

Welcome to exceptive’s documentation!

Contents:

	Basics
	Installation

	Simple Usage

	Decorator Module
	The Approach

	catch

	catch_object

	Inheritance Module
	The Approach

	MethodicExceptive

Exceptive is a Python library that makes exception handling more programmatic and debuggable. You can define custom
behaviors based on exceptions which might be for logging, validation or any other purpose you desire.

Currently, exceptive bases on two different approaches, you can;

	either use decorator-based module

	or use inheritance-based module

Both approaches have their downfalls and uprises and might depend on your choice of architectural design. To have
further detail, see them in their own sections.

Basics

Installation

You can either use pip to install the package:

pip install exceptive
you can use pip3 explicitly if you also have Python 2 in your development environment

Or simply download the package, extract it and use setup.py:

python3 setup.py build
python3 setup.py install

Simple Usage

You can use catch decorator to simply define the callback method to run in case of a particular exception occurs:

def typeerror_fallback_function(exception):
 print("Invalid input.")

@catch(TypeError, typeerror_fallback_function)
def greet(name):
 print("Hello "+name+"!")

greet("world")
Hello world!

greet(5) # int value raises TypeError when concatenated with str directly
Invalid input.

Decorator Module

The Approach

Decorator-based approach is a good choice;

	if you do not want to use inheritance on your classes

	if you want to implement exceptive on a simpler case, like a simple method

Decorators are much more flexible than inheritance, in which you can define custom object method to run and custom
object method to run on exception.

catch

	
catch(exception, method[, *args[, **kwargs]])

	

You can import the catch decorator from exceptive.decorators module.

catch is a decorator which you can apply on an independent method as below:

def invalid_input(exception):
 print("The input is invalid.")

@catch(TypeError, invalid_input)
def greet(name):
 print("Hello "+name+"!")

greet("world")
Hello world!

greet(5)
The input is invalid.

First you provide which exception to catch and then a callback method, which might be a proper method or a lambda.

Notice you have exception on callback method? That’s how you can further analysis the thrown exception and provide
further custom behavior.

You can also proive positional or keyword arguments for callback method on decorator. Here is a code sample:

def invalid_input(exception, default_value):
 print("Hello "+default_value+"!")

@catch(TypeError, invalid_input, default_value="world")
def greet(name):
 print("Hello "+name+"!")

greet("Eray")
Hello Eray!

greet(5)
Hello world!

Warning

This decorator is not suitable for object methods. For object methods, see catch_object decorator below.

Note

You can also use multiple catch decorator to handle multiple exception types.

catch_object

	
catch(exception[, method=None[, *args[, **kwargs]]])

	

catch_object decorator is specifically designed for object methods. It looks up for callback method in the
object-level.

You can import catch_object decorator from exceptive.decorators.

Providing Default Callback Method

When you provide catch_object decorator with YourException, except__YourException is called in case the
exception is thrown.:

class Hello:
 @catch_object(TypeError)
 def greet(self, name):
 print("Hello "+name+"!")

 def except__TypeError(self, exception):
 print("Invalid value!")

Providing Custom Callback Method

Default lookup for callback method may generate stylistic warnings by your intellisense or linters. So, you can also
provide the method name to look up for as a str to handle exception.:

class Hello:
 @catch_object(TypeError, "handle_type_error")
 def greet(self, name):
 print("Hello "+name+"!")

 def handle_type_error(self, exception):
 print("Invalid value!")

method argument also accepts ``callable``s, so that you can pass an independent method.:

def handle_type_error(exception):
 print("Invalid value!")

class Hello:
 @catch_object(TypeError, handle_type_error)
 def greet(self, name):
 print("Hello "+name+"!")

Note

catch_object decorator’s parameters are quite similar to catch decorator’s. So you can also provide your
own args and kwargs to it.

Note

You can also define multiple catch_object on a single object method.

Inheritance Module

The Approach

Inheritance-based approach is a good choice;

	if you want to isolate your functionality in one class

	if you want to standardize the exception-handling

MethodicExceptive

MethodicExceptive is a class with __call__ method. All you have to do is to provide a run method and
except__YourException on it.

You can import MethodicExceptive from exceptive.inheritance module and inherit it on your class.:

class Hello(MethodicExceptive):
 def run(self, name):
 print("Hello "+name+"!")

 def except__TypeError(self, exception):
 print("Invalid input!")

 # Initialize your object.
 obj = Hello()

 # Call it.
 obj("world")
 # Hello world!

 obj(5)
 # Invalid input!

You can also provide except__else to handle exception that are not provided as method.:

class Hello(MethodicExceptive):
 def run(self, name):
 print("Hello world!")

 def except__TypeError(self, exception):
 pass # do something with TypeError

 def except__else(self, exception):
 pass # do something with any other exception

Index

 C

C

 	
 	catch() (built-in function), [1]

 nav.xhtml

 Table of Contents

 		
 Welcome to exceptive’s documentation!

 		
 Basics

 		
 Installation

 		
 Simple Usage

 		
 Decorator Module

 		
 The Approach

 		
 catch

 		
 catch_object

 		
 Providing Default Callback Method

 		
 Providing Custom Callback Method

 		
 Inheritance Module

 		
 The Approach

 		
 MethodicExceptive

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

