

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/example42-puppet-modules/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/example42-puppet-modules/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Puppet control-repo documentation

This Puppet [https://www.puppet.com/] control repo contains all the Puppet code and data needed to manage an IT infrastructure in an automated, centralized, way.

It’s based on PSICK [https://github.com/example42/psick], Example42’s Puppet Systems Infrastructure Construction Kit.

It’s a Git [https://git-scm.com] repository where changes have to be committed and updated code deployed on the Puppet Servers in order to actually deliver modifications to our systems via Puppet.

A proper understanding of Puppet key principles is necessary to operate here.

In this document are outlined the main principles behind Puppet and the logic of this control repo: it should be all we need to be able to work on it.

Some references and basic information on Puppet are provided later, here we start by describing what are the main components of a typical control-repo and then what are the specific additions done here.

Documentation

General Puppet documentation:

	Introduction to Puppet - A very basic introduction to Puppet

	Hiera essentials - Basic Hiera concepts

	Hiera eyaml - An overview on how to use hiera-eyaml

	Trusted Facts - How to set and use trusted facts

	External Facts - How to set and use external facts

	Puppet Enterprise Console - An overview on the Puppet Enterprise console

About this control-repo:

	Control-repo logic - An overview of the design choices and the logic of this control repo.

	Prerequisites - A more detailed view of the prerequisites needed to fully use the control-repo

	Noop Mode - An overview on how to enforce noop mode server side with this repo

	Vagrant Integration - How to use Vagrant to test the control-repo during development

	Docker Integration - How to use Docker to test Puppet code and to build images based on the existing Puppet code

	Fabric - A review of Puppet tasks available with Fabric

Managing changes:

	Git tasks - An overview on how to use Git

	Change Process - A step by step guide on how to manage changes in Puppet code

example42 control-repo and Tiny Puppet

This Puppet contro-repo has various interesting integrations with Tiny Puppet [http://tiny-puppet.com], even if they are totally optional, we strongly reccommend to give tp a try: it can same you a lot of time.

Integration with Tiny Puppet (tp [https://github.com/example42/puppet-tp]) and tinydata [https://github.com/example42/tinydata] modules (they are both present in the Puppetfile) is at different levels:

	Several sample profiles of this control repo use tp defines to manage the relevant applications

	Some (currently experimental) external modules use tp in module, with local data

	It’s possible to easily install any (known) app locally, via a tp shell wrapper

	It’s possible to quickly create data for new apps to manage

	Integration tests comes out of the box free, for multiple apps and os, with tp::test

Sample profiles based on tp

Some of the profiles under the site/profile/manifests directory use tp instead of a dedicated component module to manage an application. You are free to use them or not and they can be good examples on how to design profiles based on tp and save headaches and time on studying and integrsting a dedicated component module.

tp in component modules

Some experimental modules (apache v4.x, docker, rails, ansible...) added by default in the Puppetfile use tp directly in the module, with local tp data, to manage the component application.

For more info on this usage of tp inside component modules and other modern design patterns for modules, read this blog post [http://www.example42.com/2016/05/30/exploring-puppet4-modules-design-patterns/].

Install anything anywhere with a tiny command

Imagine a simple command, it expects as input the name of an application or a software and installs it. It takes care automatically of:

	installing the eventual repositories that provide the package

	use the right package name for the underlying operating systems

	if it depends on other softwares or packages, install them as prerequisites

A command like install <software> that works everywhere, with any software that can be installed via a package.

Well, it exists. Here. But it’s called tp_install.sh.

To install locally (you might need root privileges) any application on any operating system, managing all the necessary dependencies, just write from the main dir of this control repo:

bin/tp_install.sh <app_name>

Or if you prefer to run it via Fabric:

fab tp.install:<app_name>

Prequesities for the magic to happen:

	Puppet 4 or later must be installed locally. To do it from the control repo:

bin/puppet_install.sh [redhatX|debian|ubuntu] # WIP on automatic OS detection

	This control-repo is provisioned locally (that is it has run r10k to fetch tp and tinydata modules from upstream source). You can do it with:

bin/puppet_setup.sh

or, simply, have tp installed via:

puppet module install example42/tp

	There’s in tinydata all the needed data to install your application on your OS.

Some possible uses:

Setup epel (on RHEL systems)
bin/tp_install.sh epel

Install sysdig (automatically manages dependencies from other tp apps)
Requires tp version >= 1.2 and tinydata version >= v0.0.14)
bin/tp_install.sh sysdig

Install puppetserver from Puppet official repos
bin/tp_install.sh puppetserver

Install docker from Docker official repos
bin/tp_install.sh docker-engine

Install virtualbox from Oracle official repos
bin/tp_install.sh virtualbox

Install OpenJDK
bin/tp_install.sh openjdk-jdk

Install apache for the lazy or mindless ones
bin/tp_install.sh apache

If some of these or other commands don’t work for the selected app on your local operating system, then it’s probably a matter of missing or wrong tinydata, which can be easily solved.

Current support for most of the applications in tinydata is for Linux (mostly RedHat and Debian derivatives). MacOS and Windows support is technically present, but data is missing for most of the cases. Support is possible for any OS for which there’s a Puppet package provider.

Create tiny data for a new application

To replicate the structure of the tinydata directory of an existing application and create data for a new app:

fab tp.clone_data:redis

redis, or whatever you specify as data to be cloned, must exist on tinydata. You will be asked the name of the new app for which you want to create data files based on the redis structure. Names are automatically converted.

Local or remote integration tests (WIP)

Since tp knows everything (well, enough) about the applications it installs, it knows how to check if they are working correctly.

This can be effortlessly and automatically enabled by using tp::test for the applications you want to test (or by setting to true the test_enable argument when using tp::install).

In this control repo tp testing is enabled by default on all tp installed applications with the following entry on hieradata/common.yaml which is used in manifests/site.pp:

 tp::test_enable: true

The following Fabric task (will) allow to test on a remote server if applications installed by tp are working correctly. Can be used in CI pipelines, for quick tests or monitoring.

fab tp.remote_test -H <hostname>

You can test if tp installed applications are correctly running just by executing the scripts under /etc/tp/test on your servers.

Using and understanding this control-repo

The default design of this control-repo is based on a nodeless classification, driven by top scope variables like these:

	$::role - Defines the nodes’ role

	$::env - Defines the nodes’ operational environment

	$::zone - Defines the datacenter or region or segment of an infrastructure (optional)

Variable names and area of interest can be adapted, according to out hierarchy in hiera.yaml but in any case such variable have to be set.

There are different ways to set top scope variables:

	As trusted facts, set before Puppet installation

	As external facts, writing the relevant files under /etc/puppetlabs/facter/facts.d

	As global parameters set in a ENC (such as Puppet Enterprise or The Foreman).

	In manifests/site.pp as result of the parsing of the hostname or other facts.

The latter case is possible when we have hostnames with a fixed pattern which contains information about the role, env, zone or whatever needed grouping.

For example if we have nodes with a naming pattern like: $role-$id-$env.$::domain (ie: fe-01-test.example42.com) we can have set top scope variables in manifests/site.pp (outside any class or node statement):

$node_array = split($::hostname,'-')
$role = $node_array[0]
$id = $node_array[1]
$env = $node_array[2]

These variables are used in the Hiera’s hierarchy (check hiera.yaml) and should be enough to classify univocally any node in a averagely complex infrastructure. Here they are set as external facts (you’ll need to set them when provisioning your nodes, as it’s done in the Vagrant environment).

Such an approach can be easily adapted to any other logic and environment, for example, you can use an External Node Classifier (ENC) like Puppet Enterprise or The Foreman and manage there how your nodes are classified.

The manifests file, manifests/site.pp sets some resource defaults, includes a baseline profile according to the underlying OS and uses hiera to define what profiles have to be included in each role (a more traditional alternative, based on role classes, is possible).

All the Hiera data is in hieradata , the file hiera.yaml shows a possible hierarchy design and uses hiera-eyaml as backend for keys encryption (no key is currently encrypted, because we are not shipping the generated private key (it’s in .gitignore).

You will have to regenerate your hiera-eyaml keys (run, from the main repo dir, eyaml createkeys).

On your Puppet server, if you want to keep hiera.yaml information in the control-repo you have to link it:

For hiera 3 format (classic)
ln -sf /etc/puppetlabs/code/environments/production/hiera3.yaml /etc/puppetlabs/puppet/hiera.yaml
For hiera 5 format
ln -sf /etc/puppetlabs/code/environments/production/hiera.yaml /etc/puppetlabs/puppet/hiera.yaml

Puppet noop mode

It’s possible to run Puppet in noop mode which shows what are the changes that Puppet would do on the system without actually doing them.

There are various ways we can enforce noop mode: let’s review them.

Setting noop from the command line

In any Puppet installation it’s possible to run Puppet in noop mode specifying the --noop option in the command line:

puppet agent --noop

This applies only for that specific Puppet run, so if there’s a Puppet agent service running in the background, that service will run Puppet in normal mode.

Also note that this approach is triggered and managed from the client.

Setting noop via Hiera

In this control-repo we are using the trlinkin-noop module with provides a function called noop() which adds the noop metaparameter to each resource.

We use this function in manifests/site.pp:

$noop_mode = hiera('noop_mode', false)
if $noop_mode == true {
 noop()
}

This code sets the noop_mode variable via a Hiera lookup for the key noop_mode. In if it’s not found on Hiera, then the default value is false.

If the noop_mode variable is true then noop metaparameter is added to all the resources of the catalog.

