on behalf of its clients, with
the consent of the latter. There are two cases for the registration of
an end-user to an online wallet service:

		When the user has registered with the registration authority and
acquired his/her <enrollID, enrollPWD>, but has not installed the
client to trigger and complete the enrollment process;

		When the user has already installed the client, and completed the
enrollment phase.

Initially, the user interacts with the online wallet service to issue
credentials that would allow him to authenticate to the wallet service.
That is, the user is given a username, and password, where username
identifies the user in the membership service, denoted by AccPub, and
password is the associated secret, denoted by AccSec, that is shared
by both user and service.

To enroll through the online wallet service, a user must provide the
following request object to the wallet service:

AccountRequest /* account request of u */
{
 OBCSecCtx , /* credentials associated to network */
 AccPub_u, /* account identifier of u */
 AccSecProof_u /* proof of AccSec_u*/
 }

OBCSecCtx refers to user credentials, which depending on the stage of
his enrollment process, can be either his enrollment ID and password,
<enrollID, enrollPWD> or his enrollment certificate and associated
secret key(s) (ECertu, sku), where sku denotes for simplicity signing
and decryption secret of the user. The content of AccSecProofu is an
HMAC on the rest fields of request using the shared secret. Nonce-based
methods similar to what we have in the fabric can be used to protect
against replays. OBCSecCtx would give the online wallet service the
necessary information to enroll the user or issue required TCerts.

For subsequent requests, the user u should provide to the wallet service
a request of similar format.

TransactionRequest /* account request of u */
{
 TxDetails, /* specifications for the new transaction */
 AccPub_u, /* account identifier of u */
 AccSecProof_u /* proof of AccSec_u */
}

Here, TxDetails refer to the information needed by the online service to
construct a transaction on behalf of the user, i.e., the type, and
user-specified content of the transaction.

AccSecProofu is again an HMAC on the rest fields of request using the
shared secret. Nonce-based methods similar to what we have in the fabric
can be used to protect against replays.

TLS connections can be used in each case with server side authentication
to secure the request at the network layer (confidentiality, replay
attack protection, etc)

4.6 Network security (TLS)

The TLS CA should be capable of issuing TLS certificates to
(non-validating) peers, validators, and individual clients (or browsers
capable of storing a private key). Preferably, these certificates are
distinguished by type, per above. TLS certificates for CAs of the
various types (such as TLS CA, ECA, TCA) could be issued by an
intermediate CA (i.e., a CA that is subordinate to the root CA). Where
there is not a particular traffic analysis issue, any given TLS
connection can be mutually authenticated, except for requests to the TLS
CA for TLS certificates.

In the current implementation the only trust anchor is the TLS CA
self-signed certificate in order to accommodate the limitation of a
single port to communicate with all three (co-located) servers, i.e.,
the TLS CA, the TCA and the ECA. Consequently, the TLS handshake is
established with the TLS CA, which passes the resultant session keys to
the co-located TCA and ECA. The trust in validity of the TCA and ECA
self-signed certificates is therefore inherited from trust in the TLS
CA. In an implementation that does not thus elevate the TLS CA above
other CAs, the trust anchor should be replaced with a root CA under
which the TLS CA and all other CAs are certified.

4.7 Restrictions in the current release

This section lists the restrictions of the current release of the
fabric. A particular focus is given on client operations and the design
of transaction confidentiality, as depicted in Sections 4.7.1 and 4.7.2.

		Client side enrollment and transaction creation is performed entirely
by a non-validating peer that is trusted not to impersonate the user.
See, Section 4.7.1 for more information.

		A minimal set of confidentiality properties where a chaincode is
accessible by any entity that is member of the system, i.e.,
validators and users who have registered through Hyperledger Fabric’s
Membership Services and is not accessible by anyone else. The latter
include any party that has access to the storage area where the
ledger is maintained, or other entities that are able to see the
transactions that are announced in the validator network. The design
of the first release is detailed in subsection 4.7.2

		The code utilizes self-signed certificates for entities such as the
enrollment CA (ECA) and the transaction CA (TCA)

		Replay attack resistance mechanism is not available

		Invocation access control can be enforced at the application layer:
it is up to the application to leverage the infrastructure’s tools
properly for security to be guaranteed. This means, that if the
application fails to bind the transaction binding offered by the
fabric, secure transaction processing may be at risk.

4.7.1 Simplified client

Client-side enrollment and transaction creation are performed entirely
by a non-validating peer that plays the role of an online wallet. In
particular, the end-user leverages their registration credentials to
open an account to a non-validating peer and uses these credentials to
further authorize the peer to build transactions on the user’s behalf.
It needs to be noted, that such a design does not provide secure
authorization for the peer to submit transactions on behalf of the
user, as a malicious peer could impersonate the user. Details on the
specifications of a design that deals with the security issues of online
wallet can be found is Section 4.5. Currently the maximum number of
peers a user can register to and perform transactions through is one.

4.7.2 Simplified transaction confidentiality

Disclaimer: The current version of transaction confidentiality is
minimal, and will be used as an intermediate step to reach a design that
allows for fine grained (invocation) access control enforcement in a
subsequent release.

In its current form, confidentiality of transactions is offered solely
at the chain-level, i.e., that the content of a transaction included in
a ledger, is readable by all members of that chain, i.e., validators and
users. At the same time, application auditors who are not members of the
system can be given the means to perform auditing by passively observing
the blockchain data, while guaranteeing that they are given access
solely to the transactions related to the application under audit. State
is encrypted in a way that such auditing requirements are satisfied,
while not disrupting the proper operation of the underlying consensus
network.

More specifically, currently symmetric key encryption is supported in
the process of offering transaction confidentiality. In this setting,
one of the main challenges that is specific to the blockchain setting,
is that validators need to run consensus over the state of the
blockchain, that, aside from the transactions themselves, also includes
the state updates of individual contracts or chaincode. Though this is
trivial to do for non-confidential chaincode, for confidential
chaincode, one needs to design the state encryption mechanism such that
the resulting ciphertexts are semantically secure, and yet, identical if
the plaintext state is the same.

To overcome this challenge, the fabric utilizes a key hierarchy that
reduces the number of ciphertexts that are encrypted under the same key.
At the same time, as some of these keys are used for the generation of
IVs, this allows the validating parties to generate exactly the same
ciphertext when executing the same transaction (this is necessary to
remain agnostic to the underlying consensus algorithm) and offers the
possibility of controlling audit by disclosing to auditing entities only
the most relevant keys.

Method description: Membership service generates a symmetric key for
the ledger (Kchain) that is distributed at registration time to all the
entities of the blockchain system, i.e., the clients and the validating
entities that have issued credentials through the membership service of
the chain. At enrollment phase, user obtain (as before) an enrollment
certificate, denoted by Certui for user ui , while each validator vj
obtains its enrollment certificate denoted by Certvj.

Entity enrollment would be enhanced, as follows. In addition to
enrollment certificates, users who wish to anonymously participate in
transactions issue transaction certificates. For simplicity transaction
certificates of a user ui are denoted by TCertui. Transaction
certificates include the public part of a signature key-pair denoted by
(tpkui,tskui).

In order to defeat crypto-analysis and enforce confidentiality, the
following key hierarchy is considered for generation and validation of
confidential transactions: To submit a confidential transaction (Tx) to
the ledger, a client first samples a nonce (N), which is required to be
unique among all the transactions submitted to the blockchain, and
derive a transaction symmetric key (KTx) by applying the HMAC function
keyed with Kchain and on input the nonce, KTx= HMAC(Kchain, N). From
KTx, the client derives two AES keys: KTxCID as HMAC(KTx, c1), KTxP as
HMAC(KTx, c2)) to encrypt respectively the chain-code name or identifier
CID and code (or payload) P. c1, c2 are public constants. The nonce, the
Encrypted Chaincode ID (ECID) and the Encrypted Payload (EP) are added
in the transaction Tx structure, that is finally signed and so
authenticated. Figure below shows how encryption keys for the client’s
transaction are generated. Arrows in this figure denote application of
an HMAC, keyed by the key at the source of the arrow and using the
number in the arrow as argument. Deployment/Invocation transactions’
keys are indicated by d/i respectively.

[image: FirstRelease-clientSide]
FirstRelease-clientSide

To validate a confidential transaction Tx submitted to the blockchain by
a client, a validating entity first decrypts ECID and EP by re-deriving
KTxCID and KTxP from Kchain and Tx.Nonce as done before. Once the
Chaincode ID and the Payload are recovered the transaction can be
processed.

[image: FirstRelease-validatorSide]
FirstRelease-validatorSide

When V validates a confidential transaction, the corresponding chaincode
can access and modify the chaincode’s state. V keeps the chaincode’s
state encrypted. In order to do so, V generates symmetric keys as
depicted in the figure above. Let iTx be a confidential transaction
invoking a function deployed at an early stage by the confidential
transaction dTx (notice that iTx can be dTx itself in the case, for
example, that dTx has a setup function that initializes the chaincode’s
state). Then, V generates two symmetric keys KIV and Kstate as follows:

		It computes as KdTx , i.e., the transaction key of the corresponding
deployment transaction, and then Nstate = HMAC(Kdtx ,hash(Ni)), where
Ni is the nonce appearing in the invocation transaction, and hash a
hash function.

		It sets Kstate = HMAC(KdTx, c3 || Nstate), truncated opportunely
deeding on the underlying cipher used to encrypt; c3 is a constant
number

		It sets KIV = HMAC(KdTx, c4 || Nstate); c4 is a constant number

In order to encrypt a state variable S, a validator first generates the
IV as HMAC(KIV, crtstate) properly truncated, where crtstate is a
counter value that increases each time a state update is requested for
the same chaincode invocation. The counter is discarded after the
execution of the chaincode terminates. After IV has been generated, V
encrypts with authentication (i.e., GSM mode) the value of S
concatenated with Nstate(Actually, Nstate doesn’t need to be encrypted
but only authenticated). To the resulting ciphertext (CT), Nstate and
the IV used is appended. In order to decrypt an encrypted state CT||
Nstate’ , a validator first generates the symmetric keys KdTX’ ,Kstate’
using Nstate’ and then decrypts CT.

Generation of IVs: In order to be agnostic to any underlying consensus
algorithm, all the validating parties need a method to produce the same
exact ciphertexts. In order to do so, the validators need to use the
same IVs. Reusing the same IV with the same symmetric key completely
breaks the security of the underlying cipher. Therefore, the process
described before is followed. In particular, V first derives an IV
generation key KIV by computing HMAC(KdTX, c4 || Nstate), where c4 is
a constant number, and keeps a counter crtstate for the pair (dTx, iTx)
with is initially set to 0. Then, each time a new ciphertext has to be
generated, the validator generates a new IV by computing it as the
output of HMAC(KIV, crtstate) and then increments the crtstate by one.

Another benefit that comes with the above key hierarchy is the ability
to enable controlled auditing. For example, while by releasing Kchain
one would provide read access to the whole chain, by releasing only
Kstate for a given pair of transactions (dTx,iTx) access would be
granted to a state updated by iTx, and so on.

The following figures demonstrate the format of a deployment and
invocation transaction currently available in the code.

[image: FirstRelease-deploy]
FirstRelease-deploy

[image: FirstRelease-deploy]
FirstRelease-deploy

One can notice that both deployment and invocation transactions consist
of two sections:

		Section general-info: contains the administration details of the
transaction, i.e., which chain this transaction corresponds to (is
chained to), the type of transaction (that is set to ‘’deploymTx’’ or
‘’invocTx’‘), the version number of confidentiality policy
implemented, its creator identifier (expressed by means of TCert of
Cert) and a nonce (facilitates primarily replay-attack resistance
techniques).

		Section code-info: contains information on the chain-code source
code. For deployment transaction this is essentially the chain-code
identifier/name and source code, while for invocation chain-code is
the name of the function invoked and its arguments. As shown in the
two figures code-info in both transactions are encrypted ultimately
using the chain-specific symmetric key Kchain.

5. Byzantine Consensus

The pbft package is an implementation of the seminal
PBFT [http://dl.acm.org/citation.cfm?id=571640] consensus protocol
[1], which provides consensus among validators despite a threshold of
validators acting as Byzantine, i.e., being malicious or failing in an
unpredictable manner. In the default configuration, PBFT tolerates up to
t<n/3 Byzantine validators.

In the default configuration, PBFT is designed to run on at least 3t+1
validators (replicas), tolerating up to t potentially faulty
(including malicious, or Byzantine) replicas.

5.1 Overview

The pbft plugin provides an implementation of the PBFT consensus
protocol.

5.2 Core PBFT Functions

The following functions control for parallelism using a non-recursive
lock and can therefore be invoked from multiple threads in parallel.
However, the functions typically run to completion and may invoke
functions from the CPI passed in. Care must be taken to prevent
livelocks.

5.2.1 newPbftCore

Signature:

func newPbftCore(id uint64, config *viper.Viper, consumer innerCPI, ledger consensus.Ledger) *pbftCore

The newPbftCore constructor instantiates a new PBFT box instance,
with the specified id. The config argument defines operating
parameters of the PBFT network: number replicas N, checkpoint period
K, and the timeouts for request completion and view change duration.

		configuration key
		type
		example
value
		description

		general.N
		intege
r
		4
		Number of replicas

		general.K
		intege
r
		10
		Checkpoint period

		general.timeout
.request
		durati
on
		2s
		Max delay between request reception
and execution

		general.timeout
.viewchange
		durati
on
		2s
		Max delay between view-change start
and next request execution

The arguments consumer and ledger pass in interfaces that are
used to query the application state and invoke application requests once
they have been totally ordered. See the respective sections below for
these interfaces.

6. Application Programming Interface

The primary interface to the fabric is a REST API. The REST API allows
applications to register users, query the blockchain, and to issue
transactions. A CLI is also provided to cover a subset of the available
APIs for development purposes. The CLI enables developers to quickly
test chaincodes or query for status of transactions.

Applications interact with a non-validating peer node through the REST
API, which will require some form of authentication to ensure the entity
has proper privileges. The application is responsible for implementing
the appropriate authentication mechanism and the peer node will
subsequently sign the outgoing messages with the client identity.

[image: Reference architecture]

The fabric API design covers the categories below, though the
implementation is incomplete for some of them in the current release.
The REST API section will describe the APIs currently
supported.

		Identity - Enrollment to acquire or to revoke a certificate

		Address - Target and source of a transaction

		Transaction - Unit of execution on the ledger

		Chaincode - Program running on the ledger

		Blockchain - Contents of the ledger

		Network - Information about the blockchain peer network

		Storage - External store for files or documents

		Event Stream - Sub/pub events on the blockchain

6.1 REST Service

The REST service can be enabled (via configuration) on either validating
or non-validating peers, but it is recommended to only enable the REST
service on non-validating peers on production networks.

func StartOpenchainRESTServer(server *oc.ServerOpenchain, devops *oc.Devops)

This function reads the rest.address value in the core.yaml
configuration file, which is the configuration file for the peer
process. The value of the rest.address key defines the default
address and port on which the peer will listen for HTTP REST requests.

It is assumed that the REST service receives requests from applications
which have already authenticated the end user.

6.2 REST API

You can work with the REST API through any tool of your choice. For
example, the curl command line utility or a browser based client such as
the Firefox Rest Client or Chrome Postman. You can likewise trigger REST
requests directly through Swagger [http://swagger.io/]. To obtain
the REST API Swagger description, click
here [https://github.com/hyperledger/fabric/blob/master/core/rest/rest_api.json].
The currently available APIs are summarized in the following section.

6.2.1 REST Endpoints

		Block

		GET /chain/blocks/{block-id}

		Blockchain

		GET /chain

		Chaincode

		POST /chaincode

		Network

		GET /network/peers

		Registrar

		POST /registrar

		GET /registrar/{enrollmentID}

		DELETE /registrar/{enrollmentID}

		GET /registrar/{enrollmentID}/ecert

		GET /registrar/{enrollmentID}/tcert

		Transactions

		GET /transactions/{UUID}

6.2.1.1 Block API

		GET /chain/blocks/{block-id}

Use the Block API to retrieve the contents of various blocks from the
blockchain. The returned Block message structure is defined in section
3.2.1.1.

Block Retrieval Request:

GET host:port/chain/blocks/173

Block Retrieval Response:

{
 "transactions": [
 {
 "type": 3,
 "chaincodeID": "EgRteWNj",
 "payload": "Ch4IARIGEgRteWNjGhIKBmludm9rZRIBYRIBYhICMTA=",
 "uuid": "f5978e82-6d8c-47d1-adec-f18b794f570e",
 "timestamp": {
 "seconds": 1453758316,
 "nanos": 206716775
 },
 "cert": "MIIB/zCCAYWgAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMTI1MjE0MTE3WhcNMTYwNDI0MjE0MTE3WjArMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQ4wDAYDVQQDEwVsdWthczB2MBAGByqGSM49AgEGBSuBBAAiA2IABC/BBkt8izf6Ew8UDd62EdWFikJhyCPY5VO9Wxq9JVzt3D6nubx2jO5JdfWt49q8V1Aythia50MZEDpmKhtM6z7LHOU1RxuxdjcYDOvkNJo6pX144U4N1J8/D3A+97qZpKN/MH0wDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwDQYDVR0OBAYEBAECAwQwDwYDVR0jBAgwBoAEAQIDBDA9BgYqAwQFBgcBAf8EMABNbPHZ0e/2EToi0H8mkouuUDwurgBYuUB+vZfeMewBre3wXG0irzMtfwHlfECRDDAKBggqhkjOPQQDAwNoADBlAjAoote5zYFv91lHzpbEwTfJL/+r+CG7oMVFUFuoSlvBSCObK2bDIbNkW4VQ+ZC9GTsCMQC5GCgy2oZdHw/x7XYzG2BiqmRkLRTiCS7vYCVJXLivU65P984HopxW0cEqeFM9co0=",
 "signature": "MGUCMCIJaCT3YRsjXt4TzwfmD9hg9pxYnV13kWgf7e1hAW5Nar//05kFtpVlq83X+YtcmAIxAK0IQlCgS6nqQzZEGCLd9r7cg1AkQOT/RgoWB8zcaVjh3bCmgYHsoPAPgMsi3TJktg=="
 }
],
 "stateHash": "7ftCvPeHIpsvSavxUoZM0u7o67MPU81ImOJIO7ZdMoH2mjnAaAAafYy9MIH3HjrWM1/Zla/Q6LsLzIjuYdYdlQ==",
 "previousBlockHash": "lT0InRg4Cvk4cKykWpCRKWDZ9YNYMzuHdUzsaeTeAcH3HdfriLEcTuxrFJ76W4jrWVvTBdI1etxuIV9AO6UF4Q==",
 "nonHashData": {
 "localLedgerCommitTimestamp": {
 "seconds": 1453758316,
 "nanos": 250834782
 }
 }
}

6.2.1.2 Blockchain API

		GET /chain

Use the Chain API to retrieve the current state of the blockchain. The
returned BlockchainInfo message is defined below.

message BlockchainInfo {
 uint64 height = 1;
 bytes currentBlockHash = 2;
 bytes previousBlockHash = 3;
}

		height - Number of blocks in the blockchain, including the
genesis block.

		currentBlockHash - The hash of the current or last block.

		previousBlockHash - The hash of the previous block.

Blockchain Retrieval Request:

GET host:port/chain

Blockchain Retrieval Response:

{
 "height": 174,
 "currentBlockHash": "lIfbDax2NZMU3rG3cDR11OGicPLp1yebIkia33Zte9AnfqvffK6tsHRyKwsw0hZFZkCGIa9wHVkOGyFTcFxM5w==",
 "previousBlockHash": "Vlz6Dv5OSy0OZpJvijrU1cmY2cNS5Ar3xX5DxAi/seaHHRPdssrljDeppDLzGx6ZVyayt8Ru6jO+E68IwMrXLQ=="
}

6.2.1.3 Chaincode API

		POST /chaincode

Use the Chaincode API to deploy, invoke, and query chaincodes. The
deploy request requires the client to supply a path parameter,
pointing to the directory containing the chaincode in the file system.
The response to a deploy request is either a message containing a
confirmation of successful chaincode deployment or an error, containing
a reason for the failure. It also contains the generated chaincode
name in the message field, which is to be used in subsequent
invocation and query transactions to uniquely identify the deployed
chaincode.

To deploy a chaincode, supply the required ChaincodeSpec payload,
defined in section 3.1.2.2.

Deploy Request:

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "path":"github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02"
 },
 "input": {
 "function":"init",
 "args":["a", "1000", "b", "2000"]
 }
 },
 "id": "1"
}

Deploy Response:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "id": 1
}

With security enabled, modify the required payload to include the
secureContext element passing the enrollment ID of a logged in user
as follows:

Deploy Request with security enabled:

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "path":"github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02"
 },
 "input": {
 "function":"init",
 "args":["a", "1000", "b", "2000"]
 },
 "secureContext": "lukas"
 },
 "id": "1"
}

The invoke request requires the client to supply a name parameter,
which was previously returned in the response from the deploy
transaction. The response to an invocation request is either a message
containing a confirmation of successful execution or an error,
containing a reason for the failure.

To invoke a function within a chaincode, supply the required
ChaincodeSpec payload, defined in section
3.1.2.2.

Invoke Request:

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "input": {
 "function":"invoke",
 "args":["a", "b", "100"]
 }
 },
 "id": "3"
}

Invoke Response:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "5a4540e5-902b-422d-a6ab-e70ab36a2e6d"
 },
 "id": 3
}

With security enabled, modify the required payload to include the
secureContext element passing the enrollment ID of a logged in user
as follows:

Invoke Request with security enabled:

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "input": {
 "function":"invoke",
 "args":["a", "b", "100"]
 },
 "secureContext": "lukas"
 },
 "id": "3"
}

The query request requires the client to supply a name parameter,
which was previously returned in the response from the deploy
transaction. The response to a query request depends on the chaincode
implementation. The response will contain a message containing a
confirmation of successful execution or an error, containing a reason
for the failure. In the case of successful execution, the response will
also contain values of requested state variables within the chaincode.

To invoke a query function within a chaincode, supply the required
ChaincodeSpec payload, defined in section
3.1.2.2.

Query Request:

POST host:port/chaincode/

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "input": {
 "function":"query",
 "args":["a"]
 }
 },
 "id": "5"
}

Query Response:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "-400"
 },
 "id": 5
}

With security enabled, modify the required payload to include the
secureContext element passing the enrollment ID of a logged in user
as follows:

Query Request with security enabled:

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "input": {
 "function":"query",
 "args":["a"]
 },
 "secureContext": "lukas"
 },
 "id": "5"
}

6.2.1.4 Network API

Use the Network API to retrieve information about the network of peer
nodes comprising the blockchain fabric.

The /network/peers endpoint returns a list of all existing network
connections for the target peer node. The list includes both validating
and non-validating peers. The list of peers is returned as type
PeersMessage, containing an array of PeerEndpoint, defined in
section 3.1.1.

message PeersMessage {
 repeated PeerEndpoint peers = 1;
}

Network Request:

GET host:port/network/peers

Network Response:

{
 "peers": [
 {
 "ID": {
 "name": "vp1"
 },
 "address": "172.17.0.4:7051",
 "type": 1,
 "pkiID": "rUA+vX2jVCXev6JsXDNgNBMX03IV9mHRPWo6h6SI0KLMypBJLd+JoGGlqFgi+eq/"
 },
 {
 "ID": {
 "name": "vp3"
 },
 "address": "172.17.0.5:7051",
 "type": 1,
 "pkiID": "OBduaZJ72gmM+B9wp3aErQlofE0ulQfXfTHh377ruJjOpsUn0MyvsJELUTHpAbHI"
 },
 {
 "ID": {
 "name": "vp2"
 },
 "address": "172.17.0.6:7051",
 "type": 1,
 "pkiID": "GhtP0Y+o/XVmRNXGF6pcm9KLNTfCZp+XahTBqVRmaIumJZnBpom4ACayVbg4Q/Eb"
 }
]
}

6.2.1.5 Registrar API (member services)

		POST /registrar

		GET /registrar/{enrollmentID}

		DELETE /registrar/{enrollmentID}

		GET /registrar/{enrollmentID}/ecert

		GET /registrar/{enrollmentID}/tcert

Use the Registrar APIs to manage end user registration with the
certificate authority (CA). These API endpoints are used to register a
user with the CA, determine whether a given user is registered, and to
remove any login tokens for a target user from local storage, preventing
them from executing any further transactions. The Registrar APIs are
also used to retrieve user enrollment and transaction certificates from
the system.

The /registrar endpoint is used to register a user with the CA. The
required Secret payload is defined below. The response to the
registration request is either a confirmation of successful registration
or an error, containing a reason for the failure.

message Secret {
 string enrollId = 1;
 string enrollSecret = 2;
}

		enrollId - Enrollment ID with the certificate authority.

		enrollSecret - Enrollment password with the certificate
authority.

Enrollment Request:

POST host:port/registrar

{
 "enrollId": "lukas",
 "enrollSecret": "NPKYL39uKbkj"
}

Enrollment Response:

{
 "OK": "Login successful for user 'lukas'."
}

The GET /registrar/{enrollmentID} endpoint is used to confirm
whether a given user is registered with the CA. If so, a confirmation
will be returned. Otherwise, an authorization error will result.

Verify Enrollment Request:

GET host:port/registrar/jim

Verify Enrollment Response:

{
 "OK": "User jim is already logged in."
}

Verify Enrollment Request:

GET host:port/registrar/alex

Verify Enrollment Response:

{
 "Error": "User alex must log in."
}

The DELETE /registrar/{enrollmentID} endpoint is used to delete
login tokens for a target user. If the login tokens are deleted
successfully, a confirmation will be returned. Otherwise, an
authorization error will result. No payload is required for this
endpoint.

Remove Enrollment Request:

DELETE host:port/registrar/lukas

Remove Enrollment Response:

{
 "OK": "Deleted login token and directory for user lukas."
}

The GET /registrar/{enrollmentID}/ecert endpoint is used to retrieve
the enrollment certificate of a given user from local storage. If the
target user has already registered with the CA, the response will
include a URL-encoded version of the enrollment certificate. If the
target user has not yet registered, an error will be returned. If the
client wishes to use the returned enrollment certificate after
retrieval, keep in mind that it must be URL-decoded.

Enrollment Certificate Retrieval Request:

GET host:port/registrar/jim/ecert

Enrollment Certificate Retrieval Response:

{
 "OK": "-----BEGIN+CERTIFICATE-----%0AMIIBzTCCAVSgAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwNPQkMwHhcNMTYwMTIxMDYzNjEwWhcNMTYwNDIw%0AMDYzNjEwWjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNP%0AQkMwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAARSLgjGD0omuJKYrJF5ClyYb3sGEGTU%0AH1mombSAOJ6GAOKEULt4L919sbSSChs0AEvTX7UDf4KNaKTrKrqo4khCoboMg1VS%0AXVTTPrJ%2BOxSJTXFZCohVgbhWh6ZZX2tfb7%2BjUDBOMA4GA1UdDwEB%2FwQEAwIHgDAM%0ABgNVHRMBAf8EAjAAMA0GA1UdDgQGBAQBAgMEMA8GA1UdIwQIMAaABAECAwQwDgYG%0AUQMEBQYHAQH%2FBAE0MAoGCCqGSM49BAMDA2cAMGQCMGz2RR0NsJOhxbo0CeVts2C5%0A%2BsAkKQ7v1Llbg78A1pyC5uBmoBvSnv5Dd0w2yOmj7QIwY%2Bn5pkLiwisxWurkHfiD%0AxizmN6vWQ8uhTd3PTdJiEEckjHKiq9pwD%2FGMt%2BWjP7zF%0A-----END+CERTIFICATE-----%0A"
}

The /registrar/{enrollmentID}/tcert endpoint retrieves the
transaction certificates for a given user that has registered with the
certificate authority. If the user has registered, a confirmation
message will be returned containing an array of URL-encoded transaction
certificates. Otherwise, an error will result. The desired number of
transaction certificates is specified with the optional ‘count’ query
parameter. The default number of returned transaction certificates is 1;
and 500 is the maximum number of certificates that can be retrieved with
a single request. If the client wishes to use the returned transaction
certificates after retrieval, keep in mind that they must be
URL-decoded.

Transaction Certificate Retrieval Request:

GET host:port/registrar/jim/tcert

Transaction Certificate Retrieval Response:

{
 "OK": [
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQfwJORRED9RAsmSl%2FEowq1STBb%0A%2FoFteymZ96RUr%2BsKmF9PNrrUNvFZFhvukxZZjqhEcGiQqFyRf%2FBnVN%2BbtRzMo38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwSRWQFmErr0SmQO9AFP4GJYzQ%0APQMmcsCjKiJf%2Bw1df%2FLnXunCsCUlf%2FalIUaeSrT7MAoGCCqGSM49BAMDA0gAMEUC%0AIQC%2FnE71FBJd0hwNTLXWmlCJff4Yi0J%2BnDi%2BYnujp%2Fn9nQIgYWg0m0QFzddyJ0%2FF%0AKzIZEJlKgZTt8ZTlGg3BBrgl7qY%3D%0A-----END+CERTIFICATE-----%0A"
]
}

Transaction Certificate Retrieval Request:

GET host:port/registrar/jim/tcert?count=5

Transaction Certificate Retrieval Response:

{
 "OK": [
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A"
]
}

6.2.1.6 Transactions API

		GET /transactions/{UUID}

Use the Transaction API to retrieve an individual transaction matching
the UUID from the blockchain. The returned transaction message is
defined in section 3.1.2.1.

Transaction Retrieval Request:

GET host:port/transactions/f5978e82-6d8c-47d1-adec-f18b794f570e

Transaction Retrieval Response:

{
 "type": 3,
 "chaincodeID": "EgRteWNj",
 "payload": "Ch4IARIGEgRteWNjGhIKBmludm9rZRIBYRIBYhICMTA=",
 "uuid": "f5978e82-6d8c-47d1-adec-f18b794f570e",
 "timestamp": {
 "seconds": 1453758316,
 "nanos": 206716775
 },
 "cert": "MIIB/zCCAYWgAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMTI1MjE0MTE3WhcNMTYwNDI0MjE0MTE3WjArMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQ4wDAYDVQQDEwVsdWthczB2MBAGByqGSM49AgEGBSuBBAAiA2IABC/BBkt8izf6Ew8UDd62EdWFikJhyCPY5VO9Wxq9JVzt3D6nubx2jO5JdfWt49q8V1Aythia50MZEDpmKhtM6z7LHOU1RxuxdjcYDOvkNJo6pX144U4N1J8/D3A+97qZpKN/MH0wDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwDQYDVR0OBAYEBAECAwQwDwYDVR0jBAgwBoAEAQIDBDA9BgYqAwQFBgcBAf8EMABNbPHZ0e/2EToi0H8mkouuUDwurgBYuUB+vZfeMewBre3wXG0irzMtfwHlfECRDDAKBggqhkjOPQQDAwNoADBlAjAoote5zYFv91lHzpbEwTfJL/+r+CG7oMVFUFuoSlvBSCObK2bDIbNkW4VQ+ZC9GTsCMQC5GCgy2oZdHw/x7XYzG2BiqmRkLRTiCS7vYCVJXLivU65P984HopxW0cEqeFM9co0=",
 "signature": "MGUCMCIJaCT3YRsjXt4TzwfmD9hg9pxYnV13kWgf7e1hAW5Nar//05kFtpVlq83X+YtcmAIxAK0IQlCgS6nqQzZEGCLd9r7cg1AkQOT/RgoWB8zcaVjh3bCmgYHsoPAPgMsi3TJktg=="
}

6.3 CLI

The CLI includes a subset of the available APIs to enable developers to
quickly test and debug chaincodes or query for status of transactions.
CLI is implemented in Golang and operable on multiple OS platforms. The
currently available CLI commands are summarized in the following
section.

6.3.1 CLI Commands

To see what CLI commands are currently available in the implementation,
execute the following:

$ peer

You will receive a response similar to below:

Usage:
 peer [command]

Available Commands:
 node node specific commands.
 network network specific commands.
 chaincode chaincode specific commands.
 help Help about any command

Flags:
 -h, --help[=false]: help for peer
 --logging-level="": Default logging level and overrides, see core.yaml for full syntax

Use "peer [command] --help" for more information about a command.

