
Exscript Documentation
Release 0.3.4

Samuel Abels

Aug 24, 2023

Contents

1 Using Exscript with Python 3

2 Using the Exscript command line tool 5

3 Main design goals 7

4 Development 9

5 License 11

6 Contents 13
6.1 Installation . 13
6.2 Python Tutorial . 14
6.3 CLI Tutorial . 19
6.4 Command Line Options . 22
6.5 Exscript Templates . 24
6.6 Trouble Shooting . 32
6.7 Exscript . 34

i

ii

Exscript Documentation, Release 0.3.4

Exscript is a Python module and a template processor for automating network connections over protocols such as
Telnet or SSH. We attempt to create the best possible set of tools for working with Telnet and SSH.

Exscript also provides a set of tools and functions for sysadmins, that simplify regular expression matching, re-
porting by email, logging, or syslog handling, CSV parsing, ip address handling, template processing, and many
more.

Exscript may be used to automate sessions with routers from Cisco, Juniper, OneAccess, Huawei, or any others. If
you want to configures machines running Linux/Unix, IOS, IOS-XR, JunOS, VRP, or any other operating system that
can be used with a terminal, Exscript is what you are looking for.

Contents 1

http://exscript.readthedocs.io
https://travis-ci.org/knipknap/exscript
https://coveralls.io/github/knipknap/exscript?branch=master
https://github.com/knipknap/exscript/stargazers
https://github.com/knipknap/exscript/blob/master/COPYING

Exscript Documentation, Release 0.3.4

2 Contents

CHAPTER 1

Using Exscript with Python

Make sure to check out the Python Tutorial. You may also want to look at the Python examples.

3

https://github.com/knipknap/exscript/tree/master/demos/

Exscript Documentation, Release 0.3.4

4 Chapter 1. Using Exscript with Python

CHAPTER 2

Using the Exscript command line tool

Have a look at our CLI Tutorial. You will also want to learn about Exscript Templates.

5

Exscript Documentation, Release 0.3.4

6 Chapter 2. Using the Exscript command line tool

CHAPTER 3

Main design goals

• Exscript provides high reliability and scalability. Exscript is used by some of the world’s largest ISPs to
maintain hundreds of thousands of sessions every day.

• Exscript is extremely well tested. The Exscript public API has almost 100% test coverage.

• Exscript is protocol agnostic, so if you are migrating from Telnet to SSH later, you can switch easily by simply
changing an import statement.

7

Exscript Documentation, Release 0.3.4

8 Chapter 3. Main design goals

CHAPTER 4

Development

Exscript is on GitHub.

9

https://github.com/knipknap/exscript

Exscript Documentation, Release 0.3.4

10 Chapter 4. Development

CHAPTER 5

License

Exscript is published under the MIT licence.

11

https://opensource.org/licenses/MIT

Exscript Documentation, Release 0.3.4

12 Chapter 5. License

CHAPTER 6

Contents

6.1 Installation

6.1.1 Prerequisites

Exscript requires Python 2.7, and the following modules:

future
configparser
pycryptodomex
paramiko>=1.17

6.1.2 Installing with PIP

sudo pip install exscript

6.1.3 Installing from GitHub

git clone git://github.com/knipknap/exscript
cd exscript
sudo make install

6.1.4 Running the automated test suite

If you installed from GitHub, you can run the integrated testsuite:

make tests

There shouldn’t be any errors, so if something comes up, please file a bug.

13

https://github.com/knipknap/exscript/issues

Exscript Documentation, Release 0.3.4

6.2 Python Tutorial

6.2.1 Introduction

This is a step by step introduction to using Exscript in Python.

We’ll assume that Exscript is already installed. You can confirm that your installation works by typing exscript
--version into a terminal; if this prints the version number, your installation is complete.

We will also assume that you have at least a little bit of programming experience, though most of the examples should
be pretty simple.

Exscript also has extensive API documentation, which may be used as a reference throughout this tutorial.

6.2.2 Getting started

As a first simple test, let’s try to connect to a network device via SSH2, and execute the uname -a command on it.

Create a file named start.py with the following content:

from Exscript.util.interact import read_login
from Exscript.protocols import SSH2

account = read_login() # Prompt the user for his name and password
conn = SSH2() # We choose to use SSH2
conn.connect('localhost') # Open the SSH connection
conn.login(account) # Authenticate on the remote host
conn.execute('uname -a') # Execute the "uname -a" command
conn.send('exit\r') # Send the "exit" command
conn.close() # Wait for the connection to close

Awesome fact: Just replace SSH2 by Telnet and it should still work with Telnet devices.

As you can see, we prompt the user for a username and a password, and connect to localhost using the entered
login details. Once logged in, we execute uname -a, log out, and make sure to wait until the remote host has closed
the connection.

You can see one important difference: We used conn.execute to run uname -a, but we used conn.send to
execute the exit command. The reason is that ‘‘conn.execute‘‘ waits until the server has acknowledged that the
command has completed, while conn.send does not. Since the server won’t acknowledge the exit command
(instead, it just closes the connection), using conn.execute would lead to an error.