It’s recommended to limit the usage of noop_mode key on Hiera only when necessary.

For example when pushing to production particularly critical changes it’s possible to force noop mode for all the servers adding in hieradata/common.yaml something like:

 noop_mode: true

In other cases it may make sense to add this setting to more specific layers of the hierarchy.

Trusted facts

Extensions to a node certificate can de defined for each Puppet managed node in order to define informations that can’t be changed unless the same node certificate is recreated.

These settings are defined trusted facts, for this reason and are the most secure wa to set facts on a node which don’t rely of some computation but just define some characteristics of the node itself (as its role, operational environment or other).

Before the first execution of Puppet edit /etc/puppetlabs/puppet/csr_attributes.yaml with a content like:

 extension_requests:
 pp_role: 'fe'
 pp_environment: 'devel'
 pp_datacenter: 'main'
 pp_application: 'voicemail'

The first Puppet run should be done after this file has been generated.

Once created, trusted facts can be accessed in Puppet code with a syntax like:

$trusted['extensions']['pp_role']

Note that once a trusted fact is set, that can’t be changed unless the client’s certificate is recreated. This means, for example, that before changing the environment of a server (if ever needed) a (eventually manual) client re-certification has to be done.

In case of SSL errors always usual procedures apply:

	Check times on client and server are synced

	Eventually clean old certs with same name on client and server

	Google

For more information: SSL configuration: CSR attributes and certificate extensions [https://docs.puppet.com/puppet/latest/reference/ssl_attributes_extensions.html]

Note that once a trusted fact is set, that can’t be changed unless the client’s certificate is recreated. This means, for example, that before changing the environment of a server (if ever needed) a (eventually manual) client re-certification has to be done.

In this control-repo if trusted facts such facts are defined, they are used to populate top scope variables which are then used in hiera.yaml hierachy.

The top scope variables are defined in manifests/site.pp as follows:

if $trusted['extensions']['pp_role'] {
 $role = $trusted['extensions']['pp_role']
}
if $trusted['extensions']['pp_environment'] {
 $env = $trusted['extensions']['pp_environment']
}
if $trusted['extensions']['pp_datacenter'] {
 $zone = $trusted['extensions']['pp_datacenter']
}

In bin/hiera3.yaml are then used these variables in the sample hierarchy:

:hierarchy:
 - "hostname/%{::trusted.certname}"
 - "role/%{::role}-%{::env}"
 - "role/%{::role}"
 - "zone/%{::zone}"
 - common

Control repo structure

The common elements of a control-repo are:

	The manifests directory where are placed the first files that the Puppet server parses when compiling catalogs for clients. Here we typically have the site.pp file (but other manifests with different names can be seamlessly added) where we can set Top scope variables [https://docs.puppet.com/puppet/latest/lang_scope.html], Resource Defaults [https://docs.puppet.com/puppet/latest/lang_defaults.html], and eventually have Node statements [https://docs.puppet.com/puppet/latest/lang_node_definitions.html] to define what classes should be included in our nodes (nodes classification can be done in several different ways, using the node statement is just one of them, which, incidentally, is not used here).

	The hieradata or data directory which contains Hiera [https://docs.puppet.com/hiera/latest/] data files. The name of the directory is completely arbitrary and must match what’s defined in hiera.yaml. On some control-repos we may not have such a directory (in the rare case Hiera is not used, or uses external backends or its data is stored in a separated repository). In our case Hiera is used with the popular Eyaml backend, which allows storage of data in YAML files and the possibility to encrypt some key. The Hiera data files in YAML format are placed in the data directory.

	The modules directory contains Puppet modules. Typically we don’t place themselves directly in our control-repo but define them in the Puppetfile and then deploy them with tools like r10k [https://github.com/puppetlabs/r10k] or Librarian Puppet [https://github.com/voxpupuli/librarian-puppet].

	Besides the ones in public modules, we need to create custom classes where we customize resources to fit our needs. In this control-repo they are placed in the site directory, here we have a profile module with all our profiles (the Puppet classes that actually manage different kind of services and software), and a tools module, mostly containing Puppet defines [https://docs.puppet.com/puppet/latest/lang_defined_types.html] used in our profiles.

	The environment.conf file, which configures our environment: where the modules are placed, the caching timeout and eventually a script that returns a custom configuration version.

Besides these common locations, in our control-repo we have also:

	The vagrant directory contains different Vagrant environments with the relevant toolset that can be used to test the same control-repo. They are fully customizable by editing the config.yaml file in each Vagrant environment.

	Files for building Docker images locally are under the docker directory.

	Fabric [http://www.fabfile.org] tasks are defined in the fabric directory.

	The skeleton directory contains a module skeleton we can use, and modify, to generate new modules based on the skeleton structure.

	Documentation is stored under docs

	The bin directory contains several scripts for various purposes. Most of them can be invoked via Fabric.

Fabric

This control-repo provides several tools that help Puppeteers in their daily work.

Remote puppet commands via Fabric

Various Fabric tasks are available to executing on remote hosts. We will need access to them, possibly via ssh keys.

Install Puppet 4 on the remote host(s). Use any Fabric method to define hosts to work on.

fab puppet.install -H host1,host2

Run puppet agent in noop mode on all the known hosts:

fab puppet.agent_noop

Run puppet agent in a specific node:

fab puppet.agent:host=web01.example.test

Show the current version of deployed Puppet code on all nodes:

fab puppet.current_config

Setup on the remote node all the prequisites to run this control-repo in apply mode:

fab puppet.remote_setup
bin/puppet_setup.sh is executed on the remote node

Deploy this control-repo from upstream source:

fab puppet.deploy_controlrepo
bin/puppet_deploy_controlrepo.sh is executed on the remote node

Run puppet apply with or without noop on all the known hosts (expected control-repo in production environment):

fab puppet.apply
fab puppet.apply_noop

Run in apply mode the local code on a remote node (code is rsynced and then compiled on the remote node.

fab puppet.sync_and_apply

Local Puppet activities

The following activities can be done locally during development, publishing and deployment of Puppet code.

Check the syntax of all .pp .yaml .epp .erb files in our control-repo:

fab puppet.check_syntax

Generate a new module based on the format of the skeleton directory.

fab puppet.module_generate

Publish the local version of a module in modules/ dir to Forge and GitHub (puppet-blacksmith setup and access to remote git repo required):

 fab puppet.module_publish:tinydata

Facter tasks (WIP)

Set external facts

fab facter.set_external_facts

fab facter.set_trusted_facts

Puppet code management workflow

All the .py files in the main directory of this control-repo are Fabric configuration files.

We use them to provide the toolset to setup, develop, test and deploy a Puppet environment.

To use all the available features you should have locally installed:

	Puppet

	Vagrant

	Docker

	Fabric [http://www.fabfile.org/installing.html].

	Git

Setup of the control-repo

You can follow alternative approaches on how to play or work with this control repo, eventuallt with the intention to customise it for your own use.

Just playing around

The quickest way to start to play around:

git clone https://github.com/example42/psick
cd psick
bin/setup.sh

Forking example42’s control repo

You can fork [https://help.github.com/articles/fork-a-repo/] example42 control-repo [https://github.com/example42/psick] on GitHub and then work on your fork as origin and add example42 repo as upstream, in order to ease (always welcomed) Pull Requests for issues of features:

git clone https://github.com/<yourname>/control-repo
cd psick
git remote add upstream https://github.com/example42/psick

Starting from scratch

If you want to start a git repo from scratch, wiping out the history (and the ability to easily merge back) of example42 control-repo, you can:

git clone https://github.com/example42/psick
cd psick
fab git.setup_new_repo

You will be asked the name of the directory where to create the new git repository. It’s placed on the same parent dir of the original control-repo.

To do this in an unattended way you can specify the directory name:

fab git.setup_new_repo:my_repo

Once done, you can move into the new directory, with only a branch, called production and no commits.

Select the files to keep or remove, then commit them all

git commit -a -m "Repo based on https://github.com/example42/psick"

Now you can set the origin push your repo to an empty existing repo you have created on GitHub/Bitbucket/GitLab/... :

git remote add origin git@github.com:example42/puppet-control-repo.git
git push -u origin --all

Development workflow based on Fabric tasks

Show available Fabric tasks:

fab -l

Run a Fabric task with one of these alternatives:

fab <task>[:host=<hostname>][:option=value]
fab [-H <hostname>] <task>[:option=value]>

Initial setup to ensure the needed Puppet related software is installed locally:

fab puppet.setup

Install useful git hooks for Puppet development. By default downloaded from (https://github.com/drwahl/puppet-git-hooks)[https://github.com/drwahl/puppet-git-hooks]:

fab git.install_hooks

Note that existing git hooks are not overwritten by this task. Once installed you can eventually configure them:

vi .git/hooks/commit_hooks/config.cfg

Now you can start to configure and develop your Puppet code and data:

	Customise the hiera.yaml to match your needs.

	Modify and add files Hiera yaml files in hieradata

	Write your site modules

	Customize Puppetfile with the used external modules

To generate a new module based on the format of the skeleton directory.

fab puppet.module_generate

During development you can check the git status of the main control-repo and of each module in modules with:

fab git.status

Testing your code

There are different methods available for testing your code before pushing it to to production. You can use some or all of them, both manually during your development activities and automatically in Continuous Integration pipelines.