Some of the available command line arguments for the peer command
are listed below:

		-c - constructor: function to trigger in order to initialize the
chaincode state upon deployment.

		-l - language: specifies the implementation language of the
chaincode. Currently, only Golang is supported.

		-n - name: chaincode identifier returned from the deployment
transaction. Must be used in subsequent invoke and query
transactions.

		-p - path: identifies chaincode location in the local file
system. Must be used as a parameter in the deployment transaction.

		-u - username: enrollment ID of a logged in user invoking the
transaction.

Not all of the above commands are fully implemented in the current
release. The fully supported commands that are helpful for chaincode
development and debugging are described below.

Note, that any configuration settings for the peer node listed in the
core.yaml configuration file, which is the configuration file for
the peer process, may be modified on the command line with an
environment variable. For example, to set the peer.id or the
peer.addressAutoDetect settings, one may pass the
CORE_PEER_ID=vp1 and CORE_PEER_ADDRESSAUTODETECT=true on the
command line.

6.3.1.1 node start

The CLI node start command will execute the peer process in either
the development or production mode. The development mode is meant for
running a single peer node locally, together with a local chaincode
deployment. This allows a chaincode developer to modify and debug their
code without standing up a complete network. An example for starting the
peer in development mode follows:

peer node start --peer-chaincodedev

To start the peer process in production mode, modify the above command
as follows:

peer node start

6.3.1.2 network login

The CLI network login command will login a user, that is already
registered with the CA, through the CLI. To login through the CLI, issue
the following command, where username is the enrollment ID of a
registered user.

peer network login <username>

The example below demonstrates the login process for user jim.

peer network login jim

The command will prompt for a password, which must match the enrollment
password for this user registered with the certificate authority. If the
password entered does not match the registered password, an error will
result.

22:21:31.246 [main] login -> INFO 001 CLI client login...
22:21:31.247 [main] login -> INFO 002 Local data store for client loginToken: /var/hyperledger/production/client/
Enter password for user 'jim': ************
22:21:40.183 [main] login -> INFO 003 Logging in user 'jim' on CLI interface...
22:21:40.623 [main] login -> INFO 004 Storing login token for user 'jim'.
22:21:40.624 [main] login -> INFO 005 Login successful for user 'jim'.

You can also pass a password for the user with -p parameter. An
example is below.

peer network login jim -p 123456

6.3.1.3 chaincode deploy

The CLI deploy command creates the docker image for the chaincode
and subsequently deploys the package to the validating peer. An example
is below.

peer chaincode deploy -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Function":"init", "Args": ["a","100", "b", "200"]}'

With security enabled, the command must be modified to pass an
enrollment id of a logged in user with the -u parameter. An example
is below.

peer chaincode deploy -u jim -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Function":"init", "Args": ["a","100", "b", "200"]}'

Note: If your GOPATH environment variable contains more than one
element, the chaincode must be found in the first one or deployment will
fail.

6.3.1.4 chaincode invoke

The CLI invoke command executes a specified function within the
target chaincode. An example is below.

peer chaincode invoke -n <name_value_returned_from_deploy_command> -c '{"Function": "invoke", "Args": ["a", "b", "10"]}'

With security enabled, the command must be modified to pass an
enrollment id of a logged in user with the -u parameter. An example
is below.

peer chaincode invoke -u jim -n <name_value_returned_from_deploy_command> -c '{"Function": "invoke", "Args": ["a", "b", "10"]}'

6.3.1.5 chaincode query

The CLI query command triggers a specified query method within the
target chaincode. The response that is returned depends on the chaincode
implementation. An example is below.

peer chaincode query -l golang -n <name_value_returned_from_deploy_command> -c '{"Function": "query", "Args": ["a"]}'

With security enabled, the command must be modified to pass an
enrollment id of a logged in user with the -u parameter. An example
is below.

peer chaincode query -u jim -l golang -n <name_value_returned_from_deploy_command> -c '{"Function": "query", "Args": ["a"]}'

7. Application Model

7.1 Composition of an Application

				An application follows a MVC-B architecture – Model, View, Control,
BlockChain.

		VIEW LOGIC – Mobile or Web UI interacting with control logic.

		CONTROL LOGIC – Coordinates between UI, Data Model and APIs to drive
transitions and chain-code.

		DATA MODEL – Application Data Model – manages off-chain data, including
Documents and large files.

		BLOCKCHAIN LOGIC – Blockchain logic are extensions of the Controller
Logic and Data Model, into the Blockchain realm. Controller logic is
enhanced by chaincode, and the data model is enhanced with transactions
on the blockchain.

For example, a Bluemix PaaS application using Node.js might have a Web
front-end user interface or a native mobile app with backend model on
Cloudant data service. The control logic may interact with 1 or more
chaincodes to process transactions on the blockchain.

7.2 Sample Application

8. Future Directions

8.1 Enterprise Integration

8.2 Performance and Scalability

8.3 Additional Consensus Plugins

8.4 Additional Languages

9.1 Authors

The following authors have written sections of this document: Binh Q
Nguyen, Elli Androulaki, Angelo De Caro, Sheehan Anderson, Manish Sethi,
Thorsten Kramp, Alessandro Sorniotti, Marko Vukolic, Florian Simon
Schubert, Jason K Yellick, Konstantinos Christidis, Srinivasan
Muralidharan, Anna D Derbakova, Dulce Ponceleon, David Kravitz, Diego
Masini.

9.2 Reviewers

The following reviewers have contributed to this document: Frank Lu,
John Wolpert, Bishop Brock, Nitin Gaur, Sharon Weed, Konrad Pabjan.

9.3 Acknowledgements

The following contributors have provided invaluable technical input to
this specification: Gennaro Cuomo, Joseph A Latone, Christian Cachin

10. References

		[1] Miguel Castro, Barbara Liskov: Practical Byzantine fault
tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4):
398-461 (2002)

		[2] Christian Cachin, Rachid Guerraoui, Luís E. T. Rodrigues:
Introduction to Reliable and Secure Distributed Programming (2. ed.).
Springer 2011, ISBN 978-3-642-15259-7, pp. I-XIX, 1-367

		[3] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg: The Weakest
Failure Detector for Solving Consensus. J. ACM 43(4): 685-722 (1996)

		[4] Cynthia Dwork, Nancy A. Lynch, Larry J. Stockmeyer: Consensus in
the presence of partial synchrony. J. ACM 35(2): 288-323 (1988)

		[5] Manos Kapritsos, Yang Wang, Vivien Quéma, Allen Clement, Lorenzo
Alvisi, Mike Dahlin: All about Eve: Execute-Verify Replication for
Multi-Core Servers. OSDI 2012: 237-250

		[6] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien
Quéma, Marko Vukolic: The Next 700 BFT Protocols. ACM Trans. Comput.
Syst. 32(4): 12:1-12:45 (2015)

		[7] Christian Cachin, Simon Schubert, Marko Vukolić: Non-determinism
in Byzantine Fault-Tolerant
Replication [http://arxiv.org/abs/1603.07351]

 © Copyright 2017, rameshthoomu.

channel-setup.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Multichannel Setup

This document describe the CLI for creating channels and directing peers
to join channels. The CLI uses channel APIs that are also available in
the SDK.

The channel commands are * create - create a channel in the orderer
and get back a genesis block for the channel * join - use genesis block
from create command to issue a join request to a Peer

NOTE - The main JIRA items for the work are
 https://jira.hyperledger.org/browse/FAB-1022
 https://jira.hyperledger.org/browse/FAB-1547

The commands are work in progress. In particular, there will be more configuration parameters to the commands. Some relevant JIRA items
 https://jira.hyperledger.org/browse/FAB-1642
 https://jira.hyperledger.org/browse/FAB-1639
 https://jira.hyperledger.org/browse/FAB-1580

Using docker

Pull the latest images from https://github.com/rameshthoomu/

Create a channel

Copy `docker-compose-channel.yml <docker-compose-channel.yml>`__ to
your current directory.

Bring up peer and orderer

cd docs
docker-compose -f docker-compose-channel.yml up

docker ps should show containers orderer and peer0 running.

Ask orderer to create a channel Start the CLI container.

docker-compose -f docker-compose-channel.yml run cli

In the above shell execute the create command

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 peer channel create -c myc1

This will create a channel genesis block file myc1.block to issue
join commands with. If you want to specify anchor peers, you can create
anchor peer files in the following format: peer-hostname port PEM file
of peer certificate

See CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 peer channel
create -h for an anchor-peer file example And pass the anchor peer files
as a comma-separated argument with flag -a: in example:

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 peer channel create -c myc1 -a anchorPeer1.txt,anchorPeer2.txt

Join a channel

Execute the join command to peer0 in the CLI container.

CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 CORE_PEER_ADDRESS=peer0:7051 peer channel join -b myc1.block

Use the channel to deploy and invoke chaincodes

Run the deploy command

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 peer chaincode deploy -C myc1 -n mycc -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Args":["init","a","100","b","200"]}'

Run the invoke command

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 peer chaincode invoke -C myc1 -n mycc -c '{"Args":["invoke","a","b","10"]}'

Run the query command

CORE_PEER_ADDRESS=peer0:7051 CORE_PEER_COMMITTER_LEDGER_ORDERER=orderer:5005 peer chaincode query -C myc1 -n mycc -c '{"Args":["query","a"]}'

Using Vagrant

Build the executables with make orderer and make peer commands.
Switch to build/bin directory.

Create a channel

Vagrant window 1 - start orderer

ORDERER_GENERAL_LOGLEVEL=debug ./orderer

Vagrant window 2 - ask orderer to create a chain

peer channel create -c myc1

On successful creation, a genesis block myc1.block is saved in build/bin
directory.

Join a channel

Vagrant window 3 - start the peer in a “chainless” mode

#NOTE - clear the environment with rm -rf /var/hyperledger/* after updating fabric to get channel support.

peer node start --peer-defaultchain=false

"--peer-defaultchain=true" is the default. It allow users continue to work with the default "testchainid" without having to join a chain.

"--peer-defaultchain=false" starts the peer with only the channels that were joined by the peer. If the peer never joined a channel it would start up without any channels. In particular, it does not have the default "testchainid" support.

To join channels, a peer MUST be started with the "--peer-defaultchain=false" option.

Vagrant window 2 - peer to join a channel

peer channel join -b myc1.block

where myc1.block is the block that was received from the orderer
from the create channel command.

At this point we can issue transactions. ### Use the channel to deploy
and invoke chaincodes Vagrant window 2 - deploy a chaincode to myc1

peer chaincode deploy -C myc1 -n mycc -p github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02 -c '{"Args":["init","a","100","b","200"]}'

Note the use of -C myc1 to target the chaincode deployment against
the myc1 channel.

Wait for the deploy to get committed (e.g., by default the
solo orderer can take upto 10 seconds to sends a batch of
transactions to be committed.)

Vagrant window 2 - invoke chaincode

peer chaincode invoke -C myc1 -n mycc -c '{"Args":["invoke","a","b","10"]}'

Wait for upto 10 seconds for the invoke to get committed.

Vagrant window 2 - query chaincode

peer chaincode query -C myc1 -n mycc -c '{"Args":["query","a"]}'

To reset, clear out the fileSystemPath directory (defined in
core.yaml) and myc1.block.

 © Copyright 2017, rameshthoomu.

protocol-spec_zh.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

协议规范

前言

这份文档是带有权限的区块链的工业界实现的协议规范。它不会详细的解释实现细节，而是描述系统和应用之间的接口和关系。

目标读者

这份规范的目标读者包括：

		想实现符合这份规范的区块链的厂商

		想扩展 fabric 功能的工具开发者

		想利用区块链技术来丰富他们应用的应用开发者

作者

下面这些作者编写了这份分档： Binh Q Nguyen, Elli Androulaki, Angelo De
Caro, Sheehan Anderson, Manish Sethi, Thorsten Kramp, Alessandro
Sorniotti, Marko Vukolic, Florian Simon Schubert, Jason K Yellick,
Konstantinos Christidis, Srinivasan Muralidharan, Anna D Derbakova,
Dulce Ponceleon, David Kravitz, Diego Masini.

评审

下面这些评审人评审了这份文档： Frank Lu, John Wolpert, Bishop Brock,
Nitin Gaur, Sharon Weed, Konrad Pabjan.

致谢

下面这些贡献者对这份规范提供了技术支持: Gennaro Cuomo, Joseph A Latone,
Christian Cachin
__

目录

		1.1 什么是 fabric ?

		1.2 为什么是 fabric ?

		1.3 术语

		2.1 架构

		2.1.1 Membership 服务

		2.1.2 Blockchain 服务

		2.1.3 Chaincode 服务

		2.1.4 事件

		2.1.5 应用程序接口

		2.1.6 命令行界面

		2.2 拓扑

		2.2.1 单验证 Peer

		2.2.2 多验证 Peers

		2.2.3 多链

		3.1 消息

		3.1.1 发现消息

		3.1.2 交易消息

		3.1.2.1 交易数据结构

		3.1.2.2 交易规范

		3.1.2.3 交易部署

		3.1.2.4 交易调用

		3.1.2.5 交易查询

		3.1.3 同步消息

		3.1.4 共识消息

		3.2 总账

		3.2.1 区块链

		3.2.1.1 块

		3.2.1.2 块 Hashing

		3.2.1.3 非散列数据(NonHashData)

		3.2.1.4 交易

		3.2.2 世界状态(World State)

		3.2.2.1 世界状态的 Hashing

		3.2.2.1.1 Bucket-tree

		3.3 Chaincode

		3.3.1 Virtual Machine 实例化

		3.3.2 Chaincode 协议

		3.3.2.1 Chaincode 部署

		3.3.2.2 Chaincode 调用

		3.3.2.3 Chaincode 查询

		3.3.2.4 Chaincode 状态

		3.4 可插拔的共识框架

		3.4.1 共识者接口

		3.4.2 共识程序接口

		3.4.3 Inquirer 接口

		3.4.4 Communicator 接口

		3.4.5 SecurityUtils 接口

		3.4.6 LedgerStack 接口

		3.4.7 Executor 接口

		3.4.7.1 开始批量交易

		3.4.7.2 执行交易

		3.4.7.3 提交与回滚交易

		3.4.8 Ledger 接口

		3.4.8.1 ReadOnlyLedger 接口

		3.4.8.2 UtilLedger 接口

		3.4.8.3 WritableLedger 接口

		3.4.9 RemoteLedgers 接口

		3.4.10 Controller 包

		3.4.11 Helper 包

		3.5 事件

		3.5.1 事件流

		3.5.2 事件结构

		3.5.3 事件适配器

		
		安全

		4.1 商业安全需求

		4.2 使用成员管理的用户隐私

		4.2.1 用户/客户端注册过程

		4.2.2 过期和废止证书

		4.3 基础设施层面提供的交易安全

		4.3.1 交易的安全生命周期

		4.3.2 交易保密性

		4.3.2.1 针对用户的保密

		4.3.2.2 针对验证器的保密

		4.3.3 防重放攻击

		4.4 应用的访问控制功能

		4.4.1 调用访问控制

		4.4.2 读访问控制

		4.5 在线钱包服务

		4.6 网络安全(TLS)

		4.7 当前版本的限制

		4.7.1 简化客户端

		4.7.2 简化交易保密

		5.1 概览

		5.2 Core PBFT

		6.1 REST 服务

		6.2 REST API

		6.3 CLI

		7.1 应用组成

		7.2 应用样例

		8.1 企业集成

		8.2 性能与可扩展性

		8.3 附加的共识插件

		8.4 附加的语言

1. 介绍

这份文档规范了适用于工业界的区块链的概念，架构和协议。

1.1 什么是 fabric?

fabric
是在系统中数字事件，交易调用，不同参与者共享的总账。总账只能通过共识的参与者来更新，而且一旦被记录，信息永远不能被修改。每一个记录的事件都可以根据参与者的协议进行加密验证。

交易是安全的，私有的并且可信的。每个参与者通过向网络membership服务证明自己的身份来访问系统。交易是通过发放给各个的参与者，不可连接的，提供在网络上完全匿名的证书来生成的。交易内容通过复杂的密钥加密来保证只有参与者才能看到，确保业务交易私密性。

总账可以按照规定规则来审计全部或部分总账分录。在与参与者合作中，审计员可以通过基于时间的证书来获得总账的查看，连接交易来提供实际的资产操作。

fabric
是区块链技术的一种实现，比特币是可以在fabric上构建的一种简单应用。它通过模块化的架构来允许组件的“插入-运行”来实现这份协议规范。它具有强大的容器技术来支持任何主流的语言来开发智能合约。利用熟悉的和被证明的技术是fabric的座右铭。

1.2 为什么是 fabric?

早期的区块链技术提供一个目的集合，但是通常对具体的工业应用支持的不是很好。为了满足现代市场的需求，fabric
是基于工业关注点针对特定行业的多种多样的需求来设计的，并引入了这个领域内的开拓者的经验，如扩展性。fabric
为权限网络，隐私，和多个区块链网络的私密信息提供一种新的方法。

1.3 术语

以下术语在此规范的有限范围内定义，以帮助读者清楚准确的了解这里所描述的概念。

交易(Transaction)
是区块链上执行功能的一个请求。功能是使用链码(Chaincode)来实现的。

交易者(Transactor) 是向客户端应用这样发出交易的实体。

总账(Ledger) 是一系列包含交易和当前世界状态(World
State)的加密的链接块。

世界状态(World State) 是包含交易执行结果的变量集合。

链码(Chaincode)
是作为交易的一部分保存在总账上的应用级的代码（如智能合约 [https://en.wikipedia.org/wiki/Smart_contract]）。链码运行的交易可能会改变世界状态。

验证Peer(Validating Peer)
是网络中负责达成共识，验证交易并维护总账的一个计算节点。

非验证Peer(Non-validating Peer)
是网络上作为代理把交易员连接到附近验证节点的计算节点。非验证Peer只验证交易但不执行它们。它还承载事件流服务和REST服务。

带有权限的总账(Permissioned Ledger)
是一个由每个实体或节点都是网络成员所组成的区块链网络。匿名节点是不允许连接的。

隐私(Privacy)
是链上的交易者需要隐瞒自己在网络上身份。虽然网络的成员可以查看交易，但是交易在没有得到特殊的权限前不能连接到交易者。

保密(Confidentiality) 是交易的内容不能被非利益相关者访问到的功能。

可审计性(Auditability)
作为商业用途的区块链需要遵守法规，很容易让监管机构审计交易记录。所以区块链是必须的。

2. Fabric

fabric是由下面这个小节所描述的核心组件所组成的。

2.1 架构

这个架构参考关注在三个类别中：会员(Membership)，区块链(Blockchan)和链码(chaincode)。这些类别是逻辑结构，而不是物理上的把不同的组件分割到独立的进程，地址空间，（虚拟）机器中。

[image: Reference architecture]
Reference architecture

2.1.1 成员服务

成员服务为网络提供身份管理，隐私，保密和可审计性的服务。在一个不带权限的区块链中，参与者是不需要被授权的，且所有的节点都可以同样的提交交易并把它们汇集到可接受的块中，既：它们没有角色的区分。成员服务通过公钥基础设施(Public
Key Infrastructure
(PKI))和去中心化的/共识技术使得不带权限的区块链变成带权限的区块链。在后者中，通过实体注册来获得长时间的，可能根据实体类型生成的身份凭证（登记证书enrollment
certificates）。在用户使用过程中，这样的证书允许交易证书颁发机构（Transaction
Certificate Authority
(TCA)）颁发匿名证书。这样的证书，如交易证书，被用来对提交交易授权。交易证书存储在区块链中，并对审计集群授权，否则交易是不可链接的。

2.1.2 区块链服务

区块链服务通过 HTTP/2
上的点对点（peer-to-peer）协议来管理分布式总账。为了提供最高效的哈希算法来维护世界状态的复制，数据结构进行了高度的优化。每个部署中可以插入和配置不同的共识算法（PBFT,
Raft, PoW, PoS）。

2.1.3 链码服务

链码服务提供一个安全的，轻量的沙箱在验证节点上执行链码。环境是一个“锁定的”且安全的包含签过名的安全操作系统镜像和链码语言，Go，Java
和 Node.js 的运行时和 SDK 层。可以根据需要来启用其他语言。

2.1.4 事件

验证 peers
和链码可以向在网络上监听并采取行动的应用发送事件。这是一些预定义好的事件集合，链码可以生成客户化的事件。事件会被一个或多个事件适配器消费。之后适配器可能会把事件投递到其他设备，如
Web hooks 或 Kafka。

2.1.5 应用编程接口(API)

fabric的主要接口是 REST API，并通过 Swagger 2.0 来改变。API
允许注册用户，区块链查询和发布交易。链码与执行交易的堆间的交互和交易的结果查询会由
API 集合来规范。

2.1.6 命令行界面(CLI)

CLI包含REST API的一个子集使得开发者能更快的测试链码或查询交易状态。CLI
是通过 Go 语言来实现，并可在多种操作系统上操作。

2.2 拓扑

fabric 的一个部署是由成员服务，多个验证 peers、非验证 peers
和一个或多个应用所组成一个链。也可以有多个链，各个链具有不同的操作参数和安全要求。

2.2.1 单验证Peer

功能上讲，一个非验证 peer 是验证 peer 的子集；非验证 peer
上的功能都可以在验证 peer
上启用，所以在最简单的网络上只有一个验证peer组成。这个配置通常使用在开发环境：单个验证
peer 在编辑-编译-调试周期中被启动。

[image: Single Validating Peer]
Single Validating Peer

单个验证 peer
不需要共识，默认情况下使用noops插件来处理接收到的交易。这使得在开发中，开发人员能立即收到返回。

2.2.2 多验证 Peer

生产或测试网络需要有多个验证和非验证 peers 组成。非验证 peer 可以为验证
peer 分担像 API 请求处理或事件处理这样的压力。

[image: Multiple Validating Peers]
Multiple Validating Peers

网状网络（每个验证peer需要和其它验证peer都相连）中的验证 peer
来传播信息。一个非验证 peer 连接到附近的，允许它连接的验证
peer。当应用可能直接连接到验证 peer 时，非验证 peer 是可选的。

2.2.3 多链

验证和非验证 peer
的各个网络组成一个链。可以根据不同的需求创建不同的链，就像根据不同的目的创建不同的
Web 站点。

3. 协议

fabric的点对点（peer-to-peer）通信是建立在允许双向的基于流的消息gRPC [http://www.grpc.io/docs/]上的。它使用Protocol
Buffers [https://developers.google.com/protocol-buffers]来序列化peer之间传输的数据结构。Protocol
buffers
是语言无关，平台无关并具有可扩展机制来序列化结构化的数据的技术。数据结构，消息和服务是使用
proto3
language [https://developers.google.com/protocol-buffers/docs/proto3]注释来描述的。

3.1 消息

消息在节点之间通过Messageproto 结构封装来传递的，可以分为 4
种类型：发现（Discovery）, 交易（Transaction）,
同步(Synchronization)和共识(Consensus)。每种类型在payload中定义了多种子类型。

message Message {
 enum Type {
 UNDEFINED = 0;

 DISC_HELLO = 1;
 DISC_DISCONNECT = 2;
 DISC_GET_PEERS = 3;
 DISC_PEERS = 4;
 DISC_NEWMSG = 5;

 CHAIN_STATUS = 6;
 CHAIN_TRANSACTION = 7;
 CHAIN_GET_TRANSACTIONS = 8;
 CHAIN_QUERY = 9;

 SYNC_GET_BLOCKS = 11;
 SYNC_BLOCKS = 12;
 SYNC_BLOCK_ADDED = 13;

 SYNC_STATE_GET_SNAPSHOT = 14;
 SYNC_STATE_SNAPSHOT = 15;
 SYNC_STATE_GET_DELTAS = 16;
 SYNC_STATE_DELTAS = 17;

 RESPONSE = 20;
 CONSENSUS = 21;
 }
 Type type = 1;
 bytes payload = 2;
 google.protobuf.Timestamp timestamp = 3;
}

payload是由不同的消息类型所包含的不同的像Transaction或Response这样的对象的不透明的字节数组。例如：type为CHAIN_TRANSACTION那么payload就是一个Transaction对象。

3.1.1 发现消息

在启动时，如果CORE_PEER_DISCOVERY_ROOTNODE被指定，那么 peer
就会运行发现协议。CORE_PEER_DISCOVERY_ROOTNODE是网络（任意peer）中扮演用来发现所有
peer 的起点角色的另一个 peer 的 IP
地址。协议序列以payload是一个包含：

message HelloMessage {
 PeerEndpoint peerEndpoint = 1;
 uint64 blockNumber = 2;
}
message PeerEndpoint {
 PeerID ID = 1;
 string address = 2;
 enum Type {
 UNDEFINED = 0;
 VALIDATOR = 1;
 NON_VALIDATOR = 2;
 }
 Type type = 3;
 bytes pkiID = 4;
}

message PeerID {
 string name = 1;
}

这样的端点的HelloMessage对象的DISC_HELLO消息开始的。

域的定义:

		PeerID 是在启动时或配置文件中定义的 peer 的任意名字

		PeerEndpoint 描述了端点和它是验证还是非验证 peer

		pkiID 是 peer 的加密ID

		address 以ip:port这样的格式表示的 peer 的主机名或IP和端口

		blockNumber 是 peer 的区块链的当前的高度

如果收到的DISC_HELLO 消息的块的高度比当前 peer
的块的高度高，那么它马上初始化同步协议来追上当前的网络。

DISC_HELLO之后，peer
会周期性的发送DISC_GET_PEERS来发现任意想要加入网络的
peer。收到DISC_GET_PEERS后，peer 会发送payload
包含PeerEndpoint的数组的DISC_PEERS作为响应。这是不会使用其它的发现消息类型。

3.1.2 交易消息

有三种不同的交易类型：部署（Deploy），调用（Invoke）和查询（Query）。部署交易向链上安装指定的链码，调用和查询交易会调用部署号的链码。另一种需要考虑的类型是创建（Create）交易，其中部署好的链码是可以在链上实例化并寻址的。这种类型在写这份文档时还没有被实现。

3.1.2.1 交易的数据结构

CHAIN_TRANSACTION和CHAIN_QUERY类型的消息会在payload带有Transaction对象：

message Transaction {
 enum Type {
 UNDEFINED = 0;
 CHAINCODE_DEPLOY = 1;
 CHAINCODE_INVOKE = 2;
 CHAINCODE_QUERY = 3;
 CHAINCODE_TERMINATE = 4;
 }
 Type type = 1;
 string uuid = 5;
 bytes chaincodeID = 2;
 bytes payloadHash = 3;

 ConfidentialityLevel confidentialityLevel = 7;
 bytes nonce = 8;
 bytes cert = 9;
 bytes signature = 10;

 bytes metadata = 4;
 google.protobuf.Timestamp timestamp = 6;
}

message TransactionPayload {
 bytes payload = 1;
}

enum ConfidentialityLevel {
 PUBLIC = 0;
 CONFIDENTIAL = 1;
}

域的定义: - type - 交易的类型, 为1时表示: - UNDEFINED -
为未来的使用所保留. - CHAINCODE_DEPLOY - 代表部署新的链码. -
CHAINCODE_INVOKE - 代表一个链码函数被执行并修改了世界状态 -
CHAINCODE_QUERY - 代表一个链码函数被执行并可能只读取了世界状态 -
CHAINCODE_TERMINATE - 标记的链码不可用，所以链码中的函数将不能被调用
- chaincodeID - 链码源码，路径，构造函数和参数哈希所得到的ID -
payloadHash - TransactionPayload.payload所定义的哈希字节. -
metadata - 应用可能使用的，由自己定义的任意交易相关的元数据 -
uuid - 交易的唯一ID - timestamp - peer 收到交易时的时间戳 -
confidentialityLevel -
数据保密的级别。当前有两个级别。未来可能会有多个级别。 - nonce -
为安全而使用 - cert - 交易者的证书 - signature - 交易者的签名 -
TransactionPayload.payload -
交易的payload所定义的字节。由于payload可以很大，所以交易消息只包含payload的哈希

交易安全的详细信息可以在第四节找到

3.1.2.2 交易规范

一个交易通常会关联链码定义及其执行环境（像语言和安全上下文）的链码规范。现在，有一个使用Go语言来编写链码的实现。将来可能会添加新的语言。

message ChaincodeSpec {
 enum Type {
 UNDEFINED = 0;
 GOLANG = 1;
 NODE = 2;
 }
 Type type = 1;
 ChaincodeID chaincodeID = 2;
 ChaincodeInput ctorMsg = 3;
 int32 timeout = 4;
 string secureContext = 5;
 ConfidentialityLevel confidentialityLevel = 6;
 bytes metadata = 7;
}

message ChaincodeID {
 string path = 1;
 string name = 2;
}

message ChaincodeInput {
 string function = 1;
 repeated string args = 2;
}

域的定义: - chaincodeID - 链码源码的路径和名字 - ctorMsg -
调用的函数名及参数 - timeout - 执行交易所需的时间（以毫秒表示） -
confidentialityLevel - 这个交易的保密级别 - secureContext -
交易者的安全上下文 - metadata - 应用想要传递下去的任何数据

当 peer 收到chaincodeSpec后以合适的交易消息包装它并广播到网络

3.1.2.3 部署交易

部署交易的类型是CHAINCODE_DEPLOY，且它的payload包含ChaincodeDeploymentSpec对象。

message ChaincodeDeploymentSpec {
 ChaincodeSpec chaincodeSpec = 1;
 google.protobuf.Timestamp effectiveDate = 2;
 bytes codePackage = 3;
}

域的定义: - chaincodeSpec - 参看上面的3.1.2.2节. -
effectiveDate - 链码准备好可被调用的时间 - codePackage -
链码源码的gzip

当验证 peer
部署链码时，它通常会校验codePackage的哈希来保证交易被部署到网络后没有被篡改。

3.1.2.4 调用交易

调用交易的类型是CHAINCODE_DEPLOY，且它的payload包含ChaincodeInvocationSpec对象。

message ChaincodeInvocationSpec {
 ChaincodeSpec chaincodeSpec = 1;
}

3.1.2.5 查询交易

查询交易除了消息类型是CHAINCODE_QUERY其它和调用交易一样

3.1.3 同步消息

同步协议以3.1.1节描述的，当 peer 知道它自己的区块落后于其它 peer
或和它们不一样后所发起的。peer
广播SYNC_GET_BLOCKS，SYNC_STATE_GET_SNAPSHOT或SYNC_STATE_GET_DELTAS并分别接收SYNC_BLOCKS,
SYNC_STATE_SNAPSHOT或 SYNC_STATE_DELTAS。

安装的共识插件（如：pbft）决定同步协议是如何被应用的。每个消息是针对具体的状态来设计的：

SYNC_GET_BLOCKS
是一个SyncBlockRange对象，包含一个连续区块的范围的payload的请求。

message SyncBlockRange {
 uint64 correlationId = 1;
 uint64 start = 2;
 uint64 end = 3;
}

接收peer使用包含
SyncBlocks对象的payload的SYNC_BLOCKS信息来响应

message SyncBlocks {
 SyncBlockRange range = 1;
 repeated Block blocks = 2;
}

start和end标识包含的区块的开始和结束，返回区块的顺序由start和end的值定义。如：当start=3，end=5时区块的顺序将会是3，4，5。当start=5，end=3时区块的顺序将会是5，4，3。

SYNC_STATE_GET_SNAPSHOT 请求当前世界状态的快照。
payload是一个SyncStateSnapshotRequest对象

message SyncStateSnapshotRequest {
 uint64 correlationId = 1;
}

correlationId是请求 peer 用来追踪响应消息的。接受 peer
回复payload为SyncStateSnapshot实例的SYNC_STATE_SNAPSHOT信息

message SyncStateSnapshot {
 bytes delta = 1;
 uint64 sequence = 2;
 uint64 blockNumber = 3;
 SyncStateSnapshotRequest request = 4;
}

这条消息包含快照或以0开始的快照流序列中的一块。终止消息是len(delta) ==
0的块

SYNC_STATE_GET_DELTAS
请求连续区块的状态变化。默认情况下总账维护500笔交易变化。
delta(j)是block(i)和block(j)之间的状态转变，其中i=j-1。
payload包含SyncStateDeltasRequest实例

message SyncStateDeltasRequest {
 SyncBlockRange range = 1;
}

接收 peer 使用包含
SyncStateDeltas实例的payload的SYNC_STATE_DELTAS信息来响应

message SyncStateDeltas {
 SyncBlockRange range = 1;
 repeated bytes deltas = 2;
}

delta可能以顺序（从i到j）或倒序（从j到i）来表示状态转变

3.1.4 共识消息

共识处理交易，一个CONSENSUS消息是由共识框架接收到CHAIN_TRANSACTION消息时在内部初始化的。框架把CHAIN_TRANSACTION转换为
CONSENSUS然后以相同的payload广播到验证
peer。共识插件接收这条消息并根据内部算法来处理。插件可能创建自定义的子类型来管理共识有穷状态机。3.4节会介绍详细信息。

3.2 总账

总账由两个主要的部分组成，一个是区块链，一个是世界状态。区块链是在总账中的一系列连接好的用来记录交易的区块。世界状态是一个用来存储交易执行状态的键-值(key-value)数据库

3.2.1 区块链

3.2.1.1 区块

区块链是由一个区块链表定义的，每个区块包含它在链中前一个区块的哈希。区块包含的另外两个重要信息是它包含区块执行所有交易后的交易列表和世界状态的哈希

message Block {
 version = 1;
 google.protobuf.Timestamp timestamp = 2;
 bytes transactionsHash = 3;
 bytes stateHash = 4;
 bytes previousBlockHash = 5;
 bytes consensusMetadata = 6;
 NonHashData nonHashData = 7;
}

message BlockTransactions {
 repeated Transaction transactions = 1;
}

域的定义: * version - 用来追踪协议变化的版本号 * timestamp
- 由区块提议者填充的时间戳 * transactionsHash - 区块中交易的merkle
root hash * stateHash - 世界状态的merkle root hash *
previousBlockHash - 前一个区块的hash * consensusMetadata -
共识可能会引入的一些可选的元数据 * nonHashData -
NonHashData消息会在计算区块的哈希前设置为nil，但是在数据库中存储为区块的一部分
* BlockTransactions.transactions -
交易消息的数组，由于交易的大小，它们不会被直接包含在区块中

3.2.1.2 区块哈希

		previousBlockHash哈希是通过下面算法计算的

		使用protocol buffer库把区块消息序列化为字节码

		使用FIPS
202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf]描述的SHA3
SHAKE256算法来对序列化后的区块消息计算大小为512位的哈希值

		transactionHash是交易merkle树的根。定义merkle
tree实现是一个代办

		stateHash在3.2.2.1节中定义.

