

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Ethereum flavored WebAssembly (eWASM) Design (Revision 3)

This repository contains documents describing the design and high-level overview of eWASM. Expect the contents of this repository to be in flux: everything is still under discussion.


What is WebAssembly?


WebAssembly (or Wasm as a contraction) is a new, portable, size- and load-time-efficient format. WebAssembly aims to execute at native speed by taking advantage of common hardware capabilities available on a wide range of platforms. WebAssembly is currently being designed as an open standard by a W3C Community Group.




Please review the WebAssembly [http://webassembly.org/] design [http://webassembly.org/docs/high-level-goals/] and instruction set first. (You can also make a pull request or raise an issue at the Wasm Github repo [https://github.com/WebAssembly/design].)

A few key points:


	WebAssembly defines an instruction set, intermediate source format (WAST) and a binary encoded format (WASM).


	WebAssembly has a few higher level features, such as the ability to import and execute outside methods defined via an interface.


	LLVM [https://llvm.org/] includes a WebAssembly backend to generate WASM output.


	Major browser JavaScript engines will notably have native support for
WebAssembly, including but not limited to: Google’s
V8 [https://github.com/v8/v8] engine (Node.js and Chromium-based browsers),
Microsoft’s Chakra [https://github.com/Microsoft/ChakraCore] engine
(Microsoft Edge), Mozilla’s
Spidermonkey [https://github.com/mozilla/gecko-dev/tree/master/js] engine
(Firefox and Thunderbird).


	Other non-browser implementations exist too:
wasm-jit-prototype [https://github.com/WebAssembly/wasm-jit-prototype] (a
standalone VM using an LLVM backend),
wabt [https://github.com/WebAssembly/wabt] (a stack-based interpreter),
ml-proto [https://github.com/WebAssembly/spec/tree/master/ml-proto] (the
OCaml reference interpreter), etc.







What is Ethereum flavored WebAssembly (eWASM)?

eWASM is a restricted subset of WASM to be used for contracts in Ethereum.

eWASM:


	specifies the VM semantics


	specifies the semantics for an eWASM contract


	specifies an Ethereum environment interface to facilitate interaction with the Ethereum environment from an eWASM contract


	specifies system contracts


	specifies metering for instructions


	and aims to restrict non-deterministic behavior [https://github.com/WebAssembly/design/blob/master/Nondeterminism.md]


	specifies a backwards compatible upgrade path to EVM1





Goals of the eWASM project


	To provide a specification of eWASM contract semantics and the Ethereum interface


	To provide an EVM transcompiler, preferably as an eWASM contract


	To provide a metering injector, preferably as an eWASM contract


	To provide a VM implementation for executing eWASM contracts


	To implement an eWASM backend in the Solidity compiler


	To provide a library and instructions for writing contracts in Rust


	To provide a library and instructions for writing contracts in C







Glossary


	eWASM contract: a contract adhering to the eWASM specification


	Ethereum environment interface (EEI): a set of methods available to eWASM contracts


	metering: the act of measuring execution cost in a deterministic way


	metering injector: a transformation tool inserting metering code to an eWASM contract


	EVM transcompiler: an EVM bytecode (the current Ethereum VM) to eWASM transcompiler. See this chapter.







Resources


	FAQ


	Rationale


	VM semantics


	Ethereum environment interface


	eWASM Contract Interface


	System contracts


	Backwards compatibility instructions


	Original Proposal [https://github.com/ethereum/EIPs/issues/48] (EIP#48)


	WebAssembly Specification [https://github.com/WebAssembly/spec/blob/md-proto/md-proto/WebAssembly.md]


	WebAssembly design documents [https://github.com/WebAssembly/design]







Projects


	ewasm-tests [https://github.com/ewasm/ewasm-tests]


	wasm-metering [https://github.com/ewasm/wasm-metering]


	ewasm-kernel [https://github.com/ewasm/ewasm-kernel]


	evm2wasm [https://github.com/ewasm/evm2wasm]


	ewasm-libc [https://github.com/ewasm/ewasm-libc]


	assemblyscript-ewasm-api [https://github.com/ewasm/assemblyscript-ewasm-api]


	ewasm-rust-api [https://github.com/ewasm/ewasm-rust-api]







Design Process & Contributing

For now, high-level design discussions should continue to be held in the design repository, via issues and pull requests. Feel free to file issues [https://github.com/ethereum/ewasm-design/issues].






Chat

Matrix [https://riot.im/app/#/room/#the_vertex:matrix.org]IRC freenode@ewasmGitter [https://gitter.im/ewasm/Lobby]







          

      

      

    

  

    
      
          
            
  
Backwards Compatibility

The current approach to achieving backwards compatibility with EVM1 is to
support both of the instruction sets with the option to transcompiling EVM1 to
eWASM. This approach gives clients optionality when dealing with EVM1 code.
A client can either implement only an eWASM VM and transcompile all of the EVM1
code. Or a client can implement a eWASM VM and EVM1 VM and leave the old code as
is.


Gas Prices

In eWASM we will introduce sub-gas units so that each EVM1 opcode’s
transcompiled equivalent eWASM’s gas cost is less then the original EM1 opcode’s
cost. The fee schedule for eWASM is yet to be specified.




Identification of code

We assume there is some sort of code handler function that all clients have
implemented. The code handler identifies the instruction set type by whether it
starts with WASM’s magic number or not.

The WASM magic number is the following byte sequence: 0x00, 0x61, 0x73, 0x6d.




Solidity

Support of compiling to eWASM can be accompilshed by adding a new backend to
the solidity compile. eWASM support for Solidity is part of the MVP.




Transcompiler

A post-MVP goal is to have the transcompiler it self become a contract by
compiling it to eWASM. Once this is accomplished, EVM1 contracts created by
the CREATE op will be transcompiled to eWASM. This will also allow us to assume
that all EVM1 code is now transcompiled eWASM code, which should be reflected
in the state root since the has of the code is stored in the Merkle trie. Note:
this should still allow clients to fallback to EVM1 VMs if running EVM1 code.







