

Exhale

Automatic C++ library api documentation generation: breathe doxygen in and exhale it out.
A Quickstart guide gives the bare minimum needed to get things
working, please read the Overview section if you are new to Sphinx or
Breathe.

This project revives the Doxygen style hierarchies in reStructuredText documents so that
you can keep using the beautiful Sphinx websites, but have a more human-readable Library
API without having to manually write it out yourself. Exhale is self-contained and
easily portable to Read the Docs. You should be able to use any Sphinx theme of your
choosing, though some of them likely work better than others.

A more comprehensive example repository (which was used for testing once upon a time) is
located at the companion [http://my-favorite-documentation-test.readthedocs.io/en/latest/] site.

	Overview
	What does it do?

	What does it need to do that?

	Usage
	Quickstart

	Additional Usage and Customization

	Fully Automated Building

	Doxygen Documentation Specifics

	Start to finish for Read the Docs

	Developer Reference Documentation
	Primary Entry Point

	Helper Functions

	Exposed Utility Variables

	Ownership Graph Representation

	FAQ
	Nothing is working, where did I go wrong?

	Why does it build locally, but not on Read the Docs?

	Metaprogramming and full template specialization?

Indices and tables

	Index

	Module Index

	Search Page

Overview

Exhale is an automatic C++ library API generation utility. It attempts to port the
Doxygen hierarchy view presentations for classes and files into the Sphinx domain. See
the Quickstart for the bare minimum you need to give to integrate it
into your project.

What does it do?

Exhale is completely dependent upon valid Doxygen documentation, and a working interface
with Breathe. More specifically exhale explicitly parses the Doxygen xml using Breathe.
Once Breathe is done parsing everything, the problem basically becomes a graph traversal
except that parts of the graph have been lost somewhere and need to be rediscovered.

Once the graph has been reconstructed and traversed, the API reStructuredText documents
are generated and linked to one another, as well as the root library document. The
intent of the root library document is for you to just include it in your top-level
index toctree directive. Refer to Additional Usage and Customization for how the root library document
will be presented as well as how to customize it.

The individual and root library page are an attempt to emulate the output of what
Doxygen would for their html class and file hierarchies. Many similarities exist, such
as the inclusion of struct before class in ranking over alphabetical. However,
I took a few liberties to change the output to include things I felt were more useful,
such as including enum in the Class Hierarchy.

Note

Every generated file has a reStructuredText label that you can use to highlight
specific items such as an important class or a file. Refer to
Linking to a Generated File for more information.

What does it need to do that?

Assuming you have Sphinx, Doxygen, and Breathe working with each other, exhale needs at
least the following information:

	The location of the output of the Doxygen xml index.xml file.

	The name of the folder you want the generated files to be put in. You can give
the current directory, but it will get messy.

	The name of the root file you will be linking to from your reStructuredText.
This file will be in the directory from 2.

	The title of the document for 3, since this will appear in a .. toctree:: directive.

	The relative or absolute path to strip from the File Pages. If you follow the
tutorials present on this site, this will always be "..". This may be removed
in the future, but currently if this is not supplied then hosting on Read the Docs
will break.

Warning

Order of execution matters: Doxygen must be executed / updated before exhale. If you
are calling exhale from conf.py, then you must specify either an absolute path,
or a path relative to conf.py for items 1 and 2 above.

I intentionally wrote exhale in one file
(exhale [https://github.com/svenevs/exhale/blob/master/exhale.py]) so that you can
just drop that into your repository — e.g. right next to conf.py. If you are
hosting on Read the Docs, make sure that exhale.py is being tracked by git.

So if your documentation directory structure looked like:

docs/
│ conf.py # created by sphinx-quickstart
│ exhale.py # placed here by you
│ index.rst # created by sphinx-quickstart
│ about.rst # created by you
│ Makefile # created by sphinx-quickstart
│ Doxyfile # created by you
└───doxyoutput/ # output destination of Doxygen
 └───xml/
 index.xml
 ... other doxygen xml output ...

Then you could answer 1-5 above with

	1
	Doxygen xml index location
	"./doxyoutput/xml/index.xml"

	2
	Generated library containment folder
	"./generated_api"

	3
	Generated library root file
	"library_root.rst"

	4
	Generated library root file title
	"Library API"

	5
	Path to strip from Doxygen output
	".."

and the following directory structure would be produced:

docs/
│ conf.py # created by sphinx-quickstart
│ exhale.py # placed here by you
│ index.rst # created by sphinx-quickstart
│ about.rst # created by you
│ Makefile # created by sphinx-quickstart
│ Doxyfile # created by you
├───doxyoutput/ # output destination of Doxygen
│ └───xml/
│ index.xml
│ ... other doxygen xml output ...
└───generated_api/
 library_root.rst
 ... many other files ...

That is, all exhale is actually doing is creating a large number of independent
reStructuredText documents that link between each other. Include the file from 3
in a toctree somewhere, and that file will link to every possible generated file
in some way or another. These are also all searchable, since Sphinx is given control
of the final setup and linking.

Note

The file in 3 should not have the path from 2 preceding, exhale does that.

Usage

Using exhale can be simple or involved, depending on how much you want to change and
how familiar you are with things like Sphinx, Breathe, Doxygen, and Jinja. At the top
level, what you need is:

	Your C++ code you want to document, with “proper” Doxygen documentation. Please
read the Doxygen Documentation Specifics for common documentation pitfalls,
as well as features previously unavailable in standard Doxygen.

	Generating the API using Sphinx, Doxygen, Breathe already working.

Quickstart

In your conf.py

setup is called auto-magically for you by Sphinx
def setup(app):
 # create the dictionary to send to exhale
 exhaleArgs = {
 "doxygenIndexXMLPath" : "./doxyoutput/xml/index.xml",
 "containmentFolder" : "./generated_api",
 "rootFileName" : "library_root.rst",
 "rootFileTitle" : "Library API",
 "doxygenStripFromPath" : ".."
 }

 # import the exhale module from the current directory and generate the api
 sys.path.insert(0, os.path.abspath('.')) # exhale.py is in this directory
 from exhale import generate
 generate(exhaleArgs)

In your index.rst, you might have something like

.. toctree::
 :maxdepth: 2

 about
 generated_api/library_root

Note

The above assumes that your Doxygen xml tree has already been created. The
Fully Automated Building section provides additional steps to do this all at once.

Lastly, you will likely want to add these two lines somewhere in conf.py as well:

Tell sphinx what the primary language being documented is.
primary_domain = 'cpp'

Tell sphinx what the pygments highlight language should be.
highlight_language = 'cpp'

The full documentation for the only (official) entry point is: exhale.generate().

Additional Usage and Customization

The main library page that you will link to from your documentation is laid out as
follows:

	1
	{{ Library API Title }}
	Heading

	2
	{{ after title description }}
	Section 1

	3
	Class Hierarchy
	Section 2

	4
	File Hierarchy
	Section 3

	5
	Full API Listing
	Section 4

	6
	{{ after body description }}
	Section 5

	The dictionary key rootFileTitle passed to exhale.generate() function is what will
be the Heading title.

	Section 1 can optionally be provided by the dictionary key afterTitleDescription
in the argument to exhale.generate().

	The class view hierarchy (including namespaces with class-like children).

	The file view hierarchy (including folders).

	An ordered enumeration of every Breathe compound found, except for groups.

	Section 5 can optionally be provided by the dictionary key afterBodySummary in
the argument to exhale.generate().

Clickable Hierarchies

While I would love to automate this for you, it is not possible to do so very easily.
If you would like to have a more interactive hierarchy view (instead of just bulleted
lists), you will need to add some extra files for it to work. There are a lot of
different options available, but I rather enjoy Stephen Morley’s collapsibleLists [http://code.stephenmorley.org/javascript/collapsible-lists/]: it’s
effective, easily customizable if you know front-end, and has a generous license [http://code.stephenmorley.org/about-this-site/copyright/].

You will need

	The javascript library.

	The css stylesheet and its associated images.

	A sphinx template override.

I have taken the liberty of adding these files to the exhale repository, just clone
exhale and move the files to where you need them to go. Specifically, the exhale
repository looks like this:

exhale/
 │ README.md
 │ exhale.py # put next to conf.py
 └───treeView/
 ├───_static/
 │ └───collapse/
 │ CollapsibleLists.compressed.js # (1) library
 │ tree_view.css # (2) stylesheet
 │ button-closed.png # v associated images
 │ button-open.png
 │ button.png
 │ list-item-contents.png
 │ list-item-last-open.png
 │ list-item-last.png
 │ list-item-open.png
 │ list-item-root.png
 │ list-item.png
 └───_templates/
 layout.html # (3) MUST be layout.html

You then just need to to move the folder collapse to your _static directory, and
move layout.html to your _templates directory. So your docs folder might
look something like:

docs/
 │ conf.py # created by sphinx-quickstart
 │ exhale.py # placed here by you
 │ index.rst # created by sphinx-quickstart
 │ about.rst # created by you
 │ Makefile # created by sphinx-quickstart
 ├───_static/
 │ └───collapse/
 │ ... everything from above ...
 └───_templates/
 layout.html # copied from above

Sphinx will make everything else fall into place in the end. If you already have your
own layout.html, you know what you are doing — just look at mine and add the
relevant lines to yours.