3.2.1.3 非散列数据(NonHashData)

NonHashData消息是用来存储不需要所有 peer
都具有相同值的块元数据。他们是建议值。

message NonHashData {
 google.protobuf.Timestamp localLedgerCommitTimestamp = 1;
 repeated TransactionResult transactionResults = 2;
}

message TransactionResult {
 string uuid = 1;
 bytes result = 2;
 uint32 errorCode = 3;
 string error = 4;
}

		localLedgerCommitTimestamp - 标识区块提交到本地总账的时间戳

		TransactionResult - 交易结果的数组

		TransactionResult.uuid - 交易的ID

		TransactionResult.result - 交易的返回值

		TransactionResult.errorCode -
可以用来记录关联交易的错误信息的代码

		TransactionResult.error - 用来记录关联交易的错误信息的字符串

3.2.1.4 交易执行

一个交易定义了它们部署或执行的链码。区块中的所有交易都可以在记录到总账中的区块之前运行。当链码执行时，他们可能会改变世界状态。之后世界状态的哈希会被记录在区块中。

3.2.2 世界状态

peer
的世界状态涉及到所有被部署的链码的状态集合。进一步说，链码的状态由键值对集合来表示。所以，逻辑上说，peer
的世界状态也是键值对的集合，其中键由元组{chaincodeID, ckey}组成。这里我们使用术语key来标识世界状态的键，如：元组{chaincodeID, ckey}
，而且我们使用cKey来标识链码中的唯一键。

为了下面描述的目的，假定chaincodeID是有效的utf8字符串，且ckey和value是一个或多个任意的字节的序列

3.2.2.1 世界状态的哈希

当网络活动时，很多像交易提交和同步 peer 这样的场合可能需要计算 peer
观察到的世界状态的加密-哈希。例如，共识协议可能需要保证网络中最小数量的
peer 观察到同样的世界状态。

因为计算世界状态的加密-哈希是一个非常昂贵的操作，组织世界状态来使得当它改变时能高效的计算加密-哈希是非常可取的。将来，可以根据不同的负载条件来设计不同的组织形式。

由于fabric是被期望在不同的负载条件下都能正常工作，所以需要一个可拔插的机制来支持世界状态的组织。

3.2.2.1.1 Bucket-tree

Bucket-tree
是世界状态的组织方式的实现。为了下面描述的目的，世界状态的键被表示成两个组件(chaincodeID
and ckey) 的通过nil字节的级联，如：key =
chaincodeID+nil+cKey。

这个方法的模型是一个merkle-tree在hash
table桶的顶部来计算世界状态的加密-哈希

这个方法的核心是世界状态的key-values被假定存储在由预先决定的桶的数量(numBuckets)所组成的哈希表中。一个哈希函数(hashFunction)
被用来确定包含给定键的桶数量。注意hashFunction不代表SHA3这样的加密-哈希方法，而是决定给定的键的桶的数量的正规的编程语言散列函数。

为了对
merkle-tree建模，有序桶扮演了树上的叶子节点-编号最低的桶是树中的最左边的叶子节点。为了构造树的最后第二层，叶子节点的预定义数量
(maxGroupingAtEachLevel)，从左边开始把每个这样的分组组合在一起，一个节点被当作组中所有叶子节点的共同父节点来插入到最后第二层中。注意最后的父节点的数量可能会少于maxGroupingAtEachLevel这个构造方式继续使用在更高的层级上直到树的根节点被构造。

下面这个表展示的在{numBuckets=10009 and maxGroupingAtEachLevel=10}的配置下会得到的树在不同层级上的节点数。

		Level
		Number of nodes

		0
		1

		1
		2

		2
		11

		3
		101

		4
		1001

		5
		10009

为了计算世界状态的加密-哈希，需要计算每个桶的加密-哈希，并假设它们是merkle-tree的叶子节点的加密-哈希。为了计算桶的加密-哈希，存储在桶中的键值对首先被序列化为字节码并在其上应用加密-哈希函数。为了序列化桶的键值对，所有具有公共chaincodeID前缀的键值对分别序列化并以chaincodeID的升序的方式追加在一起。为了序列化一个chaincodeID的键值对，会涉及到下面的信息：

		chaincodeID的长度(chaincodeID的字节数)

		chaincodeID的utf8字节码

		chaincodeID的键值对数量

		对于每个键值对(以ckey排序)
		ckey的长度

		ckey的字节码

		值的长度

		值的字节码

对于上面列表的所有数值类型项（如：chaincodeID的长度），使用protobuf的变体编码方式。上面这种编码方式的目的是为了桶中的键值对的字节表示方式不会被任意其他键值对的组合所产生，并减少了序列化字节码的总体大小。

例如：考虑具有chaincodeID1_key1:value1, chaincodeID1_key2:value2, 和 chaincodeID2_key1:value1这样名字的键值对的桶。序列化后的桶看上去会像：12 + chaincodeID1 + 2 + 4 + key1 + 6 + value1 + 4 + key2 + 6 + value2 + 12 + chaincodeID2 + 1 + 4 + key1 + 6 + value1

如果桶中没有键值对，那么加密-哈希为nil。

中间节点和根节点的加密-哈希与标准merkle-tree的计算方法一样，即：应用加密-哈希函数到所有子节点的加密-哈希从左到右级联后得到的字节码。进一步说，如果一个子节点的加密-哈希为nil，那么这个子节点的加密-哈希在级联子节点的加密-哈希是就被省略。如果它只有一个子节点，那么它的加密-哈希就是子节点的加密-哈希。最后，根节点的加密-哈希就是世界状态的加密-哈希。

上面这种方法在状态中少数键值对改变时计算加密-哈希是有性能优势的。主要的优势包括：
- 那些没有变化的桶的计算会被跳过 -
merkle-tree的宽度和深度可以通过配置numBuckets和maxGroupingAtEachLevel参数来控制。树的不同深度和宽度对性能和不同的资源都会产生不同的影响。

在一个具体的部署中，所有的 peer
都期望使用相同的numBuckets, maxGroupingAtEachLevel, 和 hashFunction的配置。进一步说，如果任何一个配置在之后的阶段被改变，那么这些改变需要应用到所有的
peer 中，来保证 peer
节点之间的加密-哈希的比较是有意义的。即使，这可能会导致基于实现的已有数据的迁移。例如：一种实现希望存储树中所有节点最后计算的加密-哈希，那么它就需要被重新计算。

3.3 链码（Chaincode）

链码是在交易（参看3.1.2节）被部署时分发到网络上，并被所有验证 peer
通过隔离的沙箱来管理的应用级代码。尽管任意的虚拟技术都可以支持沙箱，现在是通过Docker容器来运行链码的。这节中描述的协议可以启用不同虚拟实现的插入与运行。

3.3.1 虚拟机实例化

一个实现VM接口的虚拟机

type VM interface {
 build(ctxt context.Context, id string, args []string, env []string, attachstdin bool, attachstdout bool, reader io.Reader) error
 start(ctxt context.Context, id string, args []string, env []string, attachstdin bool, attachstdout bool) error
 stop(ctxt context.Context, id string, timeout uint, dontkill bool, dontremove bool) error
}

fabric在处理链码上的部署交易或其他交易时，如果这个链码的VM未启动（崩溃或之前的不活动导致的关闭）时实例化VM。每个链码镜像通过build函数构建，通过start函数启动，并使用stop函数停止。

一旦链码容器被启动，它使用gRPC来连接到启动这个链码的验证
peer，并为链码上的调用和查询交易建立通道。

3.3.2 链码协议

验证 peer
和它的链码之间是通过gRPC流来通信的。链码容器上有shim层来处理链码与验证
peer 之间的protobuf消息协议。

message ChaincodeMessage {

 enum Type {
 UNDEFINED = 0;
 REGISTER = 1;
 REGISTERED = 2;
 INIT = 3;
 READY = 4;
 TRANSACTION = 5;
 COMPLETED = 6;
 ERROR = 7;
 GET_STATE = 8;
 PUT_STATE = 9;
 DEL_STATE = 10;
 INVOKE_CHAINCODE = 11;
 INVOKE_QUERY = 12;
 RESPONSE = 13;
 QUERY = 14;
 QUERY_COMPLETED = 15;
 QUERY_ERROR = 16;
 RANGE_QUERY_STATE = 17;
 }

 Type type = 1;
 google.protobuf.Timestamp timestamp = 2;
 bytes payload = 3;
 string uuid = 4;
}

域的定义: - Type 是消息的类型 - payload 是消息的payload.
每个payload取决于Type. - uuid 消息唯一的ID

消息的类型在下面的小节中描述

链码实现被验证 peer
在处理部署，调用或查询交易时调用的Chaincode接口

type Chaincode interface {
 Init(stub *ChaincodeStub, function string, args []string) ([]byte, error)
 Invoke(stub *ChaincodeStub, function string, args []string) (error)
 Query(stub *ChaincodeStub, function string, args []string) ([]byte, error)
}

Init, Invoke 和 Query函数使用function and
args参数来支持多种交易。Init是构造函数，它只在部署交易时被执行。Query函数是不允许修改链码的状态的；它只能读取和计算并以byte数组的形式返回。

3.3.2.1 链码部署

当部署时（链码容器已经启动），shim层发送一次性的具有包含ChaincodeID的payload的REGISTER消息给验证
peer。然后 peer
以REGISTERED或ERROR来响应成功或失败。当收到ERROR后shim关闭连接并退出。

注册之后，验证 peer
发送具有包含ChaincodeInput对象的INIT消息。shim使用从ChaincodeInput获得的参数来调用Init函数，通过像设置持久化状态这样操作来初始化链码。

shim根据Init函数的返回值，响应RESPONSE或ERROR消息。如果没有错误，那么链码初始化完成，并准备好接收调用和查询交易。

3.3.2.2 链码调用

当处理调用交易时，验证 peer
发送TRANSACTION消息给链码容器的shim，由它来调用链码的Invoke函数，并传递从ChaincodeInput得到的参数。shim响应RESPONSE或ERROR消息来表示函数完成。如果接收到ERROR函数，payload包含链码所产生的错误信息。

3.3.2.3 链码查询

与调用交易一样，验证 peer
发送QUERY消息给链码容器的shim，由它来调用链码的Query函数，并传递从ChaincodeInput得到的参数。Query函数可能会返回状态值或错误，它会把它通过RESPONSE或ERROR消息来传递给验证
peer。

3.3.2.4 链码状态

每个链码可能都定义了它自己的持久化状态变量。例如，一个链码可能创建电视，汽车或股票这样的资产来保存资产属性。当Invoke函数处理时，链码可能会更新状态变量，例如改变资产所有者。链码会根据下面这些消息类型类操作状态变量：

PUT_STATE

链码发送一个payload包含PutStateInfo对象的PU_STATE消息来保存键值对。

message PutStateInfo {
 string key = 1;
 bytes value = 2;
}

GET_STATE

链码发送一个由payload指定要获取值的键的GET_STATE消息。

DEL_STATE

链码发送一个由payload指定要删除值的键的DEL_STATE消息。

RANGE_QUERY_STATE

链码发送一个payload包含RANGE_QUERY_STATE对象的RANGE_QUERY_STATE来获取一个范围内的值。

message RangeQueryState {
 string startKey = 1;
 string endKey = 2;
}

startKey和endKey假设是通过字典排序的. 验证 peer
响应一个payload是RangeQueryStateResponse对象的RESPONSE消息

message RangeQueryStateResponse {
 repeated RangeQueryStateKeyValue keysAndValues = 1;
 bool hasMore = 2;
 string ID = 3;
}
message RangeQueryStateKeyValue {
 string key = 1;
 bytes value = 2;
}

如果相应中hasMore=true，这表示有在请求的返回中还有另外的键。链码可以通过发送包含与响应中ID相同的ID的RangeQueryStateNext消息来获取下一集合。

message RangeQueryStateNext {
 string ID = 1;
}

当链码结束读取范围，它会发送带有ID的RangeQueryStateClose消息来期望它关闭。

message RangeQueryStateClose {
 string ID = 1;
}

INVOKE_CHAINCODE

链码可以通过发送payload包含
ChaincodeSpec对象的INVOKE_CHAINCODE消息给验证 peer
来在相同的交易上下文中调用另一个链码

QUERY_CHAINCODE

链码可以通过发送payload包含
ChaincodeSpec对象的QUERY_CHAINCODE消息给验证 peer
来在相同的交易上下文中查询另一个链码

3.4 插拔式共识框架

共识框架定义了每个共识插件都需要实现的接口：

		consensus.Consenter: 允许共识插件从网络上接收消息的接口

		consensus.CPI: 共识编程接口_Consensus Programming Interface_
(CPI) 是共识插件用来与栈交互的，这个接口可以分为两部分：
		consensus.Communicator: 用来发送（广播或单播）消息到其他的验证
peer

		consensus.LedgerStack: 这个接口使得执行框架像总账一样方便

就像下面描述的细节一样，consensus.LedgerStack封装了其他接口，consensus.Executor接口是共识框架的核心部分。换句话说，consensus.Executor接口允许一个（批量）交易启动，执行，根据需要回滚，预览和提交。每一个共识插件都需要满足以所有验证
peer
上全序的方式把批量（块）交易（通过consensus.Executor.CommitTxBatch）被提交到总账中（参看下面的consensus.Executor接口获得详细细节）。

当前，共识框架由consensus,
controller和helper这三个包组成。使用controller和helper包的主要原因是防止Go语言的“循环引入”和当插件更新时的最小化代码变化。

		controller 包规范了验证 peer 所使用的共识插件

		helper 是围绕公式插件的垫片，它是用来与剩下的栈交互的，如为其他
peer 维护消息。

这里有2个共识插件提供：pbft和noops：

		obcpbft包包含实现 PBFT [1] 和 Sieve
共识协议的共识插件。参看第5节的详细介绍

		noops 是一个为开发和测试提供的’‘假的’‘共识插件.
它处理所有共识消息但不提供共识功能，它也是一个好的学习如何开发一个共识插件的简单例子。

3.4.1 Consenter 接口

定义:

type Consenter interface {
 RecvMsg(msg *pb.Message) error
}

Consenter接口是插件对（外部的）客户端请求的入口，当处理共识时，共识消息在内部（如从共识模块）产生。NewConsenter创建Consenter插件。RecvMsg`以到达共识的顺序来处理进来的交易。

阅读下面的helper.HandleMessage来理解 peer
是如何和这个接口来交互的。

3.4.2 CPI接口

定义:

type CPI interface {
 Inquirer
 Communicator
 SecurityUtils
 LedgerStack
}

CPI
允许插件和栈交互。它是由helper.Helper对象实现的。回想一下这个对象是：

		在helper.NewConsensusHandler被调用时初始化的

		当它们的插件构造了consensus.Consenter对象，那么它对插件的作者是可访问的

3.4.3 Inquirer接口

定义:

type Inquirer interface {
 GetNetworkInfo() (self *pb.PeerEndpoint, network []*pb.PeerEndpoint, err error)
 GetNetworkHandles() (self *pb.PeerID, network []*pb.PeerID, err error)
}

这个接口是consensus.CPI接口的一部分。它是用来获取网络中验证 peer
的（GetNetworkHandles）句柄，以及那些验证 peer
的明细(GetNetworkInfo)：

注意peers由pb.PeerID对象确定。这是一个protobuf消息，当前定义为（注意这个定义很可能会被修改）：

message PeerID {
 string name = 1;
}

3.4.4 Communicator接口

定义:

type Communicator interface {
 Broadcast(msg *pb.Message) error
 Unicast(msg *pb.Message, receiverHandle *pb.PeerID) error
}

这个接口是consensus.CPI接口的一部分。它是用来与网络上其它 peer
通信的（helper.Broadcast, helper.Unicast）：

3.4.5 SecurityUtils接口

定义:

type SecurityUtils interface {
 Sign(msg []byte) ([]byte, error)
 Verify(peerID *pb.PeerID, signature []byte, message []byte) error
}

这个接口是consensus.CPI接口的一部分。它用来处理消息签名(Sign)的加密操作和验证签名(Verify)

3.4.6 LedgerStack 接口

定义:

type LedgerStack interface {
 Executor
 Ledger
 RemoteLedgers
}

CPI接口的主要成员，LedgerStack
组与fabric的其它部分与共识相互作用，如执行交易，查询和更新总账。这个接口支持对本地区块链和状体的查询，更新本地区块链和状态，查询共识网络上其它节点的区块链和状态。它是由Executor,
Ledger和RemoteLedgers这三个接口组成的。下面会描述它们。

3.4.7 Executor 接口

定义:

type Executor interface {
 BeginTxBatch(id interface{}) error
 ExecTXs(id interface{}, txs []*pb.Transaction) ([]byte, []error)
 CommitTxBatch(id interface{}, transactions []*pb.Transaction, transactionsResults []*pb.TransactionResult, metadata []byte) error
 RollbackTxBatch(id interface{}) error
 PreviewCommitTxBatchBlock(id interface{}, transactions []*pb.Transaction, metadata []byte) (*pb.Block, error)
}

executor接口是LedgerStack接口最常使用的部分，且是共识网络工作的必要部分。接口允许交易启动，执行，根据需要回滚，预览和提交。这个接口由下面这些方法组成。

3.4.7.1 开始批量交易

BeginTxBatch(id interface{}) error

这个调用接受任意的，故意含糊的id，来使得共识插件可以保证与这个具体的批量相关的交易才会被执行。例如：在pbft实现中，这个id是被执行交易的编码过的哈希。

3.4.7.2 执行交易

ExecTXs(id interface{}, txs []*pb.Transaction) ([]byte, []error)

这个调用根据总账当前的状态接受一组交易，并返回带有对应着交易组的错误信息组的当前状态的哈希。注意一个交易所产生的错误不影响批量交易的安全提交。当遇到失败所采用的策略取决与共识插件的实现。这个接口调用多次是安全的。

3.4.7.3 提交与回滚交易

RollbackTxBatch(id interface{}) error

这个调用中止了批量执行。这会废弃掉对当前状态的操作，并把总账状态回归到之前的状态。批量是从BeginBatchTx开始的，如果需要开始一个新的就需要在执行任意交易之前重新创建一个。

PreviewCommitTxBatchBlock(id interface{}, transactions []*pb.Transaction, metadata []byte) (*pb.Block, error)

这个调用是共识插件对非确定性交易执行的测试时最有用的方法。区块返回的哈希表部分会保证，当CommitTxBatch被立即调用时的区块是同一个。这个保证会被任意新的交易的执行所打破。

CommitTxBatch(id interface{}, transactions []*pb.Transaction, transactionsResults []*pb.TransactionResult, metadata []byte) error

这个调用提交区块到区块链中。区块必须以全序提交到区块链中，CommitTxBatch结束批量交易，在执行或提交任意的交易之前必须先调用BeginTxBatch。

3.4.8 Ledger 接口

定义：

type Ledger interface {
 ReadOnlyLedger
 UtilLedger
 WritableLedger
}

Ledger
接口是为了允许共识插件询问或可能改变区块链当前状态。它是由下面描述的三个接口组成的

3.4.8.1 ReadOnlyLedger 接口

定义：

type ReadOnlyLedger interface {
 GetBlock(id uint64) (block *pb.Block, err error)
 GetCurrentStateHash() (stateHash []byte, err error)
 GetBlockchainSize() (uint64, error)
}

ReadOnlyLedger
接口是为了查询总账的本地备份，而不会修改它。它是由下面这些函数组成的。

GetBlockchainSize() (uint64, error)

这个函数返回区块链总账的长度。一般来说，这个函数永远不会失败，在这种不太可能发生情况下，错误被传递给调用者，由它确定是否需要恢复。具有最大区块值的区块的值为GetBlockchainSize()-1

注意在区块链总账的本地副本是腐坏或不完整的情况下，这个调用会返回链中最大的区块值+1。这允许节点在旧的块是腐坏或丢失的情况下能继续操作当前状态/块。

GetBlock(id uint64) (block *pb.Block, err error)

这个调用返回区块链中块的数值id。一般来说这个调用是不会失败的，除非请求的区块超出当前区块链的长度，或者底层的区块链被腐坏了。GetBlock的失败可能可以通过状态转换机制来取回它。

GetCurrentStateHash() (stateHash []byte, err error)

这个调用返回总账的当前状态的哈希。一般来说，这个函数永远不会失败，在这种不太可能发生情况下，错误被传递给调用者，由它确定是否需要恢复。

3.4.8.2 UtilLedger 接口

定义：

type UtilLedger interface {
 HashBlock(block *pb.Block) ([]byte, error)
 VerifyBlockchain(start, finish uint64) (uint64, error)
}

UtilLedger
接口定义了一些由本地总账提供的有用的功能。使用mock接口来重载这些功能在测试时非常有用。这个接口由两个函数构成。
会会

HashBlock(block *pb.Block) ([]byte, error)

尽管*pb.Block定义了GetHash方法，为了mock测试，重载这个方法会非常有用。因此，建议GetHash方法不直接调用，而是通过UtilLedger.HashBlock接口来调用这个方法。一般来说，这个函数永远不会失败，但是错误还是会传递给调用者，让它决定是否使用适当的恢复。

VerifyBlockchain(start, finish uint64) (uint64, error)

这个方法是用来校验区块链中的大的区域。它会从高的块start到低的块finish，返回第一个块的PreviousBlockHash与块的前一个块的哈希不相符的块编号以及错误信息。注意，它一般会标识最后一个好的块的编号，而不是第一个坏的块的编号。

3.4.8.3 WritableLedger 接口

定义：

type WritableLedger interface {
 PutBlock(blockNumber uint64, block *pb.Block) error
 ApplyStateDelta(id interface{}, delta *statemgmt.StateDelta) error
 CommitStateDelta(id interface{}) error
 RollbackStateDelta(id interface{}) error
 EmptyState() error
}

WritableLedger 接口允许调用者更新区块链。注意这_NOT_
_不是_共识插件的通常用法。当前的状态需要通过Executor接口执行交易来修改，新的区块在交易提交时生成。相反的，这个接口主要是用来状态改变和腐化恢复。特别的，这个接口下的函数_永远_不能直接暴露给共识消息，这样会导致打破区块链所承诺的不可修改这一概念。这个结构包含下面这些函数。

		PutBlock(blockNumber uint64, block *pb.Block) error

这个函数根据给定的区块编号把底层区块插入到区块链中。注意这是一个不安全的接口，所以它不会有错误返回或返回。插入一个比当前区块高度更高的区块是被允许的，同样，重写一个已经提交的区块也是被允许的。记住，由于哈希技术使得创建一个链上的更早的块是不可行的，所以这并不影响链的可审计性和不可变性。任何尝试重写区块链的历史的操作都能很容易的被侦测到。这个函数一般只用于状态转移API。

		ApplyStateDelta(id interface{}, delta *statemgmt.StateDelta) error

这个函数接收状态变化，并把它应用到当前的状态。变化量的应用会使得状态向前或向后转变，这取决于状态变化量的构造，与Executor方法一样，ApplyStateDelta接受一个同样会被传递给CommitStateDelta
or RollbackStateDelta不透明的接口id

		CommitStateDelta(id interface{}) error

这个方法提交在ApplyStateDelta中应用的状态变化。这通常是在调用者调用ApplyStateDelta后通过校验由GetCurrentStateHash()获得的状态哈希之后调用的。这个函数接受与传递给ApplyStateDelta一样的id。

		RollbackStateDelta(id interface{}) error

这个函数撤销在ApplyStateDelta中应用的状态变化量。这通常是在调用者调用ApplyStateDelta后与由GetCurrentStateHash()获得的状态哈希校验失败后调用的。这个函数接受与传递给ApplyStateDelta一样的id。

		EmptyState() error

这个函数将会删除整个当前状态，得到原始的空状态。这通常是通过变化量加载整个新的状态时调用的。这一般只对状态转移API有用。

3.4.9 RemoteLedgers 接口

定义：

type RemoteLedgers interface {
 GetRemoteBlocks(peerID uint64, start, finish uint64) (<-chan *pb.SyncBlocks, error)
 GetRemoteStateSnapshot(peerID uint64) (<-chan *pb.SyncStateSnapshot, error)
 GetRemoteStateDeltas(peerID uint64, start, finish uint64) (<-chan *pb.SyncStateDeltas, error)
}

RemoteLedgers
接口的存在主要是为了启用状态转移，和向其它副本询问区块链的状态。和WritableLedger接口一样，这不是给正常的操作使用，而是为追赶，错误恢复等操作而设计的。这个接口中的所有函数调用这都有责任来处理超时。这个接口包含下面这些函数：

		GetRemoteBlocks(peerID uint64, start, finish uint64) (<-chan *pb.SyncBlocks, error)

这个函数尝试从由peerID指定的 peer
中取出由start和finish标识的范围中的*pb.SyncBlocks流。一般情况下，由于区块链必须是从结束到开始这样的顺序来验证的，所以start是比finish更高的块编号。由于慢速的结构，其它请求的返回可能出现在这个通道中，所以调用者必须验证返回的是期望的块。第二次以同样的peerID来调用这个方法会导致第一次的通道关闭。

		GetRemoteStateSnapshot(peerID uint64) (<-chan *pb.SyncStateSnapshot, error)

这个函数尝试从由peerID指定的 peer
中取出*pb.SyncStateSnapshot流。为了应用结果，首先需要通过WritableLedger的EmptyState调用来清空存在在状态，然后顺序应用包含在流中的变化量。

		GetRemoteStateDeltas(peerID uint64, start, finish uint64) (<-chan *pb.SyncStateDeltas, error)

这个函数尝试从由peerID指定的 peer
中取出由start和finish标识的范围中的*pb.SyncStateDeltas流。由于慢速的结构，其它请求的返回可能出现在这个通道中，所以调用者必须验证返回的是期望的块变化量。第二次以同样的peerID来调用这个方法会导致第一次的通道关闭。

3.4.10 controller包

3.4.10.1 controller.NewConsenter

签名:

func NewConsenter(cpi consensus.CPI) (consenter consensus.Consenter)

这个函数读取为peer过程指定的core.yaml配置文件中的peer.validator.consensus的值。键peer.validator.consensus的有效值指定运行noops还是pbft共识插件。（注意，它最终被改变为noops或custom。在custom情况下，验证
peer 将会运行由consensus/config.yaml中定义的共识插件）

插件的作者需要编辑函数体，来保证路由到它们包中正确的构造函数。例如，对于pbft
我们指向pbft.GetPlugin构造器。

这个函数是当设置返回信息处理器的consenter域时，被helper.NewConsensusHandler调用的。输入参数cpi是由helper.NewHelper构造器输出的，并实现了consensus.CPI接口

3.4.11 helper包

3.4.11.1 高层次概述

验证 peer
通过helper.NewConsesusHandler函数(一个处理器工厂)，为每个连接的
peer
建立消息处理器(helper.ConsensusHandler)。每个进来的消息都会检查它的类型(helper.HandleMessage)；如果这是为了共识必须到达的消息，它会传递到
peer
的共识对象(consensus.Consenter)。其它的信息会传递到栈中的下一个信息处理器。

3.4.11.2 helper.ConsensusHandler

定义：

type ConsensusHandler struct {
 chatStream peer.ChatStream
 consenter consensus.Consenter
 coordinator peer.MessageHandlerCoordinator
 done chan struct{}
 peerHandler peer.MessageHandler
}

共识中的上下文，我们只关注域coordinator和consenter。coordinator就像名字隐含的那样，它被用来在
peer 的信息处理器之间做协调。例如，当 peer
希望Broadcast时，对象被访问。共识需要到达的共识者会接收到消息并处理它们。

注意，fabric/peer/peer.go定义了peer.MessageHandler
(接口)，和``peer.MessageHandlerCoordinator``（接口）类型。

3.4.11.3 helper.NewConsensusHandler

签名:

func NewConsensusHandler(coord peer.MessageHandlerCoordinator, stream peer.ChatStream, initiatedStream bool, next peer.MessageHandler) (peer.MessageHandler, error)

创建一个helper.ConsensusHandler对象。为每个coordinator设置同样的消息处理器。同时把consenter设置为controller.NewConsenter(NewHelper(coord))

3.4.11.4 helper.Helper

定义:

type Helper struct {
 coordinator peer.MessageHandlerCoordinator
}

包含验证peer的coordinator的引用。对象是否为peer实现了consensus.CPI接口。

3.4.11.5 helper.NewHelper

签名:

func NewHelper(mhc peer.MessageHandlerCoordinator) consensus.CPI

返回coordinator被设置为输入参数mhc（helper.ConsensusHandler消息处理器的coordinator域）的helper.Helper对象。这个对象实现了consensus.CPI接口，从而允许插件与栈进行交互。

3.4.11.6 helper.HandleMessage

回忆一下，helper.NewConsensusHandler返回的helper.ConsesusHandler对象实现了
peer.MessageHandler 接口：

type MessageHandler interface {
 RemoteLedger
 HandleMessage(msg *pb.Message) error
 SendMessage(msg *pb.Message) error
 To() (pb.PeerEndpoint, error)
 Stop() error
}

在共识的上下文中，我们只关心HandleMessage方法。签名：

func (handler *ConsensusHandler) HandleMessage(msg *pb.Message) error

这个函数检查进来的Message的Type。有四种情况：

		等于pb.Message_CONSENSUS：传递给处理器的consenter.RecvMsg函数。

		等于pb.Message_CHAIN_TRANSACTION (如：一个外部部署的请求):
一个响应请求首先被发送给用户，然后把消息传递给consenter.RecvMsg函数

		等于pb.Message_CHAIN_QUERY (如：查询):
传递给helper.doChainQuery方法来在本地执行

		其它: 传递给栈中下一个处理器的HandleMessage方法

3.5 事件

事件框架提供了生产和消费预定义或自定义的事件的能力。它有3个基础组件： -
事件流 - 事件适配器 - 事件结构

3.5.1 事件流

事件流是用来发送和接收事件的gRPC通道。每个消费者会与事件框架建立事件流，并快速传递它感兴趣的事件。事件生成者通过事件流只发送合适的事件给连接到生产者的消费者。