On live servers

If you don’t use external node classifiers on don’t rely on PuppetDB for resource management (via exported resources or direct queries during compilation) and if, basically, your control-repo is self consistent (has all the Puppet code and data to classify nodes), you can test your code directly on a live machine, even before committing it. You need ssh access to such node.:

fab puppet.sync_and_apply:$role,[$puppet_options]

To test on node web01.example.com the role web in nood mode:

fab -H web01.example.com puppet.sync_and_apply:web,'--noop'

To actually apply the role web to the given node WARNING: Real changes done on servers here:

fab -H web01.example.com puppet.sync_and_apply:web

The above command is recommended only if you are sure of what you are doing and should be done only if your deployment and testing policies accepts it. In normal conditions you can test you code by using branches of your control-repo which, when deployed via r10k can be tested as Puppet environments.

In such situations, you can test you code with a normal Puppet agent command, pointing to the local Puppet Master:

fab -H <node> puppet.agent_noop:[environment]

So to run a noop Puppet run on the given node for a specific Puppet environment (names as a branch of your control-repo, default is production) you can issue commands like:

fab -H web01.example.com puppet.agent_noop:test_feature

To make a real Puppet run on a given node:

fab -H <node> puppet.agent:[environment]
fab -H web01.example.com puppet.agent # Normal Puppet agent run using production environment
fab -H web01.example.com puppet.agent:test_festure # Puppet agent run using an environment called test_feature

With Docker

To test a role (as defined in hieradata/role/$role.yaml) with Docker on different OS base images:

fab docker.provision:<role>,<image>
fab docker.provision:log,ubuntu-14.04

Available images are: ubuntu-12.04, ubuntu-14.04, ubuntu-14.06, centos-7, debian-7, debian-8, alpine-3.3.

With Vagrant

There are different Vagrant environment available. You can use the puppetinfra one to test your own different roles.

First review and edit the configuration file for the Vagrant environment

vi vagrant/environments/puppetinfra/config.yaml

Then either run vagrant commands from the relevant repo:

cd vagrant/environments/puppetinfra
vagrant status
vagrant up <vm>
vagrant provision <vm>

For the same commands there are Fabric tasks which are more wrappers for automation or information gathering purposes:

Run vagrant status on all the available Vagrant environments (useful also to see the names of the VMs you can use in the following commands):

fab vagrant.all_status

Run vagrant provision on all the running vm of a Vagrant environment:

fab vagrant.provision:env=puppetinfra

Run vagrant commands on a given VM (ignore the warnings for not finding a given VM in all the available environments)

fab vagrant.up:vm=dev-local-docker-build-01
fab vagrant.status:vm=dev-local-docker-build-01
fab vagrant.provision:vm=dev-local-docker-build-01
fab vagrant.reload:vm=dev-local-docker-build-01
fab vagrant.halt:vm=dev-local-docker-build-01
fab vagrant.suspend:vm=dev-local-docker-build-01
fab vagrant.resume:vm=dev-local-docker-build-01
fab vagrant.destroy:vm=dev-local-docker-build-01

Managing Puppet code deployment and runs

Run puppet agent in noop mode on all the known hosts:

fab puppet.agent_noop

Run puppet agent in a specific node:

fab puppet.agent:host=web01.example.test

Show the current version of deployed Pupept code on all known hosts:

fab puppet.current_config

Hiera Eyaml

Hiera-eyaml is an additional Hiera backend which can be used to encrypt single keys in Hiera yaml files.

We can install it using the relevant gem:

gem install hiera-eyaml

On the Puppet server we need to do that also in Puppet environment:

/opt/puppetlabs/server/apps/puppetserver/cli/apps/gem install hiera-eyaml

To configure it we need to specify the backend in hiera.yaml and some the location of the keys used to encrypt the data:

:backends:
 - eyaml

:eyaml:
 :datadir: "/etc/puppetlabs/code/environments/%{environment}/hieradata"
 :pkcs7_private_key: /etc/puppetlabs/code/keys/private_key.pkcs7.pem
 :pkcs7_public_key: /etc/puppetlabs/code/keys/public_key.pkcs7.pem
 :extension: 'yaml'

Before starting to encrypt data a pair of public and private keys has to be created:

eyaml createkeys

This creates in the keys directory (relative to the current working directory) the private_key.pkcs7.pem and public_key.pkcs7.pem files. The first one should never be shared and must be managed in a safe way, for this reason the keys (at least the private one) should not be added to the control-repo git repository.

Both of these file must be placed wherever Hiera files are evaluated: that means basically all the Puppet Servers. Since we use the same repository for different datacenters and environments, the Hiera eyaml keys should be manually copied, under the directory /etc/puppetlabs/code/keys, on each new Puppet Server, both the Master of Masters and the Compile Masters.

They would be needed also in Vagrant environments, but to avoid the profileration of places where keys should be shared, it’s better to avoid to encrypt data in Hiera files used by machines running in Vagrant, so for examples, in the "datacenter/%{::datacenter}" layer.

Creating encrypted keys

We can generate the encrypted value of any Hiera key with the following command:

eyaml encrypt -l 'mysql::root_password' -s 'V3ryS3cr3T!'

This will print on stdout both the plain encrypted string and a block of configuration that we can directly copy in our yaml files as follows:

mysql::root_password: > ENC[PKCS7,MIIBeQYJKoZIhvcNAQcDoIIBajCCAWYCAQAxggEhMII [...]

Note that the value is in the format ENC[PKCS7,Encrypted_Value].

Since we have the password stored in plain text in our bash history, we should clean it using the following command:

history | grep encrypt
572 eyaml encrypt -l 'mysql::root_password' -s 'V3ryS3cr3T!'
history -d 572

Alternatively we can directly edit Hiera yaml files with the following command:

eyaml edit hieradata/common.eyaml

Our editor of preference will open the file and decrypt the encrypted values eventually present so that we can edit our secrets in clear text and save the file again (of course, we can do this only on a machine where we have access to the private key).

To add a new encrypted key to a file we can open it with eyaml edit and add a key with a syntax like this:

mysql::root_password: DEC::PKCS7[my_password]!

The string my_password (our password in clear text) will be encrypted once the file is saved.

To show the decrypted content of an eyaml file, we can use the following command:

eyaml decrypt -f hieradata/common.eyaml

Since hiera-eyaml manages both clear text and encrypted values, we can use it as our only backend if we want to work only on yaml files, the configuration entry :extension: 'yaml' we have added to hiera.yaml instructs Hiera Eyaml to use files with .yaml extension, instead of the default .eyaml one.

 ##

 Vagrant integration

Vagrant integration

This control-repo contains different customizable Vagrant environments that can be used for different purposes at different stages of our Puppet workflow: local testing during development, continuous integration testings, semi-permanent test environments...

This control-repo is by default shipped as self contained:

	It provides all the Puppet code and data needed to provision different roles.

	It manages nodes classification with a nodeless approach based on roles (or however is customized manifests/site.pp.

	It doesn’t use exported resources (at least in common roles) or any other data provided by PuppetDB

	It doesn’t rely on an External Node Classifier (ENC) for nodes classification

Being self contained the catalog for each node can be compiled locally via Puppet apply, and is the same method used, by default, in most of the provided Vagrant environments.

We can work with them directly issuing vagrant commands in vagrant/environments/<env_name> or via Fabric from the main repo dir.

Vagrant commands

We can use normal vagrant commands by moving in the relevant environment (where a Vagrantfile is placed) under the vagrant/environments/ directory.

Here we can see a multi VM Vagrantfile and its config.yaml file.

This configuration file provides a quite flexible way to customize the nodes we want to see with our vagrant status (Only this feature would deserve a dedicated Project). Read below for more details on how to work with it.

Basic vagrant commands (here used a sample VM called centos7.devel):

cd vagrant/environments/ostest
vagrant status
vagrant up centos7.devel

If we change our Puppet manifests or data in the control-repo we can immediately test their effect:

To provision Puppet using our current local copy of the control-repo:

vagrant provision centos7.devel

To do the same from the local vm:

vagrant ssh centos7.devel
vm $ sudo su -
vm # /etc/puppetlabs/code/environments/production/bin/papply.sh

If we want to use a Puppet Master for Puppet provisioning on the VM:

vm # puppet agent -t

Note that by default a puppet apply is used and so it can work on the local control-repo files (mounted on the Vagrant VM). If we use a Puppet Master which is not in our Vagrant environment we will test the code present on the Master itself.

Vagrant Fabric tasks

Vagrant commands can be invoked by Fabric too.

Generally it’s handier to use direct vagrant commands from the relevant Vagrant environment directories, but we may prefer in some cases where automation is involved to use Fabric.

Run vagrant status on all the available Vagrant environments

fab vagrant.env_status

Run vagrant status on a specific Vagrant environment

fab vagrant.env_status:ostest

Run vagrant provision on all the running vm of a Vagrant environment:

fab vagrant.provision:env=pe

Run vagrant up on the given vm (the following 2 commands are equivalent):

fab vagrant.up:vm=centos7.devel
fab vagrant.up:centos7.devel

Run, respectively, vagrant provision, reload, halt, suspend, resume, destroy on a given vm:

fab vagrant.provision:centos7.devel
fab vagrant.reload:centos7.devel
fab vagrant.halt:centos7.devel
fab vagrant.suspend:centos7.devel
fab vagrant.resume:centos7.devel
fab vagrant.destroy:centos7.devel

Customisations

We can customise the vagrant environments in various ways:

	Remove the vagrant/environments/ directories we don’t use or need.

	Add one or more custom environments for different use cases, such as Applications developers stations, Puppet developers stations, semi-permanent test environments, continuous integration environments...

	Customise the config.yaml file to define size, OS, role, number of each vagrant vm.