          

      

      

    

  

    
      
          
            
  
WASM


Good


	limited well defined non-determinism


	performant (near native speed)


	portable


	will be widely deployed


	AST bytecode makes it easy to decouple metering from the VM







Bad


	not stable yet









LLVM IR


Good


	very tested


	large community


	was used by googles PNACL


	widely deployed







Bad


	not intrinsically portable


	not stable


	lage surface (ISA) that VM implementors would have to deal with




Response from Derek Schuff (one of the engineers for pNACL) from google on WASM vs LLVM


I’m guessing you are unfamiliar with PNaCl. This is more or less the approach taken by PNaCl; i.e. use LLVM as the starting point for a wire format. It turns out that LLVM IR/bitcode by itself is neither portable nor stable enough to be used for this purpose, and it is designed for compiler optimizations, it has a huge surface area, much more than is needed for this purpose. PNaCl solves these problems by defining a portable target triple (an architecture called “le32” used instead of e.g. i386 or arm), a subset of LLVM IR, and a stable frozen wire format based on LLVM’s bitcode. So this approach (while not as simple as “use LLVM-IR directly”) does work. However LLVM’s IR and bitcode formats were designed (respectively) for use as a compiler IR and for temporary file serialization for link-time optimization. They were not designed for the goals we have, in particular a small compressed distribution format and fast decoding. We think we can do much better for wasm, with the experience we’ve gained from PNaCl




LLVM IR is meant to make compiler optimizations easy to implement, and to represent the constructs and semantics required by C, C++, and other languages on a large variety of operating systems and architectures. This means that by default the IR is not portable (the same program has different representations for different architectures) or stable (it changes over time as optimization and language requirements change). It has representations for a huge variety of information that is useful for implementing mid-level compiler optimizations but is not useful for code generation (but which represents a large surface area for codegen implementers to deal with). It also has undefined behavior (largely similar to that of C and C++) which makes some classes of optimization feasible or more powerful, but which can lead to unpredictable behavior at runtime. LLVM’s binary format (bitcode) was designed for temporary on-disk serialization of the IR for link-time optimization, and not for stability or compressibility (although it does have some features for both of those).

None of these problems are insurmountable. For example PNaCl defines a small portable subset of the IR with reduced undefined behavior, and a stable version of the bitcode encoding. It also employs several techniques to improve startup performance. However, each customization, workaround, and special solution means less benefit from the common infrastructure






CLI / ECMA-335


Good


	Defines a Kernel runtime and CIL subset that should be all we need. (We could use just the CIL intermediate language subset, but that could cut us off from the larger ecosystem.)


	Looks like the kernel can be implemented to be safe and deterministic. I didn’t try to analyze much, but safety and security were design goals.


	Stable international standards since 2000.


	Stable .NET and open-source Mono implementations.


	Mature tools and language support, large user base, open source (even from Microsoft).







Bad


	Missing standard SIMD support. (Both Mono and .NET are putting it in, so it should be standard eventually. )


	Missing some of the nicer features of Wasm – stack machine, not so compact, not AST-based, etc.


	Likely a bigger runtime footprint than Wasm.


	Microsoft.


	Did I mention Microsoft?









RISCV


Isn’t RISCV a purely hardware spec?






JVM


Nonstarter.  Oracle ownership and intellectual property issues.






EVM1


Good:


	We own it.


	It can evolve to where we need to go.


	Coordination with other projects is optional.


	We have the engineering talent we need.


	We can incorporate wasm and other tech as appropriate.







Bad:


	We own it.


	We will need to maintain and build our own community of developers and users. (This might be a pro.)


	EVM design has some clunkiness that gets in the way of performance and clean evolution.










          

      

      

    

  

    
      
          
            
  
eWASM Contract Interface (ECI) Specification (Revision 3)

The eWASM Contract Interface (ECI) specifies the structure of a contract module.


Wire format

Every contract must be stored in the WebAssembly Binary Encoding [https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md] format (in short, WASM bytecode).




Imports

A contract can only import symbols specified in the Ethereum Environment Interface or EEI.

In practice, this means that all imports specified by an eWASM module must be from the ethereum namespace,
and having a function signature and name directly correspondent to a function specified in the EEI.

As mentioned below, there is a debug namespace as well, but that is disallowed in production systems.


Debug-mode

Debug-mode is a special VM option, where an additional set of debugging interfaces are available to contracts.  On a live VM, any bytecode trying to import these
symbols should be rejected.

The imports are available under the debug namespace:


	print32(value: i32) - print value


	print64(value: i64) - print value


	printMem(offset: i32, len: i32) - print memory segment as printable characters


	printMemHex(offset: i32, len: i32) - print memory segment as hex


	printStorage(pathOffset: i32) - print storage value as printable characters


	printStorageHex(pathOffset: i32) - print storage value as hex









Exports

A contract must have exactly two exported symbols:


	memory: the shared memory space available for the EEI to write into.


	main: a function with no parameters and no result value.







Entry point

The method exported as main will be executed by the VM.

On successful execution, the code should return via a normal code path.

If it needs to abort due to a failure, an unreachable instruction should be executed.




Start function

The use of a start function [https://webassembly.github.io/spec/core/syntax/modules.html#start-function] is disallowed.

The reason for this is that an eWASM VM would need to have access to the memory space of a contract and that must be acquired prior to executing it.
In the WebAssembly Javascript API [https://webassembly.org/docs/js/] however the start function is executed right during instantiation, which
leaves no time for the client to acquire the memory area.

Note: This decision was made on WebAssembly version 0xb (pre version 1) and should be revisited.




Traps

If execution of wasm code triggers the wasm trap, the contract execution is
terminated with failure and all remaining gas is consumed (OOG-like exception).
This includes execution of unreachable instruction.







          

      

      

    

  

    
      
          
            
  
Determining eWASM gas costs

The goal of this document is to describe the process of determining gas costs
for eWASM instructions.

Each WASM opcode is assigned an appropriate Intel IA-32 (x86) opcode (or a
series of opcodes). These opcodes have a fixed cycle count (called latency
by Intel). We are selecting one specific CPU model from the Haswell architecture
(family: 06, model 3C). This equals to CPUs produced in 2014.

Assumption 1: This specific Haswell CPU represents a good average of the
Ethereum nodes. We assume that a 2.2 Ghz model is the average.

According to Intel, the 2.2 Ghz clock rate roughly equals to 2 200 000 000 cycles per second.

Assumption 2: 1 second of CPU execution equals to 10 million gas
(i.e. 1 gas equals to 0.1 us).

This equals to 0.0045 gas per cycle. (10 000 000 / 2 200 000 000)

To put this in perspective, the average block gas limit as of August 2016 is around
4.7 million. With this assumption we allow contract execution to take up to 0.5 second
of the 15 seconds block time, which also has to include other processing, including PoW
and network roundtrip times.

Assumption 3: The gas costs are adjusted on a regular basis, at least every 3 years.

We assume that CPUs are continuously improving and the hardware for Ethereum
nodes are upgraded every 3 years (as that matches usual depreciation rates).

The upgrade procedure is not part of this document, but it is plausible to expect a
dedicated gas cost oracle contract will exist in the future, which can be used
by the metering injection contract.


Gas vs. Particles

The current gas handling fields do not offer the precision needed assuming that
running WASM opcodes takes significantly less processing power compared to EVM1
opcodes.

Rationale: EVM1 opcodes operate on 256-bits of data, while WASM opcodes are limited
to at most 64-bits, which results in executing four instructions in the best
case to match EVM1. Most arithmetic instructions in EVM1 cost 3 gas, which would
amount to 0.75 gas for most 64-bit WASM instructions.

Internally, eWASM gas measurements should be recorded in a 64 bit variable
with 4 decimal digits precision. We call this particles. It is a minor
implementation detail actually using integers and converting the below gas costs
appropriately.