事件流初始化缓冲和超时参数。缓冲保存着几个等待投递的事件，超时参数在缓冲满时有三个选项：

		如果超时小于0，丢弃新到来的事件

		如果超时等于0，阻塞事件知道缓冲再次可用

		如果超时大于0，等待指定的超时时间，如果缓冲还是满的话就丢弃事件

3.5.1.1 事件生产者

事件生产者暴露函数Send(e *pb.Event)来发送事件，其中Event可以是预定义的Block或Generic事件。将来会定义更多的事件来包括其它的fabric元素。

message Generic {
 string eventType = 1;
 bytes payload = 2;
}

eventType和payload是由事件生产者任意定义的。例如，JSON数据可能被用在payload中。链码或插件发出Generic事件来与消费者通讯。

3.5.1.2 事件消费者

事件消费者允许外部应用监听事件。每个事件消费者通过时间流注册事件适配器。消费者框架可以看成是事件流与适配器之间的桥梁。一种典型的事件消费者使用方式：

adapter = <adapter supplied by the client application to register and receive events>
consumerClient = NewEventsClient(<event consumer address>, adapter)
consumerClient.Start()
...
...
consumerClient.Stop()

3.5.2 事件适配器

事件适配器封装了三种流交互的切面： - 返回所有感兴趣的事件列表的接口 -
当事件消费者框架接受到事件后调用的接口 -
当事件总线终止时，事件消费者框架会调用的接口

引用的实现提供了Golang指定语言绑定

EventAdapter interface {
 GetInterestedEvents() ([]*ehpb.Interest, error)
 Recv(msg *ehpb.Event) (bool,error)
 Disconnected(err error)
}

把gRPC当成事件总线协议来使用，允许事件消费者框架对于不同的语言的绑定可移植而不影响事件生成者框架。

3.5.3 事件框架

这节详细描述了事件系统的消息结构。为了简单起见，消息直接使用Golang描述。

事件消费者和生产者之间通信的核心消息是事件。

message Event {
 oneof Event {
 //consumer events
 Register register = 1;

 //producer events
 Block block = 2;
 Generic generic = 3;
 }
}

每一个上面的定义必须是Register,
Block或Generic中的一种。

就像之前提到过的一样，消费者通过与生产者建立连接来创建事件总线，并发送Register事件。Register事件实质上是一组声明消费者感兴趣的事件的Interest消息。

message Interest {
 enum ResponseType {
 //don't send events (used to cancel interest)
 DONTSEND = 0;
 //send protobuf objects
 PROTOBUF = 1;
 //marshall into JSON structure
 JSON = 2;
 }
 string eventType = 1;
 ResponseType responseType = 2;
}

事件可以通过protobuf结构直接发送，也可以通过指定适当的responseType来发送JSON结构。

当前，生产者框架可以生成Block和Generic事件。Block是用来封装区块链中区块属性的消息。

4. 安全

这一节将讨论下面的图所展示的设置描述。特别的，系统是由下面这些实体构成的：成员管理基础架构，如从一个实体集合中区分出不同用户身份的职责（使用系统中任意形式的标识，如：信用卡，身份证），为这个用户注册开户，并生成必要的证书以便通过fabric成功的创建交易，部署或调用链码。

[image: figure-architecture]
figure-architecture

		Peers，它们被分为验证 peer 和非验证 peer。验证
peer（也被称为验证器）是为了规范并处理（有效性检查，执行并添加到区块链中）用户消息（交易）提交到网络上。非验证
peer（也被称为
peer）代表用户接受用户交易，并通过一些基本的有效性检查，然后把交易发送到它们附近的验证
peer。peer
维护一个最新的区块链副本，只是为了做验证，而不会执行交易(处理过程也被称为交易验证)。

		注册到我们的成员服务管理系统的终端用户是在获取被系统认定的身份的所有权之后，并将获取到的证书安装到客户端软件后，提交交易到系统。

		客户端软件，为了之后能完成注册到我们成员服务和提交交易到系统所需要安装在客户端的软件。

		在线钱包，用户信任的用来维护他们证书的实体，并独自根据用户的请求向网络提交交易。在线钱包配置在他们自己的客户端软件中。这个软件通常是轻量级的，它只需有对自己和自己的钱包的请求做授权。也有
peer
为一些用户扮演在线钱包的角色，在接下来的会话中，对在线钱包做了详细区分。

希望使用fabric的用户，通过提供之前所讨论的身份所有权，在成员管理系统中开立一个账户，新的链码被链码创建者（开发）以开发者的形式通过客户端软件部署交易的手段，公布到区块链网络中。这样的交易是第一次被
peer
或验证器接收到，并流传到整个验证器网络中，这个交易被区块链网络执行并找到自己的位置。用户同样可以通过调用交易调用一个已经部署了的链码

下一节提供了由商业目标所驱动的安全性需求的摘要。然后我们游览一下安全组件和它们的操作，以及如何设计来满足安全需求。

4.1 商业安全需求

这一节表述与fabric相关的商业安全需求。

身份和角色管理相结合

为了充分的支持实际业务的需求，有必要超越确保加密连续性来进行演进。一个可工作的B2B系统必须致力于证明/展示身份或其他属性来开展业务。商业交易和金融机构的消费交互需要明确的映射到账户的所有者。商务合同通常需要与特定的机构和/或拥有交易的其他特定性质的各方保证有从属关系。问责制和不可陷害性是身份管理作为此类系统关键组成部分的两个原因。

问责制意味着系统的用户，个人或公司，谁的胡作非为都可以追溯到并为自己的行为负责。在很多情况下，B2B系统需要它们的会员使用他们的身份（在某些形式）加入到系统中，以确保问责制的实行。问责制和不可陷害性都是B2B系统的核心安全需求，并且他们非常相关。B2B系统需要保证系统的诚实用户不会因为其他用户的交易而被指控。

此外，一个B2B系统需要具有可再生性和灵活性，以满足参与者角色和/或从属关系的改变。

交易隐私.

B2B系统对交易的隐私有着强烈的需求，如：允许系统的终端用户控制他与环境交互和共享的信息。例如：一家企业在交易型B2B系统上开展业务，要求它的交易得其他企业不可见，而他的行业合作伙伴无权分享机密信息。

在fabric中交易隐私是通过下面非授权用户的两个属性来实现的:

		交易匿名，交易的所有者隐藏在一个被称为匿名集的组建中，在fabric中，它是用户的一个集合。

		交易不可关联，同一用户的两个或多个交易不能被关联起来。

根据上下文，非授权用户可以是系统以外的任何人，或用户的子集。

交易隐私与B2B系统的两个或多个成员之间的保密协议的内容强烈相关。任何授权机制的匿名性和不可关联性需要在交易时考虑。

通过身份管理协调交易隐私.

就像文档之后描述的那样，这里所采用的方法用来协调身份管理与用户隐私，并使有竞争力的机构可以像下面一样在公共的区块链（用于内部和机构间交易）上快速的交易：

		为交易添加证书来实现“有权限的”区块链

		使用两层系统：

		向登记的证颁发机构（CA）注册来获得(相对的) 静态登记证书 (ECerts)

		通过交易CA获取能如实但伪匿名的代表登记用户的交易证书(TCerts).

		提供对系统中未授权会员隐藏交易内用的机制

审计支持.

商业系统偶尔会受到审核。在这种情况下，将给予审计员检查某些交易，某组交易，系统中某些特定用户或系统自己的一些操作的手段。因此，任意与商业伙伴通过合同协议进行交易的系统都应该提供这样的能力。

4.2 使用成员管理的用户隐私

成员管理服务是由网络上管理用户身份和隐私的几个基础架构来组成的。这些服务验证用户的身份，在系统中注册用户，并为他/她提供所有作为可用、兼容的参数者来创建和/或调用交易所需要的证书。公开密钥体系（Public
Key Infrastructure
，PKI）是一个基于不仅对公共网络上交换的数据的加密而且能确认对方身份的公共密钥加密的。PKI管理密钥和数字证书的生成，发布和废止。数字证书是用来建立用户证书，并对消息签名的。使用证书签名的消息保证信息不被篡改。典型的PKI有一个证书颁发机构（CA），一个登记机构（RA），一个证书数据库，一个证书的存储。RA是对用户进行身份验证，校验数据的合法性，提交凭据或其他证据来支持用户请求一个或多个人反映用户身份或其他属性的可信任机构。CA根据RA的建议为特定的用户发放根CA能直接或分级的认证的数字证书。另外，RA的面向用户的通信和尽职调查的责任可以看作CA的一部分。成员服务由下图展示的实体组成。整套PKI体系的引入加强了B2B系统的强度（如：超过比特币）。

[image: Figure 1]
Figure 1

根证书颁发机构(根CA):
它代表PKI体系中的信任锚。数字证书的验证遵循信任链。根CA是PKI层次结构中最上层的CA。

登记机构(RA):
它是一个可以确定想要加入到带权限区块链的用户的有效性和身份的可信实体。它是负责与用户外的带外通信来验证他/她的身份和作用。它是负责与用户进行频外通信来验证他/她的身份和角色。它创建登记时所需要的注册证书和根信任上的信息。

注册证书颁发机构(ECA):
负责给通过提供的注册凭证验证的用户颁发注册证书(ECerts)

交易认证中心(TCA): 负责给提供了有效注册证书的用户颁发交易证书(TCerts)

TLS证书颁发机构(TLS-CA):
负责签发允许用户访问其网络的TLS证书和凭证。它验证用户提供的包含该用户的特定信息的，用来签发TLS证书的，证书或证据。

注册证书(ECerts)
ECerts是长期证书。它们是颁发给所有角色的，如用户，非验证 peer，验证
peer。在给用户颁发的情况下，谁向区块链提交候选人申请谁就拥有TCerts（在下面讨论），ECerts有两种可能的结构和使用模式：

		Model A: ECerts
包含所有者的身份/注册ID，并可以在交易中为TCert请求提供只用来对名义实体身份做验证。它们包含两个密钥对的公共部分：签名密钥对和加密/密钥协商密钥对。
ECerts是每个人都可以访问。

		Model B: ECerts
包含所有者的身份/注册ID，并只为TCert请求提供名义实体的身份验证。它们包含一个签名密钥对的公共部分，即，签名验证公钥的公共部分。作为依赖方，ECerts最好只由TCA和审计人员访问。他们对交易是不可见的，因此（不像TCerts）签名密钥对不在这一层级发挥不可抵赖的作用。

交易证书(TCerts)
TCerts是每个交易的短期证书。它们是由TCA根据授权的用户请求颁发的。它们安全的给一个交易授权，并可以被配置为隐藏谁参与了交易或选择性地暴露这样身份注册ID这样的信息。他们包含签名密钥对的公共部分，并可以被配置为包含一个密钥协议的密钥对的公共部分。他们仅颁发给用户。它们唯一的关联到所有者，它们可以被配置为这个关联只有TCA知道知道（和授权审核员）。TCert可以配置成不携带用户的身份信息。它们使得用户不仅以匿名方式参与到系统中，而且阻止了交易之间的关联性。

然而，审计能力和问责制的要求TCA能够获取给定身份的TCert，或者获取指定TCert的所有者。有关TCerts如何在部署和调用交易中使用的详细信息参见4.3节，交易安全是在基础设施层面提供的。

TCerts可容纳的加密或密钥协议的公共密钥（以及数字签名的验证公钥）。
如果配备好TCert，那么就需要注册证书不能包含加密或密钥协议的公钥。

这样的密钥协议的公钥，Key_Agreement_TCertPub_Key，可以由交易认证机构（TCA）使用与生成Signature_Verification_TCertPub_Key同样的方法，使用TCertIndex
+ 1
而不是TCertIndex来作为索引个值来生成，其中TCertIndex是由TCA为了恢复而隐藏在TCert中的。

交易证书（TCert）的结构如下所述： * TCertID –
交易证书ID（为了避免通过隐藏的注册ID发生的意外可关联性，最好由TCA随机生成）.
* Hidden Enrollment ID: AES_EncryptK(enrollmentID), 其中密钥K =
[HMAC(Pre-K,
TCertID)]256位截断其中为每个K定义三个不同的密钥分配方案：(a)， (b) and
(c)。 * Hidden Private Keys Extraction:
AES_EncryptTCertOwner_EncryptKey(TCertIndex ||
已知的填充/校验检查向量)
其中||表示连接，其中各个批次具有被加到计数器的唯一（每个批次）的时间戳/随机偏移量（这个实现中初始化为1）来生成TCertIndex。该计数器可以通过每次增加2来适应TCA生成公钥，并由这两种类型的私钥的TCert所有者来恢复，如签名密钥对和密钥协商密钥对。
* Sign Verification Public Key – TCert签名验证的公共密钥。 * Key
Agreement Public Key – TCert密钥协商的公钥。 * Validity period –
该交易证书可用于交易的外/外部签名的时间窗口。

这里至少有三种方式来配置考虑了隐藏注册ID域密钥的分配方案：

(a) Pre-K在注册期间发给用户，peer
和审计员，并对TCA和授权的审计员可用。它可能，例如由Kchain派生（会在这个规范的后面描述）或为了链码的保密性使用独立的key(s)。

(b)
Pre-K对验证器，TCA和授权的审计员可用。K是在验证器成功响应用户的查询交易（通过TLS）后可用给的。查询交易可以使用与调用交易相同的格式。对应下面的例1，如果查询用户又有部署交易的ACL中的一张TCert，那么就可以得到创建这个部署交易的用户的注册ID（enrollmentID）。对应下面的例2，如果查询所使用TCert的注册ID（enrollmentID）与部署交易中访问控制域的其中一个隶属关系/角色匹配，那么就可以得到创建这个部署交易的用户的注册ID（enrollmentID）。

Example 1:

[image: Example 1]
Example 1

Example 2:

[image: Example 2]
Example 2

(c)
Pre-K对TCA和授权的审计员可用。对于批量中的所有TCert，TCert特有的K可以和TCert一起分发给TCert的所有者（通过TLS）。这样就通过K的TCert所有者启用目标释放（TCert所有者的注册ID的可信通知）。这样的目标释放可以使用预定收件人的密钥协商公钥和/或PKchain其中SKchain就像规范的后面描述的那样对验证器可用。这样目标释放给其它合同的参与者也可以被纳入到这个交易或在频外完成。

如果TCert与上述的ECert模型A的结合使用，那么使用K不发送给TCert的所有者的方案（c）就足够了。
如果TCert与上述的ECert模型A的结合使用，那么TCert中的密钥协商的公钥域可能就不需要了。

交易认证中心(TCA)以批量的方式返回TCert，每个批量包含不是每个TCert都有的，但是和TCert的批量一起传递到客户端的KeyDF_Key(Key-Derivation-Function
Key)
（通用TLS）。KeyDF_Key允许TCert的拥有者派生出真正用于从AES_EncryptTCertOwner_EncryptKey（TCertIndex
|| 已知的填充/校验检查向量）的TCertIndex恢复的TCertOwner_EncryptKey。

TLS证书(TLS-Certs) TLS-Certs
是用于系统/组件到系统/组件间通讯所使用的证书。他们包含所有者的身份信息，使用是为了保证网络基本的安全。

成员管理的这个实现提供下面描述的基础功能：ECerts是没有到期/废止的；TCert的过期是由验证周期的时间窗口提供的。TCerts是没有废止的。ECA，TCA和TLS
CA证书是自签名的，其中TLS CA提供信任锚点。

4.2.1 用户/客户端注册过程

下面这个图高度概括了用户注册过程，它具有离线和在线阶段。

[image: Registration]
Registration

离线处理: 在第一步中，每个用户/非验证 peer /验证 peer
有权在线下将较强的识别凭证（身份证明）到导入到注册机构（RA）。这需要在频外给RA提供为用户创建（存储）账号的证据凭证。第二步，RA返回对应的用户名/密码和信任锚点（这个实现中是TLS-CA
Cert）给用户。如果用户访问了本地客户端，那么这是客户端可以以TLS-CA证书作为信任锚点来提供安全保障的一种方法。

在线阶段:
第三步，用户连接客户端来请求注册到系统中。用户发送它的用户名和密码给客户端。客户端代表用户发送请求给PKI框架。第四步，接受包，第五步，包含其中一些对应于由客户端私有/秘密密钥的若干证书。一旦客户端验证包中所有加密材料是正确/有效的，他就把证书存储在本地并通知用户。这时候用户注册就完成了。

[image: Figure 4]
Figure 4

图4展示了注册的详细过程。PKI框架具有RA， ECA，
TCA和TLS-CA这些实体。第一步只收，RA调用“AddEntry”函数为它的数据库输入（用户名/密码）。这时候用户已正式注册到系统数据库中。客户端需要TLS-CA证书（当作信任锚点）来验证与服务器之间的TLS握手是正确的。第四步，客户端发送包含注册公钥和像用户名，密码这样的附加身份信息的注册请求到ECA（通过TLS备案层协议）。ECA验证这个用户是否真实存在于数据库。一旦它确认用户有权限提交他/她的注册公钥，那么ECA就会验证它。这个注册信息是一次性的。ECA会更新它的数据库来标识这条注册信息（用户名，密码）不能再被使用。ECA构造，签名并送回一张包含用户注册公钥的（步骤5）注册证书（ECert）。它同样会发送将来会用到（客户端需要向TCA证明他/她的ECert使用争取的ECA创建的）的ECA证书（ECA-Cert)）。（尽管ECA-Cert在最初的实现中是自签名的，TCA，TLS-CA和ECA是共址）第六步，客户端验证ECert中的公钥是最初由客户端提交的（即ECA没有作弊）。它同样验证ECert中的所有期望的信息存在且形式正确。

同样的，在第七步，客户端发送包含它的公钥和身份的注册信息到TLS-CA。TLS-CA验证该用户在数据库中真实存在。TLS-CA生成，签名包含用户TLS公钥的一张TLS-Cert（步骤8）。TLS-CA发送TLS-Cert和它的证书（TLS-CA
Cert）。第九步类似于第六步，客户端验证TLS
Cert中的公钥是最初由客户端提交的，TLS
Cert中的信息是完整且形式正确。在第十步，客户端在本地存储中保存这两张证书的所有证书。这时候用户就注册完成了。

在这个版本的实现中验证器的注册过程和 peer
的是一样的。尽管，不同的实现可能使得验证器直接通过在线过程来注册。

[image: Figure 5] [image: Figure 6]

客户端:
请求TCert批量需要包含（另外计数），ECert和使用ECert私钥签名的请求（其中ECert的私钥使用本地存储获取的）

TCA为批量生成TCerts: 生成密钥派生函数的密钥，KeyDF_Key,
当作HMAC(TCA_KDF_Key, EnrollPub_Key).
为每张TCert生成公钥(使用TCertPub_Key = EnrollPub_Key + ExpansionValue
G, 其中384位的ExpansionValue = HMAC(Expansion_Key, TCertIndex)
和384位的Expansion_Key = HMAC(KeyDF_Key, “2”)).
生成每个AES_EncryptTCertOwner_EncryptKey(TCertIndex ||
已知的填充/校验检查向量)， 其中||
表示连接，且TCertOwner_EncryptKey被当作[HMAC(KeyDF_Key,
“1”)]派生256位截断.

客户端:
为部署，调用和查询，根据TCert来生成TCert的私钥：KeyDF_Key和ECert的私钥需要从本地存储中获取。KeyDF_Key是用来派生被当作[HMAC(KeyDF_Key,
“1”)]256位截断的TCertOwner_EncryptKey；TCertOwner_EncryptKey是用来对TCert中的
AES_EncryptTCertOwner_EncryptKey(TCertIndex ||
已知的填充/校验检查向量)域解密的；TCertIndex是用来派生TCert的私钥的：
TCertPriv_Key = (EnrollPriv_Key +
ExpansionValue)模n，其中384位的ExpansionValue = HMAC(Expansion_Key,
TCertIndex)，384位的Expansion_Key = HMAC(KeyDF_Key, “2”)。

4.2.2 过期和废止证书

实际是支持交易证书过期的。一张交易证书能使用的时间窗是由‘validity
period’标识的。实现过期支持的挑战在于系统的分布式特性。也就是说，所有验证实体必须共享相同的信息；即，与交易相关的有效期验证需要保证一致性。为了保证有效期的验证在所有的验证器间保持一致，有效期标识这一概念被引入。这个标识扮演着逻辑时钟，使得系统可以唯一识别有效期。在创世纪时，链的“当前有效期”由TCA初始化。至关重要的是，此有效期标识符给出随时间单调增加的值，这使得它规定了有效期间总次序。

对于指定类型的交易，系统交易有效周期标识是用来一起向区块链公布有效期满的。系统交易涉及已经在创世纪块被定义和作为基础设施的一部分的合同。有效周期标识是由TCA周期性的调用链码来更新的。注意，只有TCA允许更新有效期。TCA通过给定义了有效期区间的‘not-before’和‘not-after’这两个域设置合适的整数值来为每个交易证书设置有效期。

TCert过期: 在处理TCert时，验证器从状态表中读取与总账中的‘current
validity
period’相关的值来验证与交易相关的外部证书目前是否有效。状态表中的当前值需要落在TCert的‘not-before’和‘not-after’这两个子域所定义的区间中。如果满足，那么验证器就继续处理交易。如果当前值没有在这个区间中，那么TCert已经过期或还没生效，那么验证器就停止处理交易。

ECert过期: 注册证书与交易证书具有不同的有效期长度。

废止是由证书废止列表（CRLs）来支持的，CRLs鉴定废止的证书。CRLs的改变，增量的差异通过区块链来公布

4.3 基础设施层面提供的交易安全

fabric中的交易是通过提交用户-消息来引入到总账中的。就像之前章节讨论的那样，这些信息具有指定的结构，且允许用户部署新的链码，调用已经存在的链码，或查询已经存在的链码的状态。因此交易的方式被规范，公布和处理在整个系统提供的隐私和安全中起着重要的作用。

一方面我们的成员服务通过检查交易是由系统的有效用户创建的来提供验证交易的手段，为了把用户身份和交易撇清，但是在特定条件下又需要追踪特定个体的交易（执法，审计）。也就是说，成员服务提供结合用户隐私与问责制和不可抵赖性来提供交易认证机制。

另一方面，fabric的成员服务不能单独提供完整的用户活动隐私。首先fabric提供完整的隐私保护条款，隐私保护认证机制需要通过交易保密协同。很明显，如果认为链码的内容可能会泄漏创建者的信息，那么这就打破了链码创建者的隐私要求。第一小节讨论交易的保密性。

为链码的调用强制访问控制是一个重要的安全要求。fabric暴露给应用程序（例如，链码创建者）这意味着当应用利用fabric的成员服务是，需要应用自己调用访问控制。4.4节详细阐述了这一点。

重放攻击是链码安全的另一个重要方面，作为恶意用户可能复制一个之前的，已经加入到区块链中的交易，并向网络重放它来篡改它的操作。这是第4.3.3节的话题。

本节的其余部分介绍了基础设施中的安全机制是如何纳入到交易的生命周期中，并分别详细介绍每一个安全机制。

4.3.1 交易安全的生命周期

交易在客户端创建。客户端可以是普通的客户端，或更专用的应用，即，通过区块链处理（服务器）或调用（客户端）具体链码的软件部分。这样的应用是建立在平台（客户端）上的，并在4.4节中详细介绍。

新链码的开发者可以通过这些fabric的基础设施来新部署交易： *
希望交易符合保密/安全的版本和类型 *
希望访问部分链码的用户有适当的（读）访问权限 * 链码规范 *
代码元数据，包含的信息需要在链码执行时传递给它（即，配置参数），和 *
附加在交易结构上的并只在应用部署链码时使用的交易元数据

具有保密限制的链码的调用和查询交易都是用类似的方式创建。交易者提供需要执行的链码的标识，要调用的函数的名称及其参数。可选的，调用者可以传递在链码执行的时候所需要提供的代码调用元数据给交易创建函数。交易元数据是调用者的应用程序或调用者本身为了它自己的目的所使用的另外一个域。

最后，交易在客户端，通过它们的创建者的证书签名，并发送给验证器网络。
验证器接受私密交易，并通过下列阶段传递它们： *
预验证阶段，验证器根据根证书颁发机构来验证交易证书，验证交易（静态的）中包含交易证书签名，并验证交易是否为重放（参见，下面关于重放攻击的详细信息）。
* 共识阶段，
验证器把这笔交易加入到交易的全序列表中（最终包含在总账中） *
预执行阶段， 验证交易/注册证书是否在当前的有效期中
解密交易（如果交易是加密的），并验证交易明文的形式正确（即，符合调用访问控制，包含TCert形式正确）
在当前处理块的事务中，也执行了简单的重放攻击检查。 * 执行阶段，
(解密的) 链码和相关的代码元数据被传递给容器，并执行。 * 提交 阶段，
(解密的)更新的链码的状态和交易本身被提交到总账中。

4.3.2 交易保密性

在开发人员的要求下，交易机密性要求链码的原文，即代码，描述，是不能被未授权的实体（即，未被开发人员授权的用户或
peer）访问或推导（assuming a computational
attacker）出来。对于后者，部署和调用交易的内容始终被隐藏对链码的保密需求是至关重要的。本着同样的精神，未授权方，不应该能联系链码（调用交易）与链码本身（部署交易）之间的调用关系或他们之间的调用。

任何候选的解决方案的附加要求是，满足并支持底层的成员服务的隐私和安全规定。此外，在fabric中他不应该阻止任何链码函数的调用访问控制，或在应用上实现强制的访问控制机制(参看4.4小结)。

下面提供了以用户的粒度来设置的交易机密性机制的规范。最后小结提供了一些如何在验证器的层次来扩展这个功能的方针。当前版本所支持的特性和他的安全条款可以在4.7节中找到。

目标是达到允许任意的子集实体被允许或限制访问链码的下面所展示的部分： 1.
链码函数头，即，包含在链码中函数的原型 2. 链码[调用&] 状态，即，
当一个或多个函数被调用时，连续更新的特定链码的状态。 3. 所有上面所说的

注意，这样的设计为应用提供利用fabric的成员管理基础设施和公钥基础设施来建立自己的访问控制策略和执法机制的能力。

4.3.2.1 针对用户的保密

为了支持细粒度的保密控制，即，为链码创建者定义的用户的子集，限制链码的明文读权限，一条绑定到单个长周期的加密密钥对的链（PKchain,
SKchain）。

尽管这个密钥对的初始化是通过每条链的PKI来存储和维护的，在之后的版本中，这个限制将会去除。链（和相关的密钥对）可以由任意带有特定（管理）权限的用户通过区块链来触发（参看4.3.2.2小节）

搭建. 在注册阶段，
用户获取（像之前一样）一张注册证书，为用户ui标记为Certui，其中每个验证器vj获取的注册证书标记为Certvj。注册会给用户或验证器发放下面这些证书：

		用户：

		声明并授予自己签名密钥对(spku, ssku)

		申明并授予他们加密密钥对(epku, esku)，

		获取链PKchain的加密（公共）密钥

		验证器:

		声明并授予他们签名密钥对(spkv, sskv)

		申明并授予他们加密密钥对 (epkv, eskv)，

		获取链SKchain的解密（秘密）密钥

因此，注册证书包含两个密钥对的公共部分： *
一个签名密钥对[为验证器标记为(spkvj,sskvj)，为用户标记为(spkui, sskui)]
和 * 一个加密密钥对[为验证器标记为(epkvj,eskvj)，为用户标记为(epkui,
eskui)]

链，验证器和用户注册公钥是所有人都可以访问的。

除了注册证书，用户希望通过交易证书的方式匿名的参与到交易中。用户的简单交易证书ui被标记为TCertui。交易证书包含的签名密钥对的公共部分标记为(tpkui,tskui)。

下面的章节概括性的描述了如何以用户粒度的方式提供访问控制。

部署交易的结构. 下图描绘了典型的启用了保密性的部署交易的结构。

[image: FirstRelease-deploy]
FirstRelease-deploy

注意，部署交易由几部分组成： * 基本信息部分:
包含交易管理员的详细信息，即这个交易对应于哪个链（链接的），交易的类型（设置’‘deplTrans’‘），实现的保密协议的版本号，创建者的身份（由注册证书的交易证书来表达），和主要为了防止重放攻击的Nonce。
* 代码信息部分:
包含链码的源码，函数头信息。就像下图所展示的那样，有一个对称密钥(KC)用于链码的源代码，另一个对称密钥(KH)用于函数原型。链码的创建者会对明文代码做签名，使得信函不能脱离交易，也不能被其他东西替代。
* 链验证器部分:
为了(i)解密链码的源码(KC),(ii)解密函数头，和(iii)当链码根据(KS)调用时加密状态。尤其是链码的创建者为他部署的链码生产加密密钥对(PKC,
SKC)。它然后使用PKC加密所有与链码相关的密钥：

[(‘’code’‘,KC) ,(‘’headr’‘,KH),(‘’code-state’‘,KS), SigTCertuc(*)]PKc,

并把 where appropriate key material is passed to the In particular, the
chain-code creator generates an encryption key-pair for the chain-code
it deploys (PKC, SKC). It then uses PKC to encrypt all the keys
associated to the chain-code:

[(‘’code’‘,KC) ,(‘’headr’‘,KH),(‘’code-state’‘,KS), SigTCertuc(*)]PKc,

私钥SKC通过链指定的公钥：

[(‘’chaincode’‘,SKC), SigTCertuc(*)]PKchain.

