
exhale Documentation
Release 1.0

Stephen McDowell

Aug 05, 2017

Contents

1 Overview 3
1.1 What does it do? . 3
1.2 What does it need to do that? . 3

2 Usage 7
2.1 Quickstart . 7
2.2 Additional Usage and Customization . 8
2.3 Fully Automated Building . 11
2.4 Doxygen Documentation Specifics . 13
2.5 Start to finish for Read the Docs . 14

3 Developer Reference Documentation 17
3.1 Primary Entry Point . 17
3.2 Helper Functions . 19
3.3 Exposed Utility Variables . 21
3.4 Ownership Graph Representation . 22

4 FAQ 35
4.1 Nothing is working, where did I go wrong? . 35
4.2 Why does it build locally, but not on Read the Docs? . 35
4.3 Metaprogramming and full template specialization? . 35

5 Indices and tables 37

i

ii

exhale Documentation, Release 1.0

Automatic C++ library api documentation generation: breathe doxygen in and exhale it out. A Quickstart guide gives
the bare minimum needed to get things working, please read the Overview section if you are new to Sphinx or Breathe.

This project revives the Doxygen style hierarchies in reStructuredText documents so that you can keep using the
beautiful Sphinx websites, but have a more human-readable Library API without having to manually write it out
yourself. Exhale is self-contained and easily portable to Read the Docs. You should be able to use any Sphinx theme
of your choosing, though some of them likely work better than others.

A more comprehensive example repository (which was used for testing once upon a time) is located at the companion
site.

Contents 1

http://my-favorite-documentation-test.readthedocs.io/en/latest/

exhale Documentation, Release 1.0

2 Contents

CHAPTER 1

Overview

Exhale is an automatic C++ library API generation utility. It attempts to port the Doxygen hierarchy view presentations
for classes and files into the Sphinx domain. See the Quickstart for the bare minimum you need to give to integrate it
into your project.

What does it do?

Exhale is completely dependent upon valid Doxygen documentation, and a working interface with Breathe. More
specifically exhale explicitly parses the Doxygen xml using Breathe. Once Breathe is done parsing everything, the
problem basically becomes a graph traversal except that parts of the graph have been lost somewhere and need to be
rediscovered.

Once the graph has been reconstructed and traversed, the API reStructuredText documents are generated and linked
to one another, as well as the root library document. The intent of the root library document is for you to just include
it in your top-level index toctree directive. Refer to Additional Usage and Customization for how the root library
document will be presented as well as how to customize it.

The individual and root library page are an attempt to emulate the output of what Doxygen would for their html
class and file hierarchies. Many similarities exist, such as the inclusion of struct before class in ranking over
alphabetical. However, I took a few liberties to change the output to include things I felt were more useful, such as
including enum in the Class Hierarchy.

Note: Every generated file has a reStructuredText label that you can use to highlight specific items such as an
important class or a file. Refer to Linking to a Generated File for more information.

What does it need to do that?

Assuming you have Sphinx, Doxygen, and Breathe working with each other, exhale needs at least the following
information:

3

exhale Documentation, Release 1.0

1. The location of the output of the Doxygen xml index.xml file.

2. The name of the folder you want the generated files to be put in. You can give the current directory, but it will
get messy.

3. The name of the root file you will be linking to from your reStructuredText. This file will be in the directory
from 2.

4. The title of the document for 3, since this will appear in a .. toctree:: directive.

5. The relative or absolute path to strip from the File Pages. If you follow the tutorials present on this site, this will
always be "..". This may be removed in the future, but currently if this is not supplied then hosting on Read
the Docs will break.

Warning: Order of execution matters: Doxygen must be executed / updated before exhale. If you are calling
exhale from conf.py, then you must specify either an absolute path, or a path relative to conf.py for items 1 and
2 above.

I intentionally wrote exhale in one file (exhale) so that you can just drop that into your repository — e.g. right next to
conf.py. If you are hosting on Read the Docs, make sure that exhale.py is being tracked by git.

So if your documentation directory structure looked like:

docs/
| conf.py # created by sphinx-quickstart
| exhale.py # placed here by you
| index.rst # created by sphinx-quickstart
| about.rst # created by you
| Makefile # created by sphinx-quickstart
| Doxyfile # created by you
--doxyoutput/ # output destination of Doxygen

--xml/
index.xml
... other doxygen xml output ...

Then you could answer 1-5 above with

1 Doxygen xml index location "./doxyoutput/xml/index.xml"
2 Generated library containment folder "./generated_api"
3 Generated library root file "library_root.rst"
4 Generated library root file title "Library API"
5 Path to strip from Doxygen output ".."

and the following directory structure would be produced:

docs/
| conf.py # created by sphinx-quickstart
| exhale.py # placed here by you
| index.rst # created by sphinx-quickstart
| about.rst # created by you
| Makefile # created by sphinx-quickstart
| Doxyfile # created by you
--doxyoutput/ # output destination of Doxygen
| --xml/
| index.xml
| ... other doxygen xml output ...
--generated_api/

4 Chapter 1. Overview

https://github.com/svenevs/exhale/blob/master/exhale.py

exhale Documentation, Release 1.0

library_root.rst
... many other files ...

That is, all exhale is actually doing is creating a large number of independent reStructuredText documents that link
between each other. Include the file from 3 in a toctree somewhere, and that file will link to every possible
generated file in some way or another. These are also all searchable, since Sphinx is given control of the final setup
and linking.

Note: The file in 3 should not have the path from 2 preceding, exhale does that.

1.2. What does it need to do that? 5

exhale Documentation, Release 1.0

6 Chapter 1. Overview

CHAPTER 2

Usage

Using exhale can be simple or involved, depending on how much you want to change and how familiar you are with
things like Sphinx, Breathe, Doxygen, and Jinja. At the top level, what you need is:

1. Your C++ code you want to document, with “proper” Doxygen documentation. Please read the Doxygen Doc-
umentation Specifics for common documentation pitfalls, as well as features previously unavailable in standard
Doxygen.

2. Generating the API using Sphinx, Doxygen, Breathe already working.

Quickstart

In your conf.py

setup is called auto-magically for you by Sphinx
def setup(app):

create the dictionary to send to exhale
exhaleArgs = {

"doxygenIndexXMLPath" : "./doxyoutput/xml/index.xml",
"containmentFolder" : "./generated_api",
"rootFileName" : "library_root.rst",
"rootFileTitle" : "Library API",
"doxygenStripFromPath" : ".."

}

import the exhale module from the current directory and generate the api
sys.path.insert(0, os.path.abspath('.')) # exhale.py is in this directory
from exhale import generate
generate(exhaleArgs)

In your index.rst, you might have something like

Note: The above assumes that your Doxygen xml tree has already been created. The Fully Automated Building

7

exhale Documentation, Release 1.0

section provides additional steps to do this all at once.

Lastly, you will likely want to add these two lines somewhere in conf.py as well:

Tell sphinx what the primary language being documented is.
primary_domain = 'cpp'

Tell sphinx what the pygments highlight language should be.
highlight_language = 'cpp'

The full documentation for the only (official) entry point is: exhale.generate().

Additional Usage and Customization

The main library page that you will link to from your documentation is laid out as follows:

1 {{ Library API Title }} Heading
2 {{ after title description }} Section 1
3 Class Hierarchy Section 2
4 File Hierarchy Section 3
5 Full API Listing Section 4
6 {{ after body description }} Section 5

1. The dictionary key rootFileTitle passed to exhale.generate() function is what will be the Heading
title.

2. Section 1 can optionally be provided by the dictionary key afterTitleDescription in the argument to
exhale.generate().

3. The class view hierarchy (including namespaces with class-like children).

4. The file view hierarchy (including folders).

5. An ordered enumeration of every Breathe compound found, except for groups.

6. Section 5 can optionally be provided by the dictionary key afterBodySummary in the argument to exhale.
generate().

Clickable Hierarchies

While I would love to automate this for you, it is not possible to do so very easily. If you would like to have a
more interactive hierarchy view (instead of just bulleted lists), you will need to add some extra files for it to work.
There are a lot of different options available, but I rather enjoy Stephen Morley’s collapsibleLists: it’s effective, easily
customizable if you know front-end, and has a generous license.