	Customise eventually the same Vagrantfile for our own needs.

Editing config.yaml

The config.yaml file is used by the local Vagrantfile to customise easily the VMs we want to use.

Here we can set the general settings valid for all the VM:

vm:
 memory: 512 # Memory in MB of the VM
 cpu: 1 # vCPUs of the VM
 role: ostest # The default Puppet role (you may not want to set it here)
 box: centos7 # The default Vagrant box to use (from the list under ```boxes```)
 puppet_apply: true # If to provision with puppet apply executed on the local files
 puppet_agent: false # If to provision with puppet agent (you have to take care of setting up your Puppet Master)

Manage general network settings:

network:
 range: 10.42.45.0/24 # The network to use for VMs internal lan
 ip_start_offset: 101 # The starting IP in the above range (if an ip_address is not explicitly set for a VM)
 domain: ostest.psick.io # The DNS domain of your VMs

Manage Puppet related settings:

puppet:
 version: latest # Which version of Puppet to use (WIP)
 env: test # Adds a fact called env to the VM with the given value
 zone: local # Adds a fact called zone to the VM with the given value

Define the nodes list (as shown in vagrant status):

nodes:
 - role: log # Puppet role: log
 count: 1 # How many instances of log servers to list
 - role: mon # Another node, another role
 count: 1
 - role: docker_tp_build # Role: docker_tp_build
 hostname_base: docker-build # Here the node name is overridden
 count: 1
 box: ubuntu1404 # Also the Vagrant box to use is different from the default one under vm
 - role: puppet # A puppet role for the Puppet Master
 count: 1
 memory: 4096 # More memory than default for this VM
 cpu: 2 # More vCPUS
 box: ubuntu1604 # Specific box...
 ip_address: 10.42.42.10 # Fixed IP address
 puppet_apply: true # Force provisioning via puppet apply
 aliases: # Added aliases for Vagrant hostmanager plugin (if used)
 - puppet

Finally it’s possible to define the Vagrant boxes to use for the different VMs:

boxes:
 centos7: # Box name as referenced under ```vm``` or ```nodes```
 box: puppetlabs/centos-7.2-64-puppet # Name of Vagrant box on Atlas
 breed: puppetlabs-centos7 # Breed of the OS. Read later for more info.
 centos6: # Another box to select from...
 box: puppetlabs/centos-6.6-64-puppet
 breed: puppetlabs
 ubuntu1604: # Another box
 box: puppetlabs/ubuntu-16.04-64-puppet
 breed: puppetlabs-apt
 ubuntu1404: # Another box
 box: puppetlabs/ubuntu-14.04-64-puppet
 breed: puppetlabs-apt

Customising the Vagrantfile and the relevant scripts

Most of the existing vagrant environments share the same Vagrantfile, but we may need to create a custom one, even if just by editing the config.yaml file we should be able to manage most of the common use cases.

Here we have full freedom, just notice that when changing the Vagrantfile we may break some of the config.yaml functionality, and that the scripts used during provisioning or in Vagrant related activities are under vagrant/bin/ and we might need to edit them too.

 Docker integration

Docker integration

This control repo provides various ways to use, configure and work with Docker.

They are available via Fabric or shell commands, we are going to show them both.

Docker for testing

We can try to test a Puppet run for a role in a Docker container.

To run Puppet for the default docker_test_role on the default image (centos-7):

fab docker.test_role
bin/docker_test_role.sh

To test another role (define the profiles to use and the relevant data in hieradata/role/$role.yaml

fab docker.test_role:ansible
bin/docker_test_role.sh ansible

It’s also possible to select the underlying OS to use in the base image:

Available images are: ubuntu-12.04, ubuntu-14.04, ubuntu-16.04, centos-7, debian-7, debian-8, alpine-3.3.

fab docker.test_role:myrole,debian-8
bin/docker_test_role.sh myrole debian-8

Note that the base images used for the different OS are by default downloaded from https://hub.docker.com/r/example42/puppet-agent/tags/.

It’s possible to use custom ones by:

	Setting on Hiera in the role yaml files the parameter docker::username (example42 by default)

	Build custom (with fab docker.tp_build_role:puppet-agent) puppet-agent images

	Push them to our registry for use outside our local machine

Building Docker images

In this control repo various ways to use Puppet to build Docker images are explored.

They follow different approaches and have their own limitations. Work is progress here.

Using tp build (WIP)

Dockerize a role entirely based on tp defines for one or multiple OS Docker images.

In this approach, Puppet is executed on our local machine, we might need root privileges to set file permissions.

fab docker.tp_build_role

The above command uses the data in hieradata/role/docker_tp_build.yaml

To specify a different role to build for:

fab docker.tp_build_role:webserver
bin/docker_tp_build_role.sh webserver

Using tp::rocker (WIP)

To build an image with Rocker, without leaving traces of Puppet inside the image, we can run the following command.

Data used for the image is in hieradata/role/$puppetrole.yaml

docker.rocker_build_role

Using image_clone (TODO)

General maintenance

A few other commands are available for general Docker maintenance.

Docker status

To show general Docker information (version, containers and images):

fab docker.status
bin/docker_status.sh

Docker files cleanup

To remove all local images and containers (WARNING: have no important data there).

By default a confirmation prompt appears:

fab docker.purge
bin/docker_purge.sh

To run in unattended mode (useful for cleanups in CI pipelines):

fab docker.purge:auto
bin/docker_purge.sh auto

Docker prerequisites

Docker operations via Fabric or using the command line require Docker to be locally installed.

If we use Mac or Windows we need the newer native client.

To install docker we can run one of these commands:

fab docker.setup
bin/docker_setup.sh

You’ll need to run docker login before trying any operation that involves pushing our images to Docker registry.

 Hiera

Hiera

Hiera [https://docs.puppet.com/hiera/] is Puppet’s builtin key/value data lookup system, where we can store the data we use to configure our system. It has some peculiar characteristics:

	It’s hierarchical: We can configure different hierarchies of data sources and these are traversed in order to find the value of the desired key, from the level at the top, to the one at the bottom.
This is very useful to allow granular configurations of different settings for different groups of servers

	It has a modular backend system: data can be stored on different places, according to the used plugins, from simple Yaml or Json files, to MongoDb, Mysql, PostgreSQL, Redis and others [https://voxpupuli.org/plugins/#hiera]. In our control-repo we use the Hiera-eyaml backend which uses plain Yaml [http://yaml.org] files for data storage and allows encryption of the values of selected keys (typically the ones which contains passwords or secrets)

Hiera is important because it allows to assign values to the parameters of Puppet classes.

A parameter called server of a class called ntp, for example, can be evaluated via a lookup of the Hiera key ntp::server:

class ntp (
 String $server = 'ntp.pool.org'
) { ... }

Given the above class we can override the default value for the server parameter of the class ntp with a similar entry in one of the Yaml files used in Hiera’s hierarchies:

ntp::server: 'time.nist.gov'

This is useful to cleanly separate our Puppet code, where we declare, inside classes, the resources we want to apply to our nodes, from the data which defines how these resources should be.

In Puppet 4.9, Hiera version 5 has been introduced and this is the version we use in our control-repo.

Hiera configuration: hiera.yaml

Hiera’s configuration file (hiera.yaml) has changed format in version 5, here’s the default, which uses the core Yaml backend and has only a layer called common:

version: 5
hierarchy:
 - name: Common # A level of the hierarchy. They can be more using different data sources
 path: common.yaml # The path of the file, under the datadir, where data is stored
defaults:
 data_hash: yaml_data # Use the YAML backend
 datadir: data # Yaml files are stored in the data dir of our Puppet environment/control-repo

Here’s the actual structure of the hiera.yaml file used in this control-repo, it uses the Hiera-eyaml backend and has various levels in its hierarchy:

version: 5
defaults:
 datadir: data
 data_hash: yaml_data
hierarchy:
 - name: "Eyaml hierarchy"
 lookup_key: eyaml_lookup_key
 paths:
 - "nodes/%{::trusted.certname}.yaml"
 - "roles/%{::pp_application}-%{::pp_role}-%{::pp_environment}.yaml"
 - "roles/%{::pp_application}-%{::pp_role}.yaml"
 - "roles/%{::pp_application}-%{::pp_environment}.yaml"
 - "roles/%{::pp_application}.yaml"
 - "roles/%{::pp_role}.yaml"
 - "locations/%{::pp_datacenter}-%{::pp_zone}.yaml"
 - "locations/%{::pp_datacenter}.yaml"
 - "locations/%{::pp_zone}.yaml"
 - "common.yaml"
 - "defaults.yaml"
 options:
 pkcs7_private_key: /etc/puppetlabs/keys/private_key.pkcs7.pem
 pkcs7_public_key: /etc/puppetlabs/keys/public_key.pkcs7.pem

The key infos we can get from it are:

	The eyaml-backend is used (lookup_key: eyaml_lookup_key)

	It’s public and private keys are stored in the directory /etc/puppetlabs/keys/. They have to be copied there wherever we run Puppet to compile a catalog which uses encrypted data: typically on the PuppetMaster, on the Vagrant VMs where we use Puppet for local testing during development, and eventually also on the Vagrant VMs used in CI. These keys are not present in this control-repo (otherwise it would defy the whole concept of using encryption to protect sensitive data).

	The Yaml files containing our Hiera data are placed in the directory data (datadir: data) in out control-repo/Puppet environment. So, for example, for production Puppet environment, all the YAML files are under /etc/puppetlabs/code/environments/production/data

	The hierarchy is based on several paths under the datadir. Variables are used there (%{varname}). Hierarchy goes from the most specific path: nodes/%{::trusted.certname}.yaml which refers to a specific node to the most generic (defaults.yaml) which is used as default value for keys which are not set at higher levels.