6.2.3 Making it easier

While the above serves as a good introduction on how to use Exscript.protocols, it has a few drawbacks:

1. It only works for SSH2 or for Telnet, but not for both.

2. It contains a lot of unneeded code.

3. You can’t use the script to connect to multiple hosts.

Let’s solve drawbacks 1. and 2. first. Here is a shortened version of the above script:

from Exscript.util.start import quickstart

def do_something(job, host, conn):

(continues on next page)

14 Chapter 6. Contents

http://www.python.org/

Exscript Documentation, Release 0.3.4

(continued from previous page)

conn.execute('uname -a')

quickstart('ssh://localhost', do_something)

As you can see, we made two major changes:

1. We moved the code that executes uname -a into a function named do_something. (Note: We could have
picked any other name for the function.)

2. We imported and used the Exscript.util.start.quickstart() function.

Exscript.util.start.quickstart() does the following:

1. It prompts the user for a username and a password.

2. It connects to the specified host, using the specified protocol.

3. It logs in using the given login details.

4. It calls our do_something() function.

5. When do_something() completes, it closes the connection.

6.2.4 Running a script on multiple hosts

In practice, you may want to run this script on multiple hosts, and optimally at the same time, in parallel. Using the
Exscript.util.start.quickstart() function, this is now really easy:

from Exscript.util.start import quickstart

def do_something(job, host, conn):
conn.execute('uname -a')

hosts = ['ssh://localhost', 'telnet://anotherhost']
quickstart(hosts, do_something, max_threads=2)

We only changed the last lines of the script:

1. We pass in two hosts, localhost and anotherhost. Note that localhost uses SSH, and
anotherhost speaks Telnet.

2. We added the max_threads=2 argument. This tells Exscript to open two network connections in parallel.

If you run this script, it will again ask for the login details, and run do_something() for both hosts in parallel.

Note that the login details are only asked once and used on both hosts - this may or may not be what you want. For
instructions one using different login mechanisms please refer to the section on accounts later.

6.2.5 Loading hosts from a text file

If you do not wish to hard code the host names into the script, you may also list them in a text file and load it using
Exscript.util.file.get_hosts_from_file() as follows:

from Exscript.util.start import start
from Exscript.util.file import get_hosts_from_file

def do_something(job, host, conn):
conn.execute('uname -a')

(continues on next page)

6.2. Python Tutorial 15

Exscript Documentation, Release 0.3.4

(continued from previous page)

hosts = get_hosts_from_file('myhosts.txt')
start(hosts, do_something, max_threads=2)

6.2.6 Reading login information

Depending on how you would like to provide the login information, there are a few options. The first is by hard coding
it into the hostname:

hosts = ['ssh://localhost', 'telnet://myuser:mypassword@anotherhost']
quickstart(hosts, do_something, max_threads=2)

In this case, quickstart still prompts the user for his login details, but the entered information is only used on
hosts that do not have a user/password combination included in the hostname.

If you do not wish to hard code the login details into the hostname, you can also use the Exscript.Host object as shown
in the following script:

from Exscript import Host, Account
...
account1 = Account('myuser', 'mypassword')
host1 = Host('ssh://localhost')
host1.set_account(account1)

account2 = Account('myuser2', 'mypassword2')
host2 = Host('ssh://otherhost')
host2.set_account(account2)

quickstart([host1 , host2], do_something, max_threads=2)

This script still has the problem that it prompts the user for login details, even though the details are already known.
By using Exscript.util.start.start() instead of Exscript.util.start.quickstart(), you can
avoid the prompt, and optionally pass in a pre-loaded list of accounts as seen in the following code:

from Exscript.util.start import start
from Exscript.util.file import get_hosts_from_file

def do_something(job, host, conn):
conn.execute('uname -a')

accounts = [] # No account needed.
hosts = get_hosts_from_file('myhosts.txt')
start(accounts, hosts, do_something, max_threads=2)

Instead of passing in no account at all, you may also create one in the script:

from Exscript import Account
...
accounts = [Account('myuser', 'mypassword')]
...

Or you may load it from an external file:

from Exscript.util.file import get_accounts_from_file
...

(continues on next page)

16 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

(continued from previous page)

accounts = get_accounts_from_file('accounts.cfg')
...

Note that accounts.cfg is a config file with a defined syntax as seen in the API documentation for Exscript.
util.file.get_accounts_from_file().

6.2.7 Logging

Exscript has built-in support for logging. In a simple case, just pass the stdout and stderr parameters for log and
errors to start() or quickstart() and you are done:

with open('log.txt','w+') as fp:
start(accounts, hosts, do_something, stdout=fp)

Exscript creates one logfile per device. In the case that an error happened on the remote device, it creates an additional
file that contains the error (including Python’s traceback).