You can now add the key value pair createTreeView = True to the dictionary you are
passing to exhale.generate().

Warning

If you are hosting on Read the Docs, you will need to make sure you are tracking all
of those files with git!

Linking to a Generated File

Every file created by exhale is given a reStructuredText label that you can use to link
to the API page. It is easiest to just show how the labels are created.

def initializeNodeFilenameAndLink(self, node):
 html_safe_name = node.name.replace(":", "_").replace("/", "_")
 node.link_name = "{}_{}".format(qualifyKind(node.kind).lower(), html_safe_name)

The parameter node is an exhale.ExhaleNode object. So if the node being
represented is a struct some_thing in namespace arbitrary, then

node.name := "arbitrary::some_thing"
node.link_name := "struct_arbitrary__some_thing"

Noting that there are two underscores between arbitrary and some. Refer to
the full documentation of exhale.qualifyKind() for the possible return values.
If this is not working, simply generate the API once and look at the top of the file
generated for the thing you are trying to link to. Copy the link (ignoring the leading
underscore) and use that.

These are reStructuredText links, so in the above example you would write

I am linking to :ref:`struct_arbitrary__some_thing`.

Alternatively, you can link to a class with :class:`namespace::ClassName`, as well
as link to a method within that class using :func:`namespace::ClassName::method`.

Customizing Breathe Output

Breathe provides you with many excellent configurations for the various reStructuredText
directives it provides. Your preferences will likely be different than mine for what
you do / do not want to show up. The default behavior of exhale is to use all default
values for all Breathe directives except for classes and structs. Classes and structs
will request documentation for :members:, :protected-members:, and
:undoc-members:.

To change the behavior of any of the breathe directives, you will need to implement your
own function and specify that as the customSpecificationFunction for
exhale.generate(). Please make sure you read the documentation for
exhale.specificationsForKind() before implementing, the requirements are very
specific. An example custom implementation could be included in conf.py as follows:

def customSpecificationsForKind(kind):
 if kind == "class" or kind == "struct":
 return " :members:\n :protected-members:\n :no-link:\n"
 elif kind == "enum":
 return " :outline:\n"
 return ""

and you would then change the declaration of the dictionary you are passing to
exhale.generate() to be:

exhaleArgs = {
 "doxygenIndexXMLPath" : "./doxyoutput/xml/index.xml",
 "containmentFolder" : "./generated_api",
 "rootFileName" : "library_root.rst",
 "rootFileTitle" : "Library API",
 "customSpecificationFunction" : customSpecificationsForKind
 }

Note

The value of the key customSpecificationFunction is not a string, just the
name of the function. These are first class objects in Python, which makes the above exceptionally convenient :)

Customizing File Pages

File pages are structured something like

	File {{ filename of exhale node }}
	Heading

	1
	Definition ({{ path to file with folders }})
	Section 1

	2
	
	Program Listing for file (hyperlink)

	... other common information ...

	3
	{{ appendBreatheFileDirective }}

	Heading:

	Uses the file name without a path to it. If the path was include/File.h, then
the line would be File File.h.

	Section 1:

	The following Doxygen variables control what this section looks like, as well as
whether or not it is included at all.

	Set the Doxygen variable STRIP_FROM_PATH to change the output inside of
parentheses.

If the file path is ../include/arbitrary/File.h and STRIP_FROM_PATH = .., the
parentheses line will be Definition (include/arbitrary/File.h). If you change
STRIP_FROM_PATH to ../include, then line 1 will be
Definition (arbitrary/File.h).

The appearance of this line will also be affected by whether or not you are using the
Doxygen variable FULL_PATH_NAMES. In addition to leaving its default YES
value, I have had best success with setting the STRIP_FROM_PATH variable.

	If you set XML_PROGRAMLISTING = YES, then the code of the program (as Doxygen
would display it) will be included as a bulleted hyperlink. It is the full file
including whitespace, with documentation strings removed. Programming comments
remain in the file.

Unlike Doxygen, I do not link to anything in the code. Maybe sometime in the future?

	If the value of "appendBreatheFileDirective" = True in the arguments passed to
exhale.generate(), then the following section will be appended to the bottom
of the file being generated:

Full File Listing
--

.. doxygenfile:: {{ exhale_node.location }}

This will hopefully be a temporary workaround until I can figure out how to robustly
parse the xml for this, or figure out how to manipulate Breathe to give me this
information (since it clearly exists...). This workaround is unideal in that any
errors you have in any of the documentation of the items in the file will be
duplicated by the build, as well as a large number of DUPLICATE id’s will be flagged.
The generated links inside of the produced output by Breathe will now also link to
items on this page first. AKA this is a buggy feature that I hope to fix soon, but
if you really need the file documentation in your project, this is currently the
only way to include it.

Note

If you set XML_PROGRAMLISTING = NO, then the file in which an
enum, class, variable, etc is declared may not be recovered. To my
experience, the missing items not recovered are only declared in the programlisting.
See the exhale.ExhaleRoot.fileRefDiscovery() part of the parsing process.

Fully Automated Building

It is preferable to have everything generated at once, e.g. if you wish to host your
documentation on Read the Docs. I make the assumption that you already have a
Makefile created by sphinx-quickstart. Instead of a Doxyfile, though, we’re
going to take it one step further. Your specific arguments to Doxygen may be more
involved than this, but the below should get you started in the right direction.

In conf.py we now define at the bottom

def generateDoxygenXML(stripPath):
 '''
 Generates the doxygen xml files used by breathe and exhale.
 Approach modified from:

 - https://github.com/fmtlib/fmt/blob/master/doc/build.py

 :param stripPath:
 The value you are sending to exhale.generate via the
 key 'doxygenStripFromPath'. Usually, should be '..'.
 '''
 from subprocess import PIPE, Popen
 try:
 doxygen_cmd = ["doxygen", "-"]# "-" tells Doxygen to read configs from stdin
 doxygen_proc = Popen(doxygen_cmd, stdin=PIPE)
 doxygen_input = r'''
 # Make this the same as what you tell exhale.
 OUTPUT_DIRECTORY = doxyoutput
 # If you need this to be YES, exhale will probably break.
 CREATE_SUBDIRS = NO
 # So that only include/ and subdirectories appear.
 FULL_PATH_NAMES = YES
 STRIP_FROM_PATH = "%s/"
 # Tell Doxygen where the source code is (yours may be different).
 INPUT = ../include
 # Nested folders will be ignored without this. You may not need it.
 RECURSIVE = YES
 # Set to YES if you are debugging or want to compare.
 GENERATE_HTML = NO
 # Unless you want it?
 GENERATE_LATEX = NO
 # Both breathe and exhale need the xml.
 GENERATE_XML = YES
 # Set to NO if you do not want the Doxygen program listing included.
 XML_PROGRAMLISTING = YES
 # Allow for rst directives and advanced functions (e.g. grid tables)
 ALIASES = "rst=\verbatim embed:rst:leading-asterisk"
 ALIASES += "endrst=\endverbatim"
 ''' % stripPath)
 # In python 3 strings and bytes are no longer interchangeable
 if sys.version[0] == "3":
 doxygen_input = bytes(doxygen_input, 'ASCII')
 doxygen_proc.communicate(input=doxygen_input)
 doxygen_proc.stdin.close()
 if doxygen_proc.wait() != 0:
 raise RuntimeError("Non-zero return code from 'doxygen'...")
 except Exception as e:
 raise Exception("Unable to execute 'doxygen': {}".format(e))

Note

The above code should work for Python 2 and 3, but be careful not to modify the
somewhat delicate treatment of strings:

	doxygen_input = r'''...: the r is required to prevent the verbatim rst
directives to expand into control sequences (\v)

	In Python 3 you need to explicitly construct the bytes for communicating
with the process.