传递给验证器。 * 合同用户部分:
合同用户的公共密钥，即具有部分链码读权限的用户，根据他们的访问权限加密密钥：

		SKc使得用户能读取与这段链码相关的任意信息（调用，状态，等）

		KC使用户只能读取合同代码

		KH 使用户只能读取头信息

		KS使用户只能读取与合同相关的状态

最后给用户发放一个合同的公钥PKc，使得他们可以根据合同加密信息，从而验证器(or
any in possession of
SKc)可以读取它。每个合同用户的交易证书被添加到交易中，并跟随在用户信息之后。这可以使得用户可以很容易的搜索到有他们参与的交易。注意，为了信函可以在本地不保存任何状态的情况下也能通过分析总账来获取这笔交易，部署交易也会添加信息到链码创建者uc。

整个交易由链码的创建者的证书签名，即：由后者决定使用注册还是交易证书。
两个值得注意的要点： *
交易中的信息是以加密的方式存储的，即，code-functions， *
code-hdrs在使用TCert加密整个交易之前会用想用的TCert签名，或使用不同的TCert或ECert（如果交易的部署需要带上用户的身份。一个绑定到底层交易的载体需要包含在签名信息中，即，交易的TCert的哈希是签名的，因此mix&match攻击是不可能的。我们在4.4节中详细讨论这样的攻击，在这种情况下，攻击者不能从他看到的交易中分离出对应的密文，即，代码信息，并在另一个交易中使用它。很明显，这样会打乱整个系统的操作，链码首先有用户A创建，现在还属于恶意用户B（可能没有权限读取它）
*
为了给用户提供交叉验证的能力，会给他们访问正确密钥的权限，即给其他用户相同的密钥，使用密钥K对交易加密成密文，伴随着对K的承诺，而这一承诺值开放给所有在合同中有权访问K的用户，和链验证器。
在这种情况下，谁有权访问该密钥，谁就可以验证密钥是否正确传递给它。为了避免混乱，这部分在上图中省略了。

调用交易的结构.
下图结构化描述了，交易调用链码会触发使用用户指定的参数来执行链码中的函数

[image: FirstRelease-deploy]
FirstRelease-deploy

调用交易和部署交易一样由一个基本信息，
代码信息，链验证器和一个合同用户，并使用一张调用者的交易证书对所有进行签名。

		基本信息
与部署交易中对应部分遵循相同的结构。唯一的不同是交易类型被设置为’‘InvocTx’‘，链码的标识符或名字是通过链指定的加密（公共）密钥来加密的。

		代码信息
部署交易中的对应结构具有相同展现。在部署交易中作为代码有效载荷，现在由函数调用明细（调用函数的名字，对应的参数），由应用提供的代码元数据和交易创建者（调用者
u）的证书，TCertu。在部署交易的情况下，代码有效载荷和是通过调用者u的交易证书TCertu签名的。在部署交易的情况下，代码元数据，交易数据是由应用提供来使得信函可以实现他自己的访问控制机制和角色（详见4.4节）。

		最后，合同用户和链验证器部分提供密钥和有效荷载是使用调用者的密钥加密的，并分别链加密密钥。在收到此类交易，验证器解密
[code-name]PKchain使用链指定的密钥SKchain
，并获取被调用的链码身份。给定的信封，验证器从本地的获取链码的解密密钥SKc，并使用他来解密链验证器的信息，使用对称密钥
KI对调用交易的有效荷载加密。给定信函，验证器解密代码信息，并使用指定的参数和附加的代码元数据（参看4.4节的代码元数据详细信息）执行链码。当链码执行后，链码的状态可能就更新了。
加密所使用的状态特定的密钥Ks在链码部署的时候就定义了。尤其是，在当前版本中Ks
和KiTx被设计成一样的（参看4.7节）。

查询交易的结构.
查询交易和调用交易具有同样的格式。唯一的区别是查询交易对链码的状态没有影响，且不需要在执行完成之后获取（解密的）并/或更新（加密的）状态。

4.3.2.2 针对验证器的保密

这节阐述了如何处理当前链中的不同（或子集）集合的验证器下的一些交易的执行。本节中抑制IP限制，将在接下的几个星期中进行扩展。

4.3.3 防重放攻击

在重放攻击中，攻击者“重放”他在网络上“窃听”或在区块链’‘看到’‘的消息
由于这样会导致整个验证实体重做计算密集型的动作（链码调用）和/或影响对应的链码的状态，同时它在攻击侧又只需要很少或没有资源，所以重放攻击在这里是一个比较大的问题。如果交易是一个支付交易，那么问题就更大了，重放可能会导致在不需要付款人的参与下，多于一次的支付。
当前系统使用以下方式来防止重放攻击： *
在系统中记录交易的哈希。这个方法要求验证器为每个交易维护一个哈希日志，发布到网络上，并把每个新来的交易与本地存储的交易记录做对比。很明显这样的方法是不能扩展到大网络的，也很容易导致验证器花了比真正做交易还多的时间在检查交易是不是重放上。
*
利用每个用户身份维护的状态（Ethereum）.Ethereum保存一些状态，即，对每个身份/伪匿名维护他们自己的计数器（初始化为1）。每次用户使用他的身份/伪匿名发送交易是，他都把他的本地计数器加一，并把结果加入到交易中。交易随后使用用户的身份签名，并发送到网络上。当收到交易时，验证器检查计数器并与本地存储的做比较；如果值是一样的，那就增加这个身份在本地的计数器，并接受交易。否则把交易当作无效或重放的而拒绝掉。尽管这样的方法在有限个用户身份/伪匿名(即，不太多)下工作良好。它最终在用户每次交易都使用不同的标识（交易证书），用户的伪匿名与交易数量成正比时无法扩展。

其他资产管理系统，即比特币，虽然没有直接处理重放攻击，但它防止了重放。在管理（数字）资产的系统中，状态是基于每个资产来维护的，即，验证器只保存谁拥有什么的记录。因为交易的重放根据协议（因为只能由资产/硬币旧的所有者衍生出来）可以直接认为无效的，所以防重放攻击是这种方式的直接结果。尽管这合适资产管理系统，但是这并不表示在更一般的资产管理中需要比特币系统。

在fabric中，防重放攻击使用混合方法。
这就是，用户在交易中添加一个依赖于交易是匿名（通过交易证书签名）或不匿名（通过长期的注册证书签名）来生成的nonce。更具体的：
*
用户通过注册证书来提交的交易需要包含nonce。其中nonce是在之前使用同一证书的交易中的nonce函数（即计数器或哈希）。包含在每张注册证书的第一次交易中的nonce可以是系统预定义的（即，包含在创始块中）或由用户指定。在第一种情况中，创世区块需要包含nonceall，即，一个固定的数字和nonce被用户与身份IDA一起用来为他的第一笔注册证书签名的交易将会

nonceround0IDA <- hash(IDA, nonceall),

其中IDA出现在注册证书中。从该点之后的这个用户关于注册证书的连续交易需要包含下面这样的nonce

nonceroundiIDA <- hash(nonceround{i-1}IDA),

这表示第i次交易的nonce需要使用这样证书第{i-1}次交易的nonce的哈希。验证器持续处理他们收到的只要其满足上述条件的交易。一旦交易格式验证成功，验证器就使用nonce更新他们的数据库。

存储开销:

		在用户侧：只有最近使用的nonce

		在验证器侧: O(n)， 其中n是用户的数量

		用户使用交易证书提交的交易需要包含一个随机的nonce，这样就保证两个交易不会产生同样的哈希。如果交易证书没有过期的话，验证器就向本地数据库存储这笔交易的哈希。为了防止存储大量的哈希，交易证书的有效期被利用。特别是验证器为当前或未来有效周期来维护一个接受交易哈希的更新记录。

存储开销 (这里只影响验证器): O(m)，
其中m近似于有效期内的交易和对应的有效标识的数量（见下方）

4.4 应用的访问控制功能

应用是运行在区块链客户端软件上的一个具有特定功能的软件。如餐桌预订。应用软件有一个开发版本，使后者可以生成和管理一些这个应用所服务的行业所需要的链码，而且，客户端版本可以允许应用的终端用户调用这些链码。应用可以选择是否对终端用户屏蔽区块链。

本节介绍应用中如何使用链码来实现自己的访问控制策略，并提供如何使用成员服务来达到相同的目的。

这个报告可以根据应用分为调用访问控制，和读取访问控制。

4.4.1 调用访问控制

为了允许应用在应用层安全的实现自己的访问问控制，fabric需要提供特定的支持。在下面的章节中，我们详细的说明的fabric为了达到这个目的而给应用提供的工具，并为应用如何来使用它们使得后者能安全的执行访问控制提供方针。

来自基础设施的支持. 把链码的创建者标记为
uc，为了安全的实现应用层自己的调用访问控制，fabric必须需要提供特定的支持。
更具体的，fabric层提供下面的访问能力：

		客户端-应用可以请求fabric使用指定的客户端拥有的交易证书或注册证书来签名和验证任何消息；
这是由Certificate Handler interface来处理的。

		客户端-应用可以请求fabric一个绑定将身份验证数据绑定到底层的交易传输的应用程序；这是由Certificate
Handler interface来处理的。

		为了支持交易格式，允许指定被传递给链码在部署和调用时间的应用的元数据；后者被标记为代码元数据。

Certificate
Handler接口允许使用底层证书的密钥对来对任意消息进行签名和验证。证书可以是TCert或ECert。

// CertificateHandler exposes methods to deal with an ECert/TCert
type CertificateHandler interface {

 // GetCertificate returns the certificate's DER
 GetCertificate() []byte

 // Sign signs msg using the signing key corresponding to the certificate
 Sign(msg []byte) ([]byte, error)

 // Verify verifies msg using the verifying key corresponding to the certificate
 Verify(signature []byte, msg []byte) error

 // GetTransactionHandler returns a new transaction handler relative to this certificate
 GetTransactionHandler() (TransactionHandler, error)
}

Transaction
Handler借口允许创建交易和访问可利用的底层绑定来链接应用数据到底层交易。绑定是在网络传输协议引入的概念（参见，https://tools.ietf.org/html/rfc5056）记作通道绑定，允许应用在网络层两端的建立安全通道，与在高层的认证绑定和在低层是一样的。
这允许应用代理保护低层会话，这具有很多性能优势。
交易绑定提供识别fabric层次交易的身份，这就是应用数据要加入到总账的容器。

// TransactionHandler represents a single transaction that can be uniquely determined or identified by the output of the GetBinding method.
// This transaction is linked to a single Certificate (TCert or ECert).
type TransactionHandler interface {

 // GetCertificateHandler returns the certificate handler relative to the certificate mapped to this transaction
 GetCertificateHandler() (CertificateHandler, error)

 // GetBinding returns a binding to the underlying transaction (container)
 GetBinding() ([]byte, error)

 // NewChaincodeDeployTransaction is used to deploy chaincode
 NewChaincodeDeployTransaction(chaincodeDeploymentSpec *obc.ChaincodeDeploymentSpec, uuid string) (*obc.Transaction, error)

 // NewChaincodeExecute is used to execute chaincode's functions
 NewChaincodeExecute(chaincodeInvocation *obc.ChaincodeInvocationSpec, uuid string) (*obc.Transaction, error)

 // NewChaincodeQuery is used to query chaincode's functions
 NewChaincodeQuery(chaincodeInvocation *obc.ChaincodeInvocationSpec, uuid string) (*obc.Transaction, error)
}

对于版本1，绑定由hash（TCert，
Nonce）组成，其中TCert是给整个交易签名的交易证书，Nonce是交易所使用的nonce。

Client接口更通用，提供之前接口实例的手段。

type Client interface {

 ...

 // GetEnrollmentCertHandler returns a CertificateHandler whose certificate is the enrollment certificate
 GetEnrollmentCertificateHandler() (CertificateHandler, error)

 // GetTCertHandlerNext returns a CertificateHandler whose certificate is the next available TCert
 GetTCertificateHandlerNext() (CertificateHandler, error)

 // GetTCertHandlerFromDER returns a CertificateHandler whose certificate is the one passed
 GetTCertificateHandlerFromDER(der []byte) (CertificateHandler, error)

}

为了向链码调用控制提供应用级别的的访问控制列表，fabric的交易和链码指定的格式需要存储在应用特定元数据的额外的域。
这个域在图1中通过元数据展示出来。这个域的内容是由应用在交易创建的时候决定的。fabric成把它当作非结构化的字节流。

message ChaincodeSpec {

 ...

 ConfidentialityLevel confidentialityLevel;
 bytes metadata;

 ...
}

message Transaction {
 ...

 bytes payload;
 bytes metadata;

 ...
}

为了帮助链码执行，在链码调用的时候，验证器为链码提供额外信息，如元数据和绑定。

应用调用访问控制.
这一节描述应用如何使用fabric提供的手段在它的链码函数上实现它自己的访问控制。
这里考虑的情况包括：

		C: 是只包含一个函数的链码，如，被成为hello

		uc: 是C的部署;

		ui:
是被授权调用C的用户。用户uc希望只有ui可以调用函数hello

链码部署:
在部署的时候，uc具有被部署交易元数据的完全控制权，可硬存储一个ACL的列表（每个函数一个），或一个应用所需要的角色的列表。存储在ACL中的格式取决于部署的交易，链码需要在执行时解析元数据。
为了定义每个列表/角色，uc可以使用ui的任意TCerts/Certs（或，如果可接受，其他分配了权限或角色的用户）。把它记作TCertui。
开发者和授权用户之间的TCerts和 Certs交换实在频外渠道进行的。

假设应用的uc需要调用
hello函数，某个消息M就被授权给授权的调用者（在我们的例子中是ui）。
可以区分为以下两种情况：

		M是链码的其中一个函数参数;

		M是调用信息本事，如函数名，函数参数。

链码调用: 为了调用C，
ui的应用需要使用TCert/ECert对M签名，用来识别ui在相关的部署交易的元数据中的参与身份。即，TCertui。更具体的，ui的客户端应用做一下步骤：

		Certui， cHandler获取CertificateHandler

		获取新的TransactionHandler来执行交易，
txHandler相对与他的下一个有效的TCert或他的ECert

		通过调用txHandler.getBinding()来得到txHandler的绑定

		通过调用cHandler.Sign(‘M* || txBinding’)来对‘M ||
txBinding’*签名， *sigma*是签名函数的输出。

		通过调用来发布一个新的执行交易，txHandler.NewChaincodeExecute(...).
现在，
sigma可以以一个传递给函数（情形1）参数或payload的元数据段的一部分(情形2)的身份包含在交易中。

链码处理: 验证器， 从ui处接受到的执行交易将提供以下信息：

		执行交易的绑定，他可以在验证端独立的执行；

		执行交易的元数据(交易中的代码元数据);

		部署交易的元数据(对应部署交易的代码元数据组建).

注意sigma是被调用函数参数的一部分，或者是存储在调用交易的代码元数据内部的（被客户端应用合理的格式化）。
应用ACL包含在代码元数据段中，在执行时同样被传递给链码。
函数hello负责检查sigma的确是通过TCertui在’M ||
txBinding’上的有效签名。

4.4.2 读访问控制

这节描述fabric基础设施如何支持应用在用户层面执行它自己的读访问控制策略。和调用访问控制的情况一样，第一部分描述了可以被应用程序为实现此目的利用的基础设施的功能，接下来介绍应用使用这些工具的方法。

为了说明这个问题，我们使用和指点一样的例子，即：

		C: 是只包含一个函数的链码，如，被成为hello

		uA: 是C的部署者，也被成为应用;

		ur:
是被授权调用C的用户。用户uA希望只有ur可以读取函数hello

来自基础设施的支持.
为了让uA在应用层安全的实现自己的读取访问控制我们的基础设施需要像下面描述的那样来支持代码的部署和调用交易格式。

更具体的fabric层需要提供下面这些功能：

		为数据只能通过验证（基础设施）侧解密，提供最低限度的加密功能；这意味着基础设施在我们的未来版本中应该更倾向于使用非对称加密方案来加密交易。更具体的，在链中使用在上图中标记为
Kchain 的非对称密钥对。具体参看交易保密小节

		客户端-引用可以请求基础设施，基于客户端侧使用特定的公共加密密钥或客户端的长期解密密钥来加密/解密信息。

		交易格式提供应用存储额外的交易元数据的能力，这些元数据可以在后者请求后传递给客户端应用。交易元数据相对于代码元数据，在执行时是没有加密或传递给链码的。因为验证器是不负责检查他们的有效性的，所以把它们当作字节列表。

应用读访问控制.
应用可以请求并获取访问用户ur的公共加密密钥，我们把它标记为PKur。可选的，ur
可能提供
uA的一张证书给应用，使应用可以利用，标记为TCertur。如：为了跟踪用户关于应用的链码的交易。TCertur和PKur实在频外渠道交换的。

部署时，应用 uA执行下面步骤：

		使用底层基础设施来加密C的信息，应用使用PKur来访问ur。标记Cur为得到的密文。

		(可选) Cur可以和TCertur连接

		保密交易被构造为’‘Tx-metadata’‘来传递

在调用的时候，在
ur节点上的客户端-应用可以获取部署交易来得到C的内容。
这只需要得到相关联的部署交易的
tx-metadata域，并触发区块链基础设施客户端为Cur提供的解密函数。注意，为ur正确加密C是应用的责任。
此外，使用tx-metadata域可以一般性的满足应用需求。即，调用者可以利用调用交易的同一域来传递信息给应用的开发者。

Important Note:
要注意的是验证器在整个执行链码过程中不提供任何解密预测。
对payload解密由基础设施自己负责（以及它附近的代码元数据域）。并提供他们给部署/执行的容器。

4.5 在线钱包服务

这一节描述了钱包服务的安全设计，这是一个用户可以注册，移动他们的秘密材料到，办理交易的节点。
由于钱包服务是一个用户秘密材料所有权的服务，所以要杜绝没有安全授权机制的恶意钱包服务可以成功模拟客户。
因此，我们强调的是，设计一种值得信赖的，只有在代表用户的客户端同意的情况下，钱包服务才能执行交易。
这里有两种终端用户注册到在线钱包服务的情况：

		当用户注册到注册机构并获得他/她的
<enrollID, enrollPWD>，但是没有安装客户端来触发完整的注册过程。

		用户已经安装客户端并完成注册阶段

首先，用户与在线钱包服务交互，允许他们进行身份验证的钱包服务发布证书。即用户给定用户名和密码，其中用户名在成员服务中识别用户，标记为AccPub，密码是关联的秘密，标记为AccSec，这是由用户和服务分享的。

为了通过在线钱包服务注册，用户必须提供下面请求对象到钱包服务：

AccountRequest /* account request of u */
{
 OBCSecCtx , /* credentials associated to network */
 AccPub_u, /* account identifier of u */
 AccSecProof_u /* proof of AccSec_u*/
 }

OBCSecCtx指向用户证书，它依赖于注册过程中的阶段。可以是用户的注册ID和密码，<enrollID, enrollPWD>
或他的注册证书和关联的密钥(ECertu, sku), 其中
sku是用户签名和解密密钥的简化标记。
OBCSecCtx需要给在线钱包服务必要的信息来注册用户和发布需要的TCerts。

对于后续的请求，用户u需要提供给钱包服务的请求与下面这个格式类似。

TransactionRequest /* account request of u */
{
 TxDetails, /* specifications for the new transaction */
 AccPub_u, /* account identifier of u */
 AccSecProof_u /* proof of AccSec_u */
}

这里，TxDetails指向在线服务代表用户构造交易所需要的信息，如类型，和用户指定的交易的内容。

AccSecProofu是对应请求中剩下的域的使用共享密钥的HMAC。
Nonce-based方法与我们在fabric中一样可以防止重放攻击。

TLS连接可以用在每种服务器端认证的情况，在网络层对请求加密（保密，防止重放攻击，等）

4.6 网络安全(TLS)

TLS
CA需要给（非验证）peer，验证器，和单独的客户端（或具有存储私钥的游览器）发放TLS证书的能力。最好，这些证书可以使用之前的类型来区分。
各个类型的CA（如TLS CA， ECA，
TCA）的TLS证书有可以通过中间CA（如，一个根CA的下属CA）发放。这里没有特定流量分析的问题，任意给定的TLS连接都可以相互验证，除了请求TLS
CA的TLS证书的时候。

在当前的实现中，唯一的信任锚点是TLS
CA的自签名证书来适应与所有三个（共址）服务器（即TLS
CA，TCA和ECA）进行通信的单个端口限制。因此，与TLS CA的TLS握手来与TLS
CA建立连接，所得到的会话密钥会传递给共址的TCA和ECA。因此，TCA和ECA的自签名证书的有效性的信任继承自对TLS
CA的信任。在不提高TLS CA在其他CA之上的实现中，信任锚点需要由TLS
CA和其他CA都认证的根CA替代。

4.7 当前版本的限制

这一小节列出了当前版本的fabric的限制。
具体的关注点是客户端操作和交易保密性设计，如4.7.1和4.7.2所述。

		客户端注册和交易的创建是由受信任不会模拟用户的非验证 peer
来完全执行。参看4.7.1节得到更多j信息。

		链码只能被系统的成员实体访问是保密性的最低要求，即，注册到我们成员服务的验证器和用户，其它的都不能访问。后者包含可以访问到存储区域维护的总账，或者可以看到在验证器网络上公布的交易。第一个发布版本在4.7.2小节中详细介绍。

		代码为注册CA（ECA）和交易CA（TCA）使用自签名的证书

		防重放攻击机制还不可用

		调用访问控制可以在应用层强制执行：
安全性的保证取决于应用对基础设施工具的正确使用。这说明如果应用忽略了fabric提供的交易绑定绑定安全交易的处理可能在存在风险。

4.7.1 简化客户端

客户端的注册和交易的创建是由非验证 peer
以在线钱包的角色全部执行的。特别地，终端用户利用他们的注册证书向非验证
peer 开立账户，并且使用这些证书来进一步授权 peer 建立代表用户的交易。
需要注意的是，这样的设计不会为 peer
代表用户提交的交易提供安全授权，如恶意 peer 可以模拟用户。
网上钱包的涉及安全问题设计规范的详细信息，可以在4.5节找到。
目前用户可以注册和执行交易的 peer 数量是一。

4.7.2 简化交易保密

免责声明:
当前版本的交易保密是最小的，这被用来作为中间步骤来达到允许在未来版本中的细粒度（调用）的访问控制的执行设计。

在当前的格式，交易的保密仅仅在链层面提供，即，保存在总账中的交易内容对链的所有成员，如，验证器和用户，都是可读的。于此同时，不是系统的成员的应用审计人员，可以给予被动的观察区块链数据的手段。同时保证给予他们只是为了与被审计应用程序相关的交易。状态通过一种加密，同时不破坏底层共识网络的正常运行的方式来满足这样的审计要求

更具体的，当前使用对称密钥加密来提供交易保密性。
在这种背景下，一个最主要的挑战是特定于区块链的设置，验证器需要在区块链的状态上打成共识，即，除了交易本身，还包括个人合同或链码的状态更新。
虽然对于非机密链码这是微不足道的，对于机密链码，需要设计状态的加密机制，使得所得的密文语义安全，然而，如果明文状态是相同的那么他们就相等。

为了克服这一难题，fabric利用了密钥的层级，使用相同的密钥进行加密来降低密文数。同时，由于部分这些密钥被用于IV的生成，这使得验证方执行相同的事务时产生完全相同的密文（这是必要的，以保持不可知到底层共识算法），并通过只披露给审计实体最相关的密钥来提供控制审计的可能性。

方法描述: 成员服务为总账生成对称密钥
(Kchain)，这是在注册到区块链系统所有实体时发布的，如，客户端和验证实体已通过链的成员服务发放证书。
在注册阶段，用户获取（像之前一样）一张注册证书，为用户ui记作Certui，每个验证器vj获取它的被记作Certvj的证书。

实体注册将得到提高，如下所示。除了注册证书，用户希望以匿名方式参与交易发放交易证书。
为了简化我们把用户 ui 的交易证书记作 TCertui。
交易证书包含签名密钥对的公共部分记作 (tpkui,tskui)。

为了防止密码分析和执行保密，下面的密钥层级被用来生成和验证保密的交易：
为了提交保密交易（Tx）到总账，客户端首先选择一个nonce(N)，这是需要提交区块链的所有交易中是唯一的，并通过以Kchain作为密钥，nonce作为输入的HMAC函数生成一个交易对称密钥（KTx)）KTx=
HMAC(Kchain, N)。 对于KTx，客户端生成两个AES密钥： KTxCID当作HMAC(KTx,
c1), KTxP 当作 HMAC(KTx, c2))
分别加密链码名称或标识CID和代码（或payload）P. c1, c2
是公共常量。nonce，加密的链码ID（ECID）和加密的Payload（EP）被添加到交易Tx结构中，即最终签名和认证的。
下面的图显示了如何产生用于客户端的事务的加密密钥。这张图中的剪头表示HMAC的应用，源由密钥锁定和使用在箭头中的数量作为参数。部署/调用交易的密钥键分别用d/I表示。

[image: FirstRelease-clientSide]
FirstRelease-clientSide

为了验证客户端提交到区块链的保密交易Tx，验证实体首先通过和之前一样的Kchain和Tx.Nonce再生成KTxCID和KTxP来解密ECID和EP。一旦链码和Payload被恢复就可以处理交易了。

[image: FirstRelease-validatorSide]
FirstRelease-validatorSide

当V验证一个机密事务，相应的链码可以访问和修改链码的状态。V保持链码的状态加密。为了做到这一点，V生成如上图所示的对称密钥
。让iTX是一个之前由保密交易dTx部署的保密的交易调用一个函数（注意iTx可以是dTx本身）在这种情况下，例如，dTx具有初始化链码状态的设置函数。然后V像下面一样生成两个对称密钥KIV和Kstate：

		计算KdTx如，对应部署交易的交易密钥和Nstate = HMAC(Kdtx
,hash(Ni))其中Ni是在调用交易中出现的nonce， hash是哈希函数

		它设Kstate = HMAC(KdTx, c3 || Nstate)，截断用来加密底层密码； c3
是一个常数

		它设KIV = HMAC(KdTx, c4 || Nstate); c4 是一个常数

为了加密状态变量S，验证器首先生成IV像 HMAC(KIV, crtstate)正确截断，其中
crtstate是计数器值，并在每次同样链码调用时请求状态更新时增加。当链码执行终止是计数器丢弃。IV产生之后，V认证加密（即，GSM模式）S的值连接Nstate（实际上，Nstate只需要认证而不需要加密）。在所得的密文（CT），
Nstate和IV被追加。为了解密加密状态CT||
Nstate’，验证器首次生成对称密钥KdTX’ ,Kstate’，然后解密CT。

IV的生成:
任何底层共识算法是不可知的，所有的验证各方需要一种方法以产生相同的确切密文。为了做到这一点，需要验证使用相同的IV。重用具有相同的对称密钥相同的IV完全打破了底层密码的安全性。因此，前面所描述的方法制备。特别是，V首先通过计算HMAC(KdTX,
c4 || Nstate)派生的IV生成密钥KIV，其中c4是一个常数，并为(dTx,
iTx)保存计数器crtstate初始设置为0。然后，每次必须生成一个新的密文，验证器通过计算HMAC(KIV,
crtstate)作为输出生成新的IV，然后为crtstate增加1。

上述密钥层次结构的另一个好处是控制了审计的能力。
例如，当发布Kchain会提供对整个供应链的读取权限，当只为交易的(dTx，iTx)发布Kstate访问只授予由iTx更新的状态，等等

下图展示一个部署和调用交易在目前在代码中的形式。

[image: FirstRelease-deploy]
FirstRelease-deploy

[image: FirstRelease-deploy]
FirstRelease-deploy

可以注意到，部署和调用交易由两部分组成：

		基本信息部分:
包含交易管理细节，如，把这个交易链接到的（被链接到的），交易的类型（被设置为’‘deploymTx’‘或’‘invocTx’‘），保密策略实现的版本号，它的创建者标识（由TCert，Cert表达）和一个nonce（主要为了防止重放攻击）

		代码信息部分:
包含在链码的源代码的信息。本质上是链码标识符/名称和源代码的部署交易，而对调用链码是是被调用函数名称和它的参数。就像在两张图中展示的代码信息那样他们最终是使用链指定的对称密钥Kchain加密的。

5. 拜占庭共识

obcpbft包是PBFT [http://dl.acm.org/citation.cfm?id=571640]共识协议[1]的实现，其中提供了验证器之间的共识，虽然验证器的阈作为_Byzantine_，即，恶意的或不可预测的方式失败。在默认的配置中，PBFT容忍t<n/3的拜占庭验证器。

处理提供PBFT共识协议的参考实现，obcpbft
插件还包含了新颖的_Sieve_共识协议的实现。基本上Sieve背后的思想为_non-deterministic_交易提供了fabric层次的保护，这是PBFT和相似的协议没有提供的，obcpbft可以很容易配置为使用经典的PBFT或Sieve。

在默认配置中，PBFT和Sieve设计运行在至少3t +1
*验证器（副本），最多容忍*T个出现故障（包括恶意或拜占庭）副本。

5.1 概览

obcpbft插件提供实现了CPI接口的模块，他可以配置运行PBFT还是Sieve共识协议。模块化来自于，在内部，obcpbft定义了innerCPI
接口（即， inner consensus programming interface），现在包含在
pbft-core.go中。

该innerCPI接口定义的所有PBFT内部共识（这里称为core
PBFT并在pbft-core.go实现）和使用core
PBFT的外部共识之间的相互作用。obcpbft包包含几个core
PBFT消费者实现

		obc-classic.go， core
PBFT周围的shim，实现了innerCPI接口并调用CPI接口;

		obc-batch.go， obc-classic的变种，为PBFT添加批量能力；

		obc-sieve.go， core
PBFT消费者，实现Sieve共识协议和innerCPI接口，
调用CPI interface.

总之，除了调用发送消息给其他 peer(innerCPI.broadcast 和
innerCPI.unicast)，innerCPI接口定义了给消费者暴露的共识协议。
这使用了用来表示信息的原子投递的innerCPI.execute调用的一个经典的总序（原子）广播
API[2]。经典的总序广播在external validity checks
[2]中详细讨论(innerCPI.verify)和一个功能相似的对不可靠的领导失败的检查Ω
[3] (innerCPI.viewChange).

除了innerCPI， core PBFT 定义了core PBFT的方法。core
PBFT最重要的方法是request有效地调用总序广播原语[2]。在下文中，我们首先概述core
PBFT的方法和innerCPI接口的明细。然后，我们简要地描述，这将在更多的细节Sieve共识协议。

5.2 Core PBFT函数

下面的函数使用非递归锁来控制并发，因此可以从多个并行线程调用。然而，函数一般运行到完成，可能调用从CPI传入的函数。必须小心，以防止活锁。

5.2.1 newPbftCore

签名:

func newPbftCore(id uint64, config *viper.Viper, consumer innerCPI, ledger consensus.Ledger) *pbftCore

newPbftCore构造器使用指定的id来实例化一个新的PBFT箱子实例。config参数定义了PBFT网络的操作参数：副本数量N，检查点周期K，请求完成的超时时间，视图改变周期。

		configuration key
		type
		example
value
		description

		general.N
		intege
r
		4
		Number of replicas

		general.K
		intege
r
		10
		Checkpoint period

		general.timeout
.request
		durati
on
		2s
		Max delay between request reception
and execution

		general.timeout
.viewchange
		durati
on
		2s
		Max delay between view-change start
and next request execution

接口中传递的consumer和ledger参数是一旦它们全部排好序后用来查询应用状态和调用应用请求的。参阅下面这些接口的相应部分。

6. 应用编程接口

fabric的主要接口是REST API。 REST
API允许应用注册用户，查询区块链，并发布交易。
CLI为了开发，同样提供有效API的子集。CLI允许开发人员能够快速测试链码或查询交易状态。

应用程序通过REST API与非验证的 peer
节点，这将需要某种形式的认证，以确保实体有适当的权限进行交互。该应用程序是负责实现合适的身份验证机制和
peer 节点随后将使用客户身份对发出消息签名。

[image: Reference architecture]

fabric API 设计涵盖的类别如下，虽然当前版本的其中一些实现不完整。[REST
API（＃62-REST的API）节将说明API当前支持。

		身份 - 注册来获得或吊销一张证书

		Address - 交易的源或目的

		Transaction - 总账上的执行单元

		Chaincode - 总账上运行的程序

		Blockchain - 总账的内容

		Network - 区块链 peer 网络的信息

		Storage - 文件或文档的外部存储

		Event Stream - 区块链上订阅/发布事件

6.1 REST Service

REST服务可以（通过配置）在验证和非验证 peer
被启用，但是建议在生产环境中只启用非验证 peer 的REST服务。

func StartOpenchainRESTServer(server *oc.ServerOpenchain, devops *oc.Devops)

这个函数读取core.yaml``peer处理的配置文件中的rest.address。rest.address键定义了
peer 的HTTP REST服务默认监听的地址和端口。

假定REST服务接收来已经认证的终端用户的应用请求。

6.2 REST API

您可以通过您所选择的任何工具与REST
API的工作。例如，curl命令行实用程序或一个基于浏览器的客户端，如Firefox的REST客户端或Chrome
Postman。同样，可以通过 Swagger [http://swagger.io/]
直接触发REST请求。为了获得REST API Swagger描述，点击
这里 [https://github.com/hyperledger/fabric/blob/master/core/rest/rest_api.json]。目前可用的API总结于以下部分。

6.2.1 REST Endpoints

		Block

		GET /chain/blocks/{block-id}

		Blockchain

		GET /chain

		Chaincode

		POST /chaincode

		Network

		GET /network/peers

		Registrar

		POST /registrar

		GET /registrar/{enrollmentID}

		DELETE /registrar/{enrollmentID}

		GET /registrar/{enrollmentID}/ecert

		GET /registrar/{enrollmentID}/tcert

		Transactions

		GET /transactions/{UUID}

6.2.1.1 块API

		GET /chain/blocks/{block-id}

使用块API来从区块链中检索各个块的内容。返回的块信息结构是在3.2.1.1节中定义

块检索请求:

GET host:port/chain/blocks/173

块检索响应:

{
 "transactions": [
 {
 "type": 3,
 "chaincodeID": "EgRteWNj",
 "payload": "Ch4IARIGEgRteWNjGhIKBmludm9rZRIBYRIBYhICMTA=",
 "uuid": "f5978e82-6d8c-47d1-adec-f18b794f570e",
 "timestamp": {
 "seconds": 1453758316,
 "nanos": 206716775
 },
 "cert": "MIIB/zCCAYWgAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMTI1MjE0MTE3WhcNMTYwNDI0MjE0MTE3WjArMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQ4wDAYDVQQDEwVsdWthczB2MBAGByqGSM49AgEGBSuBBAAiA2IABC/BBkt8izf6Ew8UDd62EdWFikJhyCPY5VO9Wxq9JVzt3D6nubx2jO5JdfWt49q8V1Aythia50MZEDpmKhtM6z7LHOU1RxuxdjcYDOvkNJo6pX144U4N1J8/D3A+97qZpKN/MH0wDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwDQYDVR0OBAYEBAECAwQwDwYDVR0jBAgwBoAEAQIDBDA9BgYqAwQFBgcBAf8EMABNbPHZ0e/2EToi0H8mkouuUDwurgBYuUB+vZfeMewBre3wXG0irzMtfwHlfECRDDAKBggqhkjOPQQDAwNoADBlAjAoote5zYFv91lHzpbEwTfJL/+r+CG7oMVFUFuoSlvBSCObK2bDIbNkW4VQ+ZC9GTsCMQC5GCgy2oZdHw/x7XYzG2BiqmRkLRTiCS7vYCVJXLivU65P984HopxW0cEqeFM9co0=",
 "signature": "MGUCMCIJaCT3YRsjXt4TzwfmD9hg9pxYnV13kWgf7e1hAW5Nar//05kFtpVlq83X+YtcmAIxAK0IQlCgS6nqQzZEGCLd9r7cg1AkQOT/RgoWB8zcaVjh3bCmgYHsoPAPgMsi3TJktg=="
 }
],
 "stateHash": "7ftCvPeHIpsvSavxUoZM0u7o67MPU81ImOJIO7ZdMoH2mjnAaAAafYy9MIH3HjrWM1/Zla/Q6LsLzIjuYdYdlQ==",
 "previousBlockHash": "lT0InRg4Cvk4cKykWpCRKWDZ9YNYMzuHdUzsaeTeAcH3HdfriLEcTuxrFJ76W4jrWVvTBdI1etxuIV9AO6UF4Q==",
 "nonHashData": {
 "localLedgerCommitTimestamp": {
 "seconds": 1453758316,
 "nanos": 250834782
 }
 }
}

6.2.1.2 区块链API

		GET /chain

使用链API来检索区块链的当前状态。返回区块链信息消息被定义如下。

message BlockchainInfo {
 uint64 height = 1;
 bytes currentBlockHash = 2;
 bytes previousBlockHash = 3;
}

		height - 区块链中块的数量，包括创始区块

		currentBlockHash - 当前或最后区块的哈希

		previousBlockHash - 前一区块的哈希

区块链检索请求:

GET host:port/chain

区块链检索响应:

{
 "height": 174,
 "currentBlockHash": "lIfbDax2NZMU3rG3cDR11OGicPLp1yebIkia33Zte9AnfqvffK6tsHRyKwsw0hZFZkCGIa9wHVkOGyFTcFxM5w==",
 "previousBlockHash": "Vlz6Dv5OSy0OZpJvijrU1cmY2cNS5Ar3xX5DxAi/seaHHRPdssrljDeppDLzGx6ZVyayt8Ru6jO+E68IwMrXLQ=="
}

6.2.1.3 链码API

		POST /chaincode

使用链码API来部署，调用和查询链码
部署请求需要客户端提供path参数，执行文件系统中链码的目录。部署请求的响应要么是包含成功的链码部署确认消息要么是包含失败的原因的错误。
它还含有所生成的链码的name域在消息中，这是在随后的调用和查询交易中使用的已部署链码的唯一标识。

要部署链码，需要提供ChaincodeSpec的payload，在3.1.2.2节中定义。

部署请求:

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "path":"github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02"
 },
 "ctorMsg": {
 "function":"init",
 "args":["a", "1000", "b", "2000"]
 }
 },
 "id": "1"
}

部署响应:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "id": 1
}

当启用安全时，修改所需的payload包括传递的登录用户注册ID的secureContext元素如下：

启用安全的部署请求:

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "path":"github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02"
 },
 "ctorMsg": {
 "function":"init",
 "args":["a", "1000", "b", "2000"]
 },
 "secureContext": "lukas"
 },
 "id": "1"
}

该调用请求要求客户端提供一个name参数，这是之前从部署交易响应得到的。调用请求的响应要么是包含成功执行的确认消息，要么是包含失败的原因的错误。

要调用链码，需要提供ChaincodeSpec的payload，在3.1.2.2节中定义

调用请求:

POST host:port/chaincode

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "ctorMsg": {
 "function":"invoke",
 "args":["a", "b", "100"]
 }
 },
 "id": "3"
}

调用响应:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "5a4540e5-902b-422d-a6ab-e70ab36a2e6d"
 },
 "id": 3
}

当启用安全时，修改所需的payload包括传递的登录用户注册ID的secureContext元素如下：

启用安全的调用请求:

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "ctorMsg": {
 "function":"invoke",
 "args":["a", "b", "100"]
 },
 "secureContext": "lukas"
 },
 "id": "3"
}

查询请求需要在客户端提供一个name参数，这是之前在部署交易响应中得到了。查询请求的响应取决于链码的实现。响应要么是包含成功执行的确认消息，要么是包含失败的原因的错误。在成功执行的情况下，响应将包含链码请求的状态变量的值

要查询链码，需要提供ChaincodeSpec的payload，在3.1.2.2节中定义。

查询请求:

POST host:port/chaincode/

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "ctorMsg": {
 "function":"query",
 "args":["a"]
 }
 },
 "id": "5"
}

查询响应:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "-400"
 },
 "id": 5
}

当启用安全时，修改所需的payload包括传递的登录用户注册ID的secureContext元素如下：

启用安全的查询请求:

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": "GOLANG",
 "chaincodeID":{
 "name":"52b0d803fc395b5e34d8d4a7cd69fb6aa00099b8fabed83504ac1c5d61a425aca5b3ad3bf96643ea4fdaac132c417c37b00f88fa800de7ece387d008a76d3586"
 },
 "ctorMsg": {
 "function":"query",
 "args":["a"]
 },
 "secureContext": "lukas"
 },
 "id": "5"
}

6.2.1.4 网络API

使用网络API来获取组成区块链 fabric 的 peer 节点的网络信息

/network/peers 端点返回的目标 peer
节点的所有现有的网络连接的列表。该列表包括验证和非验证 peer。peer
的列表被返回类型PeersMessage是包含PeerEndpoint的数组，在第[3.1.1]（#311-discovery-messages发现的消息）定义。

message PeersMessage {
 repeated PeerEndpoint peers = 1;
}

网络请求:

GET host:port/network/peers

网络响应:

{
 "peers": [
 {
 "ID": {
 "name": "vp1"
 },
 "address": "172.17.0.4:7051",
 "type": 1,
 "pkiID": "rUA+vX2jVCXev6JsXDNgNBMX03IV9mHRPWo6h6SI0KLMypBJLd+JoGGlqFgi+eq/"
 },
 {
 "ID": {
 "name": "vp3"
 },
 "address": "172.17.0.5:7051",
 "type": 1,
 "pkiID": "OBduaZJ72gmM+B9wp3aErQlofE0ulQfXfTHh377ruJjOpsUn0MyvsJELUTHpAbHI"
 },
 {
 "ID": {
 "name": "vp2"
 },
 "address": "172.17.0.6:7051",
 "type": 1,
 "pkiID": "GhtP0Y+o/XVmRNXGF6pcm9KLNTfCZp+XahTBqVRmaIumJZnBpom4ACayVbg4Q/Eb"
 }
]
}

6.2.1.5 注册API (成员服务)

		POST /registrar

		GET /registrar/{enrollmentID}

		DELETE /registrar/{enrollmentID}

		GET /registrar/{enrollmentID}/ecert

		GET /registrar/{enrollmentID}/tcert

使用注册API来管理的证书颁发机构（CA）的最终用户注册。这些API端点用于注册与CA用户，确定指定用户是否已注册，并从本地存储中删除任何目标用户的登录令牌，防止他们执行任何进一步的交易。注册API也用于从系统中检索用户注册和交易证书。

/registrar端点使用与CA注册用户所需的秘密payload定义如下。注册请求的响应可以是一个成功的注册的确认或包含失败的原因的错误。

message Secret {
 string enrollId = 1;
 string enrollSecret = 2;
}

		enrollId - 在证书颁发机构的注册ID

		enrollSecret - 在证书颁发机构的密码

注册请求:

POST host:port/registrar

{
 "enrollId": "lukas",
 "enrollSecret": "NPKYL39uKbkj"
}

注册响应:

{
 "OK": "Login successful for user 'lukas'."
}

GET /registrar/{enrollmentID}端点用于确认一个给定的用户是否与CA注册如果是，确认将被反悔。否则，将导致授权错误。

注册验证请求:

GET host:port/registrar/jim

注册验证返回:

{
 "OK": "User jim is already logged in."
}

注册验证请求:

GET host:port/registrar/alex

注册验证返回:

{
 "Error": "User alex must log in."
}

DELETE /registrar/{enrollmentID}
端点用于删除一个目标用户的登录令牌。如果登录令牌成功删除，确认将被反悔。否则，将导致授权错误。此端点不需要payload。

删除注册请求:

DELETE host:port/registrar/lukas

删除注册返回:

{
 "OK": "Deleted login token and directory for user lukas."
}

GET /registrar/{enrollmentID}/ecert
端点用于检索从本地存储给定用户的登记证书。如果目标用户已与CA注册，响应将包括注册证书的URL-encoded版本。如果目标用户尚未注册，将返回一个错误。如果客户希望使用检索后返回的注册证书，请记住，它必须是URL-decoded。

注册证书检索请求:

GET host:port/registrar/jim/ecert

注册证书检索响应:

{
 "OK": "-----BEGIN+CERTIFICATE-----%0AMIIBzTCCAVSgAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwNPQkMwHhcNMTYwMTIxMDYzNjEwWhcNMTYwNDIw%0AMDYzNjEwWjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNP%0AQkMwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAARSLgjGD0omuJKYrJF5ClyYb3sGEGTU%0AH1mombSAOJ6GAOKEULt4L919sbSSChs0AEvTX7UDf4KNaKTrKrqo4khCoboMg1VS%0AXVTTPrJ%2BOxSJTXFZCohVgbhWh6ZZX2tfb7%2BjUDBOMA4GA1UdDwEB%2FwQEAwIHgDAM%0ABgNVHRMBAf8EAjAAMA0GA1UdDgQGBAQBAgMEMA8GA1UdIwQIMAaABAECAwQwDgYG%0AUQMEBQYHAQH%2FBAE0MAoGCCqGSM49BAMDA2cAMGQCMGz2RR0NsJOhxbo0CeVts2C5%0A%2BsAkKQ7v1Llbg78A1pyC5uBmoBvSnv5Dd0w2yOmj7QIwY%2Bn5pkLiwisxWurkHfiD%0AxizmN6vWQ8uhTd3PTdJiEEckjHKiq9pwD%2FGMt%2BWjP7zF%0A-----END+CERTIFICATE-----%0A"
}

/registrar/{enrollmentID}/tcert端点检索已与证书机关登记给定用户的交易证书。如果用户已注册，确认消息将包含URL-encoded交易证书的列表被返回。否则，将会导致一个错误。交易证书的所需数量由可选的’count’查询参数指定。返回交易证书的默认数量为1;500是可以与单个请求中检索证书的最大数量。如果客户端希望使用取回后的交易证书，请记住，他们必须是URL-decoded。

交易证书检索请求:

GET host:port/registrar/jim/tcert

交易证书检索响应:

{
 "OK": [
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQfwJORRED9RAsmSl%2FEowq1STBb%0A%2FoFteymZ96RUr%2BsKmF9PNrrUNvFZFhvukxZZjqhEcGiQqFyRf%2FBnVN%2BbtRzMo38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwSRWQFmErr0SmQO9AFP4GJYzQ%0APQMmcsCjKiJf%2Bw1df%2FLnXunCsCUlf%2FalIUaeSrT7MAoGCCqGSM49BAMDA0gAMEUC%0AIQC%2FnE71FBJd0hwNTLXWmlCJff4Yi0J%2BnDi%2BYnujp%2Fn9nQIgYWg0m0QFzddyJ0%2FF%0AKzIZEJlKgZTt8ZTlGg3BBrgl7qY%3D%0A-----END+CERTIFICATE-----%0A"
]
}

交易证书检索请求:

GET host:port/registrar/jim/tcert?count=5

交易证书检索响应:

{
 "OK": [
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A",
 "-----BEGIN+CERTIFICATE-----%0AMIIBwDCCAWagAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoG%0AA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMzExMjEwMTI2WhcNMTYwNjA5%0AMjEwMTI2WjApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwNq%0AaW0wWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAARwJxVezgDcTAgj2LtTKVm65qft%0AhRTYnIOQhhOx%2B%2B2NRu5r3Kn%2FXTf1php3NXOFY8ZQbY%2FQbFAwn%2FB0O68wlHiro38w%0AfTAOBgNVHQ8BAf8EBAMCB4AwDAYDVR0TAQH%2FBAIwADANBgNVHQ4EBgQEAQIDBDAP%0ABgNVHSMECDAGgAQBAgMEMD0GBioDBAUGBwEB%2FwQwRVPMSKVcHsk4aGHxBWc8PGKj%0AqtTVTtuXnN45BynIx6lP6urpqkSuILgB1YOdRNefMAoGCCqGSM49BAMDA0gAMEUC%0AIAIjESYDp%2FXePKANGpsY3Tu%2F4A2IfeczbC3uB%2BpziltWAiEA6Stp%2FX4DmbJGgZe8%0APMNBgRKeoU6UbgTmed0ZEALLZP8%3D%0A-----END+CERTIFICATE-----%0A"
]
}

6.2.1.6 交易API

		GET /transactions/{UUID}

使用交易API来从区块链中检索匹配UUID的单个交易。返回的交易消息在3.1.2.1小节定义

交易检索请求:

GET host:port/transactions/f5978e82-6d8c-47d1-adec-f18b794f570e

交易检索响应:

{
 "type": 3,
 "chaincodeID": "EgRteWNj",
 "payload": "Ch4IARIGEgRteWNjGhIKBmludm9rZRIBYRIBYhICMTA=",
 "uuid": "f5978e82-6d8c-47d1-adec-f18b794f570e",
 "timestamp": {
 "seconds": 1453758316,
 "nanos": 206716775
 },
 "cert": "MIIB/zCCAYWgAwIBAgIBATAKBggqhkjOPQQDAzApMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQwwCgYDVQQDEwN0Y2EwHhcNMTYwMTI1MjE0MTE3WhcNMTYwNDI0MjE0MTE3WjArMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMQ4wDAYDVQQDEwVsdWthczB2MBAGByqGSM49AgEGBSuBBAAiA2IABC/BBkt8izf6Ew8UDd62EdWFikJhyCPY5VO9Wxq9JVzt3D6nubx2jO5JdfWt49q8V1Aythia50MZEDpmKhtM6z7LHOU1RxuxdjcYDOvkNJo6pX144U4N1J8/D3A+97qZpKN/MH0wDgYDVR0PAQH/BAQDAgeAMAwGA1UdEwEB/wQCMAAwDQYDVR0OBAYEBAECAwQwDwYDVR0jBAgwBoAEAQIDBDA9BgYqAwQFBgcBAf8EMABNbPHZ0e/2EToi0H8mkouuUDwurgBYuUB+vZfeMewBre3wXG0irzMtfwHlfECRDDAKBggqhkjOPQQDAwNoADBlAjAoote5zYFv91lHzpbEwTfJL/+r+CG7oMVFUFuoSlvBSCObK2bDIbNkW4VQ+ZC9GTsCMQC5GCgy2oZdHw/x7XYzG2BiqmRkLRTiCS7vYCVJXLivU65P984HopxW0cEqeFM9co0=",
 "signature": "MGUCMCIJaCT3YRsjXt4TzwfmD9hg9pxYnV13kWgf7e1hAW5Nar//05kFtpVlq83X+YtcmAIxAK0IQlCgS6nqQzZEGCLd9r7cg1AkQOT/RgoWB8zcaVjh3bCmgYHsoPAPgMsi3TJktg=="
}

6.3 CLI

CLI包括可用的API的一个子集，使开发人员能够快速测试和调试链码或查询交易状态。CLI由Golang实现和可在多个操作系统上操作。当前可用的CLI命令归纳在下面的部分：

6.3.1 CLI命令

To see what CLI commands are currently available in the implementation,
execute the following:

要查看当前可用的CLI命令，执行如下命令

cd $GOPATH/src/github.com/hyperledger/fabric/peer
./peer

你可以获得和下面类似的响应：

Usage:
 peer [command]

Available Commands:
 peer Run the peer.
 status Status of the peer.
 stop Stop the peer.
 login Login user on CLI.
 vm VM functionality on the fabric.
 chaincode chaincode specific commands.
 help Help about any command

Flags:
 -h, --help[=false]: help

Use "peer [command] --help" for more information about a command.

Some of the available command line arguments for the peer command
are listed below:

		-c - 构造函数: 用来为部署触发初始化链码状态的函数

		-l - 语言: 指定链码的实现语言，目前只支持Golang

		-n - 名字:
部署交易返回的链码的标识。在后续的调用和查询交易中必须使用

		-p - 路径: 链码在本地文件系统中的标识。在部署交易时必须提供。

		-u - 用户名: 调用交易的登入的用户的注册ID

上述所有命令并非完全在当前版本中实现。如下所述全面支持的命令是有助于链码的开发和调试的。

所有 peer
节点的设置都被列在core.yaml这个peer处理的配置文件中，可能通过命令行的环境变量而被修改。如，设置peer.id或
peer.ddressAutoDetect，只需要传递CORE_PEER_ID=vp1和CORE_PEER_ADDRESSAUTODETECT=true给命令行。

6.3.1.1 peer

peerCLI命令在开发和生产环境中都会执行 peer
处理。开发模式会在本地运行单个 peer
节点和本地的链码部署。这使得在链码开修改和调试代码，不需要启动一个完整的网络。在开发模式启动
peer 的一个例子：

./peer peer --peer-chaincodedev

在生产环境中启动peer进程，像下面一样修改上面的命令：

./peer peer

6.3.1.2 登录

登录的CLI命令会登入一个已经在CA注册的用户。要通过CLI登录，发出以下命令，其中username是注册用户的注册ID。

./peer login <username>

下面的例子演示了用户jim登录过程。

./peer login jim

该命令会提示输入密码，密码必须为此用户使用证书颁发机构注册登记的密码相匹配。如果输入的密码不正确的密码匹配，将导致一个错误。

22:21:31.246 [main] login -> INFO 001 CLI client login...
22:21:31.247 [main] login -> INFO 002 Local data store for client loginToken: /var/hyperledger/production/client/
Enter password for user 'jim': ************
22:21:40.183 [main] login -> INFO 003 Logging in user 'jim' on CLI interface...
22:21:40.623 [main] login -> INFO 004 Storing login token for user 'jim'.
22:21:40.624 [main] login -> INFO 005 Login successful for user 'jim'.

您也可以与-p参数来提供用户的密码。下面是一个例子。

./peer login jim -p 123456

6.3.1.3 链码部署

deployCLI命令为链码和接下来的部署包到验证 peer 创建 docker
镜像。如下面的例子。

./peer chaincode deploy -p github.com/hyperledger/fabric/example/chaincode/go/chaincode_example02 -c '{"Function":"init", "Args": ["a","100", "b", "200"]}'

启用安全性时，命令必须修改来通过-u参数传递用户登录的注册ID。下面是一个例子

./peer chaincode deploy -u jim -p github.com/hyperledger/fabric/example/chaincode/go/chaincode_example02 -c '{"Function":"init", "Args": ["a","100", "b", "200"]}'

6.3.1.4 链码调用

invokeCLI命令执行目标来代码中的指定函数。如下：

./peer chaincode invoke -n <name_value_returned_from_deploy_command> -c '{"Function": "invoke", "Args": ["a", "b", "10"]}'

启用安全性时，命令必须修改来通过-u参数传递用户登录的注册ID。下面是一个例子

./peer chaincode invoke -u jim -n <name_value_returned_from_deploy_command> -c '{"Function": "invoke", "Args": ["a", "b", "10"]}'

6.3.1.5 链码查询

queryCLI命令在目标链码上触发指定的查询。返回的响应取决于链码实现。下面是一个例子。

./peer chaincode query -l golang -n <name_value_returned_from_deploy_command> -c '{"Function": "query", "Args": ["a"]}'

启用安全性时，命令必须修改来通过-u参数传递用户登录的注册ID。下面是一个例子

./peer chaincode query -u jim -l golang -n <name_value_returned_from_deploy_command> -c '{"Function": "query", "Args": ["a"]}'

7. 应用模型

7.1 应用的组成

				一个遵循MVC-B架构的应用– Model, View, Control, BlockChain.

		VIEW LOGIC – 与控制逻辑集成的移动或WEB 用户界面。

		CONTROL LOGIC – 协调用户界面、数据模型和交易与链码的API

		DATA MODEL – 应用数据模型–
管理包括文档和大文件这样的非链（off-chain）数据

		BLOCKCHAIN LOGIC –
区块链逻辑是控制逻辑和数据模型在区块链领域的扩展，链码（chaincode）加强了控制逻辑，区块链上的交易加强了数据模型。

例如，使用 Node.js 的一个 Bluemix PaaS 的应用程序可能有一个 Web
前端用户界面或与 Cloudant
数据服务后端模型中的原生移动应用。控制逻辑可以被 1
或多个链码交互以处理对区块链交易。

7.2 应用样例

8. 未来发展方向

8.1 企业集成

8.2 性能与可扩展性

8.3 附加的共识插件

8.4 附加的语言

9. References

		[1] Miguel Castro, Barbara Liskov: Practical Byzantine fault
tolerance and proactive recovery. ACM Trans. Comput. Syst. 20(4):
398-461 (2002)

		[2] Christian Cachin, Rachid Guerraoui, Luís E. T. Rodrigues:
Introduction to Reliable and Secure Distributed Programming (2. ed.).
Springer 2011, ISBN 978-3-642-15259-7, pp. I-XIX, 1-367

		[3] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg: The Weakest
Failure Detector for Solving Consensus. J. ACM 43(4): 685-722 (1996)

		[4] Cynthia Dwork, Nancy A. Lynch, Larry J. Stockmeyer: Consensus in
the presence of partial synchrony. J. ACM 35(2): 288-323 (1988)

		[5] Manos Kapritsos, Yang Wang, Vivien Quéma, Allen Clement, Lorenzo
Alvisi, Mike Dahlin: All about Eve: Execute-Verify Replication for
Multi-Core Servers. OSDI 2012: 237-250

		[6] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien
Quéma, Marko Vukolic: The Next 700 BFT Protocols. ACM Trans. Comput.
Syst. 32(4): 12:1-12:45 (2015)

		[7] Christian Cachin, Simon Schubert, Marko Vukolić: Non-determinism
in Byzantine Fault-Tolerant
Replication [http://arxiv.org/abs/1603.07351]

 © Copyright 2017, rameshthoomu.

CLI_test.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

 © Copyright 2017, rameshthoomu.

SystemChaincode-noop.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

NO-OP system chaincode

NO-OP is a system chaincode that does nothing when invoked. The
parameters of the invoke transaction are stored on the ledger so it is
possible to encode arbitrary data into them.

Functions and valid options

		Invoke transactions have to be called with ‘execute’ as function
name and at least one argument. Only the first argument is used.
Note that it should be encoded with BASE64.

		Only one type of query is supported: ‘getTran’ (passed as a
function name). GetTran has to get a transaction ID as argument in
hexadecimal format. The function looks up the corresponding
transaction’s (if any) first argument and tries to decode it as
a BASE64 encoded string.

Testing

NO-OP has unit tests checking invocation and queries using
proper/improper arguments. The chaincode implementation provides a
facility for mocking the ledger under the chaincode (mockLedgerH in
struct chaincode.SystemChaincode). This should only be used for
testing as it is dangerous to rely on global variables in memory that
can hold state across invokes.

 © Copyright 2017, rameshthoomu.

abstract_v1.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

HYPERLEDGER FABRIC v1.0

Hyperledger Fabric is a platform that enables the delivery of a secure,
robust, permissioned blockchain for the enterprise that incorporates a
byzantine fault tolerant consensus. We have learned much as we
progressed through the v0.6-preview release. In particular, that in
order to provide for the scalability and confidentiality needs of many
use cases, a refactoring of the architecture was needed. The
v0.6-preview release will be the final (barring any bug fixes) release
based upon the original architecture.

Hyperledger Fabric’s v1.0 architecture has been designed to address two
vital enterprise-grade requirements – security and scalability.
Businesses and organizations can leverage this new architecture to
execute confidential transactions on networks with shared or common
assets – e.g. supply chain, FOREX market, healthcare, etc. The
progression to v1.0 will be incremental, with myriad windows for
community members to contribute code and start curating the fabric to
fit specific business needs.

WHERE WE ARE:

The current implementation involves every validating peer shouldering
the responsibility for the full gauntlet of network functionality. They
execute transactions, perform consensus, and maintain the shared ledger.
Not only does this configuration lay a huge computational burden on each
peer, hindering scalability, but it also constricts important facets of
privacy and confidentiality. Namely, there is no mechanism to “channel”
or “silo” confidential transactions. Every peer can see the most minute,
and at times, sensitive details and logic of every transaction. This is
untenable for many enterprise businesses, who must abide by stringent
regulatory statutes.

WHERE WE’RE GOING

The new architecture introduces a clear functional separation of peer
roles, and allows a transaction to pass through the network in a
structured and modularized fashion.

The peers are diverged into two distinct roles – Endorser & Committer.
As an endorser, the peer will simulate the transaction and ensure that
the outcome is both deterministic and stable. As a committer, the peer
will validate the integrity of a transaction and then append to the
ledger. Now confidential transactions can be sent to specific
endorsers and their correlating committers, without the broader
network being made cognizant of the transaction. Additionally,
policies can be set to determine what levels of “endorsement” and
“validation” are acceptable for a specific class of transactions.

A failure to meet these thresholds would simply result in a
transaction being withdrawn or labeled as “invalid”, rather than
imploding or stagnating the entire network.

This new model also introduces the possibility for more elaborate
networks, such as a foreign exchange market. For example, trade
settlement might be contingent upon a mandatory “endorsement” from a
trusted third party (e.g. a clearing house).

The consensus or “ordering” process (i.e. algorithmic computation) is
entirely abstracted from the peer. This modularity not only provides a
powerful security layer – the ordering nodes are agnostic to the
transaction logic – but it also generates a framework where ordering
can become a pluggable implementation and scalability can truly occur.

There is no longer a parallel relationship between the number of peers
in a network and the number of orderers. Now networks can grow
dynamically (i.e. add endorsers and committers) without having to add
corresponding orderers, all the while existing in a modular
infrastructure designed to support high transaction throughput.
Moreover, networks now have the capability to completely liberate
themselves from the computational and legal burden of ordering by
tapping into a pre-existing or third party-hosted “ordering service.”

As v1.0 manifests, we will see the foundation for interoperable
blockchain networks that have the ability to scale and transact in a
manner adherent with regulatory and industry standards. Watch how fabric
v1.0 and the Hyperledger Project are building a true blockchain for
business -

|HYPERLEDGERv1.0_ANIMATION|

HOW TO CONTRIBUTE

Use the following links to explore upcoming additions to the codebase
that will spawn the capabilities in v1.0:

		Familiarize yourself with the guidelines for code
contributions to this project. Note: In
order to participate in the development of the Hyperledger Fabric
project, you will need an LF account. This
will give you single sign-on to JIRA and Gerrit.

		Explore the design document for the new
architecture [https://github.com/hyperledger/fabric/blob/master/proposals/r1/Next-Consensus-Architecture-Proposal.rst]

		Explore design docs for the various Fabric
components [https://wiki.hyperledger.org/community/fabric-design-docs]

		Explore JIRA [https://jira.hyperledger.org/projects/FAB/issues/]
for open Hyperledger Fabric issues.

		Explore the
JIRA [https://jira.hyperledger.org/projects/FAB/issues/] backlog
for upcoming Hyperledger Fabric issues.

		Explore JIRA [https://jira.hyperledger.org/issues/?filter=10147]
for Hyperledger Fabric issues tagged with “help wanted.”

		Explore the source code [https://github.com/hyperledger/fabric]

		Explore the
documentation [http://hyperledger-fabric.readthedocs.io/en/latest/]

 © Copyright 2017, rameshthoomu.

_images/sec-example-2.png
Deploy Transaction

Successful Query requires that the TCert used to sign the Query
Transaction includes a validator-accessible encryption of an
EnrollmentiD that matches one of the required affiliation(s)/role(s)

_images/sec-firstrel-depl.png
Deployment Transaction
params: code-metadata, code-functions,code-name

/* general-info */
chainID
Type-DeplTrans
(ConfLevel, Version #)
"y
Creator : rcoit

/* code-info */

[code-name /id] yun
L
code-metadata
code-functions,

Titcnnin

TEEEEy BiGrer (¥

Sidreert, : signature of the TCert key of user x
N, : (random) number added to avoid replay-attacks (see next
code-name : chain-code identifier

code-metadata: can contain ACLs expressed in terms of TCerts/Certs
code-functions: functions defined within that chain-code

_images/sec-firstrel-2.png
Key derivation (validator side)

Deployment transaction Invocation transaction
Kenain Kenain
- " /\d \
Kyrx Korx Kyt
/\ A\ N
N c, o , 3/ HVAC (Kgex Ni) gy HMAC (Kgey M)
v N v N P N
Karxem Karxe Karxem Karxe Kotate Kry
(to decrypt (to decryPt (to decrypt (to decrypt (to encrypt (IV generation
contract name) paylead) contract name) payload) the state) for state encryption)

Kayiret deployment/invocation tx key
Kyime! tx payload key
Kurer? chain-code id key
Nyt nonces used for an invocation/deployment transaction
Koot key used to ultimately encrypt that contract’s payload
Kyt key used to generate IVs to encrypt the state
1234t cOnstant values
: denotes HMAC computation using the source key as the HMAC key
—

_images/Jira3.png
Consensus
Sprint 2

QUICKFILTERS: ~ Only My Issues Recently Updated

® 9 days remaining

Backiog In Progress In review Done

_images/sec-usrconf-invoke.png
/* general info */
chainID: CID
Type-InvocTrans
(Conflevel, Version #)
Nonce

Creatar: Cert,

/*Tx-metadata*/
Metadate provided by
the invoker-application

Ti

/* code-info */

code-name,
invoke-code-function,

/* validators */

NS Fapin =
{[(“code-name”, code-name)lu, ..
[0, 50) 15

function-args,
code-metadata,
hash(Cert,) ,
Bigeea (%)

PRonsa,
K, SK.
Ksjorm
code-name

public (encryption) key for a chain
ontract-specific key pair

ey for state/content/headers

 contract identifier

/* invoker message */

cert,imsy.= [(inv”, 1) T,

Sigeert, (*)

invoke-code-function, function-args :comtract functionfargs to be invoked

tx-metadata
code-metadata
cert,

sapplication-provided metadata for transaction
pplication-provided metadata forthe contract

+ transaction/enroliment) certficate of invoker

_images/Jira4.png
JIRA Dashboards ~

Consensus
Backlo:
= g
D] Q | QUICKFI
oo

v Sprint2 3iss

SNOISY3A

26/Sep/16 8:0(

$0Id3

_images/Jira.png
Issues ~ Boards ~ Gi

RECENT BOARDS

I Saveas papric

Ledger
s:All> A Endorser text
Membership Services
nodeSDK
Consensus

As:
more...

jolang as w Jef
=

_images/Jira1.png
Boards

Recently visited boards
All boards

_images/Jira2.png
Board name Board type Administrators Saved Filter Visibility

Consensus Scrum Clayton Sims Consensus [ALLUSERS)

_images/attributes_flow.png
Enroll

e3
ul

Get TCerts

External
a2
ECA /N. /
a3

3 ad

_images/sec-memserv-components.png
Public Key Infrastructure - Hierarchy

Root Certificate
Authority

Intermediate Certificate Authorities

EnrolimentCA TransactionCA
CA CA

TLSCerts TLSCerts CodeSignerCerts

Gerrit/index.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Gerrit

Gerrit

		Requesting a Linux Foundation Account
		Creating a Linux Foundation ID

		Configuring Gerrit to Use SSH

		Checking Out the Source Code

		Working with Gerrit
		Git-review

		Sandbox project

		Getting deeper into Gerrit

		Working with a local clone of the repository

		Submitting a Change

		Adding reviewers

		Reviewing Using Gerrit

		Viewing Pending Changes

		Submitting a Change to Gerrit
		Change Requirements

		Gerrit Recommended Practices
		Browsing the Git Tree

		Watching a Project

		Commit Messages

		Avoid Pushing Untested Work to a Gerrit Server

		Keeping Track of Changes

		Topic branches

		Creating a Cover Letter for a Topic

		Finding Available Topics

		Downloading or Checking Out a Change

		Using Draft Branches

		Using Sandbox Branches

		Updating the Version of a Change

		Rebasing

		Rebasing During a Pull

		Getting Better Logs from Git

 © Copyright 2017, rameshthoomu.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_images/refarch.png
MEMBERSHIP

Membership
Services
Registration
Identity
Management

Auditability

APIs, SDKs, CLI

e

Services

CHAINCODE

Services

_images/sec-firstrel-1.png
Key derivation (client side)

Deployment transaction Invocation transaction

Kehain Kenain

Ny N/

Karx Kirx
N\ AN
o c, = Cz
P4 N v N

Karxem Karxe Karxem Karxe

(to encrypt (to encrypt

(to encrypt (to encrypt
contract name) payload)

contract name) payload)
Kyieet deployment/invocation tx key
Eysupiat t¥ payload key

Nyt nonces used for an invocation/deployment transaction
cy,,t constant values

: denotes HMAC computation using the source key as the HMAC key
—

_images/sec-registration-detailed.png
Online process (detailed)

§

User

3. envoliusername, password)

4. registerClent(regRequest)
5. Ecen, ECACert

7. requestTLSCer(tsRequest)
—]

8 TLScert, TLSCACert

10. store(Ecer, ECA-Cen,
TLScert, TLSCA-Cert)

_images/refarch-api.png
APIs, SDKs, CLI

MEMBERSHIP BLOCKCHAIN TRANSACTIONS CHAIN-CODE

_static/file.png

_static/minus.png

_static/images/fabric1.png

_static/up-pressed.png

_static/comment-bright.png

Setup/Network-setup.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Setting Up a Network

This document covers setting up a network on your local machine for
various development and testing activities. Unless you are intending to
contribute to the development of the Hyperledger Fabric project, you’ll
probably want to follow the more commonly used approach below -
leveraging published Docker
images for the various
Hyperledger Fabric components, directly. Otherwise, skip down to the
secondary approach below.