When converting the particles count to Ethereum gas, it has to be divided by
10000 and has to be rounded up. If the result is less than 0, then it should equal to 1.




Gas costs of individual instructions

The formula for determining the gas cost is: <cycle count> * <gas per cycle>


Registers

|Opcode     |Cycle | IA-32 eqv. |Gas     |
|———–|——|————|——–|
|get_local  | 3    | MOV        | 0.0135
|set_local  | 3    | MOV        | 0.0135
|tee_local  | 3    | MOV        | 0.0135
|get_global | 3    | MOV        | 0.0135
|set_global | 3    | MOV        | 0.0135




Memory

|Opcode        |Cycle | IA-32 eqv. |Gas     |
|————–|——|————|——–|
|i32.load8_s   | 3    | MOV        | 0.0135
|i32.load8_u   | 3    | MOV        | 0.0135
|i32.load16_s  | 3    | MOV        | 0.0135
|i32.load16_u  | 3    | MOV        | 0.0135
|i32.load      | 3    | MOV        | 0.0135
|i64.load8_s   | 3    | MOV        | 0.0135
|i64.load8_u   | 3    | MOV        | 0.0135
|i64.load16_s  | 3    | MOV        | 0.0135
|i64.load16_u  | 3    | MOV        | 0.0135
|i64.load32_s  | 3    | MOV        | 0.0135
|i64.load32_u  | 3    | MOV        | 0.0135
|i64.load      | 3    | MOV        | 0.0135
|grow_memory   | ?    | (breaking out from the VM)
|current_memory| ?    | (breaking out from the VM)




Flow Control

|Opcode     |Cycle | IA-32 eqv. |
|———–|——|————|
|nop        | ?    |
|block      | 0    | (this is only a grouping)
|loop       | 0    | (same as block)
|if         | 0    | (only a grouping, then/else counts)
|then       | 2    | JMP (near)
|else       | 2    | JMP (near)
|br         | 2    | JMP (near)
|br_if      | 3    | CMP, JMP (near)
|br_table   | 2    | JMP (near)
|return     | 2    | RET or JMP




Calls

|Opcode       |Cycle | IA-32 eqv. |
|————-|——|————|
|call         | 2    | CALL (near)
|call_indirect| ?    | CALL (far) (breaking out from the VM)
|call_import  | ?    | CALL (far) (breaking out from the VM)




Constants

|Opcode     |Cycle | IA-32 eqv. |
|———–|——|————|
|i32.const  | 0    |
|i64.const  | 0    |




32-bit Integer operators

|Opcode     |Cycle | IA-32 eqv. | Gas    |
|———–|——|————|——–|
|i32.add    |1     | ADD        | 0.0045
|i32.sub    |1     | SUB        | 0.0045
|i32.mul    |3     | MUL        | 0.0135
|i32.div_s  |80    | DIV        | 0.36
|i32.div_u  |80    | DIV        | 0.36
|i32.rem_s  |80    | DIV        | 0.36
|i32.rem_u  |80    | DIV        | 0.36
|i32.and    |1     | AND        | 0.0045
|i32.or     |1     | OR         | 0.0045
|i32.xor    |1     | XOR        | 0.0045
|i32.shl    |1.5   | SHL        | 0.0067
|i32.shr_u  |1.5   | SHR        | 0.0067
|i32.shr_s  |1.5   | SHR        | 0.0067
|i32.rotl   |2     | ROL        | 0.0090
|i32.rotr   |2     | ROR        | 0.0090
|i32.eq     |1     | CMP        | 0.0045
|i32.eqz    |1     | CMP        | 0.0045
|i32.ne     |1     | CMP        | 0.0045
|i32.lt_s   |1     | CMP        | 0.0045
|i32.lt_u   |1     | CMP        | 0.0045
|i32.le_s   |1     | CMP        | 0.0045
|i32.le_u   |1     | CMP        | 0.0045
|i32.gt_s   |1     | CMP        | 0.0045
|i32.gt_u   |1     | CMP        | 0.0045
|i32.ge_s   |1     | CMP        | 0.0045
|i32.ge_u   |1     | CMP        | 0.0045
|i32.clz    |105   | (clz)      | 0.4725
|i32.ctz    |105   | (ctz)      | 0.4725
|i32.popcnt |?     |




64-bit Integer operators

|Opcode     |Cycle | IA-32 eqv. | Gas    |
|———–|——|————|——–|
|i64.add    |1     | ADD        | 0.0045
|i64.sub    |1     | SUB        | 0.0045
|i64.mul    |3     | MUL        | 0.0135
|i64.div_s  |80    | DIV        | 0.36
|i64.div_u  |80    | DIV        | 0.36
|i64.rem_s  |80    | DIV        | 0.36
|i64.rem_u  |80    | DIV        | 0.36
|i64.and    |1     | AND        | 0.0045
|i64.or     |1     | OR         | 0.0045
|i64.xor    |1     | XOR        | 0.0045
|i64.shl    |1.5   | SHL        | 0.0067
|i64.shr_u  |1.5   | SHR        | 0.0067
|i64.shr_s  |1.5   | SHR        | 0.0067
|i64.rotl   |2     | ROL        | 0.0090
|i64.rotr   |2     | ROR        | 0.0090
|i64.eq     |1     | CMP        | 0.0045
|i64.eqz    |1     | CMP        | 0.0045
|i64.ne     |1     | CMP        | 0.0045
|i64.lt_s   |1     | CMP        | 0.0045
|i64.lt_u   |1     | CMP        | 0.0045
|i64.le_s   |1     | CMP        | 0.0045
|i64.le_u   |1     | CMP        | 0.0045
|i64.gt_s   |1     | CMP        | 0.0045
|i64.gt_u   |1     | CMP        | 0.0045
|i64.ge_s   |1     | CMP        | 0.0045
|i64.ge_u   |1     | CMP        | 0.0045
|i64.clz    |?     |
|i64.ctz    |?     |
|i64.popcnt |?     |




Datatype conversions, truncations, reinterpretations, promotions, and demotions

|Opcode          |Cycle | IA-32 eqv. | Gas    |
|—————-|——|————|——–|
|i32.wrap/i64    |3     | MOV        | 0.0135
|i64.extend_s/i32|?     | (signextend)
|i64.extend_u/i32|3     | MOV        | 0.0135




Type-parametric operators.

|Opcode     |Cycle | IA-32 eqv. | Gas    |
|———–|——|————|——–|
|drop       |3     | MOV        | 0.0135
|select     |3     | CMP, JMP   | 0.0135




Other

|Opcode     |Cycle | IA-32 eqv. | Gas    |
|———–|——|————|——–|
|unreachable|0     | (breaking out from the VM - or INT3)






Notes about complex instructions

Some of the above instructions are complex and cannot be mapped 1-by-1 to a machine
instruction. For them we assume the below algorithms and calculate gas based on the
component costs.


i32.clz

Number of leading 0-bits within 32 bits.