For full reference on the format of Hiera 5 configuration file, check the Official Documentation [https://docs.puppet.com/puppet/latest/hiera_config_yaml_5.html]

Environment and module data

Hiera 4, used from Puppet versions 4.3 to 4.8, introduced the possibility of defining, inside a module, the default values of each class parameter using Hiera.

The actual user data, outside modules, was configured by a global /etc/puppetlabs/puppet/hiera.yaml file, which defines Hiera configurations for every Puppet environment.

With Hiera 5 is possible to have environment specific configurations, so we can have a hiera.yaml inside a environment directory which may be different for each environment:

/etc/puppetlabs/code/environments/$environment_name/hiera.yaml

So, for the production environment:

/etc/puppetlabs/code/environments/production/hiera.yaml

This is useful to test hierarchies or backend changes before committing them to the production environment.

We can have also per module configurations, so in a NTP module, for example, we can have a:

$module_path/users/hiera.yaml

with the, now familiar, version 5 syntax:

version: 5

defaults:
 datadir: data
 data_hash: yaml_data

hierarchy:
 - name: "In module hierarchy"
 paths:
 - "%{facts.virtual}.yaml"
 - "%{facts.os.name}-%{facts.os.release.major}.yaml"
 - "%{facts.os.name}.yaml"
 - "%{facts.os.family}-%{facts.os.release.major}.yaml"
 - "%{facts.os.family}.yaml"
 - "common.yaml"

this refers yaml files under the data directory of the module.

The interesting thing in this is that we have a uniform and common way to lookup for data, across the three layers [https://docs.puppet.com/puppet/latest/hiera_layers.html]: global, environment and module: each hierarchy of each layer is used to compose a “super hierarchy” which is traversed seamlessly.

In the module data is also possible to define the kind of lookup to perform for each class parameter.

Previously the lookup was always a “normal” one: the value returned is the one of the key found the first time while traversing the hierarchy.

Now (actually since Hiera 4) it’s possible to specify for some parameters alternative lookup methods (for example merging all the values found across the hierarchy for the requested key). This is done in the same data files where we specify our key values, so, for example, in our $module_path/users/data/common.yaml we can have:

lookup_options:
 # This lookup option applies to parameter 'local' of class 'users'
 users::local:
 # Merge the values found across hierarchies, instead of getting the first one
 merge:
 # Do a deep merge, useful when dealing with Hashes (to override single subkeys)
 strategy: deep
 merge_hash_arrays: true
 # This lookup option applies to parameter 'admins' of class 'users'
 users::admins:
 merge:
 # In this case we expect an array and will merge all the values found in a single one
 strategy: unique
 # It's even possible to define a prefix (here --) to force the removal of entries
 knockout_prefix: "--"

Note that we can use regular expressions when defining specific lookup options for some keys:

lookup_options:
 "^profile::(.*)::(.*)_hash$":
 merge:
 strategy: deep
 knockout_prefix: "--"
 "^profile::(.*)::(.*)_list$":
 merge:
 strategy: unique
 knockout_prefix: "--"

The lookup command

It’s possible to use the puppet lookup command to query Hiera for a given key.

If we run this on our Puppet Master we can easily find out the value of a given key for the specified node:

puppet lookup profiles --node git.lab # Looks for the profiles key on the node git.lab

If we add the --debug option we will see a lot of useful information about where and how data is looked for.

We can also use the lookup() function inside our Puppet code, it replaces (and deprecates), the old hiera(), hiera_array(), hiera_hash() and hiera_include().

The general syntax is:

lookup(<NAME>, [<VALUE TYPE>], [<MERGE BEHAVIOR>], [<DEFAULT VALUE>])

or

lookup([<NAME>], <OPTIONS HASH>)

Some examples follow.

Normal lookup. Same of hiera('ntp::user'):

lookup('ntp::user')

Normal lookup with default. Same of hiera('ntp::user','root'):

lookup('ntp::user','root')

Array lookup, same of hiera_array('ntp_servers'):

lookup('ntp_servers', Array, 'unique')

Deep merge lookup, same of hiera_hash('users') with deep_merge set to true:

lookup('users', Hash, 'deep')

Include classes found on Hiera, same of hiera_include('classes')

lookup('classes', Array[String], 'unique').include

All the above examples can be written in an expanded way. In the following example an array is merged across the hierarchies with the option to use the -- prefix to exclude specific entries:

lookup({
 'name' => 'ntp_servers',
 'merge' => {
 'strategy' => 'unique',
 'knockout_prefix' => '--',
 },
})

Check the official reference [https://docs.puppet.com/puppet/latest/function.html#lookup] for all the options available for the lookup function.

 Puppet Enterprise and Gitlab integration

Puppet Enterprise and Gitlab integration

Deep and powerful integrations are possible in this control-repo between Puppet (Enterprise) and GitLab.

Here we review what is done in this control-repo and the manual steps for a fully PE-GitLab integrated environment:

	Puppet Code Manager integration between GitLab and PE

	Puppet profiles to configure gitlab and gitlab runners

	Gitlab CI integration with Puppet controlled via the .gitlab-ci.yml file.

	PE based Vagrant environment where to test the full integration

Puppet Code Manager deployments automation

It’s possible to configure PE’s Code Manager to automatically deploy code on the Puppet server when any change occurs in a control-repo hosted on GitLab.

Configure Code Manager

To configure Code Manager integration with GitLab follow official documentation [https://docs.puppet.com/pe/latest/code_mgr_config.html].

In short, set these keys via Hiera or manually on the PE console on the Puppet Master of Masters node (or the Puppet Master in a AIO setup):

Url of the control repo hosted on the internal GitLab server
puppet_enterprise::profile::master::r10k_remote: git@git.lan:puppet/control-repo.git'

Path of a ssh private key able to access the repo. File should be owned by pe-puppet user.
puppet_enterprise::profile::master::r10k_private_key: '/etc/puppetlabs/puppetserver/ssh/id-control_repo.rsa'

Enable Code Manager auto deployment
puppet_enterprise::profile::master::code_manager_auto_configure: true

In additional to PE original module you can automate the PE user creation and tokens generation with data as:

profiles:
 profile::puppet::pe_code_manager

profile::puppet::pe_code_manager::pe_user: 'deployer' # A user you've created on PE
profile::puppet::pe_code_manager::pe_password: 'deployer' # PE user password. TOCRYPT. Here in cleartext for demo only.
profile::puppet::pe_code_manager::pe_email: 'root@localhost' # PE user email.

[Manual] steps needed

	Create a new repo for your control-repo on GitLab

	Create a user for deployments on GitLab (ie: deployer), be sure it can access (at least in read only) your control-repo

	Copy the key generated by profile::puppet::pe_code_manager in /etc/puppetlabs/ssh/id-control_repo.rsa as public key of the deployer user on GitLab.

	[auto] On PE Console create a user and assign it to the Code Deployers role (see below for details)

	[auto] On the Puppet Server request an authentication token (see below for details) to use for deployments

	On GitLab add the created PE token to your project’s Webhooks.

The class profile::puppet::pe_code_manager automates some of the above steps (the ones with [auto] prefix)

Create a deploy user on PE console

Manual user creation on PE console (not necessary if class profile::puppet::pe_code_manager is used):

	Click: Access Control -> Users -> Add local user (Specify Full Name and login)

	Click: User -> Edit user -> Generate Password reset

	Copy the link for password reset and open it with a browser to the the user password.

	To assign a new role to the user click User Roles -> Selected role -> Add user (Select from menu the User name)

Check here [https://docs.puppet.com/pe/latest/rbac_user_roles.html] for more details on PE user roles.

For Code Manager is enough to assign the created user to the Code Deployers role.

Request an authentication token

PE allows the usage of tokens to manage access to its APIs. Check [Token Based Authentication(https://docs.puppet.com/pe/latest/rbac_token_auth.html) for more details.

Also the following manual steps can be automated by using and configuring profile::puppet::pe_code_manager.

To create a token of a local system user we can use the puppet-access command.

It’s configuration file is in /etc/puppetlabs/client-tools/puppet-access.conf a sample command to request an authentication token (which lasts 5 years) is:

puppet-access login --lifetime 5y

You are asked to introduce a login and a password, use the credentials of the PE user for which you want to create the token (which will have the access privileges of the username used in puppet-access).

Token is stored in ~/.puppetlabs/token, to view activities done using the Token, in the PE console, click Access control > Users > Selected user > Details > Activity tab.

To manage tokens default lifetime, on the PE console node (note: the default value is just 5 minutes):

puppet_enterprise::profile::console::rbac_token_auth_lifetime: 10y

Note: The control repo provides the define tools::puppet::access to automate Token requests (you need to provide PE username and password).

Tokens used for Code Deployment have to be added in GitLab’s project webhooks [https://docs.puppet.com/pe/latest/code_mgr_webhook.html].