Now that you have defined this at the bottom of conf.py, we’ll add a modified
setup(app) method:

setup is called auto-magically for you by Sphinx
def setup(app):
 stripPath = ".."
 generateDoxygenXML(stripPath)

 # create the dictionary to send to exhale
 exhaleArgs = {
 "doxygenIndexXMLPath" : "./doxyoutput/xml/index.xml",
 "containmentFolder" : "./generated_api",
 "rootFileName" : "library_root.rst",
 "rootFileTitle" : "Library API",
 "doxygenStripFromPath" : stripPath
 }

 # import the exhale module from the current directory and generate the api
 sys.path.insert(0, os.path.abspath('.')) # exhale.py is in this directory
 from exhale import generate
 generate(exhaleArgs)

Now you can build the docs with make html and it will re-parse using Doxygen,
generate all relevant files, and give you an updated website. While some may argue that
this is wasteful, exhale is not smart enough and never will be smart enough to
provide incremental updates. The full api is regenerated. Every time. So you may as
well run Doxygen each time ;)

Note

Where Doxygen is concerned, you will likely need to give special attention to macros
and preprocessor definitions. Refer to the linked fmt docs in the above code
snippet. Of particular concern would be the following Doxygen config variables:

	ENABLE_PREPROCESSING

	MACRO_EXPANSION

	EXPAND_ONLY_PREDEF

	PREDEFINED (very useful if the Doxygen preprocessor is choking on your macros)

	SKIP_FUNCTION_MACROS

Doxygen Documentation Specifics

If you have not used Doxygen before, the below may be helpful in getting things started.
To make sure you have Doxygen working, first try just using Doxygen and viewing the html
output by setting GENERATE_HTML = YES. This is the default value of the variable,
when you get Sphinx / Breathe / exhale going, just set this variable to NO to avoid
creating unnecessary files.

There is a lot to make sure you do in terms of the documentation you write in a C++ file
to make Doxygen work. To get started, though, execute doxygen -g from your terminal
in a directory where there is no Doxyfile present and it will give you a large file
called Doxyfile with documentation on what all of the variables do. You can leave
a large number of them to their default values. To execute doxygen now, just enter
doxygen in the same directory as the Doxyfile and it will generate the html
output for you so you can verify it is working. Doxygen builds similarly to make.

Later, you can just use conf.py and won’t need to keep your Doxyfile, but you
could also just keep the Doxyfile you have working for you and execute doxygen
with no parameters in conf.py before calling exhale.generate().

	Files you want documented must have \file somewhere. From the Doxygen
documentation reiteration [https://www.stack.nl/~dimitri/doxygen/manual/docblocks.html]:

Let’s repeat that, because it is often overlooked: to document global objects
(functions, typedefs, enum, macros, etc), you must document the file in which
they are defined.

	Classes, structs, and unions need additional care in order for them to appear in the
hierarchy correctly. If you have a file in a directory, the Doxygen FAQ [https://www.stack.nl/~dimitri/doxygen/manual/faq.html#faq_code_inc] explains
that you need to specify this location:

You can also document your class as follows:

/*! \class MyClassName include.h path/include.h
 *
 * Docs for MyClassName
 */

So a minimal working example of the file directory/file.h defining struct thing
might look like:

/** \file */
#ifndef _DIRECTORY_THING_H
#define _DIRECTORY_THING_H

/**
 * \struct thing file.h directory/file.h
 *
 * \brief The documentation about the thing.
 */
 struct thing {
 /// The thing that makes the thing.
 thing() {}
 };

#endif // _DIRECTORY_THING_H

	Deviations from the norm. The cool thing about using Sphinx in this context is that
you have some flexibility inherent in the fact that we are using reStructuredText.
For example, instead of using \ref, you can just link to another documented item
with `item`. This works across files as well, so you could link to class A
in a different file from class B with `A` in the documentation string. You
could make a statement bold in your documentation with just **bold**!

I believe this includes the full range of reStructuredText syntax, but would not be
surprised if there were directives or notation that break something.

Note

I do not support groups with Doxygen, as I assume if you have gone through the
effort to group everything then you have a desire to manually control the output.
Breathe already has an excellent doxygengroup directive, and you should use that.

Start to finish for Read the Docs

Assuming you already had the code that you are generating the API for documented,
navigate to the top-level folder of your repository. Read the Docs (RTD) will be
looking for a folder named either doc or docs at the root of your repository
by default:

$ cd ~/my_repo/
$ mkdir docs

Now we are ready to begin.

	Generate your sphinx code by using the sphinx-quickstart utility. It may look
something like the following:

$ ~/my_repo/docs> sphinx-quickstart
Welcome to the Sphinx 1.3.1 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]:

Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]:

... and a whole lot more ...

Warning

The default value for > Create Makefile? (y/n) [y]: must be yes to work on RTD.
They are giving you a unix virtual environment.

	This will create the files conf.py, index.rst, Makefile, and make.bat
if you are supporting Windows. It will also create the directories _static and
_templates for customizing the sphinx output.

	Create a requirements.txt file with the line breathe so RTD will install it:

$ ~/my_repo/docs> echo 'breathe' > requirements.txt

Alternatively, you can have RTD install via Git Tags. At the time of writing this,
the latest tag for breathe is 4.3.1, so in your requirements.txt you
would have

git+git://github.com/michaeljones/breathe@v4.3.1#egg=breathe

	Clone exhale and steal all of the files you will need:

$ ~/my_repo/docs> git clone https://github.com/svenevs/exhale.git
$ ~/my_repo/docs> mv exhale/exhale.py .
$ ~/my_repo/docs> mv exhale/treeView/_static/collapse/ ./_static/
$ ~/my_repo/docs> mv exhale/treeView/_templates/layout.html _templates/
$ ~/my_repo/docs> rm -rf exhale/

	Uncomment the line sys.path.insert(0, os.path.abspath('.')) at the top of the
generated conf.py so that Sphinx will know where to look for exhale.py.

	Two options below (5) in conf.py, add 'breathe' to the extensions list
so that the directives from Breathe can be used.

	Just below the extensions list, configure breathe. Adding the following should
be sufficient:

breathe_projects = { "yourProjectName": "./doxyoutput/xml" }
breathe_default_project = "yourProjectName"

	Edit conf.py to use the RTD Theme. You are of course able to use a different
Sphinx theme, but the RTD Theme is what this will enable. Replace the html_theme
and html_theme_path lines (or comment them out) with:

on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd: # only import and set the theme if we're building docs locally
 import sphinx_rtd_theme
 html_theme = 'sphinx_rtd_theme'
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

	Edit conf.py to include the generateDoxygenXML and setup methods provided
in Fully Automated Building at the bottom of the file.

	Add createTreeView = True to the dictionary arguments sent to exhale.generate().

	Go to the admin page of your RTD website and select the Advanced Settings tab.
Make sure the Install your project inside a virtualenv using setup.py install
button is checked. In the Requirements file box below, enter
docs/requirements.txt assuming you followed the steps above.

I personally prefer to keep the requirements.txt hidden in the docs folder
so that it is implicit that those are only requirements for building the docs, and
not the actual project itself.

And you are done. Make sure you git add all of the files in your new docs
directory, RTD will clone your repository / update when you push commits. You can
build it locally using make html in the current directory, but make sure you do not
add the _build directory to your git repository.

I hope that the above is successful for you, it looks like a lot but it’s not too bad...
right?

Developer Reference Documentation

Primary Entry Point

The main entry point to exhale is through the generate function. This method internally
calls breathe, reparses / rebuilds the hierarchies, and then generates the API.

	
exhale.generate(exhaleArgs)

	The main entry point to exhale, which parses and generates the full API.

	Parameters:	
	exhaleArgs (dict)

	The dictionary of arguments to configure exhale with. All keys are strings,
and most values should also be strings. See below.

Required Entries:

	key: "doxygenIndexXMLPath" — value type: str

	The absolute or relative path to where the Doxygen index.xml is. A relative
path must be relative to the file calling exhale.

	key: "containmentFolder" — value type: str

	The folder the generated API will be created in. If the folder does not exist,
exhale will create the folder. The path can be absolute, or relative to the
file that is calling exhale. For example, "./generated_api".

	key: "rootFileName" — value type: str

	The name of the file that you will be linking to from your reStructuredText
documents. Do not include the containmentFolder path in this file name,
exhale will create the file "{}/{}".format(containmentFolder, rootFileName).

In order for Sphinx to be happy, you should include a .rst suffix. All of
the generated API uses reStructuredText, and that will not ever change.

For example, if you specify

	"containmentFolder" = "./generated_api", and

	"rootFileName" = "library_root.rst"

Then exhale will generate the file ./generated_api/library_root.rst.

You could include this file in a toctree directive (say in index.rst) with:

.. toctree:
 :maxdepth: 2

 generated_api/library_root

Since Sphinx allows for some flexibility (e.g. your primary domain may be using
.txt files), no error checking will be performed.

	key: "rootFileTitle" — value type: str

	The title to be written at the top of rootFileName, which will appear in
your file including it in the toctree directive.

	key: "doxygenStripFromPath" — value type: str

	When building on Read the Docs, there seem to be issues regarding the Doxygen
variable STRIP_FROM_PATH when built remotely. That is, it isn’t stripped at
all. Provide me with a string path (e.g. ".."), and I will strip this for
you for the File nodes being generated. I will use the exact value of
os.path.abspath("..") in the example above, so you can supply either a
relative or absolute path. The File view hierarchy will break if you do
not give me a value for this, and therefore I hesitantly require this argument.
The value ".." assumes that conf.py is in a docs/ or similar folder
exactly one level below the repository’s root.