(Based on Warren, Section 5-3: Counting Leading 0’s:)

function clz(x)
    if x = 0 return 32
    n ← 0
    if (x & 0xFFFF0000) = 0: n ← n + 16, x ← x << 16
    if (x & 0xFF000000) = 0: n ← n +  8, x ← x <<  8
    if (x & 0xF0000000) = 0: n ← n +  4, x ← x <<  4
    if (x & 0xC0000000) = 0: n ← n +  2, x ← x <<  2
    if (x & 0x80000000) = 0: n ← n +  1
    return n





For an implementation in WebAssembly, see Appendix A.

Counting the individual instructions results in:


	6 if


	6 then


	2 return


	5 and


	5 eqz,


	11 get_local,


	11 set_local,


	5 add,


	5 shl




These amount to a total of 104.5 cycles in the worst case.

Note: clz exists natively on most common CPUs, including Intel and ARM CPUs.
We could consider it native for the purposes of Ethereum and assign a lower gas cost.




i32.ctz

Number of trailing 0-bits within 32 bits.

(Based on Warren, Section 5-4: Counting Trailing 0’s.:)

function ctz (x)
    if x = 0 return 32
    n ← 0
    if (x & 0x0000FFFF) = 0: n ← n + 16, x ← x >> 16
    if (x & 0x000000FF) = 0: n ← n +  8, x ← x >>  8
    if (x & 0x0000000F) = 0: n ← n +  4, x ← x >>  4
    if (x & 0x00000003) = 0: n ← n +  2, x ← x >>  2
    if (x & 0x00000001) = 0: n ← n +  1
    return n





This algorithm has the very same steps as i32.clz and therefore their cost equals.

Note: ctz does not exists natively on ARM CPUs. ARM should be considered an
important platform for Ethereum light clients and therefore it is sensible to assign
a gas cost based on a complex implementation.




i32.popcnt

Number of 1-bits within 32 bits.

TBD

Note: popcnt is natively supported by recent CPUs, mostly through SIMD extensions only.




i64.clz

Number of leading 0-bits within 64 bits.

TBD




i64.ctz

Number of trailing 0-bits within 64 bits.

TBD




i64.popcnt

Number of 1-bits within 64 bits.

TBD




i64.extend_s/i32

Sign extend i32 to i64.

Given WebAssembly supports both arithmetic (shr_s) and logical right shifts
(shr_u) it is fairly simple to implement:

function signextend (x)
    return (x << 32) >>> 32





This cost equals the sum of i64.shl and i64.shr_s, ? cycles.

TBD




select

Ternary operator.

TBD




breaking out of the VM

Any instruction pausing the VM and transferring data between the eWASM contract
and the host is breaking out of the VM.

These instructions include:


	current_memory


	grow_memory


	call_indirect


	call_import




TBD






Appendix A: i32.clz in WebAssembly

(func $clz
  (param $x i32)
  (result i32)

  (local $n i32)

  (if (i32.eqz (get_local $x))
    (then
      (return (i32.const 32))
    )
  )

  (set_local $n (i32.const 0))

  (if (i32.eqz (i32.and (get_local $x) (i32.const 0xffff0000))
    (then
      (set_local $n (i32.add (get_local $n) (i32.const 16)))
      (set_local $x (i32.shl (get_local $x) (i32.const 16)))
    )
  )

  (if (i32.eqz (i32.and (get_local $x) (i32.const 0xff000000))
    (then
      (set_local $n (i32.add (get_local $n) (i32.const 8)))
      (set_local $x (i32.shl (get_local $x) (i32.const 8)))
    )
  )

  (if (i32.eqz (i32.and (get_local $x) (i32.const 0xf0000000))
    (then
      (set_local $n (i32.add (get_local $n) (i32.const 4)))
      (set_local $x (i32.shl (get_local $x) (i32.const 4)))
    )
  )

  (if (i32.eqz (i32.and (get_local $x) (i32.const 0xc0000000))
    (then
      (set_local $n (i32.add (get_local $n) (i32.const 2)))
      (set_local $x (i32.shl (get_local $x) (i32.const 2))
    )
  )

  (if (i32.eqz (i32.and (get_local $x) (i32.const 0x80000000))
    (then
      (set_local $n (i32.add (get_local $n) (i32.const 1)))
    )
  )

  (return (get_local $n))
)
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Ethereum Environment Interface (EEI) Specification (Revision 3)

The Ethereum Environment Interface exposes the core Ethereum API to the eWASM environment. The Ethereum module [https://github.com/WebAssembly/design/blob/master/Modules.md] will be implemented in the Ethereum client’s native language. All parameters and returns are restricted to 32 or 64 bit integers. Floats are disallowed.




Data types

We define the following Ethereum data types:


	bytes: an array of bytes with unrestricted length


	address: a 160 bit number, represented as a 20 bytes long little endian unsigned integer in memory


	u128: a 128 bit number, represented as a 16 bytes long little endian unsigned integer in memory


	u256: a 256 bit number, represented as a 32 bytes long little endian unsigned integer in memory




We also define the following WebAssembly data types:


	i32: same as i32 in WebAssembly


	i32ptr: same as i32 in WebAssembly, but treated as a pointer to a WebAssembly memory offset


	i64: same as i64 in WebAssembly







API


useGas

Subtracts an amount to the gas counter

Parameters


	amount i64 the amount to subtract to the gas counter




Returns

nothing




getAddress

Gets address of currently executing account and stores it in memory at the given
offset.

Parameters


	resultOffset i32ptr the memory offset at which the address is to be stored (address)




Returns

nothing




getExternalBalance

Gets balance of the given account and loads it into memory at the given
offset.

Parameters


	addressOffset i32ptr the memory offset to load the address from (address)


	resultOffset i32ptr the memory offset to load the balance into (u128)




Returns

nothing




getBlockHash

Gets the hash of one of the 256 most recent complete blocks.

Parameters


	number i64 which block to load


	resultOffset i32ptr the memory offset to load the hash into (u256)




Returns

result i32 Returns 0 on success and 1 on failure

Note: in case of failure, the output memory pointed by resultOffset is unchanged.




call

Sends a message with arbitrary data to a given address path

Parameters


	gas i64 the gas limit


	addressOffset i32ptr the memory offset to load the address from (address)


	valueOffset i32ptr the memory offset to load the value from (u128)


	dataOffset i32ptr the memory offset to load data from (bytes)


	dataLength i32 the length of data




Returns

result i32 Returns 0 on success, 1 on failure and 2 on revert




callDataCopy

Copies the input data in current environment to memory. This pertains to
the input data passed with the message call instruction or transaction.

Parameters


	resultOffset i32ptr the memory offset to load data into (bytes)


	dataOffset i32 the offset in the input data


	length i32 the length of data to copy




Returns

nothing




getCallDataSize

Get size of input data in current environment. This pertains to the input
data passed with the message call instruction or transaction.

Parameters

none

Returns

callDataSize i32




callCode

Message-call into this account with an alternative account’s code.