You will need

1. The javascript library.

2. The css stylesheet and its associated images.

3. A sphinx template override.

I have taken the liberty of adding these files to the exhale repository, just clone exhale and move the files to where you
need them to go. Specifically, the exhale repository looks like this:

8 Chapter 2. Usage

http://code.stephenmorley.org/javascript/collapsible-lists/
http://code.stephenmorley.org/about-this-site/copyright/

exhale Documentation, Release 1.0

exhale/
| README.md
| exhale.py # put next to conf.py
--treeView/

--_static/
| --collapse/
| CollapsibleLists.compressed.js # (1) library
| tree_view.css # (2) stylesheet
| button-closed.png # v associated images
| button-open.png
| button.png
| list-item-contents.png
| list-item-last-open.png
| list-item-last.png
| list-item-open.png
| list-item-root.png
| list-item.png
--_templates/

layout.html # (3) MUST be layout.html

You then just need to to move the folder collapse to your _static directory, and move layout.html to your
_templates directory. So your docs folder might look something like:

docs/
| conf.py # created by sphinx-quickstart
| exhale.py # placed here by you
| index.rst # created by sphinx-quickstart
| about.rst # created by you
| Makefile # created by sphinx-quickstart
--_static/
| --collapse/
| ... everything from above ...
--_templates/

layout.html # copied from above

Sphinx will make everything else fall into place in the end. If you already have your own layout.html, you know
what you are doing — just look at mine and add the relevant lines to yours.

You can now add the key value pair createTreeView = True to the dictionary you are passing to exhale.
generate().

Warning: If you are hosting on Read the Docs, you will need to make sure you are tracking all of those files with
git!

Linking to a Generated File

Every file created by exhale is given a reStructuredText label that you can use to link to the API page. It is easiest to
just show how the labels are created.

def initializeNodeFilenameAndLink(self, node):
html_safe_name = node.name.replace(":", "_").replace("/", "_")
node.link_name = "{}_{}".format(qualifyKind(node.kind).lower(), html_safe_name)

The parameter node is an exhale.ExhaleNode object. So if the node being represented is a struct
some_thing in namespace arbitrary, then

2.2. Additional Usage and Customization 9

exhale Documentation, Release 1.0

node.name := "arbitrary::some_thing"
node.link_name := "struct_arbitrary__some_thing"

Noting that there are two underscores between arbitrary and some. Refer to the full documentation of exhale.
qualifyKind() for the possible return values. If this is not working, simply generate the API once and look at the
top of the file generated for the thing you are trying to link to. Copy the link (ignoring the leading underscore) and use
that.

These are reStructuredText links, so in the above example you would write

I am linking to :ref:`struct_arbitrary__some_thing`.

Alternatively, you can link to a class with :class:`namespace::ClassName`, as well as link to a method
within that class using :func:`namespace::ClassName::method`.

Customizing Breathe Output

Breathe provides you with many excellent configurations for the various reStructuredText directives it provides. Your
preferences will likely be different than mine for what you do / do not want to show up. The default behavior of exhale
is to use all default values for all Breathe directives except for classes and structs. Classes and structs will request
documentation for :members:, :protected-members:, and :undoc-members:.

To change the behavior of any of the breathe directives, you will need to implement your own function and specify
that as the customSpecificationFunction for exhale.generate(). Please make sure you read the doc-
umentation for exhale.specificationsForKind() before implementing, the requirements are very specific.
An example custom implementation could be included in conf.py as follows:

def customSpecificationsForKind(kind):
if kind == "class" or kind == "struct":

return " :members:\n :protected-members:\n :no-link:\n"
elif kind == "enum":

return " :outline:\n"
return ""

and you would then change the declaration of the dictionary you are passing to exhale.generate() to be:

exhaleArgs = {
"doxygenIndexXMLPath" : "./doxyoutput/xml/index.xml",
"containmentFolder" : "./generated_api",
"rootFileName" : "library_root.rst",
"rootFileTitle" : "Library API",
"customSpecificationFunction" : customSpecificationsForKind

}

Note: The value of the key customSpecificationFunction is not a string, just the name of the function.
These are first class objects in Python, which makes the above exceptionally convenient :)

Customizing File Pages

File pages are structured something like

10 Chapter 2. Usage

exhale Documentation, Release 1.0

File {{ filename of exhale node }} Heading
1 Definition ({{ path to file with

folders }}) Section 1

2
• Program Listing for file

(hyperlink)

... other common information ...
3 {{ appendBreatheFileDirective }}

Heading: Uses the file name without a path to it. If the path was include/File.h, then the line would be File
File.h.

Section 1: The following Doxygen variables control what this section looks like, as well as whether or not it is
included at all.

1. Set the Doxygen variable STRIP_FROM_PATH to change the output inside of parentheses.

If the file path is ../include/arbitrary/File.h and STRIP_FROM_PATH = .., the parentheses
line will be Definition (include/arbitrary/File.h). If you change STRIP_FROM_PATH to
../include, then line 1 will be Definition (arbitrary/File.h).

The appearance of this line will also be affected by whether or not you are using the Doxygen variable
FULL_PATH_NAMES. In addition to leaving its default YES value, I have had best success with setting the
STRIP_FROM_PATH variable.

2. If you set XML_PROGRAMLISTING = YES, then the code of the program (as Doxygen would display it) will
be included as a bulleted hyperlink. It is the full file including whitespace, with documentation strings removed.
Programming comments remain in the file.

Unlike Doxygen, I do not link to anything in the code. Maybe sometime in the future?

3. If the value of "appendBreatheFileDirective" = True in the arguments passed to exhale.
generate(), then the following section will be appended to the bottom of the file being generated:

This will hopefully be a temporary workaround until I can figure out how to robustly parse the xml for this, or
figure out how to manipulate Breathe to give me this information (since it clearly exists...). This workaround is
unideal in that any errors you have in any of the documentation of the items in the file will be duplicated by the
build, as well as a large number of DUPLICATE id’s will be flagged. The generated links inside of the produced
output by Breathe will now also link to items on this page first. AKA this is a buggy feature that I hope to fix
soon, but if you really need the file documentation in your project, this is currently the only way to include it.

Note: If you set XML_PROGRAMLISTING = NO, then the file in which an enum, class, variable, etc is
declared may not be recovered. To my experience, the missing items not recovered are only declared in the program-
listing. See the exhale.ExhaleRoot.fileRefDiscovery() part of the parsing process.

Fully Automated Building

It is preferable to have everything generated at once, e.g. if you wish to host your documentation on Read the Docs. I
make the assumption that you already have a Makefile created by sphinx-quickstart. Instead of a Doxyfile,
though, we’re going to take it one step further. Your specific arguments to Doxygen may be more involved than this,
but the below should get you started in the right direction.

In conf.py we now define at the bottom

2.3. Fully Automated Building 11

exhale Documentation, Release 1.0

def generateDoxygenXML(stripPath):
'''
Generates the doxygen xml files used by breathe and exhale.
Approach modified from:

- https://github.com/fmtlib/fmt/blob/master/doc/build.py

:param stripPath:
The value you are sending to exhale.generate via the
key 'doxygenStripFromPath'. Usually, should be '..'.

'''
from subprocess import PIPE, Popen
try:

doxygen_cmd = ["doxygen", "-"]# "-" tells Doxygen to read configs from stdin
doxygen_proc = Popen(doxygen_cmd, stdin=PIPE)
doxygen_input = r'''

Make this the same as what you tell exhale.
OUTPUT_DIRECTORY = doxyoutput
If you need this to be YES, exhale will probably break.
CREATE_SUBDIRS = NO
So that only include/ and subdirectories appear.
FULL_PATH_NAMES = YES
STRIP_FROM_PATH = "%s/"
Tell Doxygen where the source code is (yours may be different).
INPUT = ../include
Nested folders will be ignored without this. You may not need it.
RECURSIVE = YES
Set to YES if you are debugging or want to compare.
GENERATE_HTML = NO
Unless you want it?
GENERATE_LATEX = NO
Both breathe and exhale need the xml.
GENERATE_XML = YES
Set to NO if you do not want the Doxygen program listing included.
XML_PROGRAMLISTING = YES
Allow for rst directives and advanced functions (e.g. grid tables)
ALIASES = "rst=\verbatim embed:rst:leading-asterisk"
ALIASES += "endrst=\endverbatim"

''' % stripPath)
In python 3 strings and bytes are no longer interchangeable
if sys.version[0] == "3":

doxygen_input = bytes(doxygen_input, 'ASCII')
doxygen_proc.communicate(input=doxygen_input)
doxygen_proc.stdin.close()
if doxygen_proc.wait() != 0:

raise RuntimeError("Non-zero return code from 'doxygen'...")
except Exception as e:

raise Exception("Unable to execute 'doxygen': {}".format(e))

Note: The above code should work for Python 2 and 3, but be careful not to modify the somewhat delicate treatment
of strings:

• doxygen_input = r'''...: the r is required to prevent the verbatim rst directives to expand into control
sequences (\v)

• In Python 3 you need to explicitly construct the bytes for communicating with the process.