Leveraging published Docker images

This approach simply leverages the Docker images that the Hyperledger
Fabric project publishes to
DockerHub [https://hub.docker.com/u/hyperledger/] and either Docker
commands or Docker Compose descriptions of the network one wishes to
create.

Installing Docker

Note: When running Docker natively on Mac and Windows, there is no
IP forwarding support available. Hence, running more than one
fabric-peer image is not advised because you do not want to have
multiple processes binding to the same port. For most application and
chaincode development/testing running with a single fabric peer should
not be an issue unless you are interested in performance and resilience
testing the fabric’s capabilities, such as consensus. For more advanced
testing, we strongly recommend using the fabric’s Vagrant development
environment.

With this approach, there are multiple choices as to how to run Docker:
using Docker Toolbox [https://docs.docker.com/toolbox/overview/] or
one of the new native Docker runtime environments for Mac
OSX [https://docs.docker.com/engine/installation/mac/] or
Windows [https://docs.docker.com/engine/installation/windows/].
There are some subtle differences between how Docker runs natively on
Mac and Windows versus in a virtualized context on Linux. We’ll call
those out where appropriate below, when we get to the point of actually
running the various components.

Pulling the images from DockerHub

Once you have Docker (1.11 or greater) installed and running, prior to
starting any of the fabric components, you will need to first pull the
fabric images from DockerHub.

docker pull hyperledger/fabric-peer:latest
docker pull hyperledger/fabric-membersrvc:latest

Building your own images

Note: This approach is not necessarily recommended for most users.
If you have pulled images from DockerHub as described in the previous
section, you may proceed to the next
step.

The second approach would be to leverage the development
environment setup (which we will assume you
have already established) to build and deploy your own binaries and/or
Docker images from a clone of the
hyperledger/fabric [https://github.com/hyperledger/fabric] GitHub
repository. This approach is suitable for developers that might wish to
contribute directly to the Hyperledger Fabric project, or that wish to
deploy from a fork of the Hyperledger code base.

The following commands should be run from within the Vagrant
environment described in Setting Up Development
Environment.

To create the Docker image for the hyperledger/fabric-peer:

cd $GOPATH/src/github.com/hyperledger/fabric
make peer-image

To create the Docker image for the hyperledger/fabric-membersrvc:

make membersrvc-image

Starting up validating peers

Check the available images again with docker images. You should see
hyperledger/fabric-peer and hyperledger/fabric-membersrvc
images. For example,

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hyperledger/fabric-membersrvc latest 7d5f6e0bcfac 12 days ago 1.439 GB
hyperledger/fabric-peer latest 82ef20d7507c 12 days ago 1.445 GB

If you don’t see these, go back to the previous step.

With the relevant Docker images in hand, we can start running the peer
and membersrvc services.

Determine value for CORE_VM_ENDPOINT variable

Next, we need to determine the address of your docker daemon for the
CORE_VM_ENDPOINT. If you are working within the Vagrant development
environment, or a Docker Toolbox environment, you can determine this
with the ip add command. For example,

$ ip add

<<< detail removed >>>

3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
 link/ether 02:42:ad:be:70:cb brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 scope global docker0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:adff:febe:70cb/64 scope link
 valid_lft forever preferred_lft forever

Your output might contain something like
inet 172.17.0.1/16 scope global docker0. That means the docker0
interface is on IP address 172.17.0.1. Use that IP address for the
CORE_VM_ENDPOINT option. For more information on the environment
variables, see core.yaml configuration file in the fabric
repository.

If you are using the native Docker for Mac or Windows, the value for
CORE_VM_ENDPOINT should be set to unix:///var/run/docker.sock.
[TODO] double check this. I believe that 127.0.0.1:2375 also works.

Assigning a value for CORE_PEER_ID

The ID value of CORE_PEER_ID must be unique for each validating
peer, and it must be a lowercase string. We often use a convention of
naming the validating peers vpN where N is an integer starting with 0
for the root node and incrementing N by 1 for each additional peer node
started. e.g. vp0, vp1, vp2, ...

Consensus

By default, we are using a consensus plugin called NOOPS, which
doesn’t really do consensus. If you are running a single peer node,
running anything other than NOOPS makes little sense. If you want to
use some other consensus plugin in the context of multiple peer nodes,
please see the Using a Consensus Plugin
section, below.

Docker Compose

We’ll be using Docker Compose to launch our various Fabric component
containers, as this is the simplest approach. You should have it
installed from the initial setup steps. Installing Docker Toolbox or any
of the native Docker runtimes should have installed Compose.

Start up a validating peer:

Let’s launch the first validating peer (the root node). We’ll set
CORE_PEER_ID to vp0 and CORE_VM_ENDPOINT as above. Here’s the
docker-compose.yml for launching a single container within the
Vagrant development environment:

vp0:
 image: hyperledger/fabric-peer
 environment:
 - CORE_PEER_ID=vp0
 - CORE_PEER_ADDRESSAUTODETECT=true
 - CORE_VM_ENDPOINT=http://172.17.0.1:2375
 - CORE_LOGGING_LEVEL=DEBUG
 command: peer node start

You can launch this Compose file as follows, from the same directory as
the docker-compose.yml file:

$ docker-compose up

Here’s the corresponding Docker command:

$ docker run --rm -it -e CORE_VM_ENDPOINT=http://172.17.0.1:2375 -e CORE_LOGGING_LEVEL=DEBUG -e CORE_PEER_ID=vp0 -e CORE_PEER_ADDRESSAUTODETECT=true hyperledger/fabric-peer peer node start

If you are running Docker for Mac or Windows, we’ll need to explicitly
map the ports, and we will need a different value for CORE_VM_ENDPOINT
as we discussed above.

Here’s the docker-compose.yml for Docker on Mac or Windows:

vp0:
 image: hyperledger/fabric-peer
 ports:
 - "7050:7050"
 - "7051:7051"
 - "7052:7052"
 environment:
 - CORE_PEER_ADDRESSAUTODETECT=true
 - CORE_VM_ENDPOINT=unix:///var/run/docker.sock
 - CORE_LOGGING_LEVEL=DEBUG
 command: peer node start

This single peer configuration, running the NOOPS ‘consensus’
plugin, should satisfy many development/test scenarios. NOOPS is not
really providing consensus, it is essentially a no-op that simulates
consensus. For instance, if you are simply developing and testing
chaincode; this should be adequate unless your chaincode is leveraging
membership services for identity, access control, confidentiality and
privacy.

Running with the CA

If you want to take advantage of security (authentication and
authorization), privacy and confidentiality, then you’ll need to run the
Fabric’s certificate authority (CA). Please refer to the CA
Setup instructions.

Start up additional validating peers:

Following the pattern we established
above we’ll use vp1 as the
ID for the second validating peer. If using Docker Compose, we can
simply link the two peer nodes. Here’s the docker-compose.yml for a
Vagrant environment with two peer nodes - vp0 and vp1:

vp0:
 image: hyperledger/fabric-peer
 environment:
 - CORE_PEER_ADDRESSAUTODETECT=true
 - CORE_VM_ENDPOINT=http://172.17.0.1:2375
 - CORE_LOGGING_LEVEL=DEBUG
 command: peer node start
vp1:
 extends:
 service: vp0
 environment:
 - CORE_PEER_ID=vp1
 - CORE_PEER_DISCOVERY_ROOTNODE=vp0:7051
 links:
 - vp0

If we wanted to use the docker command line to launch another peer, we
need to get the IP address of the first validating peer, which will act
as the root node to which the new peer(s) will connect. The address is
printed out on the terminal window of the first peer (e.g. 172.17.0.2)
and should be passed in with the CORE_PEER_DISCOVERY_ROOTNODE
environment variable.

docker run --rm -it -e CORE_VM_ENDPOINT=http://172.17.0.1:2375 -e CORE_PEER_ID=vp1 -e CORE_PEER_ADDRESSAUTODETECT=true -e CORE_PEER_DISCOVERY_ROOTNODE=172.17.0.2:7051 hyperledger/fabric-peer peer node start

Using a Consensus Plugin

A consensus plugin might require some specific configuration that you
need to set up. For example, to use the Practical Byzantine Fault
Tolerant (PBFT) consensus plugin provided as part of the fabric, perform
the following configuration:

		In core.yaml, set the peer.validator.consensus value to
pbft

		In core.yaml, make sure the peer.id is set sequentially as
vpN where N is an integer that starts from 0 and goes to
N-1. For example, with 4 validating peers, set the peer.id
tovp0, vp1, vp2, vp3.

		In consensus/pbft/config.yaml, set the general.mode value to
batch and the general.N value to the number of validating
peers on the network, also set general.batchsize to the number of
transactions per batch.

		In consensus/pbft/config.yaml, optionally set timer values for
the batch period (general.timeout.batch), the acceptable delay
between request and execution (general.timeout.request), and for
view-change (general.timeout.viewchange)

See core.yaml and consensus/pbft/config.yaml for more detail.

All of these setting may be overridden via the command line environment
variables, e.g. CORE_PEER_VALIDATOR_CONSENSUS_PLUGIN=pbft or
CORE_PBFT_GENERAL_MODE=batch

Logging control

See Logging Control for information on
controlling logging output from the peer and deployed chaincodes.

 © Copyright 2017, rameshthoomu.

Setup/TLSSetup.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Steps to enable TLS for all sever (ECA , ACA , TLSCA , TCA) and between ACA client to server communications.

		Go to memebersrvc.yaml file under the fabric/membersrvc directory
and edit security section, that is:

security:
 serverhostoverride:
 tls_enabled: false
 client:
cert:
 file:

To enable TLS between the ACA client and the rest of the CA Services
set the tls_enbabled flag to true.

		Next, set serverhostoverride field to match CN (Common Name)
of TLS Server certificate. To extract the Common Name from TLS
Server’s certificate, for example using OpenSSL, you can use the
following command:

openssl x509 -in <<certificate.crt -text -noout

where certficate.crt is the Server Certificate. If you have openssl
installed on the machine and everything went well, you should expect an
output of the form:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 4f:39:0f:ac:7b:ce:2b:9f:28:57:52:4a:bb:94:a6:e5:9c:69:99:56
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: C=US, ST=California, L=San Francisco, O=Internet Widgets, Inc., OU=WWW
 Validity
 Not Before: Aug 24 16:27:00 2016 GMT
 Not After : Aug 24 16:27:00 2017 GMT
 Subject: C=US, ST=California, L=San Francisco, O=example.com, **CN=www.example.com**
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 EC Public Key:
 pub:
 04:38:d2:62:75:4a:18:d9:f7:fe:6a:e7:df:32:e2:
 15:0f:01:9c:1b:4f:dc:ff:22:97:5c:2a:d9:5c:c3:
 a3:ef:e3:90:3b:3c:8a:d2:45:b1:60:11:94:5e:a7:
 51:e8:e5:5d:be:38:39:da:66:e1:99:46:0c:d3:45:
 3d:76:7e:b7:8c
 ASN1 OID: prime256v1
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Subject Key Identifier:
 E8:9C:86:81:59:D4:D7:76:43:C7:2E:92:88:30:1B:30:A5:B3:A4:5C
 X509v3 Authority Key Identifier:
 keyid:5E:33:AC:E0:9D:B9:F9:71:5F:1F:96:B5:84:85:35:BE:89:8C:35:C2

 X509v3 Subject Alternative Name:
 DNS:www.example.com
 Signature Algorithm: ecdsa-with-SHA256
 30:45:02:21:00:9f:7e:93:93:af:3d:cf:7b:77:f0:55:2d:57:
 9d:a9:bf:b0:8c:9c:2e:cf:b2:b4:d8:de:f3:79:c7:66:7c:e7:
 4d:02:20:7e:9b:36:d1:3a:df:e4:d2:d7:3b:9d:73:c7:61:a8:
 2e:a5:b1:23:10:65:81:96:b1:3b:79:d4:a6:12:fe:f2:69

Now you can use that CN value (www.example.com above, for example)
from the output and use it in the serverhostoverride field (under
the security section of the membersrvc.yaml file)

		Last, make sure that path to the corresponding TLS Server Certificate
is specified under security.client.cert.file

 © Copyright 2017, rameshthoomu.

Setup/JAVAChaincode.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Java chaincode

Note: This guide generally assumes you have followed the Chaincode
development environment setup tutorial
here [https://github.com/hyperledger/fabric/blob/master/docs/Setup/Chaincode-setup.md].

To get started developing Java chaincode

		Ensure you have gradle

		Download the binary distribution from
http://gradle.org/gradle-download/

		Unpack, move to the desired location, and add gradle’s bin directory
to your system path

		Ensure gradle -v works from the command-line, and shows version
2.12 or greater

		Optionally, enable the gradle
daemon [https://docs.gradle.org/current/userguide/gradle_daemon.html]
for faster builds

		Ensure you have the Java 1.8 JDK installed. Also ensure Java’s
directory is on your path with java -version

		Additionally, you will need to have the
`JAVA HOME <https://docs.oracle.com/cd/E19182-01/821-0917/6nluh6gq9/index.html>`__
variable set to your JDK installation in your system path

		From your command line terminal, move to the devenv subdirectory
of your workspace environment. Log into a Vagrant terminal by
executing the following command:

vagrant ssh

		Build and run the peer process.

cd $GOPATH/src/github.com/hyperledger/fabric
make peer
peer node start

		The following steps is for deploying chaincode in non-dev mode.

		Deploy the chaincode,

peer chaincode deploy -l java -p /opt/gopath/src/github.com/hyperledger/fabric/examples/chaincode/java/SimpleSample -c '{"Args": ["init", "a","100", "b", "200"]}'

6d9a704d95284593fe802a5de89f84e86fb975f00830bc6488713f9441b835cf32d9cd07b087b90e5cb57a88360f90a4de39521a5595545ad689cd64791679e9

* This command will give the 'name' for this chaincode, and use this value in all the further commands with the -n (name) parameter

* PS. This may take a few minutes depending on the environment as it deploys the chaincode in the container,

		Invoke a transfer transaction,

peer chaincode invoke -l java \
-n 6d9a704d95284593fe802a5de89f84e86fb975f00830bc6488713f9441b835cf32d9cd07b087b90e5cb57a88360f90a4de39521a5595545ad689cd64791679e9 \
-c '{"Args": ["transfer", "a", "b", "10"]}'

c7dde1d7-fae5-4b68-9ab1-928d61d1e346

		Query the values of a and b after the transfer

peer chaincode query -l java \
-n 6d9a704d95284593fe802a5de89f84e86fb975f00830bc6488713f9441b835cf32d9cd07b087b90e5cb57a88360f90a4de39521a5595545ad689cd64791679e9 \
-c '{ "Args": ["query", "a"]}'
{"Name":"a","Amount":"80"}

peer chaincode query -l java \
-n 6d9a704d95284593fe802a5de89f84e86fb975f00830bc6488713f9441b835cf32d9cd07b087b90e5cb57a88360f90a4de39521a5595545ad689cd64791679e9 \
-c '{ "Args": ["query", "b"]}'
{"Name":"b","Amount":"220"}

Java chaincode deployment in DEV Mode

		Follow the step 1 to 3 as above,

		Build and run the peer process

cd $GOPATH/src/github.com/hyperledger/fabric
make peer
peer node start --peer-chaincodedev

		Open the second Vagrant terminal and build the Java shim layer and
publish it to Local Maven Repo

cd $GOPATH/src/github.com/hyperledger/fabric/core/chaincode/shim/java
gradle -b build.gradle clean
gradle -b build.gradle build

		Change to examples folder to build and run,

cd $GOPATH/src/github.com/hyperledger/fabric/examples/chaincode/java/SimpleSample
gradle -b build.gradle build

		Run the SimpleSample chaincode using the
gradle -b build.gradle run

		Open the third Vagrant terminal to run init and invoke on the
chaincode

peer chaincode deploy -l java -n SimpleSample -c ‘{“Args”: [“init”,
“a”,”100”, “b”, “200”]}’

2016/06/28 19:10:15 Load docker HostConfig: %+v &{[] [] [] [] false map[] [] false [] [] [] [] host { 0} [] { map[]} false [] 0 0 0 false 0 0 0 0 []}
19:10:15.461 [crypto] main -> INFO 002 Log level recognized 'info', set to INFO
SimpleSample

peer chaincode invoke -l java -n SimpleSample -c ‘{“Args”:
[“transfer”, “a”, “b”, “10”]}’

2016/06/28 19:11:13 Load docker HostConfig: %+v &{[] [] [] [] false map[] [] false [] [] [] [] host { 0} [] { map[]} false [] 0 0 0 false 0 0 0 0 []}
19:11:13.553 [crypto] main -> INFO 002 Log level recognized 'info', set to INFO
978ff89e-e4ef-43da-a9f8-625f2f6f04e5

peer chaincode query -l java -n SimpleSample -c '{ "Args": ["query", "a"]}'

2016/06/28 19:12:19 Load docker HostConfig: %+v &{[] [] [] [] false map[] [] false [] [] [] [] host { 0} [] { map[]} false [] 0 0 0 false 0 0 0 0 []}
19:12:19.289 [crypto] main -> INFO 002 Log level recognized 'info', set to INFO
{"Name":"a","Amount":"90"}

peer chaincode query -l java -n SimpleSample -c '{"Args": ["query", "b"]}'

2016/06/28 19:12:25 Load docker HostConfig: %+v &{[] [] [] [] false map[] [] false [] [] [] [] host { 0} [] { map[]} false [] 0 0 0 false 0 0 0 0 []}
19:12:25.667 [crypto] main -> INFO 002 Log level recognized 'info', set to INFO
{"Name":"b","Amount":"210"}

Developing new JAVA chaincode

		Create a new Java project structure.

		Use existing build.grade from any example JAVA Chaincode project
like examples/chaincode/java/SimpleSample.

		Make your main class extend ChaincodeBase class and implement the
following methods from base class.

		public String run(ChaincodeStub stub, String function, String[] args)

		public String query(ChaincodeStub stub, String function, String[] args)

		public String getChaincodeID()

		Modify the mainClassName in build.gradle to point to your new
class.

		Build this project using gradle -b build.gradle build

		Run this chaincode after starting a peer in dev-mode as above using
gradle -b build.gradle run

 © Copyright 2017, rameshthoomu.

Setup/NodeSDK-setup.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Hyperledger Fabric Client (HFC) SDK for Node.js

The Hyperledger Fabric Client (HFC) SDK provides a powerful and easy to
use API to interact with a Hyperledger Fabric blockchain.

This document assumes that you already have set up a Node.js development
environment. If not, go
here [https://nodejs.org/en/download/package-manager/] to download
and install Node.js for your OS. You’ll also want the latest version of
npm installed. For that, execute sudo npm install npm -g to get
the latest version.

Installing the hfc module

We publish the hfc node module to npm. To install hfc from
npm simply execute the following command:

npm install -g hfc

See Hyperledger fabric Node.js client
SDK [http://fabric-sdk-node.readthedocs.io/en/latest/node-sdk-guide]
for more information.

Hyperledger fabric network

First, you’ll want to have a running peer node and member services. The
instructions for setting up a network are here.
You may also use the
Fabric-starter-kit that provides
the network.

 © Copyright 2017, rameshthoomu.

Setup/index.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Setup

Setup

		Logging Control
		Overview

		peer

		Go chaincodes

		Fabric CA User’s Guide

		Getting Started
		Prerequisites

		Install

		The Fabric CA CLI

		Fabric CA Server

		Appendix
		Postgres SSL Configuration

		MySQL SSL Configuration

 © Copyright 2017, rameshthoomu.

_static/comment.png

_static/plus.png

starter/fabric-starter-kit.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Fabric Starter Kit

Coming soon for v1.0

If you are looking for the v0.6 Starter Kit, you can find it
here [http://hyperledger-fabric.readthedocs.io/en/v0.6/starter/fabric-starter-kit/].

 © Copyright 2017, rameshthoomu.

biz/usecases.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Canonical Use Cases

B2B Contract

Business contracts can be codified to allow two or more parties to
automate contractual agreements in a trusted way. Although information
on blockchain is naturally “public”, B2B contracts may require privacy
control to protect sensitive business information from being disclosed
to outside parties that also have access to the ledger.

While confidential agreements are a key business case, there are many
scenarios where contracts can and should be easily discoverable by all
parties on a ledger. For example, a ledger used to create offers (asks)
seeking bids, by definition, requires access without restriction. This
type of contract may need to be standardized so that bidders can easily
find them, effectively creating an electronic trading platform with
smart contracts (aka chaincode).

Persona

		Contract participant – Contract counter parties

		Third party participant – A third party stakeholder guaranteeing the
integrity of the contract.

Key Components

		Multi-sig contract activation - When a contract is first deployed by
one of the counter parties, it will be in the pending activation
state. To activate a contract, signatures from other counterparties
and/or third party participants are required.

		Multi-sig contract execution - Some contracts will require one of
many signatures to execute. For example, in trade finance, a payment
instruction can only be executed if either the recipient or an
authorized third party (e.g. UPS) confirms the shipment of the good.

		Discoverability - If a contract is a business offer seeking bids, it
must be easily searchable. In addition, such contracts must have the
built-in intelligence to evaluate, select and honor bids.

		Atomicity of contract execution - Atomicity of the contract is needed
to guarantee that asset transfers can only occur when payment is
received (Delivery vs. Payment). If any step in the execution process
fails, the entire transaction must be rolled back.

		Contract to chain-code communication - Contracts must be able to
communicate with chaincodes that are deployed on the same ledger.

		Longer Duration contract - Timer is required to support B2B contracts
that have long execution windows.

		Reuseable contracts - Often-used contracts can be standardized for
reuse.

		Auditable contractual agreement - Any contract can be made auditable
to third parties.

		Contract life-cycle management - B2B contracts are unique and cannot
always be standardized. An efficient contract management system is
needed to enhance the scalability of the ledger network.

		Validation access – Only nodes with validation rights are allowed to
validate transactions of a B2B contract.

		View access – B2B contracts may include confidential information, so
only accounts with predefined access rights are allowed to view and
interrogate them.

Manufacturing Supply Chain

Final assemblers, such as automobile manufacturers, can create a supply
chain network managed by its peers and suppliers so that a final
assembler can better manage its suppliers and be more responsive to
events that would require vehicle recalls (possibly triggered by faulty
parts provided by a supplier). The blockchain fabric must provide a
standard protocol to allow every participant on a supply chain network
to input and track numbered parts that are produced and used on a
specific vehicle.

Why is this specific example an abstract use case? Because while all
blockchain cases store immutable information, and some add the need for
transfer of assets between parties, this case emphasizes the need to
provide deep searchability backwards through as many as 5-10 transaction
layers. This backwards search capability is the core of establishing
provenance of any manufactured good that is made up of other component
goods and supplies.

Persona

		Final Assembler – The business entity that performs the final
assembly of a product.

		Part supplier – Supplier of parts. Suppliers can also be assemblers
by assembling parts that they receive from their sub-suppliers, and
then sending their finished product to the final (root) assembler.

Key Components

		Payment upon delivery of goods - Integration with off-chain payment
systems is required, so that payment instructions can be sent when
parts are received.

		Third party Audit - All supplied parts must be auditable by third
parties. For example, regulators might need to track the total number
of parts supplied by a specific supplier, for tax accounting
purposes.

		Obfuscation of shipments - Balances must be obfuscated so that no
supplier can deduce the business activities of any other supplier.

		Obfuscation of market size - Total balances must be obfuscated so
that part suppliers cannot deduce their own market share to use as
leverage when negotiating contractual terms.

		Validation Access – Only nodes with validation rights are allowed to
validate transactions (shipment of parts).

		View access – Only accounts with view access rights are allowed to
interrogate balances of shipped parts and available parts.

Asset Depository

Assets such as financial securities must be able to be dematerialized on
a blockchain network so that all stakeholders of an asset type will have
direct access to that asset, allowing them to initiate trades and
acquire information on an asset without going through layers of
intermediaries. Trades should be settled in near real time and all
stakeholders must be able to access asset information in near real time.
A stakeholder should be able to add business rules on any given asset
type, as one example of using automation logic to further reduce
operating costs.

Persona

		Investor – Beneficial and legal owner of an asset.

		Issuer – Business entity that issued the asset which is now
dematerialized on the ledger network.

		Custodian – Hired by investors to manage their assets, and offer
other value-add services on top of the assets being managed.

		Securities Depository – Depository of dematerialized assets.

Key Components

		Asset to cash - Integration with off-chain payment systems is
necessary so that issuers can make payments to and receive payments
from investors.

		Reference Rate - Some types of assets (such as floating rate notes)
may have attributes linked to external data (such as reference rate),
and such information must be fed into the ledger network.

		Asset Timer - Many types of financial assets have predefined life
spans and are required to make periodic payments to their owners, so
a timer is required to automate the operation management of these
assets.

		Asset Auditor - Asset transactions must be made auditable to third
parties. For example, regulators may want to audit transactions and
movements of assets to measure market risks.

		Obfuscation of account balances - Individual account balances must be
obfuscated so that no one can deduce the exact amount that an
investor owns.

		Validation Access – Only nodes with validation rights are allowed to
validate transactions that update the balances of an asset type (this
could be restricted to CSD and/or the issuer).

		View access – Only accounts with view access rights are allowed to
interrogate the chaincode that defines an asset type. If an asset
represents shares of publicly traded companies, then the view access
right must be granted to every entity on the network.

Extended Use Cases

The following extended use cases examine additional requirements and
scenarios.

One Trade, One Contract

From the time that a trade is captured by the front office until the
trade is finally settled, only one contract that specifies the trade
will be created and used by all participants. The middle office will
enrich the same electronic contract submitted by the front office, and
that same contract will then be used by counter parties to confirm and
affirm the trade. Finally, securities depository will settle the trade
by executing the trading instructions specified on the contract. When
dealing with bulk trades, the original contract can be broken down into
sub-contracts that are always linked to the original parent contract.

Direct Communication

Company A announces its intention to raise 2 Billion USD by way of
rights issue. Because this is a voluntary action, Company A needs to
ensure that complete details of the offer are sent to shareholders in
real time, regardless of how many intermediaries are involved in the
process (such as receiving/paying agents, CSD, ICSD, local/global
custodian banks, asset management firms, etc). Once a shareholder has
made a decision, that decision will also be processed and settled
(including the new issuance of shares) in real time. If a shareholder
sold its rights to a third party, the securities depository must be able
to record the new shares under the name of their new rightful owner.

Separation of Asset Ownership and Custodian’s Duties

Assets should always be owned by their actual owners, and asset owners
must be able to allow third-party professionals to manage their assets
without having to pass legal ownership of assets to third parties (such
as nominee or street name entities). If issuers need to send messages or
payments to asset owners (for example, listed share holders), issuers
send them directly to asset owners. Third-party asset managers and/or
custodians can always buy, sell, and lend assets on behalf of their
owners. Under this arrangement, asset custodians can focus on providing
value-add services to shareowners, without worrying about asset
ownership duties such as managing and redirecting payments from issuers
to shareowners.

Interoperability of Assets

If an organization requires 20,000 units of asset B, but instead owns
10,000 units of asset A, it needs a way to exchange asset A for asset B.
Though the current market might not offer enough liquidity to fulfill
this trade quickly, there might be plenty of liquidity available between
asset A and asset C, and also between asset C and asset B. Instead of
settling for market limits on direct trading (A for B) in this case, a
chain network connects buyers with “buried” sellers, finds the best
match (which could be buried under several layers of assets), and
executes the transaction.

 © Copyright 2017, rameshthoomu.

Style-guides/index.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Go-Style

Style-guide

		Coding guidelines
		Coding Golang

		Generating gRPC code

		Adding or updating Go packages

 © Copyright 2017, rameshthoomu.

tech/best-practices.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Hyperledger Fabric Development Best Practices

(This page is under construction.)

 © Copyright 2017, rameshthoomu.

tech/application-ACL.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Hyperledger Fabric - Application Access Control Lists

Overview

We consider the following entities:

		HelloWorld: is a chaincode that contains a single function called
hello;

		Alice: is the HelloWorld deployer;

		Bob: is the HelloWorld‘s functions invoker.

Alice wants to ensure that only Bob can invoke the function hello.

Fabric Support

To allow Alice to specify her own access control lists and Bob to gain
access, the fabric layer gives access to following capabilities:

		Alice and Bob can sign and verify any message with specific
transaction certificates or enrollment certificate they own;

		The fabric allows to name each transaction by means of a unique
binding to be used to bind application data to the underlying
transaction transporting it;

		Extended transaction format.

The fabric layer exposes the following interfaces and functions to allow
the application layer to define its own ACLS.

Certificate Handler

The following interface allows to sign and verify any message using
signing key-pair underlying the associated certificate. The certificate
can be a TCert or an ECert.

// CertificateHandler exposes methods to deal with an ECert/TCert
type CertificateHandler interface {

 // GetCertificate returns the certificate's DER
 GetCertificate() []byte

 // Sign signs msg using the signing key corresponding to the certificate
 Sign(msg []byte) ([]byte, error)

 // Verify verifies msg using the verifying key corresponding to the certificate
 Verify(signature []byte, msg []byte) error

 // GetTransactionHandler returns a new transaction handler relative to this certificate
 GetTransactionHandler() (TransactionHandler, error)
}

Transaction Handler

The following interface allows to create transactions and give access to
the underlying binding that can be leveraged to link application data
to the underlying transaction.

// TransactionHandler represents a single transaction that can be named by the output of the GetBinding method.
// This transaction is linked to a single Certificate (TCert or ECert).
type TransactionHandler interface {

 // GetCertificateHandler returns the certificate handler relative to the certificate mapped to this transaction
 GetCertificateHandler() (CertificateHandler, error)

 // GetBinding returns a binding to the underlying transaction
 GetBinding() ([]byte, error)

 // NewChaincodeDeployTransaction is used to deploy chaincode
 NewChaincodeDeployTransaction(chaincodeDeploymentSpec *obc.ChaincodeDeploymentSpec, uuid string) (*obc.Transaction, error)

 // NewChaincodeExecute is used to execute chaincode's functions
 NewChaincodeExecute(chaincodeInvocation *obc.ChaincodeInvocationSpec, uuid string) (*obc.Transaction, error)

 // NewChaincodeQuery is used to query chaincode's functions
 NewChaincodeQuery(chaincodeInvocation *obc.ChaincodeInvocationSpec, uuid string) (*obc.Transaction, error)
}

Client

The following interface offers a mean to get instances of the previous
interfaces.

type Client interface {

 ...