6.2.8 Interacting with a device

So far we only fired and forgot a command on a device, there was no true interaction. But Exscript does a lot to make
interaction with a device easier. The first notable tool is Exscript.util.match - a module that builds on top of
Python’s regular expression support. Let’s look at an example:

from Exscript.util.start import quickstart
from Exscript.util.match import first_match

def do_something(job, host, conn):
conn.execute('uname -a')
print "The response was", repr(conn.response)
os, hostname = first_match(conn, r'^(\S+)\s+(\S+)')
print "The hostname is:", hostname
print "Operating system:", os

quickstart('ssh://localhost', do_something)

The experienced programmer will probably wonder what happens when Exscript.util.match.
first_match() does not find a match. The answer is: It will return a tuple None, None. In other
words, no matter what happens, the one liner can not fail, because Exscript.util.match.first_match()
always returns a tuple containing the same number of elements as there are groups (bracket expressions) in the regular
expression. This is more terse than the following typical regular idiom:

match = re.match(r'^(\S+)\s+(\S+)', conn.response)
if match:

print match.group(1)

Similarly, the following use of Exscript.util.match.any_match() can never fail:

from Exscript.util.start import quickstart
from Exscript.util.match import any_match

def do_something(job, host, conn):
conn.execute('ls -l')
for permissions, filename in any_match(conn, r'^(\S+).*\s+(\S+)$'):

(continues on next page)

6.2. Python Tutorial 17

Exscript Documentation, Release 0.3.4

(continued from previous page)

print "The filename is:", filename
print "The permissions are:", permissions

quickstart('ssh://localhost', do_something)

Exscript.util.match.any_match() is designed such that it always returns a list, where each item contains
a tuple of the same size. So there is no need to worry about checking the return value first.

6.2.9 Advanced queueing and reporting

Exscript.Queue is a powerful, multi-threaded environment for automating more complex tasks. It comes with
features such as logging, user account management, and error handling that make things a lot easier. The above
functions Exscript.util.start.start() and Exscript.util.start.quickstart() are just con-
venience wrappers around this queue.

In some cases, you may want to use the Exscript.Queue directly. Here is a complete example that also implements
reporting:

#!/usr/bin/env python
from Exscript import Queue, Logger
from Exscript.util.log import log_to
from Exscript.util.decorator import autologin
from Exscript.util.file import get_hosts_from_file, get_accounts_from_file
from Exscript.util.report import status, summarize

logger = Logger() # Logs everything to memory.

@log_to(logger)
@autologin()
def do_something(job, host, conn):

conn.execute('show ip int brie')

Read input data.
accounts = get_accounts_from_file('accounts.cfg')
hosts = get_hosts_from_file('hostlist.txt')

Run do_something on each of the hosts. The given accounts are used
round-robin. "verbose=0" instructs the queue to not generate any
output on stdout.
queue = Queue(verbose=5, max_threads=5)
queue.add_account(accounts) # Adds one or more accounts.
queue.run(hosts, do_something) # Asynchronously enqueues all hosts.
queue.shutdown() # Waits until all hosts are completed.

Print a short report.
print status(logger)
print summarize(logger)

6.2.10 Emulating a remote device

Exscript also provides a dummy protocol adapter for testing purposes. It emulates a remote host and may be used in
place of the Telnet and SSH adapters:

18 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

from Exscript.protocols import Dummy
conn = Dummy()
...

In order to define the behavior of the dummy, you may define it by providing a Python file that maps commands to
responses. E.g.:

def echo(command):
return command.split(' ', 1)[1]

commands = (
('ls -l', """
-rw-r--r-- 1 sab nmc 1906 Oct 5 11:18 Makefile
-rw-r--r-- 1 sab nmc 1906 Oct 5 11:18 myfile
"""),

(r'echo [\r\n]+', echo)
)

Note that the command name is a regular expression, and the response may be either a string or a function.

6.3 CLI Tutorial

6.3.1 Introduction

With the exscript command line tool, you can quickly automate a conversation with a device over Telnet or SSH.

This is a step by step introduction to using the Exscript command line tool.

We’ll assume that Exscript is already installed. You can confirm that your installation works by typing exscript
--version into a terminal; if this prints the version number, your installation is complete.

6.3.2 Getting started

As a first simple test, let’s try to connect to a Linux/Unix machine via SSH2, and execute the uname -a command
on it.

Create a file named test.exscript with the following content:

uname -a

To run this Exscript template, just start Exscript using the following command:

exscript test.exscript ssh://localhost

Awesome fact: Just replace ssh:// by telnet:// and it should still work with Telnet devices.

Hint: The example assumes that localhost is a Unix server where SSH is running. You may of course change
this to either an ip address (such as ssh://192.168.0.1), or any other hostname.

Exscript will prompt you for a username and a password, and connect to localhost using the entered login details.
Once logged in, it executes uname -a, waits for a prompt, and closes the connection.

6.3. CLI Tutorial 19

Exscript Documentation, Release 0.3.4

6.3.3 Running a script on multiple hosts

In practice, you may want to run this script on multiple hosts, and optimally at the same time, in parallel. Using the
-c option, you tell Exscript to open multiple connections at the same time:

exscript -c 2 test.exscript ssh://localhost ssh://otherhost

-c 2 tells Exscript to open two connections in parallel. So if you run this script, Exscript will again ask for the login
details, and run uname -a for both hosts in parallel.

Note that the login details are only asked once and used on both hosts - this may or may not be what you want. The
following section explains some of the details of using different login accounts.

6.3.4 Reading login information

Depending on how you would like to provide the login information, there are a few options. The first is by including
it in the hostname:

exscript -c 2 test.exscript ssh://localhost
ssh://user:password@otherhost

In this case, Exscript still prompts the user for his login details, but the entered information is only used on hosts that
do not have a user/password combination included in the hostname.