12 Chapter 2. Usage

exhale Documentation, Release 1.0

Now that you have defined this at the bottom of conf.py, we’ll add a modified setup(app) method:

setup is called auto-magically for you by Sphinx
def setup(app):

stripPath = ".."
generateDoxygenXML(stripPath)

create the dictionary to send to exhale
exhaleArgs = {

"doxygenIndexXMLPath" : "./doxyoutput/xml/index.xml",
"containmentFolder" : "./generated_api",
"rootFileName" : "library_root.rst",
"rootFileTitle" : "Library API",
"doxygenStripFromPath" : stripPath

}

import the exhale module from the current directory and generate the api
sys.path.insert(0, os.path.abspath('.')) # exhale.py is in this directory
from exhale import generate
generate(exhaleArgs)

Now you can build the docs with make html and it will re-parse using Doxygen, generate all relevant files, and give
you an updated website. While some may argue that this is wasteful, exhale is not smart enough and never will
be smart enough to provide incremental updates. The full api is regenerated. Every time. So you may as well run
Doxygen each time ;)

Note: Where Doxygen is concerned, you will likely need to give special attention to macros and preprocessor
definitions. Refer to the linked fmt docs in the above code snippet. Of particular concern would be the following
Doxygen config variables:

• ENABLE_PREPROCESSING

• MACRO_EXPANSION

• EXPAND_ONLY_PREDEF

• PREDEFINED (very useful if the Doxygen preprocessor is choking on your macros)

• SKIP_FUNCTION_MACROS

Doxygen Documentation Specifics

If you have not used Doxygen before, the below may be helpful in getting things started. To make sure you have
Doxygen working, first try just using Doxygen and viewing the html output by setting GENERATE_HTML = YES.
This is the default value of the variable, when you get Sphinx / Breathe / exhale going, just set this variable to NO to
avoid creating unnecessary files.

There is a lot to make sure you do in terms of the documentation you write in a C++ file to make Doxygen work. To
get started, though, execute doxygen -g from your terminal in a directory where there is no Doxyfile present
and it will give you a large file called Doxyfile with documentation on what all of the variables do. You can leave
a large number of them to their default values. To execute doxygen now, just enter doxygen in the same directory as
the Doxyfile and it will generate the html output for you so you can verify it is working. Doxygen builds similarly
to make.

Later, you can just use conf.py and won’t need to keep your Doxyfile, but you could also just keep the
Doxyfile you have working for you and execute doxygen with no parameters in conf.py before calling

2.4. Doxygen Documentation Specifics 13

exhale Documentation, Release 1.0

exhale.generate().

1. Files you want documented must have \file somewhere. From the Doxygen documentation reiteration:

Let’s repeat that, because it is often overlooked: to document global objects (functions, typedefs,
enum, macros, etc), you must document the file in which they are defined.

2. Classes, structs, and unions need additional care in order for them to appear in the hierarchy correctly. If you
have a file in a directory, the Doxygen FAQ explains that you need to specify this location:

You can also document your class as follows:

/*! \class MyClassName include.h path/include.h

*
* Docs for MyClassName

*/

So a minimal working example of the file directory/file.h defining struct thing might look like:

/** \file */
#ifndef _DIRECTORY_THING_H
#define _DIRECTORY_THING_H

/**
* \struct thing file.h directory/file.h

*
* \brief The documentation about the thing.

*/
struct thing {

/// The thing that makes the thing.
thing() {}

};

#endif // _DIRECTORY_THING_H

3. Deviations from the norm. The cool thing about using Sphinx in this context is that you have some flexibility
inherent in the fact that we are using reStructuredText. For example, instead of using \ref, you can just link
to another documented item with `item`. This works across files as well, so you could link to class A in a
different file from class B with `A` in the documentation string. You could make a statement bold in your
documentation with just **bold**!

I believe this includes the full range of reStructuredText syntax, but would not be surprised if there were direc-
tives or notation that break something.

Note: I do not support groups with Doxygen, as I assume if you have gone through the effort to group everything
then you have a desire to manually control the output. Breathe already has an excellent doxygengroup directive,
and you should use that.

Start to finish for Read the Docs

Assuming you already had the code that you are generating the API for documented, navigate to the top-level folder
of your repository. Read the Docs (RTD) will be looking for a folder named either doc or docs at the root of your
repository by default:

14 Chapter 2. Usage

https://www.stack.nl/~dimitri/doxygen/manual/docblocks.html
https://www.stack.nl/~dimitri/doxygen/manual/faq.html#faq_code_inc

exhale Documentation, Release 1.0

$ cd ~/my_repo/
$ mkdir docs

Now we are ready to begin.

1. Generate your sphinx code by using the sphinx-quickstart utility. It may look something like the fol-
lowing:

$ ~/my_repo/docs> sphinx-quickstart
Welcome to the Sphinx 1.3.1 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]:

Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]:

... and a whole lot more ...

Warning: The default value for > Create Makefile? (y/n) [y]: must be yes to work on
RTD. They are giving you a unix virtual environment.

2. This will create the files conf.py, index.rst, Makefile, and make.bat if you are supporting Windows.
It will also create the directories _static and _templates for customizing the sphinx output.

3. Create a requirements.txt file with the line breathe so RTD will install it:

$ ~/my_repo/docs> echo 'breathe' > requirements.txt

Alternatively, you can have RTD install via Git Tags. At the time of writing this, the latest tag for breathe is
4.3.1, so in your requirements.txt you would have

git+git://github.com/michaeljones/breathe@v4.3.1#egg=breathe

4. Clone exhale and steal all of the files you will need:

$ ~/my_repo/docs> git clone https://github.com/svenevs/exhale.git
$ ~/my_repo/docs> mv exhale/exhale.py .
$ ~/my_repo/docs> mv exhale/treeView/_static/collapse/ ./_static/
$ ~/my_repo/docs> mv exhale/treeView/_templates/layout.html _templates/
$ ~/my_repo/docs> rm -rf exhale/

5. Uncomment the line sys.path.insert(0, os.path.abspath('.')) at the top of the generated
conf.py so that Sphinx will know where to look for exhale.py.

6. Two options below (5) in conf.py, add 'breathe' to the extensions list so that the directives from
Breathe can be used.

2.5. Start to finish for Read the Docs 15

exhale Documentation, Release 1.0

7. Just below the extensions list, configure breathe. Adding the following should be sufficient:

breathe_projects = { "yourProjectName": "./doxyoutput/xml" }
breathe_default_project = "yourProjectName"

8. Edit conf.py to use the RTD Theme. You are of course able to use a different Sphinx theme, but the RTD
Theme is what this will enable. Replace the html_theme and html_theme_path lines (or comment them
out) with:

on_rtd is whether we are on readthedocs.org, this line of code grabbed from
→˓docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd: # only import and set the theme if we're building docs locally
import sphinx_rtd_theme
html_theme = 'sphinx_rtd_theme'
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

9. Edit conf.py to include the generateDoxygenXML and setup methods provided in Fully Automated
Building at the bottom of the file.

10. Add createTreeView = True to the dictionary arguments sent to exhale.generate().

11. Go to the admin page of your RTD website and select the Advanced Settings tab. Make sure the Install your
project inside a virtualenv using setup.py install button is checked. In the Requirements file box below,
enter docs/requirements.txt assuming you followed the steps above.

I personally prefer to keep the requirements.txt hidden in the docs folder so that it is implicit that those
are only requirements for building the docs, and not the actual project itself.

And you are done. Make sure you git add all of the files in your new docs directory, RTD will clone your
repository / update when you push commits. You can build it locally using make html in the current directory, but
make sure you do not add the _build directory to your git repository.

I hope that the above is successful for you, it looks like a lot but it’s not too bad... right?

16 Chapter 2. Usage

CHAPTER 3

Developer Reference Documentation

Primary Entry Point

The main entry point to exhale is through the generate function. This method internally calls breathe, reparses /
rebuilds the hierarchies, and then generates the API.

exhale.generate(exhaleArgs)
The main entry point to exhale, which parses and generates the full API.

Parameters

exhaleArgs (dict) The dictionary of arguments to configure exhale with. All keys are
strings, and most values should also be strings. See below.

Required Entries:

key: "doxygenIndexXMLPath" — value type: str The absolute or relative path to where the Doxygen
index.xml is. A relative path must be relative to the file calling exhale.

key: "containmentFolder" — value type: str The folder the generated API will be created in. If the
folder does not exist, exhale will create the folder. The path can be absolute, or relative to the file that is
calling exhale. For example, "./generated_api".

key: "rootFileName" — value type: str The name of the file that you will be linking to from your re-
StructuredText documents. Do not include the containmentFolder path in this file name, exhale will
create the file "{}/{}".format(containmentFolder, rootFileName).

In order for Sphinx to be happy, you should include a .rst suffix. All of the generated API uses reStruc-
turedText, and that will not ever change.

For example, if you specify

• "containmentFolder" = "./generated_api", and

• "rootFileName" = "library_root.rst"

Then exhale will generate the file ./generated_api/library_root.rst.