Additional Options:

	key: "afterTitleDescription" — value type: str

	Properly formatted reStructuredText with no indentation to be included
directly after the title. You can use any rst directives or formatting you wish
in this string. I suggest using the textwrap module, e.g.:

description = textwrap.dedent('''
This is a description of the functionality of the library being documented.

.. warning::

 Please be advised that this library does not do anything.
''')

Then you can add "afterTitleDescription" = description to your dictionary.

	key: "afterBodySummary" — value type: str

	Similar to afterTitleDescription, this is a string with reStructuredText
formatting. This will be inserted after the generated API body. The layout
looks something like this:

rootFileTitle
==

afterTitleDescription (if provided)

[[[GENERATED API BODY]]]

afterBodySummary (if provided)

	key: "createTreeView" — value type: bool

	For portability, the default value if not specified is False, which will
generate reStructuredText bulleted lists for the Class View and File View
hierarchies. If True, raw html unordered lists will be generated. Please
refer to the Clickable Hierarchies subsection of Additional Usage and Customization
for more details.

	key: "fullToctreeMaxDepth" — value type: int

	Beneath the Class View and File View hierarchies a Full API listing is generated
as there are items that may not appear in the Class View hierarchy, as well as
without this an obscene amount of warnings are generated from Sphinx because
neither view actually uses a toctree, they link directly.

The default value is 5 if not specified, but you may want to give a smaller
value depending on the framework being documented. This value must be greater
than or equal to 1 (this is the value of :maxdepth:).

	key: "appendBreatheFileDirective" — value type: bool

	Currently, I do not know how to reliably extract the brief / detailed file
descriptions for a given file node. Therefore, if you have file level
documentation in your project that has meaning, it would otherwise be omitted.
As a temporary patch, if you specify this value as True then at the bottom
of the file page the full doxygenfile directive output from Breathe will
be appended to the file documentiation. File level brief and detailed
descriptions will be included, followed by a large amount of duplication. I
hope to remove this value soon, in place of either parsing the xml more
carefully or finding out how to extract this information directly from Breathe.

The default value of this behavior is False if it is not specified in the
dictionary passed as input for this method. Please refer to the Customizing
File Pages subsection of Customizing File Pages for more
information on what the impact of this variable is.

	key: "customSpecificationFunction" — value type: function

	The custom specification function to override the default behavior of exhale.
Please refer to the exhale.specificationsForKind() documentation.

	Raises:	
	ValueError – If the required dictionary arguments are not present, or any of the (key, value)
pairs are invalid.

	RuntimeError – If any fatal error is caught during the generation of the API.

Helper Functions

There are a few helper functions used throughout the framework that effectively just
reformat the input into a specific kind of output for incorporating into
reStructuredText documents, and the directives used in those documents. The last
function is largely unrelated to exhale, and just prints something to the console in a
way that makes it stick out a little more.

	
exhale.qualifyKind(kind)

	Qualifies the breathe kind and returns an qualifier string describing this
to be used for the text output (e.g. in generated file headings and link names).

The output for a given kind is as follows:

	Input Kind
	Output Qualifier

	“class”
	“Class”

	“define”
	“Define”

	“enum”
	“Enum”

	“enumvalue”
	“Enumvalue”

	“file”
	“File”

	“function”
	“Function”

	“group”
	“Group”

	“namespace”
	“Namespace”

	“struct”
	“Struct”

	“typedef”
	“Typedef”

	“union”
	“Union”

	“variable”
	“Variable”

The following breathe kinds are ignored:

	“autodoxygenfile”

	“doxygenindex”

	“autodoxygenindex”

Note also that although a return value is generated, neither “enumvalue” nor
“group” are actually used.

	Parameters:	
	kind (str)

	The return value of a Breathe compound object’s get_kind() method.

	Return (str):	The qualifying string that will be used to build the reStructuredText titles and
other qualifying names. If the empty string is returned then it was not
recognized.

	
exhale.kindAsBreatheDirective(kind)

	Returns the appropriate breathe restructured text directive for the specified kind.
The output for a given kind is as follows:

	Input Kind
	Output Directive

	“class”
	“doxygenclass”

	“define”
	“doxygendefine”

	“enum”
	“doxygenenum”

	“enumvalue”
	“doxygenenumvalue”

	“file”
	“doxygenfile”

	“function”
	“doxygenfunction”

	“group”
	“doxygengroup”

	“namespace”
	“doxygennamespace”

	“struct”
	“doxygenstruct”

	“typedef”
	“doxygentypedef”

	“union”
	“doxygenunion”

	“variable”
	“doxygenvariable”

The following breathe kinds are ignored:

	“autodoxygenfile”

	“doxygenindex”

	“autodoxygenindex”

Note also that although a return value is generated, neither “enumvalue” nor
“group” are actually used.

	Parameters:	
	kind (str)

	The kind of the breathe compound / ExhaleNode object (same values).

	Return (str):	The directive to be used for the given kind. The empty string is returned
for both unrecognized and ignored input values.

	
exhale.specificationsForKind(kind)

	Returns the relevant modifiers for the restructured text directive associated with
the input kind. The only considered values for the default implementation are
class and struct, for which the return value is exactly:

" :members:\n :protected-members:\n :undoc-members:\n"

Formatting of the return is fundamentally important, it must include both the prior
indentation as well as newlines separating any relevant directive modifiers. The
way the framework uses this function is very specific; if you do not follow the
conventions then sphinx will explode.

Consider a struct thing being documented. The file generated for this will be:

.. _struct_thing:

Struct thing
==

.. doxygenstruct:: thing
 :members:
 :protected-members:
 :undoc-members:

Assuming the first two lines will be in a variable called link_declaration, and
the next three lines are stored in header, the following is performed:

directive = ".. {}:: {}\n".format(kindAsBreatheDirective(node.kind), node.name)
specifications = "{}\n\n".format(specificationsForKind(node.kind))
gen_file.write("{}{}{}{}".format(link_declaration, header, directive, specifications))

That is, no preceding newline should be returned from your custom function, and
no trailing newline is needed. Your indentation for each specifier should be
exactly three spaces, and if you want more than one you need a newline in between
every specification you want to include. Whitespace control is handled internally
because many of the directives do not need anything added. For a full listing of
what your specifier options are, refer to the breathe documentation:

http://breathe.readthedocs.io/en/latest/directives.html

	Parameters:	
	kind (str)

	The kind of the node we are generating the directive specifications for.

	Return (str):	The correctly formatted specifier(s) for the given kind. If no specifier(s)
are necessary or desired, the empty string is returned.

	
exhale.exclaimError(msg, ansi_fmt='34;1m')

	Prints msg to the console in color with (!) prepended in color.

Example (uncolorized) output of exclaimError("No leading space needed."):

(!) No leading space needed.

All messages are written to sys.stderr, and are closed with [0m. The
default color is blue, but can be changed using ansi_fmt.

Documentation building has a verbose output process, this just helps distinguish an
error message coming from exhale.

	Parameters:	
	msg (str)

	The message you want printed to standard error.

	ansi_fmt (str)

	An ansi color format. msg is printed as
"\033[" + ansi_fmt + msg + "\033[0m\n, so you should specify both the
color code and the format code (after the semicolon). The default value is
34;1m — refer to
http://misc.flogisoft.com/bash/tip_colors_and_formatting for alternatives.

Exposed Utility Variables

	
exhale.EXHALE_FILE_HEADING

	The restructured text file heading separator ("=" * 88).

	
exhale.EXHALE_SECTION_HEADING

	The restructured text section heading separator ("-" * 88).

	
exhale.EXHALE_SUBSECTION_HEADING

	The restructured text sub-section heading separator ("*" * 88).

Ownership Graph Representation

A graph representing what classes belong to what namespaces, what file defines what, etc
is built with a single ExhaleRoot. This root node contains multiple different lists
of ExhaleNode objects that it parses from both Breathe and the Doxygen xml output.

If you are reading this, then you are likely trying to make changes. To avoid having
such a huge reference page, and enable viewing the reference documentation for the two
primary classes at the same time, they are on separate pages.

	Primary Class ExhaleRoot Reference

	Helper Class ExhaleNode Reference

Primary Class ExhaleRoot Reference

	
class exhale.ExhaleRoot(breatheRoot, rootDirectory, rootFileName, rootFileTitle, rootFileDescription, rootFileSummary, createTreeView)

	The full representation of the hierarchy graphs. In addition to containing specific
lists of ExhaleNodes of interest, the ExhaleRoot class is responsible for comparing
the parsed breathe hierarchy and rebuilding lost relationships using the Doxygen
xml files. Once the graph parsing has finished, the ExhaleRoot generates all of the
relevant reStructuredText documents and links them together.