If you do not want for Exscript to prompt for login details, the -i switch tells Exscript to not ask for a user and
password. You need to make sure that all hosts have a user and password in the hostname if you use it.

6.3.5 Reading host names from a text file

If you do not wish to hard code the host names or login details into the command, you may also list the hosts in an
external file and load it using the --hosts option as follows:

exscript -c 2 --hosts myhosts.txt test.exscript

Note that hosts.txt is a file containing a list of hostnames, e.g.:

host1
host2
...
host20

6.3.6 Reading host names from a CSV file

Similar to the --hosts, you may also use --csv-hosts option to pass a list of hosts to Exscript while at the same
time providing a number of variables to the script. The CSV file has the following format:

address my_variable another_variable
telnet://myhost value another_value
ssh://yourhost hello world

Note that fields are separated using the tab character, and the first line must start with the string “address” and is
followed by a list of column names.

In the Exscript template, you may then access the variables using those column names:

20 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

ls -l $my_variable
touch $another_variable

6.3.7 Using Account Pooling

You can also pass in a pre-loaded list of accounts from a separate file. The accounts from the file are used for hosts
that do not have a user/password combination specified in their URL.

exscript -c 2 --hosts myhosts.txt --account-pool accounts.cfg test.exscript

Note that accounts.cfg is a config file with a defined syntax as seen in the API documentation for Exscript.
util.file.get_accounts_from_file().

It is assumed that you are aware of the security implications of saving login passwords in a text file.

6.3.8 Logging

Exscript has built-in support for logging - just pass the --logdir or -l option with a path to the directory in which
logs are stored:

exscript -l /tmp/logs -c 2 --hosts myhosts.txt --account-pool accounts.cfg test.
→˓exscript

Exscript creates one logfile per device. In the case that an error happened on the remote device, it creates an additional
file that contains the error (including Python’s traceback).

6.3.9 Interacting with a device

So far we only fired and forgot a command on a device, there was no true interaction. But Exscript does a lot to make
interaction with a device easier. The first notable tool is the extract keyword. Let’s look at an example:

uname -a{extract /^(\S+)\s+(\S+)/ as os, hostname}

6.3.10 The Exscript Template Language

The Exscript template language is in some ways comparable to Expect, but has unique features that make it a lot easier
to use and understand for non-developers.

A first example:

{fail "not a Cisco router" if connection.guess_os() is not "ios"}

show ip interface brief {extract /^(\S+)\s/ as interfaces}
configure terminal
{loop interfaces as interface}

interface $interface
description This is an automatically configured interface description!
cdp enable
no shut
exit

{end}
copy running-config startup-config

6.3. CLI Tutorial 21

Exscript Documentation, Release 0.3.4

Exscript templates support many more commands. Here is another example, to automate a session with a Cisco router:

show version {extract /^(cisco)/ as vendor}
{if vendor is "cisco"}

show ip interface brief {extract /^(\S+)\s/ as interfaces}
{loop interfaces as interface}
show running interface $interface
configure terminal
interface $interface
no shut
end

{end}
copy running-config startup-config

{end}

6.3.11 Advanced Templates

Exscript templates support many more commands. For a full overview over the template language, please check
Exscript Templates.

6.4 Command Line Options

6.4.1 Overview

You can pass parameters (or lists of parameters) into the templates and use them to drive what happens on the remote
host. Exscript easily supports logging, authentication mechanisms such as TACACS and takes care of synchronizing
the login procedure between multiple running connections.

These features are enabled using simple command line options. The following options are currently provided:

Options:
--version show program's version number and exit
-h, --help show this help message and exit
--account-pool=FILE Reads the user/password combination from the given

file instead of prompting on the command line. The
file may also contain more than one user/password
combination, in which case the accounts are used round
robin.

-c NUM, --connections=NUM
Maximum number of concurrent connections. NUM is a
number between 1 and 20, default is 1.

--csv-hosts=FILE Loads a list of hostnames and definitions from the
given file. The first line of the file must have the
column headers in the following syntax: "hostname
[variable] [variable] ...", where the fields are
separated by tabs, "hostname" is the keyword
"hostname" and "variable" is a unique name under which
the column is accessed in the script. The following
lines contain the hostname in the first column, and
the values of the variables in the following columns.

-d PAIR, --define=PAIR
Defines a variable that is passed to the script. PAIR
has the following syntax: STRING=STRING.

--default-domain=STRING

(continues on next page)

22 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

(continued from previous page)

The IP domain name that is used if a given hostname
has no domain appended.

--delete-logs Delete logs of successful operations when done.
-e EXSCRIPT, --execute=EXSCRIPT

Interprets the given string as the script.
--hosts=FILE Loads a list of hostnames from the given file (one

host per line).
-i, --non-interactive

Do not ask for a username or password.
-l DIR, --logdir=DIR Logs any communication into the directory with the

given name. Each filename consists of the hostname
with "_log" appended. Errors are written to a separate
file, where the filename consists of the hostname with
".log.error" appended.

--no-echo Turns off the echo, such that the network activity is
no longer written to stdout. This is already the
default behavior if the -c option was given with a
number greater than 1.