You could include this file in a toctree directive (say in index.rst) with:

17

exhale Documentation, Release 1.0

.. toctree:
:maxdepth: 2

generated_api/library_root

Since Sphinx allows for some flexibility (e.g. your primary domain may be using .txt files), no error
checking will be performed.

key: "rootFileTitle" — value type: str The title to be written at the top of rootFileName, which
will appear in your file including it in the toctree directive.

key: "doxygenStripFromPath" — value type: str When building on Read the Docs, there seem to be
issues regarding the Doxygen variable STRIP_FROM_PATH when built remotely. That is, it isn’t stripped
at all. Provide me with a string path (e.g. ".."), and I will strip this for you for the File nodes being
generated. I will use the exact value of os.path.abspath("..") in the example above, so you can
supply either a relative or absolute path. The File view hierarchy will break if you do not give me a value
for this, and therefore I hesitantly require this argument. The value ".." assumes that conf.py is in a
docs/ or similar folder exactly one level below the repository’s root.

Additional Options:

key: "afterTitleDescription" — value type: str Properly formatted reStructuredText with no in-
dentation to be included directly after the title. You can use any rst directives or formatting you wish in
this string. I suggest using the textwrap module, e.g.:

description = textwrap.dedent('''
This is a description of the functionality of the library being documented.

.. warning::

Please be advised that this library does not do anything.
''')

Then you can add "afterTitleDescription" = description to your dictionary.

key: "afterBodySummary" — value type: str Similar to afterTitleDescription, this is a string
with reStructuredText formatting. This will be inserted after the generated API body. The layout looks
something like this:

rootFileTitle
==

afterTitleDescription (if provided)

[[[GENERATED API BODY]]]

afterBodySummary (if provided)

key: "createTreeView" — value type: bool For portability, the default value if not specified is False,
which will generate reStructuredText bulleted lists for the Class View and File View hierarchies. If True,
raw html unordered lists will be generated. Please refer to the Clickable Hierarchies subsection of Addi-
tional Usage and Customization for more details.

key: "fullToctreeMaxDepth" — value type: int Beneath the Class View and File View hierarchies a
Full API listing is generated as there are items that may not appear in the Class View hierarchy, as well as
without this an obscene amount of warnings are generated from Sphinx because neither view actually uses
a toctree, they link directly.

18 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

The default value is 5 if not specified, but you may want to give a smaller value depending on the frame-
work being documented. This value must be greater than or equal to 1 (this is the value of :maxdepth:).

key: "appendBreatheFileDirective" — value type: bool Currently, I do not know how to reliably
extract the brief / detailed file descriptions for a given file node. Therefore, if you have file level docu-
mentation in your project that has meaning, it would otherwise be omitted. As a temporary patch, if you
specify this value as True then at the bottom of the file page the full doxygenfile directive output
from Breathe will be appended to the file documentiation. File level brief and detailed descriptions will be
included, followed by a large amount of duplication. I hope to remove this value soon, in place of either
parsing the xml more carefully or finding out how to extract this information directly from Breathe.

The default value of this behavior is False if it is not specified in the dictionary passed as input for
this method. Please refer to the Customizing File Pages subsection of Customizing File Pages for more
information on what the impact of this variable is.

key: "customSpecificationFunction" — value type: function The custom specifica-
tion function to override the default behavior of exhale. Please refer to the exhale.
specificationsForKind() documentation.

Raises

• ValueError – If the required dictionary arguments are not present, or any of the (key,
value) pairs are invalid.

• RuntimeError – If any fatal error is caught during the generation of the API.

Helper Functions

There are a few helper functions used throughout the framework that effectively just reformat the input into a specific
kind of output for incorporating into reStructuredText documents, and the directives used in those documents. The last
function is largely unrelated to exhale, and just prints something to the console in a way that makes it stick out a little
more.

exhale.qualifyKind(kind)
Qualifies the breathe kind and returns an qualifier string describing this to be used for the text output (e.g. in
generated file headings and link names).

The output for a given kind is as follows:

Input Kind Output Qualifier
“class” “Class”
“define” “Define”
“enum” “Enum”
“enumvalue” “Enumvalue”
“file” “File”
“function” “Function”
“group” “Group”
“namespace” “Namespace”
“struct” “Struct”
“typedef” “Typedef”
“union” “Union”
“variable” “Variable”

The following breathe kinds are ignored:

•“autodoxygenfile”

3.2. Helper Functions 19

exhale Documentation, Release 1.0

•“doxygenindex”

•“autodoxygenindex”

Note also that although a return value is generated, neither “enumvalue” nor “group” are actually used.

Parameters

kind (str) The return value of a Breathe compound object’s get_kind() method.

Return (str) The qualifying string that will be used to build the reStructuredText titles and other
qualifying names. If the empty string is returned then it was not recognized.

exhale.kindAsBreatheDirective(kind)
Returns the appropriate breathe restructured text directive for the specified kind. The output for a given kind is
as follows:

Input Kind Output Directive
“class” “doxygenclass”
“define” “doxygendefine”
“enum” “doxygenenum”
“enumvalue” “doxygenenumvalue”
“file” “doxygenfile”
“function” “doxygenfunction”
“group” “doxygengroup”
“namespace” “doxygennamespace”
“struct” “doxygenstruct”
“typedef” “doxygentypedef”
“union” “doxygenunion”
“variable” “doxygenvariable”

The following breathe kinds are ignored:

•“autodoxygenfile”

•“doxygenindex”

•“autodoxygenindex”

Note also that although a return value is generated, neither “enumvalue” nor “group” are actually used.

Parameters

kind (str) The kind of the breathe compound / ExhaleNode object (same values).

Return (str) The directive to be used for the given kind. The empty string is returned for both
unrecognized and ignored input values.

exhale.specificationsForKind(kind)
Returns the relevant modifiers for the restructured text directive associated with the input kind. The only con-
sidered values for the default implementation are class and struct, for which the return value is exactly:

" :members:\n :protected-members:\n :undoc-members:\n"

Formatting of the return is fundamentally important, it must include both the prior indentation as well as new-
lines separating any relevant directive modifiers. The way the framework uses this function is very specific; if
you do not follow the conventions then sphinx will explode.

Consider a struct thing being documented. The file generated for this will be:

.. _struct_thing:

Struct thing

20 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

==

.. doxygenstruct:: thing
:members:
:protected-members:
:undoc-members:

Assuming the first two lines will be in a variable called link_declaration, and the next three lines are
stored in header, the following is performed:

directive = ".. {}:: {}\n".format(kindAsBreatheDirective(node.kind), node.name)
specifications = "{}\n\n".format(specificationsForKind(node.kind))
gen_file.write("{}{}{}{}".format(link_declaration, header, directive,
→˓specifications))

That is, no preceding newline should be returned from your custom function, and no trailing newline is needed.
Your indentation for each specifier should be exactly three spaces, and if you want more than one you need a
newline in between every specification you want to include. Whitespace control is handled internally because
many of the directives do not need anything added. For a full listing of what your specifier options are, refer to
the breathe documentation:

http://breathe.readthedocs.io/en/latest/directives.html

Parameters

kind (str) The kind of the node we are generating the directive specifications for.

Return (str) The correctly formatted specifier(s) for the given kind. If no specifier(s) are necessary
or desired, the empty string is returned.

exhale.exclaimError(msg, ansi_fmt=‘34;1m’)
Prints msg to the console in color with (!) prepended in color.

Example (uncolorized) output of exclaimError("No leading space needed."):

(!) No leading space needed.

All messages are written to sys.stderr, and are closed with [0m. The default color is blue, but can be
changed using ansi_fmt.

Documentation building has a verbose output process, this just helps distinguish an error message coming from
exhale.

Parameters

msg (str) The message you want printed to standard error.

ansi_fmt (str) An ansi color format. msg is printed as "\033[" + ansi_fmt + msg
+ "\033[0m\n, so you should specify both the color code and the format code (after
the semicolon). The default value is 34;1m — refer to http://misc.flogisoft.com/bash/tip_
colors_and_formatting for alternatives.

Exposed Utility Variables

exhale.EXHALE_FILE_HEADING
The restructured text file heading separator ("=" * 88).

3.3. Exposed Utility Variables 21

http://breathe.readthedocs.io/en/latest/directives.html
http://misc.flogisoft.com/bash/tip_colors_and_formatting
http://misc.flogisoft.com/bash/tip_colors_and_formatting

exhale Documentation, Release 1.0

exhale.EXHALE_SECTION_HEADING
The restructured text section heading separator ("-" * 88).

exhale.EXHALE_SUBSECTION_HEADING
The restructured text sub-section heading separator ("*" * 88).

Ownership Graph Representation

A graph representing what classes belong to what namespaces, what file defines what, etc is built with a single
ExhaleRoot. This root node contains multiple different lists of ExhaleNode objects that it parses from both
Breathe and the Doxygen xml output.