Parameters


	gas i64 the gas limit


	addressOffset i32ptr the memory offset to load the address from (address)


	valueOffset i32ptr the memory offset to load the value from (u128)


	dataOffset i32ptr the memory offset to load data from (bytes)


	dataLength i32 the length of data




Returns

result i32 Returns 0 on success, 1 on failure and 2 on revert




callDelegate

Message-call into this account with an alternative account’s code, but
persisting the current values for sender and value.

Parameters


	gas i64 the gas limit


	addressOffset i32ptr the memory offset to load the address from (address)


	dataOffset i32ptr the memory offset to load data from (bytes)


	dataLength i32 the length of data




Returns

result i32 Returns 0 on success, 1 on failure and 2 on revert




callStatic

Sends a message with arbitrary data to a given address path, but disallow state
modifications. This includes log, create, selfdestruct and call with a non-zero
value.

Parameters


	gas i64 the gas limit


	addressOffset i32ptr the memory offset to load the address from (address)


	dataOffset i32ptr the memory offset to load data from (bytes)


	dataLength i32 the length of data




Returns

result i32 Returns 0 on success, 1 on failure and 2 on revert




storageStore

Store 256-bit a value in memory to persistent storage

Parameters


	pathOffset i32ptr the memory offset to load the path from (u256)


	valueOffset i32ptr the memory offset to load the value from (u256)




Returns

nothing




storageLoad

Loads a 256-bit a value to memory from persistent storage

Parameters


	pathOffset i32ptr the memory offset to load the path from (u256)


	resultOffset i32ptr the memory offset to store the result at (u256)




Returns

nothing




getCaller

Gets caller address and loads it into memory at the given offset. This is
the address of the account that is directly responsible for this execution.

Parameters


	resultOffset i32ptr the memory offset to load the address into (address)




Returns

nothing




getCallValue

Gets the deposited value by the instruction/transaction responsible for
this execution and loads it into memory at the given location.

Parameters


	resultOffset i32ptr the memory offset to load the value into (u128)




Returns

nothing




codeCopy

Copies the code running in current environment to memory.

Parameters


	resultOffset i32ptr the memory offset to load the result into (bytes)


	codeOffset i32 the offset within the code


	length i32 the length of code to copy




Returns

nothing




getCodeSize

Gets the size of code running in current environment.

Parameters

none

Returns

codeSize i32




getBlockCoinbase

Gets the block’s beneficiary address and loads into memory.

Parameters


	resultOffset i32ptr the memory offset to load the coinbase address into (address)




Returns

nothing




create

Creates a new contract with a given value.

Parameters


	valueOffset i32ptr the memory offset to load the value from (u128)


	dataOffset i32ptr the memory offset to load the code for the new contract from (bytes)


	length i32 the data length


	resultOffset i32ptr the memory offset to write the new contract address to (address)




Note: create will clear the return buffer in case of success or may fill it with data coming from revert.

Returns

result i32 Returns 0 on success, 1 on failure and 2 on revert




getBlockDifficulty

Get the block’s difficulty.

Parameters


	resultOffset i32ptr the memory offset to load the difficulty into (u256)




Returns

nothing




externalCodeCopy

Copies the code of an account to memory.

Parameters


	addressOffset i32ptr the memory offset to load the address from (address)


	resultOffset i32ptr the memory offset to load the result into (bytes)


	codeOffset i32 the offset within the code


	length i32 the length of code to copy




Returns

nothing




getExternalCodeSize

Get size of an account’s code.

Parameters


	addressOffset i32ptr the memory offset to load the address from (address)




Returns

extCodeSize i32




getGasLeft

Returns the current gasCounter

Parameters

none

Returns

gasLeft i64




getBlockGasLimit

Get the block’s gas limit.

Parameters

none

Returns

blockGasLimit i64




getTxGasPrice

Gets price of gas in current environment.

Parameters


	valueOffset i32ptr the memory offset to write the value to (u128)




Returns

nothing




log

Creates a new log in the current environment

Parameters


	dataOffset i32ptr the memory offset to load data from (bytes)


	length i32 the data length


	numberOfTopics i32 the number of topics following (0 to 4)


	topic1 i32ptr the memory offset to load topic1 from (u256)


	topic2 i32ptr the memory offset to load topic2 from (u256)


	topic3 i32ptr the memory offset to load topic3 from (u256)


	topic4 i32ptr the memory offset to load topic4 from (u256)




Returns

nothing




getBlockNumber

Get the block’s number.

Parameters

none

Returns

blockNumber i64




getTxOrigin

Gets the execution’s origination address and loads it into memory at the
given offset. This is the sender of original transaction; it is never an
account with non-empty associated code.

Parameters


	resultOffset i32ptr the memory offset to load the origin address from (address)




Returns

nothing




finish

Set the returning output data for the execution. This will cause a trap and the execution will be aborted immediately.

Parameters


	dataOffset i32ptr the memory offset of the output data (bytes)


	length i32 the length of the output data




Returns

doesn’t return




revert

Set the returning output data for the execution. This will cause a trap and the execution will be aborted immediately.

Parameters


	dataOffset i32ptr the memory offset of the output data (bytes)


	length i32 the length of the output data




Returns

doesn’t return




getReturnDataSize

Get size of current return data buffer to memory. This contains the return data
from the last executed call, callCode, callDelegate, callStatic or create.

Note: create only fills the return data buffer in case of a failure.

Parameters

none

Returns

dataSize i32




returnDataCopy

Copies the current return data buffer to memory. This contains the return data
from last executed call, callCode, callDelegate, callStatic or create.

Note: create only fills the return data buffer in case of a failure.

Parameters


	resultOffset i32ptr the memory offset to load data into (bytes)


	dataOffset i32 the offset in the return data


	length i32 the length of data to copy




Returns

nothing




selfDestruct

Mark account for later deletion and give the remaining balance to the specified
beneficiary address. This will cause a trap and the execution will be aborted immediately.

Parameters


	addressOffset i32ptr the memory offset to load the address from (address)




Returns

doesn’t return




getBlockTimestamp

Get the block’s timestamp.

Parameters

none

Returns

blockTimestamp i64







          

      

      

    

  

    
      
          
            
  
EVM Transcompiler

Transcompiles EVM1 bytecode into eWASM bytecode. It takes EVM bytecode as an input and returns an eWASM compatible bytecode,
which can be executed the same way regular eWASM contracts can.

When executing it, one must make sure however that host functions dealing with the bytecode in the state
(such as codeCopy and externalCodeCopy) must always refer to the untransformed EVM1 bytecode.

The transcompiler is implemented as a contract or a precompiled contract at a specific address.





          

      

      

    

  

    
      
          
            
  
FAQ

WASM’s FAQ can be found here [https://github.com/WebAssembly/design/blob/master/FAQ.md]


Is eWASM primarily the replacement for EVM?

Currently it is being researched as a replacement instruction set for EVM1. Other instruction sets have been considered but so far WASM seems the most suitable.