-n, --no-authentication
When given, the authentication procedure is skipped.
Implies -i.

--no-auto-logout Do not attempt to execute the exit or quit command at
the end of a script.

--no-prompt Do not wait for a prompt anywhere. Note that this will
also cause Exscript to disable commands that require a
prompt, such as "extract".

--no-initial-prompt Do not wait for a prompt after sending the password.
--no-strip Do not strip the first line of each response.
--overwrite-logs Instructs Exscript to overwrite existing logfiles. The

default is to append the output if a log already
exists.

-p STRING, --protocol=STRING
Specify which protocol to use to connect to the remote
host. Allowed values for STRING include: dummy,
pseudo, ssh, ssh1, ssh2, telnet. The default protocol
is telnet.

--retry=NUM Defines the number of retries per host on failure.
Default is 0.

--retry-login=NUM Defines the number of retries per host on login
failure. Default is 0.

--sleep=TIME Waits for the specified time before running the
script. TIME is a timespec as specified by the 'sleep'
Unix command.

--ssh-auto-verify Automatically confirms the 'Host key changed' SSH
error message with 'yes'. Highly insecure and not
recommended.

--ssh-key=FILE Specify a key file that is passed to the SSH client.
This is equivalent to using the "-i" parameter of the
openssh command line client.

-v NUM, --verbose=NUM
Print out debug information about the network
activity. NUM is a number between 0 (min) and 5 (max).
Default is 1.

-V NUM, --parser-verbose=NUM
Print out debug information about the Exscript
template parser. NUM is a number between 0 (min) and 5
(max). Default is 0.

6.4. Command Line Options 23

Exscript Documentation, Release 0.3.4

6.4.2 Using Account Pooling

It is possible to provide an account pool from which Exscript takes a user account whenever it needs to log into a
remote host. Depending on the authentification mechanism used in your network, you may significantly increase the
speed of parallel connections by using more than one account in parallel. The following steps need to be taken to use
the feature:

1. Create a file with the following format:

[account-pool]
user=password
other_user=another_password
somebody=yet_another_password

Note that the password needs to be base64 encrypted, just putting plain passwords there will NOT work.

2. Save the file. It is assumed that you are aware of the security implications of saving your login passwords in a
text file.

3. Start Exscript with the -account-pool FILE option. For example:

exscript --account-pool /home/user/my_accounts my.exscript host4

6.4.3 Using a CSV file as input

By providing the –csv-hosts option you may pass a list of hosts to Exscript while at the same time providing a number
of variables to the script. The CSV file should have the following format:

hostname my_variable another_variable
myhost value another_value
yourhost hello world

Note that fields are separated using the tab character, and the first line must start with the string “hostname” and is
followed by a list of column names.

In the Exscript, you may then access the variables using those column names:

ls -l $my_variable
touch $another_variable

6.5 Exscript Templates

6.5.1 Simple example

The simplest possible template is one that contains only the commands that are sent to the remote host. For example,
the following Exscript template can be used to retrieve the response of the ls -l and df commands from a unix host:

ls -l
df

6.5.2 Comments

Lines starting with a hash (“#”) are interpreted as comments and ignored. For example:

24 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

1. # This line is ignored...
2. {if __hostname__ is "test"}
3. # ...and so is this one.
4. {end}

6.5.3 Using Variables

The following template uses a variable to execute the ls command with a filename as an argument:

ls -l $filename

When executing it from the command line, use:

exscript -d filename=.profile my.exscript localhost

Note that the -d switch allows passing variables into the template. The example executes the command ls -l .profile.
You can also assign a value to a variable within a template:

{filename = ".profile"}
ls -l $filename

You may also use variables in strings by prefixing them with the “$” character:

1. {test = "my test"}
2. {if "my test one" is "$test one"}
3. # This matches!
4. {end}

In the above template line 3 is reached. If you don’t want the “$” character to be interpreted as a variable, you may
prefix it with a backslash:

1. {test = "my test"}
2. {if "my test one" is "\$test one"}
3. # This does not match
4. {end}

6.5.4 Adding Variables To A List

In Exscript, every variable is a list. You can also merge two lists by using the “append” keyword:

1. {
2. test1 = "one"
3. test2 = "two"
4. append test2 to test1
5. }

This results in the “test1” variable containing two items, “one” and “two”.

6.5.5 Using Built-in Variables

The following variables are available in any Exscript template, even if they were not explicitly passed in:

1. __hostname__ contains the hostname that was used to open the current connection.

6.5. Exscript Templates 25

Exscript Documentation, Release 0.3.4

2. __response__ contains the response of the remote host that was received after the execution of the last
command.

Built-in variables are used just like any other variable. You can also assign a new value to a built-in variable in the
same way.

6.5.6 Using Expressions

An expression is a combination of values, variables, operators, and functions that are interpreted (evaluated) according
to particular rules and that produce a return value. For example, the following code is an expression:

name is "samuel" and 4 * 3 is not 11

In this expression, name is a variable, is, is not, and * are operators, and “samuel”, 4, 3, and 11 are values. The return
value of this particular expression is true.

In Exscript, expressions are used in many places, such as if-conditions or variable assignments. The following opera-
tors may be used in an expression.

Priority 1 Operators

1. * multiplies the operators (numerically).