Urls added on gitlab has the following format:

https://<pe_console_hostname>:8170/code-manager/v1/webhook?type=gitlab&token=<puppet_access_token>

Puppet profiles for GitLab components

The control repo provides some class and defines to work with GitLab:

	profile::gitlab installs GitLab and eventually creates projects, groups and users (WIP)

	profile::gitlab::runner installs a GitLab runner (one or more instances)

	profile::gitlab::proxy configures Nginx to act as a reverse proxy of a remote GitLab server

	profile::gitlab::cli installs GitLab cli and configures its access credentials via a custom /etc/gitlab-cli.conf file.

	ptofile::gitlab::ci creates the /etc/gitlab-ci.conf used by some scripts in the CI pipeline

	tools::gitlab::runner define used to create a GitLab runner instance

	tools::gitlab::user define used to create a GitLab user

	tools::gitlab::group define used to create a GitLab group

	tools::gitlab::project define used to create a GitLab project

Puppet CI integration on Gitlab

Setup of a fully integrated CI pipeline for Puppet deployments via GitLab is possible using local profiles, tools and scripts.
At the moment this setup is not completely automated, some steps (user creation on PE and GitLab, secrets setting and configuration).

GitLab Merge Requests and approvals

In the pipelines you may use the commands bin/gitlab_create_merge_request.rb and bin/gitlab_accept_merge_request.rb to automate the remote managements of GitLAB Merge Requests.

These scripts use the /etc/gitlab-cli.conf file generated by the profile::gitlab::cli class.

You configure it with something like:

profile::gitlab::cli::private_token: '9C2xPzg9V22Ha3TdsQpx' # This changes at every GitLab installationn
profile::gitlab::cli::api_endpoint: 'https://git.lan/api/v3' # Use the url of your GitLab server
profile::gitlab::cli::project_id: 3 # ID of the control-repo repo on your GitLab (TODO: be able to specify just the project name)

The GitLab private token is the one from a user that has, on GitLab, the permissions for the requested activities (such as MR management). Create a user with such privileges and then retrive it’s Private token from:
User Settings [Settings in the top right user icon] -> Account -> Private Token

PE/Gitlab demo Vagrant environment

Catalog preview

PE cLient tools [https://docs.puppet.com/pe/latest/install_pe_client_tools.html]
pe-client-tools package

Token based authentication [https://docs.puppet.com/pe/latest/rbac_token_auth.html]

Orchestrator

Orchestrator [https://docs.puppet.com/pe/latest/orchestrator_intro.html]

Configural file /etc/puppetlabs/client-tools/orchestrator.conf

Direct Puppet workflow [https://docs.puppet.com/pe/latest/direct_puppet_workflow.html]

 Prerequisites

Prerequisites

To have a full working environment we might need to locally install some software for specific activities.

We can simply run bin/setup.sh to install them via Puppet or just can do that manually, as follows.

Single Modules

All the modules have a metadata.json file where dependencies are described.

Most of the modules require PuppetLabs’ stdlib.
Some modules (the ones, of generation 2.x, which use the params_lookup function) require Puppi.

Control repo

To be able to use the control-repo with Puppet some gems are needed and modules defined in the Puppetfile have to be deployed.

The hiera-eyaml, r10k and deep_merge gems can be installed by the setup script or manually with commands like:

Gem installation in system
gem install hiera-eyaml
gem install r10k
gem install deep_merge

Gem installation in Puppet environment
/opt/puppetlabs/puppet/bin/gem install hiera-eyaml
/opt/puppetlabs/puppet/bin/gem install r10k
/opt/puppetlabs/puppet/bin/gem install deep_merge

Gem installation in Puppet server environment (if present)
/opt/puppetlabs/server/apps/puppetserver/cli/apps/gem install hiera-eyaml
/opt/puppetlabs/server/apps/puppetserver/cli/apps/gem install r10k
/opt/puppetlabs/server/apps/puppetserver/cli/apps/gem install deep_merge

Population of the modules directory via r10k based on Puppetfile:

r10k puppetfile install -v

The above steps can be accomplished by simply running bin/puppet_setup.sh.

Vagrant

For a correct setup of the Vagrant environment we need Vagrant, VirtualBox and some extra plugins:

vagrant plugin install vagrant-cachier
vagrant plugin install vagrant-vbguest
vagrant plugin install vagrant-hostmanager

These plugins, as Vagrant itself, can be installed by the setup script.

Docker

Docker operations via Fabric or the command line require Docker to be locally installed.

If we use Mac or Windows we need the newer native client, things won’t work when using Docker running inside a Virtualbox VM.

You’ll need to run docker login before trying any operation that involves pushing our images to Docker registry.

Also Docker can be installed by the setup script.

 example42 PSICK Puppet Open Source Server automation

example42 PSICK Puppet Open Source Server automation

The control-repo allows to spin up a Puppet Open Source Server in a fully automated way.

One can use vagrant or even use PSICK on a fresh base OS installation.

First we need puppet-agent and r10k installed.

Vagrant installation

For vagrant it is required to have a local ruby installation. Best option is to either use rvm or rbenv. Then run bundle install --path vendor/bundle.

Use bundle to install the modules from Puppetfile:

bundle exec r10k puppetfile install -v

Now change to vagrant/environments/pos directory and run vagrant up puppet.foss.psick.io.

Base OS installation

For base OS installation the most easy way is cloning control-repo into /etc/puppetlabs/code/environments/production:

mkdir -p /etc/puppetlabs/code/environments
cd /etc/puppetlabs/code/environments
git clone https://github.com/example42/psick.git production
cd production

Next it is required tp have puppet-agent package already installed. This can be achieved by running bin/puppet_install.sh from PSICK base directory.
Next we need r10k installation by running bin/puppet_setup.sh from PSICK base directory.

One can ignore error message concerning docker, vagrant and fab.

Now we can install modules by using the r10k command to install required modules:

./bin/puppet_install_puppetfile.sh

Afterwards one needs to change the hiera node data to add the profile classification information:

 profiles:
 - profile::puppet::gems
 - profile::puppet::foss_master
 profile::puppet::gems::install_puppetserver_gems: true

Last step is to use puppet apply for getting the setup done automatically. Just run bin/papply.sh.

 Git

Git

This control-repo is stored in a Git [https://git-scm.com] repository.

Whoever has to work on tit should have basic git knowledge.

Here we are going to review git essentials and outline possible workflows for Puppet code development, testing and deployment process.

Git essential reference

Here is a very brief overview of Git essentials. There are many online resources where to learn more about it, here is a brief list:

	Git - The simple guide [http://rogerdudler.github.io/git-guide/] - A Very basic introduction to Git. Used as starting point for this topic.

	Pro Git [https://book.git-scm.com/book/en/v2] - A free and ratehr complete book about Git

	A visual Git Reference [http://marklodato.github.io/visual-git-guide/index-en.html] - Git main concepts visualised and explained

	GitHub Help [https://help.github.com] - Useful info about Git and GitHub

	Try Git [https://try.github.io] - A site where is possible to practice with Git

	Git Reference [http://gitref.org] - An online reference

Git minimal guide

Once installed [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git] Git provides a CLI command which has several actions. Let’s see the most used ones.

Create a new repository in the current directory:

git init

Checkout a repository: create a local copy from a remote server.

To clone via HTTPS (username and passwords are needed for private repos):

git clone https://github.com/example42/control-repo

To clone via SSH:

git clone git@github.com:example42/control-repo.git

Our local repository consists of three “trees” maintained by git:

	The Working Directory holds the actual files we are working on

	The Index acts as a staging area containing files ready to be committed

	The HEAD which points to the last commit on the git repository

Once we start to modify, add or delete files on our git repo, we have to add them to the Index before being able to commit them.

To add specific file to the Index:

git add <filename>

To add all the changed or new files from the current working directory to the Index:

git add .

To add all the changed, new and deleted files from the current working directory to the Index:

git add --all .

To visualize the status of our files (the ones added to the Index and ready to be committed, or the ones created or changed, which are only in the Working Directory and not yet on the Index, write:

git status

When we are confident that the files added to the Index are complete, we can commit our changes.

To create a commit with the changes in Index and the given title:

git commit -m "Commit message"

To create a commit and open our editor to add a title (on first line of the text we edit) and eventually a description of the commit (on the following lines):

git commit

Now the files are committed to the HEAD or our local working copy, but not in our remote repository yet.

To send those changes to our remote repository, we can run:

git push origin <branch>

Note: Usually the main branch of a git repository is called master, but in Puppet control-repos this is called, instead production to make it match Puppet’s default environment.

Worth noting is that we might not be able to push directly to the production branch: it’s relatively common to work on a development branch and then, after a proper CI pipeline where relevant tests are done, promote the change to the production branch.

We will review better some sample development workflows.

Branches can be considered different versions of the repository, changes made in a branch can be merge into another. They are typically used to develop features isolated from each other which, once completed and tested, are merged back into the master (production, in case of a Puppet control-repo) branch.

To create a new branch named “development” and switch to it:

git checkout -b development

To switch back to production branch:

git checkout production

To merge another branch into our active branch (e.g. to realign our development branch to the content of the production branch), first we move into our development branch:

git checkout development

Then we merge eventual additional contents in production into the development branch:

git merge production

If the same files have been modified in both the branches, a conflict may be present and automatic merging could not be possible. In these cases, we are responsible to merge those conflicts manually by editing the files shown by git. The involved commands could be as follows.

We move into our development branch:

git checkout development

We merge production into development and we see conflict errors:

git merge production

To show the conflicting files:

git status

We need to edit the file, where we will see in patch format (the same we see when using the diff command) the different changes on the file. We need to remove the diff placeholders (Lines like === or >>>) and edit the code in the expected way:

vi <file>

To add the file to the Index:

git add <file>

To review and commit our conflict resolution:

git commit

In case we did something wrong that we want to revert, we can use the following commands, according to the circumstance (read this tutorial [https://www.atlassian.com/git/tutorials/undoing-changes] for more details).