What are alternatives to WASM?

Some that have been considered are here




What are the benefits?


	Performance


	A well Standardized ISA, that will be widely deployed


	Stack machine; which can decouple metering, make it more performant and can be transformed to any machine on target architecture


	Shared tooling / Broader Tooling Compatibility







What is metering?

Metering VMs is the same concept as electrical power companies have when charging you for the amount of electricity that you used. With VM’s we attempt to get a measurement of computation time of some code and instead of electricity used, you are charged for the CPU’s time used. We call this metering.




Will Solidity/Serpent be compatible with eWASM, or will another HLL have to be created?

Not off the bat, a transcompiler will have to be created to compile existing EVM code into eWASM. As far as other High level languages you should be able to use a language that can be compiled by LLVM ( c/c++/rust/go)




How does eWASM handle non-determinism when a variety of programming languages are allowed to be used?

Part of the project goal is to eliminate nasal-demons. It’s in the MVP. There are still a couple of edge case like sign values on NaNs but they can be canonicalized by AST transforms.




Will eWASM be compatible with WASM?

Yes, the Ethereum System Interface can also be written in WASM.




Can eWASM be built even if WASM is not currently complete or will we need to wait for its completion/MVP?

Yes, but we would lose the “Shared tooling” benefit. So It might not make sense.




Does eWASM use synchronous or asynchronous methods?

An answer to this question as well as the reasoning for both can be read here.







          

      

      

    

  

    
      
          
            
  
Fee Schedule

Fees are charged in three different ways:


	running opcodes


	expanding memory


	calls to EEI methods





Opcodes

All fees for opcodes are currently 1 gas. This needs to be updated before finalising this specification.


Registers

|Opcode     |Price |
|———–|——|
|get_local  | 1    |
|set_local  | 1    |
|tee_local  | 1    |
|get_global | 1    |
|set_global | 1    |




Memory

|Opcode        |Price |
|————–|——|
|i32.load8_s   | 1    |
|i32.load8_u   | 1    |
|i32.load16_s  | 1    |
|i32.load16_u  | 1    |
|i32.load      | 1    |
|i64.load8_s   | 1    |
|i64.load8_u   | 1    |
|i64.load16_s  | 1    |
|i64.load16_u  | 1    |
|i64.load32_s  | 1    |
|i64.load32_u  | 1    |
|i64.load      | 1    |
|grow_memory   | 1    |
|current_memory| 1    |




Flow Control

|Opcode     |Price |
|———–|——|
|nop        | 1    |
|block      | 1    |
|loop       | 1    |
|if         | 1    |
|br         | 1    |
|br_if      | 1    |
|br_table   | 1    |
|return     | 1    |




Calls

|Opcode       |Price |
|————-|——|
|call         | 1    |
|call_indirect| 1    |
|call_import  | 1    |




Constants

|Opcode     |Price |
|———–|——|
|i32.const  | 1    |
|i64.const  | 1    |




32-bit Integer operators

|Opcode     |Price |
|———–|——|
|i32.add    |1     |
|i32.sub    |1     |
|i32.mul    |1     |
|i32.div_s  |1     |
|i32.div_u  |1     |
|i32.rem_s  |1     |
|i32.rem_u  |1     |
|i32.and    |1     |
|i32.or     |1     |
|i32.xor    |1     |
|i32.shl    |1     |
|i32.shr_u  |1     |
|i32.shr_s  |1     |
|i32.rotl   |1     |
|i32.rotr   |1     |
|i32.eq     |1     |
|i32.ne     |1     |
|i32.lt_s   |1     |
|i32.le_s   |1     |
|i32.lt_u   |1     |
|i32.le_u   |1     |
|i32.gt_sa  |1     |
|i32.ge_s   |1     |
|i32.gt_u   |1     |
|i32.ge_u   |1     |
|i32.clz    |1     |
|i32.ctz    |1     |
|i32.popcnt |1     |
|i32.eqz    |1     |




64-bit Integer operators

|Opcode     |Price |
|———–|——|
|i64.add    |1     |
|i64.sub    |1     |
|i64.mul    |1     |
|i64.div_s  |1     |
|i64.div_u  |1     |
|i64.rem_s  |1     |
|i64.rem_u  |1     |
|i64.and    |1     |
|i64.or     |1     |
|i64.xor    |1     |
|i64.shl    |1     |
|i64.shr_u  |1     |
|i64.shr_s  |1     |
|i64.rotl   |1     |
|i64.rotr   |1     |
|i64.eq     |1     |
|i64.ne     |1     |
|i64.lt_s   |1     |
|i64.le_s   |1     |
|i64.lt_u   |1     |
|i64.le_u   |1     |
|i64.gt_sa  |1     |
|i64.ge_s   |1     |
|i64.gt_u   |1     |
|i64.ge_u   |1     |
|i64.clz    |1     |
|i64.ctz    |1     |
|i64.popcnt |1     |
|i64.eqz    |1     |




Datatype conversions, truncations, reinterpretations, promotions, and demotions

|Opcode          |Price |
|—————-|——|
|i32.wrap/i64    |1     |
|i64.extend_s/i32|1     |
|i64.extend_u/i32|1     |




Type-parametric operators.

|Opcode     |Price |
|———–|——|
|drop       |1     |
|select     |1     |




Other

|Opcode     |Price |
|———–|——|
|unreachable|1     |






Expanding memory

Memory can be expanded in pages, where a page corresponds to 65536 bytes of space.

The EVM1 formula for extending memory is words * 3 + words ^ 2 / 512 where word corresponds to 32 bytes.

From this we can calculate that a 65536 byte page should cost 14336 gas.




Calls to the EEI

Calls to the EEI are charged the same price as their equivalent EVM1 opcode.

| Method               | EVM1 Opcode  |
|———————-|————–|
| getAddress           | ADDRESS      |
| getBalance           | BALANCE      |
| getBlockHash         | BLOCKHASH    |
| call                 | CALL         |
| callDataCopy         | CALLDATACOPY |
| getCallDataSize      | CALLDATASIZE |
| callCode             | CALLCODE     |
| callDelegate         | DELEGATECALL |
| storageStore         | SSTORE       |
| storageLoad          | SLOAD        |
| getCaller            | CALLER       |
| getCallValue         | CALLVALUE    |
| codeCopy             | CODECOPY     |
| getCodeSize          | CODESIZE     |
| getBlockCoinbase     | COINBASE     |
| create               | CREATE       |
| getBlockDifficulty   | DIFFICULTY   |
| externalCodeCopy     | EXTCODECOPY  |
| getExternalCodeSize  | EXTCODESIZE  |
| getGasLeft           | GAS          |
| getBlockGasLimit     | GASLIMIT     |
| getTxGasPrice        | GASPRICE     |
| log                  | LOGn       |
| getBlockNumber       | NUMBER       |
| getTxOrigin          | ORIGIN       |
| return               | RETURN       |
| selfDestruct         | SELFDESTRUCT |
| getBlockTimestamp    | TIMESTAMP    |







          

      

      

    

  

    
      
          
            
  
ewasm interface methods: synchronous vs asynchronous

One design question that arose while prototyping ewasm in Javascript is the issue of a synchronous versus an asynchronous Ethereum Environment Interface aka EEI specification. The initial design specified synchronous EEI methods: storageLoad, storageStore, callDelegate, etc. These environment methods are provided to the wasm VM as “host functions” imported by the wasm instance. When running browser-based wasm VMs (e.g. in Chrome or Firefox), these host functions are implemented in Javascript. By contrast, in a wasm VM such as binaryen [https://github.com/WebAssembly/binaryen], a C++ wasm interpreter, the host functions are implemented in C++. A C++ implementation has full control over environment method execution, and is fully synchronous by default. When some wasm code calls to a host function, the wasm instance will pause and wait until the host function returns, and then continue with wasm execution.