2. / divides the operators (numerically).

Priority 2 Operators

1. + adds the operators (numerically).

2. - subtracts the operators (numerically).

Priority 3 Operators

1. . concatenates two strings.

Priority 4 Operators

1. is tests for equality. If both operators are lists, only the first item in the list is compared.

2. is not produces the opposite result from is.

3. in tests whether the left string equals any of the items in the list given as the right operator.

4. not in produces the opposite result from in.

5. matches tests whether the left operator matches the regular expression that is given as the right operator.

6. ge tests whether the left operator is (numerically) greater than or equal to the right operator.

7. gt tests whether the left operator is (numerically) greater than the right operator.

8. le tests whether the left operator is (numerically) less than or equal to the right operator.

9. lt tests whether the left operator is (numerically) less than the right operator.

26 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

Priority 5 Operators

1. not inverts the result of a comparison.

Priority 6 Operators

1. and combines two tests such that a logical AND comparison is made. If the left operator returns FALSE, the
right operator is not evaluated.

2. or combines two tests such that a logical OR comparison is made. If the left operator returns TRUE, the right
operator is not evaluated.

6.5.7 Using Hexadecimal Or Octal Numbers

Exscript also supports hexadecimal and octal numbers using the following syntax:

{
if 0x0a is 012
sys.message("Yes")

else
sys.message("No")

end
}

6.5.8 Using Regular Expressions

At some places Exscript uses Regular Expressions. These are NOT the same as the expressions documented above,
and if you do not know what regular expressions are it is recommended that you read a tutorial on regular expressions
first.

Exscript regular expressions are similar to Perl and you may also append regular expression modifiers to them. For
example, the following is a valid regular expression in Exscript:

/^cisco \d+\s+\w/i

Where the appended “i” is a modifier (meaning case-insensitive). A full explanation of regular expressions is not given
here, because plenty of introductions have been written already and may be found with the internet search engine of
your choice.

6.5.9 Built-in Commands

By default, any content of an Exscript template is sent to the remote host. However, you can also add instructions with
special meanings. Such instructions are enclosed by curly brackets ({ and }). The following commands all use this
syntax.

Extracting Data From A Response

Exscript lets you parse the response of a remote host using regular expressions. If you do not know what regular
expressions are, please read a tutorial on regular expressions first.

6.5. Exscript Templates 27

Exscript Documentation, Release 0.3.4

extract . . . into . . .

If you already know what regular expressions are, consider the following template:

ls -l {extract /^(d.*)/ into directories}

The extract command matches each line of the response of “ls -l” against the regular expression /(d.*)/ and then
appends the result of the first match group (a match group is a part of a regular expression that is enclosed by brackets)
to the list variable named directories.

You can also extract the value of multiple match groups using the following syntax:

ls -l {extract /^(d\S+)\s.*\s(\S+)$/ into modes, directories}

This extracts the mode and the directory name from each line and appends them to the modes and directories lists
respectively. You can also apply multiple matches to the same response using the following syntax:

ls -l {
extract /^[^d].*\s(\S+)$/ into files
extract /^d.*\s(\S+)$/ into directories

}

There is no limit to the number of extract statements.

extract . . . into . . . from . . .

When used without the “from” keyword, “extract” gets the values from the last command that was executed. You may
however also instruct Exscript to extract the values from a variable. The following example shows how this may be
done.

ls -l {
extract /^(.*)/ into lines
extract /^(d.*)/ into directories from lines

}

extract . . . as . . .

The “as” keyword is similar to “into”, the difference being that with as, the destination variable is cleared before new
values are appended.

ls -l {extract /^(d.*)/ as directories}

“as” may be used anywhere where “into” is used.

If-Conditions

You can execute commands depending on the runtime value of a variable or expression.

if . . . end

The following Exscript template executes the ls command only if ls -l .profile did not produce a result:

28 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

ls -l .profile {extract /(\.profile)$/ as found}
{if found is not ".profile"}

ls
{end}

if . . . else . . . end

You can also add an else condition:

ls -l .profile {extract /(\.profile)$/ as found}
{if found is not ".profile"}

ls
{else}

touch .profile
{end}

if . . . else if . . .

You can perform multiple matches using else if:

ls -l .profile {extract /(.*profile)$/ as found}
{if found is ".profile"}

ls
{else if found matches /my_profile/}

ls -l p*
{else}

touch .profile
{end}

Loops

Loops with counters

You can execute commands multiple times using the “loop” statement. The following Exscript template executes the
“ls” command three times:

{number = 0}
{loop until number is 3}

{number = number + 1}
ls $directory

{end}

Similarly, the while statement may be used. The following script is equivalent:

{number = 0}
{loop while number is not 3}

{number = number + 1}
ls $directory

{end}

Another alternative is using the “loop from . . . to . . . ” syntax, which allows you to specify a range of integers:

6.5. Exscript Templates 29

Exscript Documentation, Release 0.3.4

Implicit "counter" variable.
{loop from 1 to 3}

ls $directory$counter
{end}

Explicit variable name.
{loop from 1 to 3 as number}

ls $directory$number
{end}

Loops over lists

The following Exscript template uses the ls command to show the content of a list of subdirectories:

ls -l {extract /^d.*\s(\S+)$/ as directories}
{loop directories as directory}

ls $directory
{end}

You can also walk through multiple lists at once, as long as they have the same number of items in it:

ls -l {extract /^(d\S+)\s.*\s(\S+)$/ as modes, directories}
{loop modes, directories as mode, directory}

echo Directory has the mode $mode
ls $directory

{end}

List loops can also be combined with the until or while statement seen in the previous section:

ls -l {extract /^d.*\s(\S+)$/ as directories}
{loop directories as directory until directory is "my_subdir"}

ls $directory
{end}

Functions

Exscript provides builtin functions with the following syntax:

type.function(EXPRESSION, [EXPRESSION, ...])