The ExhaleRoot class is not designed for reuse at this time. If you want to
generate a new hierarchy with a different directory or something, changing all of
the right fields may be difficult and / or unsuccessful. Refer to the bottom of the
source code for exhale.generate() for safe usage (just exception handling),
but the design of this class is to be used as follows:

textRoot = ExhaleRoot(... args ...)
textRoot.parse()
textRoot.generateFullAPI()

Zero checks are in place to enforce this usage, and if you are modifying the
execution of this class and things are not working make sure you follow the ordering
of those methods.

	Parameters:	
	breatheRoot (instance)

	Type unknown, this is the return value of breathe.breathe_parse.

	rootDirectory (str)

	The name of the root directory to put everything in. This should be the
value of the key containmentFolder in the dictionary passed to
exhale.generate().

	rootFileName (str)

	The name of the file the root library api will be put into. This should not
contain the rootDirectory path. This should be the value of the key
rootFileName in the dictionary passed to exhale.generate().

	rootFileTitle (str)

	The title to be written to the top of rootFileName. This should be the
value of the key rootFileTitle in the dictionary passed to
exhale.generate().

	rootFileDescription (str)

	The description of the library api file placed after rootFileTitle.
This should be the value of the key afterTitleDescription in the
dictionary passed to exhale.generate().

	rootFileSummary (str)

	The summary of the library api placed after the generated hierarchy views.
This should be the value of the key afterBodySummary in the dictionary
passed to exhale.generate().

	createTreeView (bool)

	Creates the raw html unordered lists for use with collapsibleList if
True. Otherwise, creates standard reStructuredText bulleted lists. Should
be the value of the key createTreeView in the dictionary passed to
exhale.generate().

	Attributes:	
	breathe_root (instance)

	The value of the parameter breatheRoot.

	root_directory (str)

	The value of the parameter rootDirectory.

	root_file_name (str)

	The value of the parameter rootFileName.

	full_root_file_path (str)

	The full file path of the root file ("root_directory/root_file_name").

	root_file_title (str)

	The value of the parameter rootFileTitle.

	root_file_description (str)

	The value of the parameter rootFileDescription.

	root_file_summary (str)

	The value of the parameter rootFileSummary.

	class_view_file (str)

	The full file path the class view hierarchy will be written to. This is
incorporated into root_file_name using an .. include: directive.

	directory_view_file (str)

	The full file path the file view hierarchy will be written to. This is
incorporated into root_file_name using an .. include: directive.

	unabridged_api_file (str)

	The full file path the full API will be written to. This is incorporated
into root_file_name using a .. toctree: directive with a
:maxdepth: according to the value of the key fullToctreeMaxDepth
in the dictionary passed into exhale.generate().

	use_tree_view (bool)

	The value of the parameter createTreeView.

	all_compounds (list)

	A list of all the Breathe compound objects discovered along the way.
Populated during exhale.ExhaleRoot.discoverAllNodes().

	all_nodes (list)

	A list of all of the ExhaleNode objects created. Populated during
exhale.ExhaleRoot.discoverAllNodes().

	node_by_refid (dict)

	A dictionary with string ExhaleNode refid values, and values that are the
ExhaleNode it came from. Storing it this way is convenient for when the
Doxygen xml file is being parsed.

	class_like (list)

	The full list of ExhaleNodes of kind struct or class

	defines (list)

	The full list of ExhaleNodes of kind define.

	enums (list)

	The full list of ExhaleNodes of kind enum.

	enum_values (list)

	The full list of ExhaleNodes of kind enumvalue. Populated, not used.

	functions (list)

	The full list of ExhaleNodes of kind function.

	dirs (list)

	The full list of ExhaleNodes of kind dir.

	files (list)

	The full list of ExhaleNodes of kind file.

	groups (list)

	The full list of ExhaleNodes of kind group. Pupulated, not used.

	namespaces (list)

	The full list of ExhaleNodes of kind namespace.

	typedefs (list)

	The full list of ExhaleNodes of kind typedef.

	unions (list)

	The full list of ExhaleNodes of kind union.

	variables (list)

	The full list of ExhaleNodes of kind variable.

	
parse()

	The first method that should be called after creating an ExhaleRoot object. The
Breathe graph is parsed first, followed by the Doxygen xml documents. By the
end of this method, all of the self.<breathe_kind>, self.all_compounds,
and self.all_nodes lists as well as the self.node_by_refid dictionary
will be populated. Lastly, this method sorts all of the internal lists. The
order of execution is exactly

	exhale.ExhaleRoot.discoverAllNodes()

	exhale.ExhaleRoot.reparentAll()

	Populate self.node_by_refid using self.all_nodes.

	exhale.ExhaleRoot.fileRefDiscovery()

	exhale.ExhaleRoot.filePostProcess()

	exhale.ExhaleRoot.sortInternals()

	
discoverAllNodes()

	Stack based traversal of breathe graph, creates some parental relationships
between different ExhaleNode objects. Upon termination, this method will have
populated the lists self.all_compounds, self.all_nodes, and the
self.<breathe_kind> lists for different types of objects.

	
trackNodeIfUnseen(node)

	Helper method for exhale.ExhaleRoot.discoverAllNodes(). If the node is
not in self.all_nodes yet, add it to both self.all_nodes as well as the
corresponding self.<breathe_kind> list.

	Parameters:	
	node (ExhaleNode)

	The node to begin tracking if not already present.

	
discoverNeigbors(nodesRemaining, node)

	Helper method for exhale.ExhaleRoot.discoverAllNodes(). Some of the
compound objects received from Breathe have a member function get_member()
that returns all of the children. Some do not. This method checks to see if
the method is present first, and if so performs the following:

For every compound in node.compound.get_member():
 If compound not present in self.all_compounds:
 - Add compound to self.all_compounds
 - Create a child ExhaleNode
 - If it is not a class, struct, or union, add to nodesRemaining
 - If it is not an enumvalue, make it a child of node parameter

	Parameters:	
	nodesRemaining (list)

	The list of nodes representing the stack traversal being done by
exhale.ExhaleRoot.discoverAllNodes(). New neighbors found will
be appended to this list.

	node (ExhaleNode)

	The node we are trying to discover potential new neighbors from.

	
reparentAll()

	Fixes some of the parental relationships lost in parsing the Breathe graph.
File relationships are recovered in exhale.ExhaleRoot.fileRefDiscovery().
This method simply calls in this order:

	exhale.ExhaleRoot.reparentUnions()

	exhale.ExhaleRoot.reparentClassLike()

	exhale.ExhaleRoot.reparentDirectories()

	exhale.ExhaleRoot.renameToNamespaceScopes()

	exhale.ExhaleRoot.reparentNamespaces()

	
reparentUnions()

	Helper method for exhale.ExhaleRoot.reparentAll(). Namespaces and classes
should have the unions defined in them to be in the child list of itself rather
than floating around. Union nodes that are reparented (e.g. a union defined in
a class) will be removed from the list self.unions since the Breathe
directive for its parent (e.g. the class) will include the documentation for the
union. The consequence of this is that a union defined in a class will not
appear in the full api listing of Unions.

	
reparentClassLike()

	Helper method for exhale.ExhaleRoot.reparentAll(). Iterates over the
self.class_like list and adds each object as a child to a namespace if the
class, or struct is a member of that namespace. Many classes / structs will be
reparented to a namespace node, these will remain in self.class_like.
However, if a class or struct is reparented to a different class or struct (it
is a nested class / struct), it will be removed from so that the class view
hierarchy is generated correctly.

	
reparentDirectories()

	Helper method for exhale.ExhaleRoot.reparentAll(). Adds subdirectories as
children to the relevant directory ExhaleNode. If a node in self.dirs is
added as a child to a different directory node, it is removed from the
self.dirs list.

	
renameToNamespaceScopes()

	Helper method for exhale.ExhaleRoot.reparentAll(). Some compounds in
Breathe such as functions and variables do not have the namespace name they are
declared in before the name of the actual compound. This method prepends the
appropriate (nested) namespace name before the name of any child that does not
already have it.

For example, the variable MAX_DEPTH declared in namespace external would
have its ExhaleNode’s name attribute changed from MAX_DEPTH to
external::MAX_DEPTH.

	
reparentNamespaces()

	Helper method for exhale.ExhaleRoot.reparentAll(). Adds nested namespaces
as children to the relevant namespace ExhaleNode. If a node in
self.namespaces is added as a child to a different namespace node, it is
removed from the self.namespaces list. Because these are removed from
self.namespaces, it is important that
exhale.ExhaleRoot.renameToNamespaceScopes() is called before this method.

	
fileRefDiscovery()

	Finds the missing components for file nodes by parsing the Doxygen xml (which is
just the doxygen_output_dir/node.refid). Additional items parsed include
adding items whose refid tag are used in this file, the <programlisting> for
the file, what it includes and what includes it, as well as the location of the
file (with respsect to the Doxygen root).