Javascript, however, has a never blocking [https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop#Never_blocking] event loop. As a consequence, when a browser wasm instance calls to a host function, the host function cannot use any callbacks (or Promises, async/await, etc.) because the event loop continues wasm execution without waiting. Thus, synchronously returning a Javascript host function result from a callback to a wasm instance is not currently supported [https://github.com/WebAssembly/design/issues/720].

Asynchronous ewasm methods were proposed [https://github.com/ewasm/design/pull/48] to overcome this limitation of JS wasm environments. In the asynchronous version, contract code has callback entry points. This allows the wasm instance to call the host function, terminate, and then restart the instance at the callback entry point.

Here are example ewasm contracts comparing the two versions:


synchronous

;; address 5d48c1018904a172886829bbbd9c6f4a2d06c47b has a balance of 0xde0b6b3a7640000 (1 ETH)
(module
  ;; syhchronous getBalance method
  ;; params are addressOffset, resultOffset
  (import  "ethereum" "getBalance"  (func $getBalance (param i32 i32)))
  (memory 1 )
  ;; address memory location at offset 0
  (data (i32.const 0)  "\5d\48\c1\01\89\04\a1\72\88\68\29\bb\bd\9c\6f\4a\2d\06\c4\7b")
  (export "memory" (memory 0))
  (export "main" (func $main))
  (func $main
    ;; pass 0 as the addressOffset, 100 as the resultOffset
    (call $getBalance (i32.const 0) (i32.const 100))
    ;; getBalance host function result written to memory location 100
    (if (i64.eq (i64.load (i32.const 100)) (i64.const 0xde0b6b3a7640000))
      (return)
    )
    (unreachable) ;; throw if getBalance result not equal to 1 ETH
  )
)








async proposal, example using getBalance

;; address 5d48c1018904a172886829bbbd9c6f4a2d06c47b has a balance of 0xde0b6b3a7640000 (1 ETH)
(module
  ;; asynchronous getBalance method
  ;; params are addressOffset, resultOffset, and callbackIndex
  (import  "ethereum" "getBalance"  (func $balance (param i32 i32 i32)))
  (memory 1)
  (data (i32.const 0)  "\5d\48\c1\01\89\04\a1\72\88\68\29\bb\bd\9c\6f\4a\2d\06\c4\7b")
  (export "memory" (memory 0))
  (export "main" (func $main))
  (export "1" (func  $callback)) ;; callback entry point is an export with name "1"

  (func $main
    ;; pass 0 as the address memory location
    ;; pass 100 as the result memory location
    ;; pass 1 as the callback param
    (call $balance (i32.const 0) (i32.const 100) (i32.const 1))
  )

  (func $callback
    (block
      (if (i64.eq (i64.load (i32.const 100)) (i64.const 0xde0b6b3a7640000))
        (return)
      )
      (unreachable) ;; throw if test fails
    )
  )
)





After evaluating the trade-offs between the sync and async ewasm interfaces, we’ve decided to adopt the synchronous version. First, the synchronous interface better matches the EVM execution model, which synchronously executes contract calls. Secondly, although implementing the synchronous interface in Javascript requires inconvenient workarounds, in other programming languages (C++, Go, Rust, etc.) it is simpler than the async version. Lastly, adapting existing EVM higher-level languages such as Solidity to the async ewasm version would be much more complicated.




Implementing the Synchronous EEI methods in Javascript

Implementing the synchronous interface in Javascript requires a workaround for returning data from host functions to the wasm instance, and there are several approaches.

One approach is to use a SharedArrayBuffer and Atomics [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics] inside the host function to block execution of the wasm instance. The problem with this approach is that browser vendors are disabling SharedArrayBuffer [https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/] to mitigate the Spectre timing attack [https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/]. For this approach to be practical, the sharedArrayBuffer would need to be reenabled in browsers and remain as an ECMAScript standard feature [https://github.com/tc39/security/issues/3].

A second approach is to preload all environment data that an ewasm contract will access. The problem with this approach is that the current Ethereum transaction protocol permits contracts to dynamically access environment data, so which data a contract will access is not known prior to execution. For a Javascript host function to provide synchronous dynamic data access, each time the contract tries to access some piece of environment data that is not preloaded, a fetch is initiated and the wasm instance would be terminated. Once the fetch returns and the piece of data is loaded, then the wasm instance is restarted and the contract ran from the beginning. For contracts which access lots of unknown environment data, the wasm instance would need to be restarted from the beginning many times. Although this approach is very inefficient under the current transaction protocol, proposed protocol improvements such as EIP 648 [https://github.com/ethereum/EIPs/issues/648] require transactions to specify access ranges. Under such proposals, any potential data that the contract could access is known ahead of time, and could simply be preloaded.

A third approach is to execute wasm code in an interpreter (i.e. a wasm interpreter written in or compiled to Javascript), rather than executing wasm code in a browser’s native wasm instance. Interpreting the wasm code gives full control over its execution, but would be slower than a native wasm instance.







          

      

      

    

  

    
      
          
            
  
Metering

Given a set of operations and a corresponding set of costs for each operation we can deterministically run computation for any number of cost units by summing up the costs on the execution of each operation. We call the cost units here “gas” and it stands as a estimation for computational time.


Metering in WASM

The following has been implemented here [https://github.com/ewasm/wasm-metering]




Metering by Branch

To meter Webassembly we first define all the operation that can cause branches.

const branching_ops = new Set(['end', 'br', 'br_table', 'br_if', 'if', 'else', 'return', 'loop'])

We also define a map that contains each opcode and its associated cost. We will refer to this as the cost table. The Default cost table is defined here [https://github.com/ewasm/design/blob/master/determining_wasm_gas_costs.md]

cost_table = {
  'op': cost
}





Lastly we need a metering statement, we will uses

i64.const <cost>
call $meter





And a metering function $meter. The meter function has a signature of (type (func (param i64))). Internally this function should keep a running sum and if that sum grows larger than a given threshold, end the program’s execution. The metering function can be imbedded in the binary itself or can use wasm’s import to define it externally.