For example, the following function instructs Exscript to wait for 10 seconds:

{sys.wait(10)}

For a list of supported functions please check here:

Exscript.stdlib package

Submodules

Exscript.stdlib.connection module

30 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

Exscript.stdlib.crypt module

Exscript.stdlib.file module

Exscript.stdlib.ipv4 module

Exscript.stdlib.list module

Exscript.stdlib.mysys module

Exscript.stdlib.string module

Exscript.stdlib.util module

Exiting A Script

fail “message”

The “fail” keyword may be used where a script should terminate immediately.

show something
{fail "Error: Failed!"}
show something else

In this script, the “show something else” line is never reached.

fail “message” if . . .

It is also possible to fail only if a specific condition is met. The following snippet terminates only if a Cisco router
does not have a POS interface:

show ip int brie {
extract /^(POS)\S+/ as pos_interfaces
fail "No POS interface found!" if "POS" not in pos_interfaces

}

Error Handling

Exscript attempts to detect errors, such as commands that are not understood by the remote host. By default, Exscript
considers any response that includes one of the following strings to be an error:

invalid
incomplete
unrecognized
unknown command
[^\r\n]+ not found

If this default configuration does not suit your needs, you can override the default, setting it to any regular expression
of your choice using the following function:

6.5. Exscript Templates 31

Exscript Documentation, Release 0.3.4

{connection.set_error(/[Ff]ailed/)}

Whenever such an error is detected, the currently running Exscript template is cancelled on the current host. For
example, when the following script is executed on a Cisco router, it will fail because there is no ls command:

ls -l
show ip int brief

The “show ip int brief” command is not executed, because an error is detected at “ls -l” at runtime.

If you want to execute the command regardless, you can wrap the “ls” command in a “try” block:

{try}ls -l{end}
show ip int brief

You can add as many commands as you like in between a try block. For example, the following will also work:

{try}
ls -l
df
show running-config

{end}
show ip int brief

6.6 Trouble Shooting

6.6.1 Common Pitfalls

Generally, the following kinds of errors that may happen at runtime:

1. A script deadlocks. In other words, Exscript sends no further commands even though the remote host is already
waiting for a command. This generally happens when a prompt is not recognized.

2. A script executes a command before the remote host is ready. This happens when a prompt was detected
where none was really included in the response.

3. A script terminates before executing all commands. This happens when two (or more) prompts were detected
where only one was expected.

The following sections explain when these problems may happen and how to fix them.

6.6.2 Deadlocks

Exscript tries to automatically detect a prompt, so generally you should not have to worry about prompt recognition.
The following prompt types are supported:

[sam123@home ~]$
sam@knip:~/Code/exscript$
sam@MyHost-X123$
MyHost-ABC-CDE123$
MyHost-A1$
MyHost-A1(config)$
FA/0/1/2/3$
FA/0/1/2/3(config)$
admin@s-x-a6.a.bc.de.fg:/$

32 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

Note: The trailing “$” may also be any of the following characters: “$#>%”

However, in some rare cases, a remote host may have a prompt that Exscript can not recognize. Similarly, in some
scripts you might want to execute a special command that triggers a response that does not include a prompt Exscript
can recognize.

In both cases, the solution includes defining the prompt manually, such that Exscript knows when the remote host is
ready. For example, consider the following script:

1. show ip int brief
2. write memory
3. {enter}
4. show configuration

Say that after executing line 2 of this script, the remote host asks for a confirmation, saying something like this:

Are you sure you want to overwrite the configuration? [confirm]

Because this answer does not contain a standard prompt, Exscript can not recognize it. We have a deadlock. To fix
this, we must tell Exscript that a non-standard prompt should be expected. The following change fixes the script:

1. show ip int brief
2. {connection.set_prompt(/\[confirm\]/)}
3. write memory
4. {connection.set_prompt()}
5. {enter}
6. show configuration

The second line tells Exscript to wait for “[confirm]” after executing the following commands. Because of that, when
the write memory command was executed in line 3, the script does not deadlock (because the remote host’s response
includes “[confirm]”). In line 4, the prompt is reset to it’s original value. This must be done, because otherwise the
script would wait for another “[confirm]” after executing line 5 and line 6.