 // GetEnrollmentCertHandler returns a CertificateHandler whose certificate is the enrollment certificate
 GetEnrollmentCertificateHandler() (CertificateHandler, error)

 // GetTCertHandlerNext returns a CertificateHandler whose certificate is the next available TCert
 GetTCertificateHandlerNext() (CertificateHandler, error)

 // GetTCertHandlerFromDER returns a CertificateHandler whose certificate is the one passed
 GetTCertificateHandlerFromDER(der []byte) (CertificateHandler, error)

}

Transaction Format

To support application-level ACLs, the fabric’s transaction and
chaincode specification format have an additional field to store
application-specific metadata. The content of this field is decided by
the application. The fabric layer treats it as an unstructured stream of
bytes.

message ChaincodeSpec {

 ...

 ConfidentialityLevel confidentialityLevel;
 bytes metadata;

 ...
}

message Transaction {
 ...

 bytes payload;
 bytes metadata;

 ...
}

Another way to achieve this is to have the payload contain the metadata
itself.

Validators

To assist chaincode execution, the validators provide the chaincode
additional information, such as the metadata and the binding.

Application-level access control

Deploy Transaction

Alice has full control over the deployment transaction’s metadata. In
particular, the metadata can be used to store a list of ACLs (one per
function), or a list of roles. To define each of these lists/roles,
Alice can use any TCerts/ECerts of the users who have been granted that
(access control) privilege or have been assigned that role. The latter
is done offline.

Now, Alice requires that in order to invoke the hello function, a
certain message M has to be authenticated by an authorized invoker
(Bob, in our case). We distinguish the following two cases:

		M is one of the chaincode’s function arguments;

		M is the invocation message itself, i.e., function-name, arguments.

Execute Transaction

To invoke hello, Bob needs to sign M using the TCert/ECert Alice has
used to name him in the deployment transaction’s metadata. Let’s call
this certificate CertBob. At this point Bob does the following:

		Bob obtains a CertificateHandler for CertBob, cHandlerBob;

		Bob obtains a new TransactionHandler to issue the execute
transaction, txHandler relative to his next available TCert or his
ECert;

		Bob obtains txHandler‘s binding by invoking
txHandler.getBinding();

		Bob signs ‘M || txBinding’ by invoking cHandlerBob.Sign(‘M ||
txBinding’), let signature be the output of the signing function;

		Bob issues a new execute transaction by invoking,
txHandler.NewChaincodeExecute(...). Now, signature can be
included in the transaction as one of the argument to be passed to
the function or as transaction metadata.

Chaincode Execution

The validators, who receive the execute transaction issued by Bob, will
provide to hello the following information:

		The binding of the execute transaction;

		The metadata of the execute transaction;

		The metadata of the deploy transaction.

Then, hello is responsible for checking that signature is indeed a
valid signature issued by Bob.

 © Copyright 2017, rameshthoomu.

Setup/Chaincode-setup.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Writing, Building, and Running Chaincode in a Development Environment

Chaincode developers need a way to test and debug their chaincode
without having to set up a complete peer network. By default, when you
want to interact with chaincode, you need to first Deploy it using
the CLI, REST API, gRPC API, or SDK. Upon receiving this request, the
peer node would typically spin up a Docker container with the relevant
chaincode. This can make things rather complicated for debugging
chaincode under development, because of the turnaround time with the
launch chaincode - debug docker container - fix problem - launch chaincode - lather - rinse - repeat
cycle. As such, the fabric peer has a --peer-chaincodedev flag that
can be passed on start-up to instruct the peer node not to deploy the
chaincode as a Docker container.

The following instructions apply to developing chaincode in Go or
Java. They do not apply to running in a production environment. However,
if developing chaincode in Java, please see the Java chaincode
setup [https://github.com/hyperledger/fabric/blob/master/docs/Setup/JAVAChaincode.md]
instructions first, to be sure your environment is properly configured.

Note: We have added support for System
chaincode [https://github.com/hyperledger/fabric/blob/master/docs/SystemChaincode-noop.md].

Choices

Once again, you have the choice of using one of the following
approaches:

		Option 1 using the
Vagrant development
environment [https://github.com/hyperledger/fabric/blob/master/docs/dev-setup/devenv.md]
that is used for developing the fabric itself

		Option 2 using Docker for
Mac or Windows

		Option 3 using Docker toolbox

By using options 2 or 3, above, you avoid having to build everything
from scratch, and there’s no need to keep a clone of the fabric GitHub
repos current/up-to-date. Instead, you can simply pull and run the
fabric-peer and fabric-membersrvc images directly from
DockerHub.

You will need multiple terminal windows - essentially one for each
component. One runs the validating peer; another runs the chaincode; the
third runs the CLI or REST API commands to execute transactions.
Finally, when running with security enabled, an additional fourth window
is required to run the Certificate Authority (CA) server. Detailed
instructions are provided in the sections below.

Option 1 Vagrant development environment

Security Setup (optional)

From the devenv subdirectory of your fabric workspace environment,
ssh into Vagrant:

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant ssh

To set up the local development environment with security enabled, you
must first build and run the Certificate Authority (CA) server:

cd $GOPATH/src/github.com/hyperledger/fabric
make membersrvc && membersrvc

Running the above commands builds and runs the CA server with the
default setup, which is defined in the
membersrvc.yaml [https://github.com/hyperledger/fabric/blob/master/membersrvc/membersrvc.yaml]
configuration file. The default configuration includes multiple users
who are already registered with the CA; these users are listed in the
eca.users section of the configuration file. To register additional
users with the CA for testing, modify the eca.users section of the
membersrvc.yaml [https://github.com/hyperledger/fabric/blob/master/membersrvc/membersrvc.yaml]
file to include additional enrollmentID and enrollmentPW pairs.
Note the integer that precedes the enrollmentPW. That integer
indicates the role of the user, where 1 = client, 2 = non-validating
peer, 4 = validating peer, and 8 = auditor.

Running the validating peer

In a new terminal window, from the devenv subdirectory of your
fabric workspace environment, ssh into Vagrant:

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant ssh

Build and run the peer process.

cd $GOPATH/src/github.com/hyperledger/fabric
make peer
peer node start --peer-chaincodedev

Alternatively, rather than tweaking the core.yaml and rebuilding,
you can enable security and privacy on the peer with environment
variables:

CORE_SECURITY_ENABLED=true CORE_SECURITY_PRIVACY=true peer node start --peer-chaincodedev

Now, you are ready to start running the
chaincode.

Option 2 Docker for Mac or Windows

If you would prefer to simply run the fabric components as built and
published by the Hyperledger project on your Mac or Windows
laptop/server using the Docker for
Mac [https://docs.docker.com/engine/installation/mac/] or
Windows [https://docs.docker.com/engine/installation/windows/]
platform, following these steps. If using Docker
Toolbox [https://docs.docker.com/toolbox/overview/], please skip to
Option 3, below.

Pull images from DockerHub

First, pull the latest images published by the Hyperledger fabric
project from DockerHub.

docker pull hyperledger/fabric-peer:latest
docker pull hyperledger/fabric-membersrvc:latest

Running the Peer and CA

To run the fabric-peer and fabric-membersrvc images, we’ll use Docker
Compose [https://docs.docker.com/compose/]. It significantly
simplifies things. To do that, we’ll create a docker-compose.yml file
with a description of the two services we’ll be running. Here’s the
docker-compose.yml to launch the two processes:

membersrvc:
 image: hyperledger/fabric-membersrvc
 ports:
 - "7054:7054"
 command: membersrvc
vp0:
 image: hyperledger/fabric-peer
 ports:
 - "7050:7050"
 - "7051:7051"
 - "7053:7053"
 environment:
 - CORE_PEER_ADDRESSAUTODETECT=true
 - CORE_VM_ENDPOINT=unix:///var/run/docker.sock
 - CORE_LOGGING_LEVEL=DEBUG
 - CORE_PEER_ID=vp0
 - CORE_PEER_PKI_ECA_PADDR=membersrvc:7054
 - CORE_PEER_PKI_TCA_PADDR=membersrvc:7054
 - CORE_PEER_PKI_TLSCA_PADDR=membersrvc:7054
 - CORE_SECURITY_ENABLED=true
 - CORE_SECURITY_ENROLLID=test_vp0
 - CORE_SECURITY_ENROLLSECRET=MwYpmSRjupbT
 links:
 - membersrvc
 command: sh -c "sleep 5; peer node start --peer-chaincodedev"

Save that in a directory with the name docker-compose.yml. Then, run
docker-compose up to start the two processes.

Now, you are ready to start running the
chaincode.

Option 3 Docker Toolbox

If you are using Docker
Toolbox [https://docs.docker.com/toolbox/overview/], please follow
these instructions.

Pull images from DockerHub

First, pull the latest images published by the Hyperledger fabric
project from DockerHub.

docker pull hyperledger/fabric-peer:latest
docker pull hyperledger/fabric-membersrvc:latest

Running the Peer and CA

To run the fabric-peer and fabric-membersrvc images, we’ll use Docker
Compose [https://docs.docker.com/compose/]. It significantly
simplifies things. To do that, we’ll create a docker-compose.yml file
with a description of the two services we’ll be running. Here’s the
docker-compose.yml to launch the two processes:

membersrvc:
 image: hyperledger/fabric-membersrvc
 command: membersrvc
vp0:
 image: hyperledger/fabric-peer
 environment:
 - CORE_PEER_ADDRESSAUTODETECT=true
 - CORE_VM_ENDPOINT=http://172.17.0.1:2375
 - CORE_LOGGING_LEVEL=DEBUG
 - CORE_PEER_ID=vp0
 - CORE_PEER_PKI_ECA_PADDR=membersrvc:7054
 - CORE_PEER_PKI_TCA_PADDR=membersrvc:7054
 - CORE_PEER_PKI_TLSCA_PADDR=membersrvc:7054
 - CORE_SECURITY_ENABLED=true
 - CORE_SECURITY_ENROLLID=test_vp0
 - CORE_SECURITY_ENROLLSECRET=MwYpmSRjupbT
 links:
 - membersrvc
 command: sh -c "sleep 5; peer node start --peer-chaincodedev"

Save that in a directory with the name docker-compose.yml. Then, run
docker-compose up to start the two processes.

Running the chaincode

Start a new terminal window.

Vagrant

If you are using Option
1, you’ll need to ssh
to Vagrant. Otherwise, skip this step.

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant ssh

Next, we’ll build the chaincode_example02 code, which is provided
in the Hyperledger fabric source code repository. If you are using
Option 1, then you can
do this from your clone of the fabric repository.

cd $GOPATH/src/github.com/hyperledger/fabric/examples/chaincode/go/chaincode_example02
go build

Not Vagrant

If you are using either Option
2 or Option
3, you’ll need to download the sample
chaincode. The chaincode project must be placed somewhere under the
src directory in your local $GOPATH as shown below.

mkdir -p $GOPATH/src/github.com/chaincode_example02/
cd $GOPATH/src/github.com/chaincode_example02
curl --request GET https://raw.githubusercontent.com/hyperledger/fabric/master/examples/chaincode/go/chaincode_example02/chaincode_example02.go > chaincode_example02.go

Next, you’ll need to clone the Hyperledger fabric to your local $GOPATH,
so that you can build your chaincode. Note: this is a temporary
stop-gap until we can provide an independent package for the chaincode
shim.

mkdir -p $GOPATH/src/github.com/hyperledger
cd $GOPATH/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric

Now, you should be able to build your chaincode.

cd $GOPATH/src/github.com/chaincode_example02
go build

When you are ready to start creating your own Go chaincode, create a new
subdirectory under $GOPATH/src. You can copy the
chaincode_example02 file to the new directory and modify it.

Starting and registering the chaincode

Run the following chaincode command to start and register the chaincode
with the validating peer:

CORE_CHAINCODE_ID_NAME=mycc CORE_PEER_ADDRESS=0.0.0.0:7051 ./chaincode_example02

The chaincode console will display the message “Received REGISTERED,
ready for invocations”, which indicates that the chaincode is ready to
receive requests. Follow the steps below to send a chaincode deploy,
invoke or query transaction. If the “Received REGISTERED” message is not
displayed, then an error has occurred during the deployment; revisit the
previous steps to resolve the issue.

Running the CLI or REST API

		chaincode deploy via CLI and
REST

		chaincode invoke via CLI and
REST

		chaincode query via CLI and
REST

If you were running with security enabled, see Removing temporary files
when security is
enabled to learn
how to clean up the temporary files.

See the logging
control [https://github.com/hyperledger/fabric/blob/master/docs/Setup/logging-control.md]
reference for information on controlling logging output from the
peer and chaincodes.

Terminal 3 (CLI or REST API)

Note on REST API port

The default REST interface port is 7050. It can be configured in
core.yaml [https://github.com/hyperledger/fabric/blob/master/peer/core.yaml]
using the rest.address property. If using Vagrant, the REST port
mapping is defined in
Vagrantfile [https://github.com/hyperledger/fabric/blob/master/devenv/Vagrantfile].

Note on security functionality

Current security implementation assumes that end user authentication
takes place at the application layer and is not handled by the fabric.
Authentication may be performed through any means considered appropriate
for the target application. Upon successful user authentication, the
application will perform user registration with the CA exactly once. If
registration is attempted a second time for the same user, an error will
result. During registration, the application sends a request to the
certificate authority to verify the user registration and if successful,
the CA responds with the user certificates and keys. The enrollment and
transaction certificates received from the CA will be stored locally
inside /var/hyperledger/production/crypto/client/ directory. This
directory resides on a specific peer node which allows the user to
transact only through this specific peer while using the stored crypto
material. If the end user needs to perform transactions through more
then one peer node, the application is responsible for replicating the
crypto material to other peer nodes. This is necessary as registering a
given user with the CA a second time will fail.

With security enabled, the CLI commands and REST payloads must be
modified to include the enrollmentID of a registered user who is
logged in; otherwise an error will result. A registered user can be
logged in through the CLI or the REST API by following the instructions
below. To log in through the CLI, issue the following commands, where
username is one of the enrollmentID values listed in the
eca.users section of the
membersrvc.yaml [https://github.com/hyperledger/fabric/blob/master/membersrvc/membersrvc.yaml]
file.

From your command line terminal, move to the devenv subdirectory of
your workspace environment. Log into a Vagrant terminal by executing the
following command:

vagrant ssh

Register the user though the CLI, substituting for <username>
appropriately:

cd $GOPATH/src/github.com/hyperledger/fabric/peer
peer network login <username>

The command will prompt for a password, which must match the
enrollmentPW listed for the target user in the eca.users section
of the
membersrvc.yaml [https://github.com/hyperledger/fabric/blob/master/membersrvc/membersrvc.yaml]
file. If the password entered does not match the enrollmentPW, an
error will result.

To log in through the REST API, send a POST request to the
/registrar endpoint, containing the enrollmentID and
enrollmentPW listed in the eca.users section of the
membersrvc.yaml [https://github.com/hyperledger/fabric/blob/master/membersrvc/membersrvc.yaml]
file.

REST Request:

POST localhost:7050/registrar

{
 "enrollId": "jim",
 "enrollSecret": "6avZQLwcUe9b"
}

REST Response:

200 OK
{
 "OK": "Login successful for user 'jim'."
}

chaincode deploy via CLI and REST

First, send a chaincode deploy transaction, only once, to the validating
peer. The CLI connects to the validating peer using the properties
defined in the core.yaml file. Note: The deploy transaction
typically requires a path parameter to locate, build, and deploy the
chaincode. However, because these instructions are specific to local
development mode and the chaincode is deployed manually, the name
parameter is used instead.

peer chaincode deploy -n mycc -c '{"Args": ["init", "a","100", "b", "200"]}'

Alternatively, you can run the chaincode deploy transaction through the
REST API.

REST Request:

POST <host:port>/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name": "mycc"
 },
 "input": {
 "args":["init", "a", "100", "b", "200"]
 }
 },
 "id": 1
}

REST Response:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "mycc"
 },
 "id": 1
}

Note: When security is enabled, modify the CLI command and the REST
API payload to pass the enrollmentID of a logged in user. To log in
a registered user through the CLI or the REST API, follow the
instructions in the note on security
functionality. On the CLI, the
enrollmentID is passed with the -u parameter; in the REST API,
the enrollmentID is passed with the secureContext element. If
you are enabling security and privacy on the peer process with
environment variables, it is important to include these environment
variables in the command when executing all subsequent peer operations
(e.g. deploy, invoke, or query).

CORE_SECURITY_ENABLED=true CORE_SECURITY_PRIVACY=true peer chaincode deploy -u jim -n mycc -c '{"Args": ["init", "a","100", "b", "200"]}'

REST Request:

POST <host:port>/chaincode

{
 "jsonrpc": "2.0",
 "method": "deploy",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name": "mycc"
 },
 "input": {
 "args":["init", "a", "100", "b", "200"]
 },
 "secureContext": "jim"
 },
 "id": 1
}

The deploy transaction initializes the chaincode by executing a target
initializing function. Though the example shows “init”, the name could
be arbitrarily chosen by the chaincode developer. You should see the
following output in the chaincode window:

<TIMESTAMP_SIGNATURE> Received INIT(uuid:005dea42-d57f-4983-803e-3232e551bf61), initializing chaincode
Aval = 100, Bval = 200

Chaincode invoke via CLI and REST

Run the chaincode invoking transaction on the CLI as many times as
desired. The -n argument should match the value provided in the
chaincode window (started in Vagrant terminal 2):

peer chaincode invoke -l golang -n mycc -c '{"Args": ["invoke", "a", "b", "10"]}'

Alternatively, run the chaincode invoking transaction through the REST
API.

REST Request:

POST <host:port>/chaincode

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name":"mycc"
 },
 "input": {
 "args":["invoke", "a", "b", "10"]
 }
 },
 "id": 3
}

REST Response:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "5a4540e5-902b-422d-a6ab-e70ab36a2e6d"
 },
 "id": 3
}

Note: When security is enabled, modify the CLI command and REST API
payload to pass the enrollmentID of a logged in user. To log in a
registered user through the CLI or the REST API, follow the instructions
in the note on security
functionality. On the CLI, the
enrollmentID is passed with the -u parameter; in the REST API,
the enrollmentID is passed with the secureContext element. If
you are enabling security and privacy on the peer process with
environment variables, it is important to include these environment
variables in the command when executing all subsequent peer operations
(e.g. deploy, invoke, or query).

CORE_SECURITY_ENABLED=true CORE_SECURITY_PRIVACY=true peer chaincode invoke -u jim -l golang -n mycc -c '{"Args": ["invoke", "a", "b", "10"]}'

REST Request:

POST <host:port>/chaincode

{
 "jsonrpc": "2.0",
 "method": "invoke",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name":"mycc"
 },
 "input": {
 "args":["invoke", "a", "b", "10"]
 },
 "secureContext": "jim"
 },
 "id": 3
}

The invoking transaction runs the specified chaincode function name
“invoke” with the arguments. This transaction transfers 10 units from A
to B. You should see the following output in the chaincode window:

<TIMESTAMP_SIGNATURE> Received RESPONSE. Payload 200, Uuid 075d72a4-4d1f-4a1d-a735-4f6f60d597a9
Aval = 90, Bval = 210

Chaincode query via CLI and REST

Run a query on the chaincode to retrieve the desired values. The -n
argument should match the value provided in the chaincode window
(started in Vagrant terminal 2):

peer chaincode query -l golang -n mycc -c '{"Args": ["query", "b"]}'

The response should be similar to the following:

{"Name":"b","Amount":"210"}

If a name other than “a” or “b” is provided in a query sent to
chaincode_example02, you should see an error response similar to the
following:

{"Error":"Nil amount for c"}

Alternatively, run the chaincode query transaction through the REST API.

REST Request:

POST <host:port>/chaincode

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name":"mycc"
 },
 "input": {
 "args":["query", "a"]
 }
 },
 "id": 5
}

REST Response:

{
 "jsonrpc": "2.0",
 "result": {
 "status": "OK",
 "message": "90"
 },
 "id": 5
}

Note: When security is enabled, modify the CLI command and REST API
payload to pass the enrollmentID of a logged in user. To log in a
registered user through the CLI or the REST API, follow the instructions
in the note on security
functionality. On the CLI, the
enrollmentID is passed with the -u parameter; in the REST API,
the enrollmentID is passed with the secureContext element. If
you are enabling security and privacy on the peer process with
environment variables, it is important to include these environment
variables in the command when executing all subsequent peer operations
(e.g. deploy, invoke, or query).

CORE_SECURITY_ENABLED=true CORE_SECURITY_PRIVACY=true peer chaincode query -u jim -l golang -n mycc -c '{"Args": ["query", "b"]}'

REST Request:

POST <host:port>/chaincode

{
 "jsonrpc": "2.0",
 "method": "query",
 "params": {
 "type": 1,
 "chaincodeID":{
 "name":"mycc"
 },
 "input": {
 "args":["query", "a"]
 },
 "secureContext": "jim"
 },
 "id": 5
}

Removing temporary files when security is enabled

Note: this step applies ONLY if you were using Option 1 above.
For Option 2 or 3, the cleanup is handled by Docker.

After the completion of a chaincode test with security enabled, remove
the temporary files that were created by the CA server process. To
remove the client enrollment certificate, enrollment key, transaction
certificate chain, etc., run the following commands. Note, that you must
run these commands if you want to register a user who has already been
registered previously.

From your command line terminal, ssh into Vagrant:

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant ssh

And then run:

rm -rf /var/hyperledger/production

 © Copyright 2017, rameshthoomu.

tech/attributes.html

 Navigation

 		
 index

 		fabricdocs 1.0 documentation »

Attributes support

To support attributes the user has to pass them during TCert creation,
these attributes can be used during transaction deployment, execution or
query for Attribute Based Access Control (ABAC) to determine whether the
user can or cannot execute a specific chaincode or used attributes’
values for other purposes. A mechanism to validate the ownership of
attributes is required in order to prove if the attributes passed by the
user are correct. The Attribute Certificate Authority (ACA) has the
responsibility of validate attributes and to return an Attribute
Certificate (ACert) with the valid attribute values. Attributes values
are encrypted using the keys defined below (section Attributes keys).

Attribute Keys

The attributes are encrypted using a key derived from a hierarchy called
PreKey tree. This approach consists in deriving keys from a parent key,
allowing the parent key owner, get access to derived keys. This way keys
used to encrypt attributes are different among attributes and TCerts
avoiding linkability while allowing an authorized auditor who owns a
parent key to derive the keys in the lower levels.

Example of prekey tree

Pre3K_BI
 |_Pre2K_B = HMAC(Pre3K_BI, “banks”)
 | |_Pre1K_BankA = HMAC(Pre2K_B, “Bank A”)
 | | |_Pre0K_BankA = HMAC(Pre1K_BankA, TCertID)
 | | |_PositionKey_BankA_TIdx = HMAC(Pre0K_BankA, "position")
 | | |_CompanyKey_BankA_TIdx = HMAC(Pre0K_BankA, "company")
 | |
 | |_Pre1K_BankB = HMAC(Pre2K_B, “BanKB”)
 | |_Pre0K_BankB = HMAC(Pre1K_BankB, TCertID)
 | |_PositionKey_BankB_TIdx = HMAC(Pre0K_BankB, "position")
 | |_CompanyKey_BankB_TIdx = HMAC(Pre0K_BankB, "company")
 |
 |_Pre2K_I = HMAC(Pre3K_BI, "institutions")
 |_Pre1K_InstitutionA= HMAC(Pre2K_I, "Institution A”)
 |_Pre0K_InstitutionA = HMAC(_Pre1K_InstitutionA, TCertID)
 |_PositionKey_InstA_TIdx = HMAC(Pre0K_InstitutionA, "position")
 |_CompanyKey_InstA_TIdx = HMAC(Pre0K_InstitutionA, "company")

		Pre3K_BI: is available to TCA and auditors for banks and
institutions.

		Pre2K_B: is available to auditors for banks

		Pre1K_BankA: is available to auditors for Bank A.

		Pre1K_BankB: is available to auditors for Bank B.

		Pre2K_I: is available to auditors for institutions.

		Pre1K_InstitutionA: is available to auditors for Institution A.

Each TCert has a different PreK0 (for example Pre0K_BankA) and each
TCert attribute has a different attribute key (for example
PositionKey_BankA_TIdx).

Attribute Certificate Authority

Attribute Certificate Authority (ACA) has the responsibility of certify
the ownership of the attributes. ACA has a database to hold attributes
for each user and affiliation.

		id: The id passed by the user during enrollment

		affiliation: The entity which the user is affiliated to

		attributeName: The name used to look for the attribute, e.g.
‘position’

		attributeValue: The value of the attribute, e.g. ‘software engineer’

		validFrom: The start of the attribute’s validity period

		validTo: The end of the attribute’s validity period

gRPC ACA API

		FetchAttributes

rpc FetchAttributes(ACAFetchAttrReq) returns (ACAFetchAttrResp);

message ACAFetchAttrReq {
 google.protobuf.Timestamp ts = 1;
 Cert eCert = 2; // ECert of involved user.
 Signature signature = 3; // Signed using the ECA private key.
}

message ACAFetchAttrResp {
 enum StatusCode {
 SUCCESS = 000;
 FAILURE = 100;
 }
 StatusCode status = 1;
}

		RequestAttributes

rpc RequestAttributes(ACAAttrReq) returns (ACAAttrResp);

message ACAAttrReq {
 google.protobuf.Timestamp ts = 1;
 Identity id = 2;
 Cert eCert = 3; // ECert of involved user.
 repeated TCertAttributeHash attributes = 4; // Pairs attribute-key, attribute-value-hash
 Signature signature = 5; // Signed using the TCA private key.
}

message ACAAttrResp {
 enum StatusCode {
 FULL_SUCCESSFUL = 000;
 PARTIAL_SUCCESSFUL = 001;
 NO_ATTRIBUTES_FOUND = 010;
 FAILURE = 100;
 }
 StatusCode status = 1;
 Cert cert = 2; // ACert with the owned attributes.
 Signature signature = 3; // Signed using the ACA private key.
}

		RefreshAttributes

rpc RefreshAttributes(ACARefreshReq) returns (ACARefreshResp);

message ACARefreshAttrReq {
 google.protobuf.Timestamp ts = 1;
 Cert eCert = 2; // ECert of the involved user.
 Signature signature = 3; // Signed using enrollPrivKey
}

message ACARefreshAttrResp {
 enum StatusCode {
 SUCCESS = 000;
 FAILURE = 100;
 }
 StatusCode status = 1;
}

FLOW

[image: ACA flow]
ACA flow

During enrollment

		The user requests an Enrollment Certificate (ECert) to ECA

		ECA creates the ECert and responds to the user with it.

		ECA issues a fetch request under TLS to the ACA passing the newly
generated ECert as a parameter. This request is signed with the ECA’s
private key.

		The request triggers ACA asynchronous mechanism that fetches
attributes’ values from external sources and populates the attributes
database (in the current implementation attributes are loaded from an
internal configuration file).

During TCert generation

		When the user needs TCerts to create a new transaction it requests a
batch of TCerts to the TCA, and provides the following:

		The batch size (i.e. how many TCerts the user is expecting)

		Its ECert

		A list of attributes (e.g. Company, Position)

		Under TLS TCA sends a RequestAttributes() to ACA to verify if the
user is in possession of those attributes. This request is signed
with TCA’s private key and it contains:

		User’s ECert

		A list of attribute names “company, position, ...”

		The ACA performs a query to the internal attributes database and
there are three possible scenarios***:
		The user does not have any of the specified attributes – An error
is returned.

		The user has all the specified attributes – An X.509 certificate
(ACert) with all the specified attributes and the ECert public key
is returned.

		The user has a subset of the requested attributes – An X.509
certificate (ACert) with just the subset of the specified
attributes and the ECert public key is returned.

		The TCA checks the validity period of the ACert’s attributes and
updates the list by eliminating those that are expired. Then for
scenarios b and c from the previous item it checks how many (and
which ones) of the attributes the user will actually receive inside
each TCert. This information needs to be returned to the user in
order to decide whether the TCerts are useful or if further actions
needs to be performed (i.e. issue a RefreshAttributes command and
request a new batch, throw an error or make use of the TCerts as they
are).

		The TCA could have other criteria to update the valid list of
attributes.

		The TCA creates the batch of TCerts. Each TCert contains the valid
attributes encrypted with keys derived from the Prekey tree (each key
is unique per attribute, per TCert and per user).

		The TCA returns the batch of TCerts to the user along with a root key
(Prek0) from which each attribute encryption key was derived. There
is a Prek0 per TCert. All the TCerts in the batch have the same
attributes and the validity period of the TCerts is the same for the
entire batch.

*** In the current implementation an attributes refresh is executed
automatically before this step, but once the refresh service is
implemented the user will have the responsibility of keeping his/her
attributes updated by invoking this method.

Assumptions

		An Attribute Certificate Authority (ACA) has been incorporated to the
Membership Services internally to provide a trusted source for
attribute values.

		In the current implementation attributes are loaded from a
configuration file (membersrvc.yml).

		Refresh attributes service is not implemented yet, instead,
attributes are refreshed in each RequestAttribute invocation.

 © Copyright 2017, rameshthoomu.

_images/sec-sec-arch.png
O

User registration

Anonymous Norminal Peer registration
credentials credential Norninal

credential

4

Membership
Management

_images/sec-firstrel-inv.png
Invocation Transaction
params:code-name, invoke-code-function, function-agrs,
(Tcert,)

/* general info */ /* code-info */

[code-name /id]geain
L

invoke-code-function,

chainID
Type-InvocTrans
(ConfLevel, Version #)
"

Creator: Tcert,

function-args,
code-metadata

Txchnin

-
Tcert, - Sidcerty, (*)

© Teert, : TCert of the invoker u listed in the deployment transaction
* Sigpen: Signature on the transaction using the secret key of Tcert
+ code-name: a way to identify the reference deployment transaction

+ invoke-code-function: the name of the invoked function

+ function-args: function arguments that can be decided by the application,
e.g., contain certain signature if the application requires certain
authentication

+ code-metadata: metadata that is provided by the invoker (fabric treats as
a set of bytes) for the application to store additional information for
its own purpose

_images/sec-example-1.png
Deploy Transaction Query Transaction

Metadata New TCert,,
Chain Validator
A
Signature of (A) using
Owner of Teert, queries Privkey from new TCert,,

with new TCert,,

Ensure one who queries TCert, (from ACL)
was on ACL: &

- Internalfinner signature and (8) Initial plaintext
Externallouter signature

are cryptographically bound Signature of

((B) || hash(new TCert,))
using PrivKey from TCert,,

(v) Jo 1xawu

_images/sec-request-tcerts-invocation.png
Requesting Transaction Certificates (TCerts) — Invocation time

Client Membership services
Invoke
Transaction
3 i 7cer o= i (] & reqvesiTCertsBatchieouny _ || Transaction
Authority Local
3 - TcR) Storage
s Toert batch, TCACer
7. ivoke() KeyDF- Key

L fm;ei Tz et is e Tors bch and KeyDF_Key

Local
Storage

_images/sec-usrconf-deploy.png
/* code-info */

[/*headers*/
code-name
<function-hdrs>

Tay
["/rcoder/

chainID: CID
Type-DeplTrans
Nonce

(ConfVersion #)
creator: Cert,,

/* general-info */

/* contract users */
/* leveraging contract-user-prefs */
TCert, ey, = | (“contract”, PK,), (“headr”, k)|

TCert, meg.=[(“contract”, PK,), (“headr”, k)

code-name ,

code-metadata,
code- functions
iGertas (1)

Tx

/*Tx-metadata*/
Application-
provided metadata

Sideertye (*) -

K., SK. + contract-specific key pair
Ko key for state/content/head ers
Chain ield specifying the curent chain
Teert. ertificates of participant users
Cert, ertificates of creator

tx-metadata :application-provided metadata

Cert, | msg.=[(Scontract”, SK) 1,

[(“eode”, ko) , (“headr”, Ky), (“code-state”, k)],

/* contract validators */

Chain: mega..=[flag, (“contract”, SKo)] .

[(“eode”,K.) , (“headr”,K,), (“code-state”, k)],

_static/images/H