Care must be taken to only include a refid found with specific tags. The
parsing of the xml file was done by just looking at some example outputs. It
seems to be working correctly, but there may be some subtle use cases that break
it.

Warning

Some enums, classes, variables, etc declared in the file will not have their
associated refid in the declaration of the file, but will be present in the
<programlisting>. These are added to the files’ list of children when they
are found, but this parental relationship cannot be formed if you set
XML_PROGRAMLISTING = NO with Doxygen. An example of such an enum would
be an enum declared inside of a namespace within this file.

	
filePostProcess()

	The real name of this method should be reparentFiles, but to avoid confusion
with what stage this must happen at it is called this instead. After the
exhale.ExhaleRoot.fileRefDiscovery() method has been called, each file
will have its location parsed. This method reparents files to directories
accordingly, so the file view hierarchy can be complete.

	
sortInternals()

	Sort all internal lists (class_like, namespaces, variables, etc)
mostly how doxygen would, alphabetical but also hierarchical (e.g. structs
appear before classes in listings). Some internal lists are just sorted, and
some are deep sorted (exhale.ExhaleRoot.deepSortList()).

	
deepSortList(lst)

	For hierarchical internal lists such as namespaces, we want to sort both the
list as well as have each child sort its children by calling
exhale.ExhaleNode.typeSort().

	Parameters:	
	lst (list)

	The list of ExhaleNode objects to be deep sorted.

	
generateFullAPI()

	Since we are not going to use some of the breathe directives (e.g. namespace or
file), when representing the different views of the generated API we will need:

	Generate a single file restructured text document for all of the nodes that
have either no children, or children that are leaf nodes.

	When building the view hierarchies (class view and file view), provide a link
to the appropriate files generated previously.

If adding onto the framework to say add another view (from future import groups)
you would link from a restructured text document to one of the individually
generated files using the value of link_name for a given ExhaleNode object.

This method calls in this order:

	exhale.ExhaleRoot.generateAPIRootHeader()

	exhale.ExhaleRoot.generateNodeDocuments()

	exhale.ExhaleRoot.generateAPIRootBody()

	exhale.ExhaleRoot.generateAPIRootSummary()

	
generateAPIRootHeader()

	This method creates the root library api file that will include all of the
different hierarchy views and full api listing. If self.root_directory is
not a current directory, it is created first. Afterward, the root API file is
created and its title is written, as well as the value of
self.root_file_description.

	
generateNodeDocuments()

	Creates all of the reStructuredText documents related to types parsed by
Doxygen. This includes all leaf-like documents (class, struct,
enum, typedef, union, variable, and define), as well as
namespace, file, and directory pages.

During the reparenting phase of the parsing process, nested items were added as
a child to their actual parent. For classes, structs, enums, and unions, if
it was reparented to a namespace it will remain in its respective
self.<breathe_kind> list. However, if it was an internally declared child
of a class or struct (nested classes, structs, enums, and unions), this node
will be removed from its self.<breathe_kind> list to avoid duplication in
the class hierarchy generation.

When generating the full API, though, we will want to include all of these and
therefore must call exhale.ExhaleRoot.generateSingleNodeRST() with all of
the nested items. For nested classes and structs, this is done by just calling
node.findNestedClassLike for every node in self.class_like. The
resulting list then has all of self.class_like, as well as any nested
classes and structs found. With enum and union, these would have been
reparented to a class or struct if it was removed from the relevant
self.<breathe_kind> list. Meaning we must make sure that we genererate the
single node RST documents for everything by finding the nested enums and unions
from self.class_like, as well as everything in self.enums and
self.unions.

	
initializeNodeFilenameAndLink(node)

	Sets the file_name and link_name for the specified node. If the kind
of this node is “file”, then this method will also set the program_file
as well as the program_link_name fields.

Since we are operating inside of a containmentFolder, this method will
include self.root_directory in this path so that you can just use:

with open(node.file_name, "w") as gen_file:
 ... write the file ...

Having the containmentFolder is important for when we want to generate the
file, but when we want to use it with include or toctree this will
need to change. Refer to exhale.ExhaleRoot.gerrymanderNodeFilenames().

This method also sets the value of node.title, which will be used in both
the reStructuredText document of the node as well as the links generated in the
class view hierarchy (for the createTreeView = True option).

	Type:	exhale.ExhaleNode

	Param:	node
The node that we are setting the above information for.

	
generateSingleNodeRST(node)

	Creates the reStructuredText document for the leaf like node object. This
method should only be used with nodes in the following member lists:

	self.class_like

	self.enums

	self.functions

	self.typedefs

	self.unions

	self.variables

	self.defines

File, directory, and namespace nodes are treated separately.

	Parameters:	
	node (ExhaleNode)

	The leaf like node being generated by this method.

	
generateNamespaceNodeDocuments()

	Generates the reStructuredText document for every namespace, including nested
namespaces that were removed from self.namespaces (but added as children
to one of the namespaces in self.namespaces).

The documents generated do not use the Breathe namespace directive, but instead
link to the relevant documents associated with this namespace.

	
generateSingleNamespace(nspace)

	Helper method for exhale.ExhaleRoot.generateNamespaceNodeDocuments().
Writes the reStructuredText file for the given namespace.

	Parameters:	
	nspace (ExhaleNode)

	The namespace node to create the reStructuredText document for.

	
generateNamespaceChildrenString(nspace)

	Helper method for exhale.ExhaleRoot.generateSingleNamespace(), and
exhale.ExhaleRoot.generateFileNodeDocuments(). Builds the
body text for the namespace node document that links to all of the child
namespaces, structs, classes, functions, typedefs, unions, and variables
associated with this namespace.

	Parameters:	
	nspace (ExhaleNode)

	The namespace node we are generating the body text for.

	Return (str):	The string to be written to the namespace node’s reStructuredText document.

	
generateSortedChildListString(sectionTitle, previousString, lst)

	Helper method for exhale.ExhaleRoot.generateNamespaceChildrenString().
Used to build up a continuous string with all of the children separated out into
titled sections.

This generates a new titled section with sectionTitle and puts a link to
every node found in lst in this section. The newly created section is
appended to previousString and then returned.

	TODO:	Change this to use string streams like the other methods instead.

	Parameters:	
	sectionTitle (str)

	The title of the section for this list of children.

	previousString (str)

	The string to append the newly created section to.

	lst (list)

	A list of ExhaleNode objects that are to be linked to from this section.
This method sorts lst in place.

	
generateFileNodeDocuments()

	Generates the reStructuredText documents for files as well as the file’s
program listing reStructuredText document if applicable. Refer to
Customizing File Pages for changing the output of this method.
The remainder of the file lists all nodes that have been discovered to be
defined (e.g. classes) or referred to (e.g. included files or files that include
this file).

	
generateDirectoryNodeDocuments()

	Generates all of the directory reStructuredText documents.

	
generateDirectoryNodeRST(node)

	Helper method for exhale.ExhaleRoot.generateDirectoryNodeDocuments().
Generates the reStructuredText documents for the given directory node.
Directory nodes will only link to files and subdirectories within it.

	Parameters:	
	node (ExhaleNode)

	The directory node to generate the reStructuredText document for.

	
generateAPIRootBody()

	Generates the root library api file’s body text. The method calls
exhale.ExhaleRoot.gerrymanderNodeFilenames() first to enable proper
internal linkage between reStructuredText documents. Afterward, it calls
exhale.ExhaleRoot.generateViewHierarchies() followed by
exhale.ExhaleRoot.generateUnabridgedAPI() to generate both hierarchies as
well as the full API listing. As a result, three files will now be ready:

	self.class_view_file

	self.directory_view_file

	self.unabridged_api_file

These three files are then included into the root library file. The
consequence of using an include directive is that Sphinx will complain about
these three files never being included in any toctree directive. These
warnings are expected, and preferred to using a toctree because otherwise
the user would have to click on the class view link from the toctree in
order to see it. This behavior has been acceptable for me so far, but if it
is causing you problems please raise an issue on GitHub and I may be able to
conditionally use a toctree if you really need it.

	
gerrymanderNodeFilenames()

	When creating nodes, the filename needs to be relative to conf.py, so it
will include self.root_directory. However, when generating the API, the
file we are writing to is in the same directory as the generated node files so
we need to remove the directory path from a given ExhaleNode’s file_name
before we can include it or use it in a toctree.

	
generateViewHierarchies()

	Wrapper method to create the view hierarchies. Currently it just calls
exhale.ExhaleRoot.generateClassView() and
exhale.ExhaleRoot.generateDirectoryView() — if you want to implement
additional hierarchies, implement the additionaly hierarchy method and call it
from here. Then make sure to include it in
exhale.ExhaleRoot.generateAPIRootBody().

	
generateClassView(treeView)

	Generates the class view hierarchy, writing it to self.class_view_file.