To replaces the changes on the given file in our working tree with the last content in HEAD (Changes already added to the index, as well as new files, will be kept):

git checkout -- <filename>

To drop all our local changes and revert back to the latest local commits:

git reset --hard

To undo the changes done in the given commits:

git revert <git_commit_id>

Other useful commands often used when working with Git:

git log # Show git commits history
git log --name-status # Show commits history and the changed files in each commit
git log --pretty=oneline # Shot commit history using one line per commit

git pull # Update the local repository with the newest commit from remote origin

git diff # Show the differences between Working Area and Index
git diff HEAD # Show the differences between Working Area and HEAD
git diff production development # Show the differences between production and development branches

Git can be configured using the git config command or editing the ~/.gitconfig file.

Some configurations examples:

git config color.ui true # To enable colorful output
git config format.pretty oneline # Show log on just one line per commit
git config user.name 'My Name' # To configure the username to show on our commits
git config user.email 'my@email.com' # To configure the email to show on our commits

Git workflows

Git is a very versatile tool which allows distributed development also for very complex projects.

We can follows different workflows [https://www.atlassian.com/git/tutorials/comparing-workflows] for our code, which defines the steps and procedures to follow to promote code changes from local development to public development.

These are some popular workflows, with a brief comment, we should follow one that better fits our needs (and skills)

	Gitflow [http://nvie.com/posts/a-successful-git-branching-model/] A very popular, but somehow complex, workflow, involving different branches for features, releases and hotfixes.

	GitHub Flow [https://guides.github.com/introduction/flow/] - A much simpler workflow based on master to which Pull Requests are made from feature branches

	GitLab Flow [https://docs.gitlab.com/ee/workflow/gitlab_flow.html] - A workflow similar to GitHub flow with some variations.

Git tools provided in the control-repo

This control-repo provides some commands related to Git.

To install useful git hooks for Puppet files checking (by default downloaded from https://github.com/drwahl/puppet-git-hooks) use one of these, alternative, commands:

fab git.install_hooks # If using Fabric
bin/git_install_hooks.sh # Direct bash command

It’s possible to specify the git repo url to use (hooks are looked for in the commit_hooks directory, so that directory should exist in our repo):

fab git.install_hooks:url=https://github.com/my/puppet-git-hooks
bin/git_install_hooks https://github.com/my/puppet-git-hooks

We can customize the kind of checks to do editing the file:

${control_repo_dir}/.git/hooks/commit_hooks/config.cfg

in particular we might prefer to set CHECK_PUPPET_LINT='permissive' to avoid commit block on Puppet lint errors which are syntactically correct but may have code style problems (so mostly aesthetic).

Note that existing git hooks are not overwritten by this task.

When working on our control repo, besides it’s own git repository, we may have, in the modules/ directory external modules with their own git repositories. To quickly check the git status of the main control-repo and of the other eventual modules, run:

fab git.status

 Puppet external facts

Puppet external facts

There are 3 ways to add our own facts in Puppet:

	Writing our custom facts, in Ruby language and adding them to the lib/facter direcctory of a module. Details here [https://docs.puppet.com/facter/3.5/custom_facts.html]

	Adding external facts, written in plain text or as executables in any language. Details later in this document.

	Adding trusted facts in csr_attributes.yaml as described in this document

External facts are placed in these directories:

On Linux/*nix:
/opt/puppetlabs/facter/facts.d/
/etc/puppetlabs/facter/facts.d/
/etc/facter/facts.d/

On Windows:
C:\ProgramData\PuppetLabs\facter\facts.d\

They are simple files that can have different formats:

	Simple texts with .txt extensions. Facts names and their values are in ini file style:

role=webserver
env=prod
zone=berlin

	Yaml files, with yaml extension:

role: webserver
env: prod
zone: berlin

	Json files, with json extension:

{
 "role": "webserver",
 "env": "prod",
 "zone": "berlin",
}

	Any command in any language. The file, with whatever extension, just has to be executable. On Windows it must have .com, .exe, .bat, .cmd, .ps1 extension).
The command should just output the fact name(s) and its/their values:

#!/bin/bash
echo “role=webserver”
echo “env=prod”
echo “zone=berlin”

The files we create in the facts.d directory can provide one or more facts values, and they can have any name. Typically for data files that provide just one fact, the file name is the name of the fact:

cat /etc/puppetlabs/facter/facts.d/role.txt
role=webserver

External facts can be deployed during provisioning of the server or can be placed in the facts.d directory of a module (they are pluginsynced automatically to the client at the beginning of a Puppet run).

External facts are a very easy way to set custon facts on nodes, just consider the following points:

	They can be potentially changed on the client just by editing the relevant fact. We may prefer to use trusted facts when we want their values to be immutable.

	If we use the pluginsync functionality to distribute them note that they are copied as is, from Puppet server to clients, so we don’t have a way to distribute different facts to different clients.
For this reason we’ll probably find ourselves adding facts that just contain data (.txt, .yaml, .json) in some alternative way (typically during the node’s provisioning) and use pluginsync only for the ones that compute the result in some way (as executables ones do).

 Introduction to Puppet

Introduction to Puppet

Puppet features a declarative Domain Specific Language (DSL), which expresses the desired state and properties of the managed resources.

Resources can be any component of a system, for example, packages to install, services to start, files to manage, users to create, and also custom and specific resources such as MySQL grants, Apache virtual hosts, but also Network interfaces, AWS instances, Storage volumes and so on.

Puppet code is written in manifests, which are simple text files with a .pp extension.

Resources can be grouped in classes (do not consider them as classes as in OOP; they aren’t). Classes and all the files needed to define the required configurations are generally placed in modules, which are directories structured in a standard way that are supposed to manage specific applications or a system’s features (there are modules to manage Apache, MySQL, sudo, sysctl, networking, and so on).

When Puppet is executed, it first runs facter, a companion application, which gathers a series of variables about the system (the IP address, the hostname, the operating system, the MAC address, and so on), which are called facts*, and are sent to the Master.

Facts and user defined variables can be used in manifests to manage how and what resources to provide to the clients.

When the Master receives a connection, then it looks in its manifests (starting from the the files in /etc/puppetlabs/code/environments/production/manifests/site.pp) what resources have to be applied for that client host, also called a node.

The Master parses all the DSL code and produces a catalog that is sent back to the client (in JSON PSON format). The production of the catalog is often referred to as catalog compilation.

Once the client receives the catalog, it starts to apply all the resources declared there, irrespective of whether packages are installed (or removed), services have started, configuration files are created or changed, and so on. The same catalog can be applied multiple times; if there are changes on a managed resource (for example, a manual modification of a configuration file), they are reverted to the state defined by Puppet; if the system’s resources are already at the desired state, nothing happens.
This property is called idempotence and is at the root of the Puppet declarative model. Since it defines the desired state of a system, it must operate in a way that ensures that this state is obtained wherever the starting conditions and the number of times Puppet is applied.

Anatomy of a Puppet run

In normal setups Puppet follows a Client-Server paradigm, on clients it runs, as root the Puppet Agent service, which connects to the Puppet Master. All the communication is done using REST-like API calls on an SSL socket; basically, it’s all HTTPS traffic from clients to the server’s port 8140/TCP.

The first time we execute Puppet on a node, a x509 certificate is created and then the Puppet Master is contacted in order to retrieve the node’s catalog. The client’s certificate has to be accepted (signed) by the server, using its own local Certification Authority.

A typical Puppet run is composed of different phases. It’s important to know them in order to troubleshoot problems:

	Execute Puppet on a root shell on the client:

client# puppet agent -t

	Modules’ plugins (whatever is present in the lib dir of a module) are synced to the node. We will see a message like:

[client] Info: Retrieving plugin

	The client runs facter and sends its facts to the Master. The client output looks like:

[client] Info: Loading facts in /var/lib/puppet/lib/facter/... [...]

	The Master looks for the client’s certname (by default the fqdn) in its nodes’ list.

	The Master compiles the catalog for the client using its facts and the Puppet code and data it. On Puppet Master logs an entry like this will be added:

[server] Compiled catalog for <client> in environment production in 8.22 seconds

If there are syntax errors in the processed Puppet code, they are exposed here, and the process terminates; otherwise, the server sends the catalog to the client. On the client a text like this will be displayed:

 [client] Info: Caching catalog for <client>

The client receives the catalog and starts to apply it locally. If there are dependency loops, the catalog can’t be applied and the whole run fails. If not the client will start to apply the resources present in the catalog, beginning with a message like:

 [client] Info: Applying configuration version '1355353107'

	All changes to the system are shown on stdout or in logs. If there are errors they are relevant to specific resources but do not block the application of other resources (unless they depend on the failed ones, in those cases a message mentioning Skipping because of failed dependencies will be shown.

	At the end of the Puppet run, the client sends to the server a report of what has been changed. Client output:

[client] Finished catalog run in 13.78 seconds

	The server sends the report to a report collector (typically PuppetDB) for storage and later querying.