If you are reading this, then you are likely trying to make changes. To avoid having such a huge reference page, and
enable viewing the reference documentation for the two primary classes at the same time, they are on separate pages.

Primary Class ExhaleRoot Reference

class exhale.ExhaleRoot(breatheRoot, rootDirectory, rootFileName, rootFileTitle, rootFileDescription,
rootFileSummary, createTreeView)

The full representation of the hierarchy graphs. In addition to containing specific lists of ExhaleNodes of interest,
the ExhaleRoot class is responsible for comparing the parsed breathe hierarchy and rebuilding lost relationships
using the Doxygen xml files. Once the graph parsing has finished, the ExhaleRoot generates all of the relevant
reStructuredText documents and links them together.

The ExhaleRoot class is not designed for reuse at this time. If you want to generate a new hierarchy with a
different directory or something, changing all of the right fields may be difficult and / or unsuccessful. Refer
to the bottom of the source code for exhale.generate() for safe usage (just exception handling), but the
design of this class is to be used as follows:

textRoot = ExhaleRoot(... args ...)
textRoot.parse()
textRoot.generateFullAPI()

Zero checks are in place to enforce this usage, and if you are modifying the execution of this class and things
are not working make sure you follow the ordering of those methods.

Parameters

breatheRoot (instance) Type unknown, this is the return value of breathe.
breathe_parse.

rootDirectory (str) The name of the root directory to put everything in. This should
be the value of the key containmentFolder in the dictionary passed to exhale.
generate().

rootFileName (str) The name of the file the root library api will be put into. This should not
contain the rootDirectory path. This should be the value of the key rootFileName
in the dictionary passed to exhale.generate().

rootFileTitle (str) The title to be written to the top of rootFileName. This should
be the value of the key rootFileTitle in the dictionary passed to exhale.
generate().

rootFileDescription (str) The description of the library api file placed after
rootFileTitle. This should be the value of the key afterTitleDescription
in the dictionary passed to exhale.generate().

22 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

rootFileSummary (str) The summary of the library api placed after the generated hierarchy
views. This should be the value of the key afterBodySummary in the dictionary passed
to exhale.generate().

createTreeView (bool) Creates the raw html unordered lists for use with
collapsibleList if True. Otherwise, creates standard reStructuredText bulleted
lists. Should be the value of the key createTreeView in the dictionary passed to
exhale.generate().

Attributes

breathe_root (instance) The value of the parameter breatheRoot.

root_directory (str) The value of the parameter rootDirectory.

root_file_name (str) The value of the parameter rootFileName.

full_root_file_path (str) The full file path of the root file ("root_directory/
root_file_name").

root_file_title (str) The value of the parameter rootFileTitle.

root_file_description (str) The value of the parameter rootFileDescription.

root_file_summary (str) The value of the parameter rootFileSummary.

class_view_file (str) The full file path the class view hierarchy will be written to. This
is incorporated into root_file_name using an .. include: directive.

directory_view_file (str) The full file path the file view hierarchy will be written to.
This is incorporated into root_file_name using an .. include: directive.

unabridged_api_file (str) The full file path the full API will be written to. This is incor-
porated into root_file_name using a .. toctree: directive with a :maxdepth:
according to the value of the key fullToctreeMaxDepth in the dictionary passed into
exhale.generate().

use_tree_view (bool) The value of the parameter createTreeView.

all_compounds (list) A list of all the Breathe compound objects discovered along the way.
Populated during exhale.ExhaleRoot.discoverAllNodes().

all_nodes (list) A list of all of the ExhaleNode objects created. Populated during exhale.
ExhaleRoot.discoverAllNodes().

node_by_refid (dict) A dictionary with string ExhaleNode refid values, and values that
are the ExhaleNode it came from. Storing it this way is convenient for when the Doxygen
xml file is being parsed.

class_like (list) The full list of ExhaleNodes of kind struct or class

defines (list) The full list of ExhaleNodes of kind define.

enums (list) The full list of ExhaleNodes of kind enum.

enum_values (list) The full list of ExhaleNodes of kind enumvalue. Populated, not used.

functions (list) The full list of ExhaleNodes of kind function.

dirs (list) The full list of ExhaleNodes of kind dir.

files (list) The full list of ExhaleNodes of kind file.

groups (list) The full list of ExhaleNodes of kind group. Pupulated, not used.

namespaces (list) The full list of ExhaleNodes of kind namespace.

3.4. Ownership Graph Representation 23

exhale Documentation, Release 1.0

typedefs (list) The full list of ExhaleNodes of kind typedef.

unions (list) The full list of ExhaleNodes of kind union.

variables (list) The full list of ExhaleNodes of kind variable.

parse()
The first method that should be called after creating an ExhaleRoot object. The Breathe graph is
parsed first, followed by the Doxygen xml documents. By the end of this method, all of the self.
<breathe_kind>, self.all_compounds, and self.all_nodes lists as well as the self.
node_by_refid dictionary will be populated. Lastly, this method sorts all of the internal lists. The
order of execution is exactly

1.exhale.ExhaleRoot.discoverAllNodes()

2.exhale.ExhaleRoot.reparentAll()

3.Populate self.node_by_refid using self.all_nodes.

4.exhale.ExhaleRoot.fileRefDiscovery()

5.exhale.ExhaleRoot.filePostProcess()

6.exhale.ExhaleRoot.sortInternals()

discoverAllNodes()
Stack based traversal of breathe graph, creates some parental relationships between different ExhaleNode
objects. Upon termination, this method will have populated the lists self.all_compounds, self.
all_nodes, and the self.<breathe_kind> lists for different types of objects.

trackNodeIfUnseen(node)
Helper method for exhale.ExhaleRoot.discoverAllNodes(). If the node is not in
self.all_nodes yet, add it to both self.all_nodes as well as the corresponding self.<breathe_kind>
list.

Parameters

node (ExhaleNode) The node to begin tracking if not already present.

discoverNeigbors(nodesRemaining, node)
Helper method for exhale.ExhaleRoot.discoverAllNodes(). Some of the compound objects
received from Breathe have a member function get_member() that returns all of the children. Some do
not. This method checks to see if the method is present first, and if so performs the following:

For every compound in node.compound.get_member():
If compound not present in self.all_compounds:

- Add compound to self.all_compounds
- Create a child ExhaleNode
- If it is not a class, struct, or union, add to nodesRemaining
- If it is not an enumvalue, make it a child of node parameter

Parameters

nodesRemaining (list) The list of nodes representing the stack traversal being done by
exhale.ExhaleRoot.discoverAllNodes(). New neighbors found will be ap-
pended to this list.

node (ExhaleNode) The node we are trying to discover potential new neighbors from.

reparentAll()
Fixes some of the parental relationships lost in parsing the Breathe graph. File relationships are recovered
in exhale.ExhaleRoot.fileRefDiscovery(). This method simply calls in this order:

24 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

1.exhale.ExhaleRoot.reparentUnions()

2.exhale.ExhaleRoot.reparentClassLike()

3.exhale.ExhaleRoot.reparentDirectories()

4.exhale.ExhaleRoot.renameToNamespaceScopes()

5.exhale.ExhaleRoot.reparentNamespaces()

reparentUnions()
Helper method for exhale.ExhaleRoot.reparentAll(). Namespaces and classes should have
the unions defined in them to be in the child list of itself rather than floating around. Union nodes that are
reparented (e.g. a union defined in a class) will be removed from the list self.unions since the Breathe
directive for its parent (e.g. the class) will include the documentation for the union. The consequence of
this is that a union defined in a class will not appear in the full api listing of Unions.

reparentClassLike()
Helper method for exhale.ExhaleRoot.reparentAll(). Iterates over the self.class_like
list and adds each object as a child to a namespace if the class, or struct is a member of that namespace.
Many classes / structs will be reparented to a namespace node, these will remain in self.class_like.
However, if a class or struct is reparented to a different class or struct (it is a nested class / struct), it will
be removed from so that the class view hierarchy is generated correctly.

reparentDirectories()
Helper method for exhale.ExhaleRoot.reparentAll(). Adds subdirectories as children to the
relevant directory ExhaleNode. If a node in self.dirs is added as a child to a different directory node,
it is removed from the self.dirs list.

renameToNamespaceScopes()
Helper method for exhale.ExhaleRoot.reparentAll(). Some compounds in Breathe such as
functions and variables do not have the namespace name they are declared in before the name of the actual
compound. This method prepends the appropriate (nested) namespace name before the name of any child
that does not already have it.