	Parameters:	
	treeView (bool)

	Whether or not to use the collapsibleList version. See the
createTreeView description in exhale.generate().

	
generateDirectoryView(treeView)

	Generates the file view hierarchy, writing it to self.directory_view_file.

	Parameters:	
	treeView (bool)

	Whether or not to use the collapsibleList version. See the
createTreeView description in exhale.generate().

	
generateUnabridgedAPI()

	Generates the unabridged (full) API listing into self.unabridged_api_file.
This is necessary as some items may not show up in either hierarchy view,
depending on:

	The item. For example, if a namespace has only one member which is a
variable, then neither the namespace nor the variable will be declared in the
class view hierarchy. It will be present in the file page it was declared in
but not on the main library page.

	The configurations of Doxygen. For example, see the warning in
exhale.ExhaleRoot.fileRefDiscovery(). Items whose parents cannot be
rediscovered withouth the programlisting will still be documented, their link
appearing in the unabridged API listing.

Currently, the API is generated in the following (somewhat arbitrary) order:

	Namespaces

	Classes and Structs

	Enums

	Unions

	Functions

	Variables

	Defines

	Typedefs

	Directories

	Files

If you want to change the ordering, just change the order of the calls to
exhale.ExhaleRoot.enumerateAll() in this method.

	
enumerateAll(subsectionTitle, lst, openFile)

	Helper function for exhale.ExhaleRoot.generateUnabridgedAPI(). Simply
writes a subsection to openFile (a toctree to the file_name) of each
ExhaleNode in sorted(lst) if len(lst) > 0. Otherwise, nothing is
written to the file.

	Parameters:	
	subsectionTitle (str)

	The title of this subsection, e.g. "Namespaces" or "Files".

	lst (list)

	The list of ExhaleNodes to be enumerated in this subsection.

	openFile (File)

	The already open file object to write to directly. No safety checks
are performed, make sure this is a real file object that has not been
closed already.

	
generateAPIRootSummary()

	Writes the library API root summary to the main library file. See the
documentation for the key afterBodySummary in exhale.generate().

	
toConsole()

	Convenience function for printing out the entire API being generated to the
console. Unused in the release, but is helpful for debugging ;)

	
consoleFormat(sectionTitle, lst)

	Helper method for exhale.ExhaleRoot.toConsole(). Prints the given
sectionTitle and calls exhale.ExhaleNode.toConsole() with 0 as the
level for every ExhaleNode in lst.

	Parameters:	
	sectionTitle (str)

	The title that will be printed with some visual separators around it.

	lst (list)

	The list of ExhaleNodes to print to the console.

Helper Class ExhaleNode Reference

	
class exhale.ExhaleNode(breatheCompound)

	A wrapper class to track parental relationships, filenames, etc.

	Parameters:	
	breatheCompound (breathe.compound)

	The Breathe compound object we will use to gather the name, chilren, etc.

	Attributes:	
	compound (breathe.compound)

	The compound discovered from breathe that we are going to track.

	kind (str)

	The string returned by the breatheCompound.get_kind() method. Used to
qualify this node throughout the framework, as well as for hierarchical
sorting.

	name (str)

	The string returned by the breatheCompound.get_name() method. This name
will be fully qualified — class A inside of namespace n will have
a name of n::A. Files and directories may have / characters as
well.

	refid (str)

	The reference ID as created by Doxygen. This will be used to scrape files
and see if a given reference identification number should be associated with
that file or not.

	children (list)

	A potentially empty list of ExhaleNode object references that are
considered a child of this Node. Please note that a child reference in any
children list may be stored in many other lists. Mutating a given
child will mutate the object, and therefore affect other parents of this
child. Lastly, a node of kind enum will never have its enumvalue
children as it is impossible to rebuild that relationship without more
Doxygen xml parsing.

	parent (ExhaleNode)

	If an ExhaleNode is determined to be a child of another ExhaleNode, this
node will be added to its parent’s children list, and a reference to
the parent will be in this field. Initialized to None, make sure you
check that it is an object first.

Warning

Do not ever set the parent of a given node if the would-be parent’s
kind is "file". Doing so will break many important relationships,
such as nested class definitions. Effectively, every node will be
added as a child to a file node at some point. The file node will track
this, but the child should not.

The following three member variables are stored internally, but managed
externally by the exhale.ExhaleRoot class:

	file_name (str)

	The name of the file to create. Set to None on creation, refer to
exhale.ExhaleRoot.initializeNodeFilenameAndLink().

	link_name (str)

	The name of the reStructuredText link that will be at the top of the file.
Set to None on creation, refer to
exhale.ExhaleRoot.initializeNodeFilenameAndLink().

	title (str)

	The title that will appear at the top of the reStructuredText file
file_name. When the reStructuredText document for this node is being
written, the root object will set this field.

The following two fields are used for tracking what has or has not already been
included in the hierarchy views. Things like classes or structs in the global
namespace will not be found by exhale.ExhaleNode.inClassView(), and the
ExhaleRoot object will need to track which ones were missed.

	in_class_view (bool)

	Whether or not this node has already been incorporated in the class view.

	in_file_view (bool)

	Whether or not this node has already been incorporated in the file view.

This class wields duck typing. If self.kind == "file", then the additional
member variables below exist:

	namespaces_used (list)

	A list of namespace nodes that are either defined or used in this file.

	includes (list)

	A list of strings that are parsed from the Doxygen xml for this file as
include directives.

	included_by (list)

	A list of (refid, name) string tuples that are parsed from the Doxygen xml
for this file presenting all of the other files that include this file.
They are stored this way so that the root class can later link to that file
by its refid.

	location (str)

	A string parsed from the Doxygen xml for this file stating where this file
is physically in relation to the Doxygen root.

	program_listing (list)

	A list of strings that is the Doxygen xml <programlisting>, without the
opening or closing <programlisting> tags.

	program_file (list)

	Managed externally by the root similar to file_name etc, this is the
name of the file that will be created to display the program listing if it
exists. Set to None on creation, refer to
exhale.ExhaleRoot.initializeNodeFilenameAndLink().

	program_link_name (str)

	Managed externally by the root similar to file_name etc, this is the
reStructuredText link that will be declared at the top of the
program_file. Set to None on creation, refer to
exhale.ExhaleRoot.initializeNodeFilenameAndLink().

	
__lt__(other)

	The ExhaleRoot class stores a bunch of lists of ExhaleNode objects.
When these lists are sorted, this method will be called to perform the sorting.

	Parameters:	
	other (ExhaleNode)

	The node we are comparing whether self is less than or not.

	Return (bool):	True if self is less than other, False otherwise.

	
findNestedNamespaces(lst)

	Recursive helper function for finding nested namespaces. If this node is a
namespace node, it is appended to lst. Each node also calls each of its
child findNestedNamespaces with the same list.

	Parameters:	
	lst (list)

	The list each namespace node is to be appended to.

	
findNestedDirectories(lst)

	Recursive helper function for finding nested directories. If this node is a
directory node, it is appended to lst. Each node also calls each of its
child findNestedDirectories with the same list.

	Parameters:	
	lst (list)

	The list each directory node is to be appended to.

	
findNestedClassLike(lst)

	Recursive helper function for finding nested classes and structs. If this node
is a class or struct, it is appended to lst. Each node also calls each of
its child findNestedClassLike with the same list.

	Parameters:	
	lst (list)

	The list each class or struct node is to be appended to.

	
findNestedEnums(lst)

	Recursive helper function for finding nested enums. If this node is a class or
struct it may have had an enum added to its child list. When this occurred, the
enum was removed from self.enums in the exhale.ExhaleRoot class and
needs to be rediscovered by calling this method on all of its children. If this
node is an enum, it is because a parent class or struct called this method, in
which case it is added to lst.

Note: this is used slightly differently than nested directories, namespaces,
and classes will be. Refer to exhale.ExhaleRoot.generateNodeDocuments()
function for details.

	Parameters:	
	lst (list)

	The list each enum is to be appended to.

	
findNestedUnions(lst)

	Recursive helper function for finding nested unions. If this node is a class or
struct it may have had a union added to its child list. When this occurred, the
union was removed from self.unions in the exhale.ExhaleRoot class
and needs to be rediscovered by calling this method on all of its children. If
this node is a union, it is because a parent class or struct called this method,
in which case it is added to lst.

Note: this is used slightly differently than nested directories, namespaces,
and classes will be. Refer to exhale.ExhaleRoot.generateNodeDocuments()
function for details.

	Parameters:	
	lst (list)

	The list each union is to be appended to.

	
toConsole(level, printChildren=True)

	Debugging tool for printing hierarchies / ownership to the console. Recursively
calls children toConsole if this node is not a directory or a file, and
printChildren == True.