Learning resources

Useful resources to start learning Puppet:

	The website of Puppet [http://puppet.com], the company behind

	The official Puppet Documentation site [http://docs.puppet.com/] -

	The Learning VM [https://puppet.com/download-learning-vm], based on Puppet Enterprise, for a guided tour in Puppet world

	A list of the available Puppet Books [https://puppet.com/resources/books]

If we have questions to ask about Puppet usage we can use these:

	All the Puppet Community [http://puppet.com/community/overview/] references

	Ask Puppet [http://ask.puppet.com/], the official Q&A site

	The discussion groups on Google Groups: puppet-users [https://groups.google.com/forum/#!forum/puppet-users], puppet-dev [https://groups.google.com/forum/#!forum/puppet-dev], puppet-security-announce [https://groups.google.com/forum/#!forum/puppet-security-announce]

	The IRC #puppet channel on Freenode [http://webchat.freenode.net/?channels=puppet]

	The Slack [https://slack.puppet.com/] Puppet channels

To explore and use existing Puppet code:

	Puppet modules on Module Forge [http://forge.puppet.com]

	Puppet modules on GitHub [https://github.com/search?q=puppet]

To inform ourselves about what happens in Puppet World

	Planet Puppet [http://www.planetpuppet.org/] - Puppet blogosphere

	The PuppetConf [http://www.puppetconf.com] website

	The ongoing PuppetCamps all over the world

To find more and deeper information:

	Puppet Labs tickets [https://tickets.puppet.com] - The official ticketing system

	Developer reference [http://docs.puppet.com/references/latest/developer/] - The commented Puppet code

	Puppet Stats [https://puppet.biterg.io] - Puppet related metrics and stats

 Documentation

Documentation

General Puppet documentation:

	Introduction to Puppet - A very basic introduction to Puppet

	Hiera essentials - Basic Hiera concepts

	Hiera eyaml - An overview on how to use hiera-eyaml

	Trusted Facts - How to set and use trusted facts

	External Facts - How to set and use external facts

About this control-repo:

	Control-repo logic - An overview of the design choices and the logic of this control repo.

	Prerequisites - A more detailed view of the prerequisites needed to fully use the control-repo

	Noop Mode - An overview on how to enforce noop mode server side with this repo

	Vagrant Integration - How to use Vagrant to test the control-repo during development

	Docker Integration - How to use Docker to test Puppet code and to build images based on the existing Puppet code

	Fabric - A review of Puppet tasks available with Fabric

Managing changes:

	Git tasks - An overview on how to use Git

	Change Process - A step by step guide on how to manage changes in Puppet code

 <no title>

 Manual

 Working with AWS

Working with AWS

This control-repo has some resources and tools to work with AWS.

In order to have eveyrthing in place for working with AWS you need:

	An account on AWS [https://aws.amazon.com]

	Generate a user under IAM and create an ACCESS_KEY_ID and its SECRET_ACCESS_KEY

	Installed, on the node you want to work with AWS, all the necessary tools

Installation of AWS environment on local node

Install locally this repo and all its dependencies:

fab puppet.setup

If you want to manage AWS resources from your local computer, install the necessary packages:

bin/aws_setup.sh
or
fab aws.setup

Alternatively you can use the VM dev-local-aws-01 under vagrant/environments/puppetinfra which is preconfigured to use the aws role:

fab vagrant.up:dev-local-aws-01
fab vagrant.provision:dev-local-aws-01

NOTE: Be very careful when “playing” with AWS. Always try in noop mode if you are not sure of what may happen. Remember that most of what is done in the aws role is managed in hieradata/role/aws.yaml.

Manual steps

For the complete initial setup of an AWS environment, some operations must be done manually via the AWS console:

	Creation of a keypair to use for SSH on a newly provisioned machine. The name of this keypair, as written on AWS console, must be configured in hieradata/role/aws.yaml in a similar way:

 profile::aws::puppet::ec2::default_key_name: 'puppet'

	Acceptance of the Marketplace user agreement via the AWS console (just create a disposable instance on the Console, using an image from the Marketplace (ie: the official Centos 7 one).

Installation of Puppet on a remote node

To install Puppet for on the specified . It might be necesssary to specify the breed (TODO: Automate os detection)

 example42. PSICK, control-repo and modules

example42. PSICK, control-repo and modules

PSICK is the result of years of work on Puppet code and modules.

Example42 started to release Puppet modules in 2009 having, since the very beginning,
the vision to provide a reusable set of Puppet code able to manage in an integrated
way a whole infrastructure automating backup and monitoring functionalities.

Even if PSICK itself is born in 2017 it’s derived from Example42’s original control-repo,
which was itself the evolution of example42 Puppet modules collection.

Example42 modules evolution

Example42 original idea of making reusable te design of a whole infrastructure with Puppet
has evolved through various iterations:

	“OLD” Example42 Puppet modules (Version 1.x) are no more supported or recommended.
They are supposed to work also on Puppet versions 0.x.
You can give them a look using the 1.0 branch of this repo [https://github.com/example42/control-repo-original].

	“NextGen” Example42 Puppet modules (Version 2.x) were made before the release of Puppet 3.
They are compatible with Puppet version 2.6 , 3 and, for most, 4 and require example42’s puppi module.
Most of the modules you still see on the Forge belong to this generation and most of them are
now no more actively supported (we receive PR and fixes but we don’t actively work on them).
They were linked as git submodules on branch 2.0 of the original repo [https://github.com/example42/control-repo-original].

	“StdMod” modules (Version 3.x) were supposed to be the next evolution of Example42 modules.
They adhere to StdMod [https://github.com/stdmod/puppet-modules] naming standards and are compatible with Puppet > 2.7 or 3.x
This is an half baked generation, which was abandoned for other projects.

	Version 4.x modules. Most of the old pre-Puppet 4 modules have been deprecated and not maintained anymore.
They are Puppet 4 only compliant.
The structure of the repo has changed radically, all the git submodules have been removed and a
control-repo style has been introduced.
With the release of 4.x this repo has been renamed: from puppet-modules to control-repo.

	With the introduction os PSICK we started release numbering from scratch, even if the amount of code
inherited from the control-repo is quite relevant.
We renamed the original GitHub repo from control-repo to psick
and we zeroed the git history. You still can see it on the archive repo [https://github.com/example42/control-repo-archive]
for historical purposes (that repo in freezed and won’t accept PR).

Why did we rename the control-repo to Psick and zeroed the whole ancient history of that repo?

	We wanted to have a clean git history and a tinner git repo, without 8 years of code stratifications

	We wanted to start from scratch release versioning, tags and branches.

	We think that the original concept of having a single place where to manage the whole Puppet infrastructure
has been there since the very first iteration, even if in totally different shapes.

	Honestly, most of all, we wanted to preserve GitHub’s stars on our historic Puppet modules repository.

Installing single example42 Puppet modules

Use the Forge to install single example42 modules (be aware of the deprecated or old (2.x) ones):

puppet module search example42

or cherry pick them from GitHub [https://github.com/example42].

Note that most of example42 modules are not obsolete and no more actively maintained.

Most of their functionality is reproduced by Tiny Puppet or by the profiles in this control-repo.

Old versions installation

You can retrieve the old lists of Example42 modules from other versions with:

git clone --recursive -b 1.0 git://github.com/example42/control-repo-archive.git
git clone --recursive -b 2.0 git://github.com/example42/control-repo-archive.git
git clone --recursive -b 3.0 git://github.com/example42/control-repo-archive.git

Note that earlier versions are based on git modules and have not a control-repo structure.

Single Modules

All the modules have a metadata.json file where dependencies are described.

Most of the modules require PuppetLabs’ stdlib.
Some modules (the ones, of generation 2.x, which use the params_lookup function) require Puppi.

 Puppet change process

Puppet change process

In this document we will review a possible process to follow to manage Puppet changes. It’s based on the .gitlab-ci.yml file of this control repo and expects a setup where cose stays in a (local) GitLab instance and the Puppet server in based on Puppet Enterprise.

This can be adapted to custom tools and needs, with variations in internal organisation and processes.

By Puppet changes we mean, any modification, addition or deletion in this Git repository which may involve changes on real server, once the change has been deployed to the Puppet Server.

Changes overview: summary of involved files and impact

This repository contains various files and directories, changing their contents may or may not affect our servers in different ways. We identify the following risks level, from lower to higher:

	[safe] - Changes done here are totally safe in terms of impact on running servers

	[bau] - Business as usual. Changes here impact a limited number of servers or not critical elements

	[warning] - Changes may impact several servers and should be considered with care

	[danger] - Changes may have a very large impact. Be sure to be aware of what we are doing

Let’s have a quick overview of the risk level related to different kind of files. Needless to say that they refer to actual changes in Puppet code and data, if we are just adding a comment we can be confident that we change won’t have any effect.

	[safe] README.md, docs/, LICENSE contain documentation and general information. Changes done here won’t have any impact on our servers

	[danger] hiera.yaml is the Hiera configuration file for the environment, changes here (for in the hierarchy or the used backends) may affect several systems in more or less unpredictable ways. Edit it only if we know what we are doing.

	[danger] data/common.yaml, data/defaults.yaml, data/location/ contain Hiera data which is used for all the nodes or the ones of a specific location (when not overridden in more specific layers of the hierarchy), so any change here may impact several servers. Be aware.

	[warning] data/role/ contains Hiera data which is used for all the nodes of the same role. These might be a few or several, according to the role. Edit with care, always considering if it’s safe to rollout our change to all the nodes with this role

	[bau] data/nodes/ contains Hiera data for specific nodes. Here we can place nodes specific settings, which are easy to test (directly on the involved node) and have a limited impact (only the node having the name of the file we change).

	[danger] manifests/

 Table of Contents

Table of Contents

	Control-repo contents

Control-repo contents

This is a Puppet control repo with the following files:

	environment.conf that configures:
	A site directory for roles, profiles, and any custom modules for your organization.

	A config_version script.

	config_version script under bin/ directory

	Basic structure for roles/profiles code.

	Sample hieradata directory common.yaml and nodes directory.

	Sample environment hiera.yaml (version 5) file