For example, the variable MAX_DEPTH declared in namespace external would have its ExhaleNode’s
name attribute changed from MAX_DEPTH to external::MAX_DEPTH.

reparentNamespaces()
Helper method for exhale.ExhaleRoot.reparentAll(). Adds nested namespaces as chil-
dren to the relevant namespace ExhaleNode. If a node in self.namespaces is added as
a child to a different namespace node, it is removed from the self.namespaces list. Be-
cause these are removed from self.namespaces, it is important that exhale.ExhaleRoot.
renameToNamespaceScopes() is called before this method.

fileRefDiscovery()
Finds the missing components for file nodes by parsing the Doxygen xml (which is just the
doxygen_output_dir/node.refid). Additional items parsed include adding items whose refid
tag are used in this file, the <programlisting> for the file, what it includes and what includes it, as well as
the location of the file (with respsect to the Doxygen root).

Care must be taken to only include a refid found with specific tags. The parsing of the xml file was done
by just looking at some example outputs. It seems to be working correctly, but there may be some subtle
use cases that break it.

Warning: Some enums, classes, variables, etc declared in the file will not have their associated refid
in the declaration of the file, but will be present in the <programlisting>. These are added to the
files’ list of children when they are found, but this parental relationship cannot be formed if you set

3.4. Ownership Graph Representation 25

exhale Documentation, Release 1.0

XML_PROGRAMLISTING = NO with Doxygen. An example of such an enum would be an enum
declared inside of a namespace within this file.

filePostProcess()
The real name of this method should be reparentFiles, but to avoid confusion with what stage this
must happen at it is called this instead. After the exhale.ExhaleRoot.fileRefDiscovery()
method has been called, each file will have its location parsed. This method reparents files to directories
accordingly, so the file view hierarchy can be complete.

sortInternals()
Sort all internal lists (class_like, namespaces, variables, etc) mostly how doxygen would,
alphabetical but also hierarchical (e.g. structs appear before classes in listings). Some internal lists are just
sorted, and some are deep sorted (exhale.ExhaleRoot.deepSortList()).

deepSortList(lst)
For hierarchical internal lists such as namespaces, we want to sort both the list as well as have each
child sort its children by calling exhale.ExhaleNode.typeSort().

Parameters

lst (list) The list of ExhaleNode objects to be deep sorted.

generateFullAPI()
Since we are not going to use some of the breathe directives (e.g. namespace or file), when representing
the different views of the generated API we will need:

1.Generate a single file restructured text document for all of the nodes that have either no children, or
children that are leaf nodes.

2.When building the view hierarchies (class view and file view), provide a link to the appropriate files
generated previously.

If adding onto the framework to say add another view (from future import groups) you would link from a
restructured text document to one of the individually generated files using the value of link_name for a
given ExhaleNode object.

This method calls in this order:

1.exhale.ExhaleRoot.generateAPIRootHeader()

2.exhale.ExhaleRoot.generateNodeDocuments()

3.exhale.ExhaleRoot.generateAPIRootBody()

4.exhale.ExhaleRoot.generateAPIRootSummary()

generateAPIRootHeader()
This method creates the root library api file that will include all of the different hierarchy views and full
api listing. If self.root_directory is not a current directory, it is created first. Afterward, the root
API file is created and its title is written, as well as the value of self.root_file_description.

generateNodeDocuments()
Creates all of the reStructuredText documents related to types parsed by Doxygen. This includes all leaf-
like documents (class, struct, enum, typedef, union, variable, and define), as well as
namespace, file, and directory pages.

During the reparenting phase of the parsing process, nested items were added as a child to their actual
parent. For classes, structs, enums, and unions, if it was reparented to a namespace it will remain
in its respective self.<breathe_kind> list. However, if it was an internally declared child of a
class or struct (nested classes, structs, enums, and unions), this node will be removed from its self.
<breathe_kind> list to avoid duplication in the class hierarchy generation.

26 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

When generating the full API, though, we will want to include all of these and therefore must call
exhale.ExhaleRoot.generateSingleNodeRST() with all of the nested items. For nested
classes and structs, this is done by just calling node.findNestedClassLike for every node in
self.class_like. The resulting list then has all of self.class_like, as well as any nested
classes and structs found. With enum and union, these would have been reparented to a class or struct
if it was removed from the relevant self.<breathe_kind> list. Meaning we must make sure that we
genererate the single node RST documents for everything by finding the nested enums and unions from
self.class_like, as well as everything in self.enums and self.unions.

initializeNodeFilenameAndLink(node)
Sets the file_name and link_name for the specified node. If the kind of this node is “file”, then this
method will also set the program_file as well as the program_link_name fields.

Since we are operating inside of a containmentFolder, this method will include self.
root_directory in this path so that you can just use:

with open(node.file_name, "w") as gen_file:
... write the file ...

Having the containmentFolder is important for when we want to generate the file, but when we
want to use it with include or toctree this will need to change. Refer to exhale.ExhaleRoot.
gerrymanderNodeFilenames().

This method also sets the value of node.title, which will be used in both the reStructuredText doc-
ument of the node as well as the links generated in the class view hierarchy (for the
createTreeView = True option).

Type exhale.ExhaleNode

Param node The node that we are setting the above information for.

generateSingleNodeRST(node)
Creates the reStructuredText document for the leaf like node object. This method should only be used with
nodes in the following member lists:

•self.class_like

•self.enums

•self.functions

•self.typedefs

•self.unions

•self.variables

•self.defines

File, directory, and namespace nodes are treated separately.

Parameters

node (ExhaleNode) The leaf like node being generated by this method.

generateNamespaceNodeDocuments()
Generates the reStructuredText document for every namespace, including nested namespaces that were
removed from self.namespaces (but added as children to one of the namespaces in self.
namespaces).

The documents generated do not use the Breathe namespace directive, but instead link to the relevant
documents associated with this namespace.

3.4. Ownership Graph Representation 27

exhale Documentation, Release 1.0

generateSingleNamespace(nspace)
Helper method for exhale.ExhaleRoot.generateNamespaceNodeDocuments(). Writes the
reStructuredText file for the given namespace.

Parameters

nspace (ExhaleNode) The namespace node to create the reStructuredText document for.

generateNamespaceChildrenString(nspace)
Helper method for exhale.ExhaleRoot.generateSingleNamespace(), and exhale.
ExhaleRoot.generateFileNodeDocuments(). Builds the body text for the namespace node
document that links to all of the child namespaces, structs, classes, functions, typedefs, unions, and vari-
ables associated with this namespace.

Parameters

nspace (ExhaleNode) The namespace node we are generating the body text for.

Return (str) The string to be written to the namespace node’s reStructuredText document.

generateSortedChildListString(sectionTitle, previousString, lst)
Helper method for exhale.ExhaleRoot.generateNamespaceChildrenString(). Used to
build up a continuous string with all of the children separated out into titled sections.

This generates a new titled section with sectionTitle and puts a link to every node found in lst in
this section. The newly created section is appended to previousString and then returned.

TODO Change this to use string streams like the other methods instead.

Parameters

sectionTitle (str) The title of the section for this list of children.

previousString (str) The string to append the newly created section to.

lst (list) A list of ExhaleNode objects that are to be linked to from this section. This
method sorts lst in place.

generateFileNodeDocuments()
Generates the reStructuredText documents for files as well as the file’s program listing reStructuredText
document if applicable. Refer to Customizing File Pages for changing the output of this method. The
remainder of the file lists all nodes that have been discovered to be defined (e.g. classes) or referred to (e.g.
included files or files that include this file).

generateDirectoryNodeDocuments()
Generates all of the directory reStructuredText documents.

generateDirectoryNodeRST(node)
Helper method for exhale.ExhaleRoot.generateDirectoryNodeDocuments(). Generates
the reStructuredText documents for the given directory node. Directory nodes will only link to files and
subdirectories within it.

Parameters

node (ExhaleNode) The directory node to generate the reStructuredText document for.

generateAPIRootBody()
Generates the root library api file’s body text. The method calls exhale.ExhaleRoot.
gerrymanderNodeFilenames() first to enable proper internal linkage between reStructuredText
documents. Afterward, it calls exhale.ExhaleRoot.generateViewHierarchies() followed
by exhale.ExhaleRoot.generateUnabridgedAPI() to generate both hierarchies as well as
the full API listing. As a result, three files will now be ready:

1.self.class_view_file

28 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

2.self.directory_view_file

3.self.unabridged_api_file

These three files are then included into the root library file. The consequence of using an include direc-
tive is that Sphinx will complain about these three files never being included in any toctree directive.
These warnings are expected, and preferred to using a toctree because otherwise the user would have to
click on the class view link from the toctree in order to see it. This behavior has been acceptable for me
so far, but if it is causing you problems please raise an issue on GitHub and I may be able to conditionally
use a toctree if you really need it.

gerrymanderNodeFilenames()
When creating nodes, the filename needs to be relative to conf.py, so it will include self.
root_directory. However, when generating the API, the file we are writing to is in the same di-
rectory as the generated node files so we need to remove the directory path from a given ExhaleNode’s
file_name before we can include it or use it in a toctree.

generateViewHierarchies()
Wrapper method to create the view hierarchies. Currently it just calls exhale.ExhaleRoot.
generateClassView() and exhale.ExhaleRoot.generateDirectoryView() — if you
want to implement additional hierarchies, implement the additionaly hierarchy method and call it from
here. Then make sure to include it in exhale.ExhaleRoot.generateAPIRootBody().

generateClassView(treeView)
Generates the class view hierarchy, writing it to self.class_view_file.