	Parameters:	
	level (int)

	The indentation level to be used, should be greater than or equal to 0.

	printChildren (bool)

	Whether or not the toConsole method for the children found in
self.children should be called with level+1. Default is True,
set to False for directories and files.

	
typeSort()

	Sorts self.children in place, and has each child sort its own children.
Refer to exhale.ExhaleRoot.deepSortList() for more information on when
this is necessary.

	
inClassView()

	Whether or not this node should be included in the class view hierarchy. Helper
method for exhale.ExhaleNode.toClassView(). Sets the member variable
self.in_class_view to True if appropriate.

	Return (bool):	True if this node should be included in the class view — either it is a
node of kind struct, class, enum, union, or it is a
namespace that one or more if its descendants was one of the previous
four kinds. Returns False otherwise.

	
toClassView(level, stream, treeView, lastChild=False)

	Recursively generates the class view hierarchy using this node and its children,
if it is determined by exhale.ExhaleNode.inClassView() that this node
should be included.

	Parameters:	
	level (int)

	An integer greater than or equal to 0 representing the indentation level
for this node.

	stream (StringIO)

	The stream that is being written to by all of the nodes (created and
destroyed by the ExhaleRoot object).

	treeView (bool)

	If False, standard reStructuredText bulleted lists will be written to
the stream. If True, then raw html unordered lists will be written
to the stream.

	lastChild (bool)

	When treeView == True, the unordered lists generated need to have
an <li class=”lastChild”> tag on the last child for the
collapsibleList to work correctly. The default value of this
parameter is False, and should only ever be set to True internally by
recursive calls to this method.

	
inDirectoryView()

	Whether or not this node should be included in the file view hierarchy. Helper
method for exhale.ExhaleNode.toDirectoryView(). Sets the member variable
self.in_directory_view to True if appropriate.

	Return (bool):	True if this node should be included in the file view — either it is a
node of kind file, or it is a dir that one or more if its
descendants was a file. Returns False otherwise.

	
toDirectoryView(level, stream, treeView, lastChild=False)

	Recursively generates the file view hierarchy using this node and its children,
if it is determined by exhale.ExhaleNode.inDirectoryView() that this node
should be included.

	Parameters:	
	level (int)

	An integer greater than or equal to 0 representing the indentation level
for this node.

	stream (StringIO)

	The stream that is being written to by all of the nodes (created and
destroyed by the ExhaleRoot object).

	treeView (bool)

	If False, standard reStructuredText bulleted lists will be written to
the stream. If True, then raw html unordered lists will be written
to the stream.

	lastChild (bool)

	When treeView == True, the unordered lists generated need to have
an <li class=”lastChild”> tag on the last child for the
collapsibleList to work correctly. The default value of this
parameter is False, and should only ever be set to True internally by
recursive calls to this method.

	
__weakref__

	list of weak references to the object (if defined)

FAQ

Nothing is working, where did I go wrong?

Sorry to hear that. Please try comparing how your documentation is set up with the
companion [http://my-favorite-documentation-test.readthedocs.io/en/latest/] website.

If things look similar enough, or something isn’t clear, raise an issue on GitHub. I’ll
do my best to support what I can, and if similar questions come up then I can add them
to this FAQ.

Why does it build locally, but not on Read the Docs?

Most likely Exhale is failing to build if you are getting this.

Make sure you have the virtualenv functionality available on the Admin page of your
website enabled, and provide a requirements.txt that has at the very least the line
breathe (lower case, RTD will pip install every line in requirements.txt).
Refer to the RTD docs here [http://docs.readthedocs.io/en/latest/faq.html#my-project-isn-t-building-with-autodoc].

Metaprogramming and full template specialization?

Nope. Partial template specialization at best is supported by Breathe; not full
template specialization. Furthermore, Doxygen can barely handle metaprogramming...YMMV.

For partial templates, see the breathe templates [http://breathe.readthedocs.io/en/latest/class.html#template-specialisation-example] section for how you would specialize.
My understanding is the spacing is sensitive. I have yet to be able to include any form
of template specialization in breathe, though, including their example code.

Index

 _
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | P
 | Q
 | R
 | S
 | T

_

 	
 	__lt__() (exhale.ExhaleNode method)

 	
 	__weakref__ (exhale.ExhaleNode attribute)

C

 	
 	consoleFormat() (exhale.ExhaleRoot method)

D

 	
 	deepSortList() (exhale.ExhaleRoot method)

 	
 	discoverAllNodes() (exhale.ExhaleRoot method)

 	discoverNeigbors() (exhale.ExhaleRoot method)

E

 	
 	enumerateAll() (exhale.ExhaleRoot method)

 	exclaimError() (in module exhale)

 	EXHALE_FILE_HEADING (in module exhale)

 	
 	EXHALE_SECTION_HEADING (in module exhale)

 	EXHALE_SUBSECTION_HEADING (in module exhale)

 	ExhaleNode (class in exhale)

 	ExhaleRoot (class in exhale)

F

 	
 	filePostProcess() (exhale.ExhaleRoot method)

 	fileRefDiscovery() (exhale.ExhaleRoot method)

 	findNestedClassLike() (exhale.ExhaleNode method)

 	
 	findNestedDirectories() (exhale.ExhaleNode method)

 	findNestedEnums() (exhale.ExhaleNode method)

 	findNestedNamespaces() (exhale.ExhaleNode method)

 	findNestedUnions() (exhale.ExhaleNode method)

G

 	
 	generate() (in module exhale)

 	generateAPIRootBody() (exhale.ExhaleRoot method)

 	generateAPIRootHeader() (exhale.ExhaleRoot method)

 	generateAPIRootSummary() (exhale.ExhaleRoot method)

 	generateClassView() (exhale.ExhaleRoot method)

 	generateDirectoryNodeDocuments() (exhale.ExhaleRoot method)

 	generateDirectoryNodeRST() (exhale.ExhaleRoot method)

 	generateDirectoryView() (exhale.ExhaleRoot method)

 	generateFileNodeDocuments() (exhale.ExhaleRoot method)

 	
 	generateFullAPI() (exhale.ExhaleRoot method)

 	generateNamespaceChildrenString() (exhale.ExhaleRoot method)

 	generateNamespaceNodeDocuments() (exhale.ExhaleRoot method)

 	generateNodeDocuments() (exhale.ExhaleRoot method)

 	generateSingleNamespace() (exhale.ExhaleRoot method)

 	generateSingleNodeRST() (exhale.ExhaleRoot method)

 	generateSortedChildListString() (exhale.ExhaleRoot method)

 	generateUnabridgedAPI() (exhale.ExhaleRoot method)

 	generateViewHierarchies() (exhale.ExhaleRoot method)

 	gerrymanderNodeFilenames() (exhale.ExhaleRoot method)

I

 	
 	inClassView() (exhale.ExhaleNode method)

 	
 	inDirectoryView() (exhale.ExhaleNode method)

 	initializeNodeFilenameAndLink() (exhale.ExhaleRoot method)

K

 	
 	kindAsBreatheDirective() (in module exhale)

P

 	
 	parse() (exhale.ExhaleRoot method)

Q

 	
 	qualifyKind() (in module exhale)

R

 	
 	renameToNamespaceScopes() (exhale.ExhaleRoot method)

 	reparentAll() (exhale.ExhaleRoot method)

 	reparentClassLike() (exhale.ExhaleRoot method)

 	
 	reparentDirectories() (exhale.ExhaleRoot method)

 	reparentNamespaces() (exhale.ExhaleRoot method)

 	reparentUnions() (exhale.ExhaleRoot method)

S

 	
 	sortInternals() (exhale.ExhaleRoot method)

 	
 	specificationsForKind() (in module exhale)

T

 	
 	toClassView() (exhale.ExhaleNode method)

 	toConsole() (exhale.ExhaleNode method)

 	(exhale.ExhaleRoot method)

 	
 	toDirectoryView() (exhale.ExhaleNode method)

 	trackNodeIfUnseen() (exhale.ExhaleRoot method)

 	typeSort() (exhale.ExhaleNode method)

 _static/up.png

nav.xhtml

 Table of Contents

 		Exhale

 		Overview

 		What does it do?

 		What does it need to do that?

 		Usage

 		Quickstart

 		Additional Usage and Customization

 		Clickable Hierarchies

 		Linking to a Generated File

 		Customizing Breathe Output

 		Customizing File Pages

 		Fully Automated Building

 		Doxygen Documentation Specifics

 		Start to finish for Read the Docs

 		Developer Reference Documentation

 		Primary Entry Point

 		Helper Functions

 		Exposed Utility Variables

 		Ownership Graph Representation

 		Primary Class ExhaleRoot Reference

 		Helper Class ExhaleNode Reference

 		FAQ

 		Nothing is working, where did I go wrong?

 		Why does it build locally, but not on Read the Docs?

 		Metaprogramming and full template specialization?

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