6.6.3 A Command Is Sent Too Soon

This happens when a prompt was incorrectly detected in the response of a remote host. For example, consider using
the following script:

show interface descriptions{extract /^(\S+\d)/ as interfaces}
show diag summary

Using this script, the following conversation may take place:

1. router> show interface descriptions
2. Interface Status Protocol Description
3. Lo0 up up Description of my router>
4. PO0/0 admin down down
5. Serial1/0 up up My WAN link
6. router>

Note that line 3 happens to contain the string “Router>”, which looks like a prompt when it really is just a description.
So after receiving the “>” character in line 3, Exscript believes that the router is asking for the next command to be
sent. So it immediately sends the next command (“show diag summary”) to the router, even that the next prompt was
not yet received.

Note that this type of error may not immediately show, because the router may actually accept the command even
though it was sent before a prompt was sent. It will lead to an offset however, and may lead to errors when trying to

6.6. Trouble Shooting 33

Exscript Documentation, Release 0.3.4

capture the response. It may also lead to the script terminating too early.

To fix this, make sure that the conversation with the remote host does not include any strings that are incorrectly
recognized as prompts. You can do this by using the “connection.set_prompt(. . .)” function as explained in the sections
above.

6.6.4 The Connection Is Closed Too Soon

This is essentially the same problem as explained under “A Command Is Sent Too Soon”. Whenever a prompt is
(correctly or incorrectly) detected, the next command is send to the remote host. If all commands were already
executed and the next prompt is received (i.e. the end of the script was reached), the connection is closed.

To fix this, make sure that the conversation with the remote host does not include any strings that are incorrectly
recognized as prompts. You can do this by using the “connection.set_prompt(. . .)” function as explained in the sections
above.

6.7 Exscript

6.7.1 Exscript package

Subpackages

Exscript.emulators package

Submodules

Exscript.emulators.command module

Exscript.emulators.iosemu module

Exscript.emulators.vdevice module

Exscript.protocols package

Subpackages

Exscript.protocols.drivers package

Submodules

Exscript.protocols.drivers.ace module

Exscript.protocols.drivers.adtran module

Exscript.protocols.drivers.aironet module

Exscript.protocols.drivers.aix module

34 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

Exscript.protocols.drivers.arbor_peakflow module

Exscript.protocols.drivers.aruba module

Exscript.protocols.drivers.bigip module

Exscript.protocols.drivers.brocade module

Exscript.protocols.drivers.cienasaos module

Exscript.protocols.drivers.driver module

Exscript.protocols.drivers.enterasys module

Exscript.protocols.drivers.enterasys_wc module

Exscript.protocols.drivers.eos module

Exscript.protocols.drivers.ericsson_ban module

Exscript.protocols.drivers.fortios module

Exscript.protocols.drivers.generic module

Exscript.protocols.drivers.hp_pro_curve module

Exscript.protocols.drivers.icotera module

Exscript.protocols.drivers.ios module

Exscript.protocols.drivers.ios_xr module

Exscript.protocols.drivers.isam module

Exscript.protocols.drivers.junos module

Exscript.protocols.drivers.junos_erx module

Exscript.protocols.drivers.mrv module

Exscript.protocols.drivers.nxos module

Exscript.protocols.drivers.one_os module

Exscript.protocols.drivers.rios module

6.7. Exscript 35

Exscript Documentation, Release 0.3.4

Exscript.protocols.drivers.shell module

Exscript.protocols.drivers.smart_edge_os module

Exscript.protocols.drivers.sp_vxoa module

Exscript.protocols.drivers.sros module

Exscript.protocols.drivers.vrp module

Exscript.protocols.drivers.vxworks module

Exscript.protocols.drivers.zte module

Exscript.protocols.drivers.zyxel module

Submodules

Exscript.protocols.dummy module

Exscript.protocols.exception module

Exscript.protocols.osguesser module

Exscript.protocols.protocol module

Exscript.protocols.ssh2 module

Exscript.protocols.telnet module

Exscript.protocols.telnetlib module

Exscript.servers package

Submodules

Exscript.servers.httpd module

Exscript.servers.server module

Exscript.servers.sshd module

Exscript.servers.telnetd module

Exscript.util package

36 Chapter 6. Contents

Exscript Documentation, Release 0.3.4

Submodules

Exscript.util.buffer module

Exscript.util.cast module

Exscript.util.collections module

Exscript.util.crypt module

Exscript.util.daemonize module

Exscript.util.decorator module

Exscript.util.event module

Exscript.util.file module

Exscript.util.impl module

Exscript.util.interact module

Exscript.util.ip module

Exscript.util.ipv4 module

Exscript.util.ipv6 module

Exscript.util.log module

Exscript.util.mail module

Exscript.util.match module

Exscript.util.pidutil module

Exscript.util.report module

Exscript.util.sigint module

Exscript.util.sigintcatcher module

Exscript.util.start module

Exscript.util.syslog module

6.7. Exscript 37

Exscript Documentation, Release 0.3.4

Exscript.util.template module

Exscript.util.tty module

Exscript.util.url module

Exscript.util.weakmethod module

Submodules

Exscript.account module

Exscript.host module

Exscript.key module

Exscript.logger module

Exscript.queue module

Exscript.version module

38 Chapter 6. Contents

	Using Exscript with Python
	Using the Exscript command line tool
	Main design goals
	Development
	License
	Contents
	Installation
	Python Tutorial
	CLI Tutorial
	Command Line Options
	Exscript Templates
	Trouble Shooting
	Exscript