Parameters

treeView (bool) Whether or not to use the collapsibleList version. See the
createTreeView description in exhale.generate().

generateDirectoryView(treeView)
Generates the file view hierarchy, writing it to self.directory_view_file.

Parameters

treeView (bool) Whether or not to use the collapsibleList version. See the
createTreeView description in exhale.generate().

generateUnabridgedAPI()
Generates the unabridged (full) API listing into self.unabridged_api_file. This is necessary as
some items may not show up in either hierarchy view, depending on:

1.The item. For example, if a namespace has only one member which is a variable, then neither the
namespace nor the variable will be declared in the class view hierarchy. It will be present in the file
page it was declared in but not on the main library page.

2.The configurations of Doxygen. For example, see the warning in exhale.ExhaleRoot.
fileRefDiscovery(). Items whose parents cannot be rediscovered withouth the programlisting
will still be documented, their link appearing in the unabridged API listing.

Currently, the API is generated in the following (somewhat arbitrary) order:

•Namespaces

•Classes and Structs

•Enums

•Unions

•Functions

•Variables

3.4. Ownership Graph Representation 29

exhale Documentation, Release 1.0

•Defines

•Typedefs

•Directories

•Files

If you want to change the ordering, just change the order of the calls to exhale.ExhaleRoot.
enumerateAll() in this method.

enumerateAll(subsectionTitle, lst, openFile)
Helper function for exhale.ExhaleRoot.generateUnabridgedAPI(). Simply writes a sub-
section to openFile (a toctree to the file_name) of each ExhaleNode in sorted(lst) if
len(lst) > 0. Otherwise, nothing is written to the file.

Parameters

subsectionTitle (str) The title of this subsection, e.g. "Namespaces" or
"Files".

lst (list) The list of ExhaleNodes to be enumerated in this subsection.

openFile (File) The already open file object to write to directly. No safety checks are
performed, make sure this is a real file object that has not been closed already.

generateAPIRootSummary()
Writes the library API root summary to the main library file. See the documentation for the key
afterBodySummary in exhale.generate().

toConsole()
Convenience function for printing out the entire API being generated to the console. Unused in the release,
but is helpful for debugging ;)

consoleFormat(sectionTitle, lst)
Helper method for exhale.ExhaleRoot.toConsole(). Prints the given sectionTitle and
calls exhale.ExhaleNode.toConsole() with 0 as the level for every ExhaleNode in lst.

Parameters

sectionTitle (str) The title that will be printed with some visual separators around it.

lst (list) The list of ExhaleNodes to print to the console.

Helper Class ExhaleNode Reference

class exhale.ExhaleNode(breatheCompound)
A wrapper class to track parental relationships, filenames, etc.

Parameters

breatheCompound (breathe.compound) The Breathe compound object we will use to
gather the name, chilren, etc.

Attributes

compound (breathe.compound) The compound discovered from breathe that we are going to
track.

kind (str) The string returned by the breatheCompound.get_kind() method. Used to
qualify this node throughout the framework, as well as for hierarchical sorting.

30 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

name (str) The string returned by the breatheCompound.get_name() method. This
name will be fully qualified — class A inside of namespace n will have a name of
n::A. Files and directories may have / characters as well.

refid (str) The reference ID as created by Doxygen. This will be used to scrape files and see
if a given reference identification number should be associated with that file or not.

children (list) A potentially empty list of ExhaleNode object references that are consid-
ered a child of this Node. Please note that a child reference in any children list may be
stored in many other lists. Mutating a given child will mutate the object, and therefore affect
other parents of this child. Lastly, a node of kind enum will never have its enumvalue
children as it is impossible to rebuild that relationship without more Doxygen xml parsing.

parent (ExhaleNode) If an ExhaleNode is determined to be a child of another ExhaleNode,
this node will be added to its parent’s children list, and a reference to the parent will be
in this field. Initialized to None, make sure you check that it is an object first.

Warning: Do not ever set the parent of a given node if the would-be parent’s kind
is "file". Doing so will break many important relationships, such as nested class
definitions. Effectively, every node will be added as a child to a file node at some point.
The file node will track this, but the child should not.

The following three member variables are stored internally, but managed externally by the
exhale.ExhaleRoot class:

file_name (str) The name of the file to create. Set to None on creation, refer to exhale.
ExhaleRoot.initializeNodeFilenameAndLink().

link_name (str) The name of the reStructuredText link that will be at the top
of the file. Set to None on creation, refer to exhale.ExhaleRoot.
initializeNodeFilenameAndLink().

title (str) The title that will appear at the top of the reStructuredText file file_name.
When the reStructuredText document for this node is being written, the root object will
set this field.

The following two fields are used for tracking what has or has not already been included in
the hierarchy views. Things like classes or structs in the global namespace will not be found
by exhale.ExhaleNode.inClassView(), and the ExhaleRoot object will need to track
which ones were missed.

in_class_view (bool) Whether or not this node has already been incorporated in the class
view.

in_file_view (bool) Whether or not this node has already been incorporated in the file
view.

This class wields duck typing. If self.kind == "file", then the additional member vari-
ables below exist:

namespaces_used (list) A list of namespace nodes that are either defined or used in this
file.

includes (list) A list of strings that are parsed from the Doxygen xml for this file as include
directives.

included_by (list) A list of (refid, name) string tuples that are parsed from the Doxygen xml
for this file presenting all of the other files that include this file. They are stored this way so
that the root class can later link to that file by its refid.

3.4. Ownership Graph Representation 31

exhale Documentation, Release 1.0

location (str) A string parsed from the Doxygen xml for this file stating where this file is
physically in relation to the Doxygen root.

program_listing (list) A list of strings that is the Doxygen xml <programlisting>, without
the opening or closing <programlisting> tags.

program_file (list) Managed externally by the root similar to file_name etc, this is the
name of the file that will be created to display the program listing if it exists. Set to None on
creation, refer to exhale.ExhaleRoot.initializeNodeFilenameAndLink().

program_link_name (str) Managed externally by the root similar to file_name
etc, this is the reStructuredText link that will be declared at the top of the
program_file. Set to None on creation, refer to exhale.ExhaleRoot.
initializeNodeFilenameAndLink().

__lt__(other)
The ExhaleRoot class stores a bunch of lists of ExhaleNode objects. When these lists are sorted, this
method will be called to perform the sorting.

Parameters

other (ExhaleNode) The node we are comparing whether self is less than or not.

Return (bool) True if self is less than other, False otherwise.

findNestedNamespaces(lst)
Recursive helper function for finding nested namespaces. If this node is a namespace node, it is appended
to lst. Each node also calls each of its child findNestedNamespaces with the same list.

Parameters

lst (list) The list each namespace node is to be appended to.

findNestedDirectories(lst)
Recursive helper function for finding nested directories. If this node is a directory node, it is appended to
lst. Each node also calls each of its child findNestedDirectories with the same list.

Parameters

lst (list) The list each directory node is to be appended to.

findNestedClassLike(lst)
Recursive helper function for finding nested classes and structs. If this node is a class or struct, it is
appended to lst. Each node also calls each of its child findNestedClassLike with the same list.

Parameters

lst (list) The list each class or struct node is to be appended to.

findNestedEnums(lst)
Recursive helper function for finding nested enums. If this node is a class or struct it may have had an enum
added to its child list. When this occurred, the enum was removed from self.enums in the exhale.
ExhaleRoot class and needs to be rediscovered by calling this method on all of its children. If this node
is an enum, it is because a parent class or struct called this method, in which case it is added to lst.

Note: this is used slightly differently than nested directories, namespaces, and classes will be. Refer to
exhale.ExhaleRoot.generateNodeDocuments() function for details.

Parameters

lst (list) The list each enum is to be appended to.

findNestedUnions(lst)
Recursive helper function for finding nested unions. If this node is a class or struct it may have had a

32 Chapter 3. Developer Reference Documentation

exhale Documentation, Release 1.0

union added to its child list. When this occurred, the union was removed from self.unions in the
exhale.ExhaleRoot class and needs to be rediscovered by calling this method on all of its children.
If this node is a union, it is because a parent class or struct called this method, in which case it is added to
lst.

Note: this is used slightly differently than nested directories, namespaces, and classes will be. Refer to
exhale.ExhaleRoot.generateNodeDocuments() function for details.

Parameters

lst (list) The list each union is to be appended to.

toConsole(level, printChildren=True)
Debugging tool for printing hierarchies / ownership to the console. Recursively calls children toConsole
if this node is not a directory or a file, and printChildren == True.

Parameters

level (int) The indentation level to be used, should be greater than or equal to 0.

printChildren (bool) Whether or not the toConsole method for the children found
in self.children should be called with level+1. Default is True, set to False for
directories and files.

typeSort()
Sorts self.children in place, and has each child sort its own children. Refer to exhale.
ExhaleRoot.deepSortList() for more information on when this is necessary.

inClassView()
Whether or not this node should be included in the class view hierarchy. Helper method for exhale.
ExhaleNode.toClassView(). Sets the member variable self.in_class_view to True if ap-
propriate.

Return (bool) True if this node should be included in the class view — either it is a node of kind
struct, class, enum, union, or it is a namespace that one or more if its descendants
was one of the previous four kinds. Returns False otherwise.

toClassView(level, stream, treeView, lastChild=False)
Recursively generates the class view hierarchy using this node and its children, if it is determined by
exhale.ExhaleNode.inClassView() that this node should be included.

Parameters

level (int) An integer greater than or equal to 0 representing the indentation level for this
node.

stream (StringIO) The stream that is being written to by all of the nodes (created and
destroyed by the ExhaleRoot object).

treeView (bool) If False, standard reStructuredText bulleted lists will be written to the
stream. If True, then raw html unordered lists will be written to the stream.

lastChild (bool) When treeView == True, the unordered lists generated need to
have an <li class=”lastChild”> tag on the last child for the collapsibleList to work
correctly. The default value of this parameter is False, and should only ever be set to True
internally by recursive calls to this method.

inDirectoryView()
Whether or not this node should be included in the file view hierarchy. Helper method for exhale.
ExhaleNode.toDirectoryView(). Sets the member variable self.in_directory_view to
True if appropriate.

3.4. Ownership Graph Representation 33

exhale Documentation, Release 1.0

Return (bool) True if this node should be included in the file view — either it is a node of kind
file, or it is a dir that one or more if its descendants was a file. Returns False otherwise.

toDirectoryView(level, stream, treeView, lastChild=False)
Recursively generates the file view hierarchy using this node and its children, if it is determined by
exhale.ExhaleNode.inDirectoryView() that this node should be included.

Parameters

level (int) An integer greater than or equal to 0 representing the indentation level for this
node.

stream (StringIO) The stream that is being written to by all of the nodes (created and
destroyed by the ExhaleRoot object).

treeView (bool) If False, standard reStructuredText bulleted lists will be written to the
stream. If True, then raw html unordered lists will be written to the stream.

lastChild (bool) When treeView == True, the unordered lists generated need to
have an <li class=”lastChild”> tag on the last child for the collapsibleList to work
correctly. The default value of this parameter is False, and should only ever be set to True
internally by recursive calls to this method.

__weakref__
list of weak references to the object (if defined)

34 Chapter 3. Developer Reference Documentation

CHAPTER 4

FAQ

Nothing is working, where did I go wrong?

Sorry to hear that. Please try comparing how your documentation is set up with the companion website.

If things look similar enough, or something isn’t clear, raise an issue on GitHub. I’ll do my best to support what I can,
and if similar questions come up then I can add them to this FAQ.

Why does it build locally, but not on Read the Docs?

Most likely Exhale is failing to build if you are getting this.

Make sure you have the virtualenv functionality available on the Admin page of your website enabled, and provide a
requirements.txt that has at the very least the line breathe (lower case, RTD will pip install every line
in requirements.txt). Refer to the RTD docs here.

Metaprogramming and full template specialization?

Nope. Partial template specialization at best is supported by Breathe; not full template specialization. Furthermore,
Doxygen can barely handle metaprogramming...YMMV.

For partial templates, see the breathe templates section for how you would specialize. My understanding is the spacing
is sensitive. I have yet to be able to include any form of template specialization in breathe, though, including their
example code.

35

http://my-favorite-documentation-test.readthedocs.io/en/latest/
http://docs.readthedocs.io/en/latest/faq.html#my-project-isn-t-building-with-autodoc
http://breathe.readthedocs.io/en/latest/class.html#template-specialisation-example

exhale Documentation, Release 1.0

36 Chapter 4. FAQ

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

37

exhale Documentation, Release 1.0

38 Chapter 5. Indices and tables

Index

Symbols
__lt__() (exhale.ExhaleNode method), 32
__weakref__ (exhale.ExhaleNode attribute), 34

C
consoleFormat() (exhale.ExhaleRoot method), 30

D
deepSortList() (exhale.ExhaleRoot method), 26
discoverAllNodes() (exhale.ExhaleRoot method), 24
discoverNeigbors() (exhale.ExhaleRoot method), 24

E
enumerateAll() (exhale.ExhaleRoot method), 30
exclaimError() (in module exhale), 21
EXHALE_FILE_HEADING (in module exhale), 21
EXHALE_SECTION_HEADING (in module exhale), 21
EXHALE_SUBSECTION_HEADING (in module ex-

hale), 22
ExhaleNode (class in exhale), 30
ExhaleRoot (class in exhale), 22

F
filePostProcess() (exhale.ExhaleRoot method), 26
fileRefDiscovery() (exhale.ExhaleRoot method), 25
findNestedClassLike() (exhale.ExhaleNode method), 32
findNestedDirectories() (exhale.ExhaleNode method), 32
findNestedEnums() (exhale.ExhaleNode method), 32
findNestedNamespaces() (exhale.ExhaleNode method),

32
findNestedUnions() (exhale.ExhaleNode method), 32

G
generate() (in module exhale), 17
generateAPIRootBody() (exhale.ExhaleRoot method), 28
generateAPIRootHeader() (exhale.ExhaleRoot method),

26
generateAPIRootSummary() (exhale.ExhaleRoot

method), 30

generateClassView() (exhale.ExhaleRoot method), 29
generateDirectoryNodeDocuments() (exhale.ExhaleRoot

method), 28
generateDirectoryNodeRST() (exhale.ExhaleRoot

method), 28
generateDirectoryView() (exhale.ExhaleRoot method),

29
generateFileNodeDocuments() (exhale.ExhaleRoot

method), 28
generateFullAPI() (exhale.ExhaleRoot method), 26
generateNamespaceChildrenString() (exhale.ExhaleRoot

method), 28
generateNamespaceNodeDocuments() (ex-

hale.ExhaleRoot method), 27
generateNodeDocuments() (exhale.ExhaleRoot method),

26
generateSingleNamespace() (exhale.ExhaleRoot

method), 27
generateSingleNodeRST() (exhale.ExhaleRoot method),

27
generateSortedChildListString() (exhale.ExhaleRoot

method), 28
generateUnabridgedAPI() (exhale.ExhaleRoot method),

29
generateViewHierarchies() (exhale.ExhaleRoot method),

29
gerrymanderNodeFilenames() (exhale.ExhaleRoot

method), 29

I
inClassView() (exhale.ExhaleNode method), 33
inDirectoryView() (exhale.ExhaleNode method), 33
initializeNodeFilenameAndLink() (exhale.ExhaleRoot

method), 27

K
kindAsBreatheDirective() (in module exhale), 20

P
parse() (exhale.ExhaleRoot method), 24

39

exhale Documentation, Release 1.0

Q
qualifyKind() (in module exhale), 19

R
renameToNamespaceScopes() (exhale.ExhaleRoot

method), 25
reparentAll() (exhale.ExhaleRoot method), 24
reparentClassLike() (exhale.ExhaleRoot method), 25
reparentDirectories() (exhale.ExhaleRoot method), 25
reparentNamespaces() (exhale.ExhaleRoot method), 25
reparentUnions() (exhale.ExhaleRoot method), 25

S
sortInternals() (exhale.ExhaleRoot method), 26
specificationsForKind() (in module exhale), 20

T
toClassView() (exhale.ExhaleNode method), 33
toConsole() (exhale.ExhaleNode method), 33
toConsole() (exhale.ExhaleRoot method), 30
toDirectoryView() (exhale.ExhaleNode method), 34
trackNodeIfUnseen() (exhale.ExhaleRoot method), 24
typeSort() (exhale.ExhaleNode method), 33

40 Index

	Overview
	What does it do?
	What does it need to do that?

	Usage
	Quickstart
	Additional Usage and Customization
	Fully Automated Building
	Doxygen Documentation Specifics
	Start to finish for Read the Docs

	Developer Reference Documentation
	Primary Entry Point
	Helper Functions
	Exposed Utility Variables
	Ownership Graph Representation

	FAQ
	Nothing is working, where did I go wrong?
	Why does it build locally, but not on Read the Docs?
	Metaprogramming and full template specialization?

	Indices and tables