Then given an array of opcodes we iterate the array and divided into segments that start with one of the branching_ops

const code = [...opcodes]
const segments = []
let current_segment = []

for (let op in code) {
  current_segment.push(op)
  if (branching_ops.has(op)) {
    segments.push(current_segment)
    current_segment = []
  }
}





Then for each segment we calculate the sum of the operations. At the beginning for each segment we then append a metering statement.

metered_segments = segments.map(segment => {
  let cost_of_segment = segment.reduce((sum, op) => {
    return sum + cost_table[op]
  }, 0)
  
  return getMeterStatement(cost).concat(segment)
})





Lastly we concatenate all the metered segments together

metered_code = metered_segments.reduce(a, b => {
  return a.concat(b)
},[])








Special metering: memory

Metering memory makes use of the separate memory system of WebAssembly:


	the module parameter memory


	the two instructions:


	grow_memory


	current_memory








Memory size is expressed in pages, where a page is 65536 bytes.

The module parameter specifies the initial page count and an optional maximum page count the module cannot exceed. The currently available page count can be queried via current_memory and new pages can be allocated via grow_memory. Read more about memory in the the WebAssembly design [https://github.com/WebAssembly/design/blob/master/Modules.md#linear-memory-section].

Gas needs to be charged for the initial allocated pages as well as any increase of pages via grow_memory.


Initial memory allocation

The cost of pre-allocated memory should be counted before instantiating the module.




Increasing memory

Any calls to grow_memory needs to be prepended with a call for metering.






Examples

The following examples assume we have a cost table that defines all operations to have the cost of 1


Basic

(module
  (fun
    i64.const 1 ;; +1
    drop        ;; +1
    end         ;; +1
  )
)





This code can be transformed to

(module
  (type (func))
  (type (func (param i64)))
  
  (import "ethereum" "useGas" (func $meter (type 1)))
  (func (type 0)
    i64.const 5 ;; 3 +  2 the cost of metering  
    call $meter
    i64.const 1 
    drop       
    end       
  )
    








Conditionals

(module
  (func $fac (param i64) (result i64)
    (if i64
      (i64.lt_s (get_local 0) (i64.const 1))
      (then (i64.const 1))
      (else
        (i64.mul
          (get_local 0)
          (call $fac
            (i64.sub
              (get_local 0)
              (i64.const 1)))))))
  (export "fac" (func $fac)))





This code can be transformed to

(module
  (type $type0 (func (param i32) (result i32)))
  (type $type1 (func (param i32)))
  (import $meter "metering" "usegas"  (param i32))
  (export "fac" $func1)
  (func $func1 (param $var0 i32) (result i32)
    i32.const 211
    call $meter
    get_local $var0
    i32.const 1
    i32.lt_s
    if i32
      i32.const 180
      call $import0
      i32.const 1
    else
      i32.const 420
      call $meter
      get_local $var0
      get_local $var0
      i32.const 1
      i32.sub
      call $func1
      i32.mul
    end
  )
)










Future Work

More efficient metering algorithms can be defined. For example if we can prove that an end is impossible to jump to it doesn’t need to be segmented. The tradeoff here is the complexity for implementing these algorithms.







          

      

      

    

  

    
      
          
            
  
Why do we want eWASM?


	Fast & Efficient: To truly distinguish Ethereum as the World Computer we need to have a very performant VM. The current architecture of the VM is one of the greatest blockers to raw performance. WebAssembly aims to execute at near native speed by taking advantage of common hardware capabilities available on a wide range of platforms. This will open the door to a wide array of uses that require performance/throughput.


	Security: With the add performance gains from eWASM we will be able to implement parts of Ethereum such as the precompiled contract in the VM itself which will minimize our trusted computing base.
Standardized Instruction Set: WebAssembly is currently being designed as an open standard by a W3C Community Group and is actively being developed by engineers from Mozilla, Google, Microsoft, and Apple.


	Toolchain Compatibility: A LLVM front-end for WASM is part of the MVP. This will Allow developers to write contracts and reuse applications written in common languages such as C/C++, go and rust.


	Portability: WASM is targeted to be deployed in all the major web browsers which will result in it being one of the most widely deployed VM architecture. Contracts compiled to eWASM will share compatibility with any standard WASM environment. Which will make running a program either directly on Ethereum, on a cloud hosting environment, or on one’s local machine - a frictionless process.


	Optional And Flexible Metering: Metering the VM adds overhead but is essential for running untrusted code. If code is trusted then metering maybe optional. eWASM defines metering as an optional layer to accommodate for these use cases.


	Furthermore some of Wasm’s top design goals [https://github.com/WebAssembly/design/blob/master/HighLevelGoals.md] are largely applicable to Ethereum





Define a portable, size- and load-time-efficient binary format to serve as a compilation target which can be compiled to execute at native speed by taking advantage of common hardware capabilities available on a wide range of platforms, including mobile and IoT.





Details


Rationale For Registered Based ISA.


	Register-based virtual machines are more like actual hardware.


	Easier to JIT


	Although most early computers used stack or accumulator-style architectures, virtually every new architecture designed after 1980 uses a load-store register architecture. The major reasons for the emergence of general-purpose register (GPR) computers are twofold. First, registers—like other forms of storage internal to the processor—are faster than memory. Second, registers are more efficient for a compiler to use than other forms of internal storage. For example, on a register computer the expression (A * B) – (B * C) – (A * D) may be evaluated by doing the multiplications in any order, which may be more efficient because of the location of the operands or because of pipelining concerns. Nevertheless, on a stack computer the hardware must evaluate the expression in only one order, since operands are hidden on the stack, and it may have to load an operand multiple times. More importantly, registers can be used to hold variables. When variables are allocated to registers, the memory traffic reduces, the program speeds up (since registers are faster than memory), and the code density improves (since a register can be named with fewer bits than can a memory location). Reference [http://www.cpp.edu/~kding/materials/Computer%20Architecture%20A%20Quantitative%20Approach%20(5th%20edition).pdf]


	(Java is stack based.) “Java byte-codes have additional disadvantages. Directly mapping byte-codes onto the underlying architecture is much more difficult than generating machine instructions from an abstract syntax-tree. Code generators that are based on a high-level representation do not have to deal with unfavorable peculiarities of Java byte-codes but can tailor their output towards advanced and specific processor features, such as special purpose instructions, size of register sets, and cache architectures. This is especially true for today’s most common RISC processors which are less suited for byte-code’s heavily used stack operations.” Reference [ftp://ftp.cis.upenn.edu/pub/cis700/public_html/papers/Kistler96.pdf]


	The design of the Inferno virtual machine [http://herpolhode.com/rob/hotchips.html]


	Virtual Machine Showdown: Stack Versus Registers [http://static.usenix.org/events/vee05/full_papers/p153-yunhe.pdf]











Futher Reading


	wams’s design docs [https://github.com/WebAssembly/design]


	chrome’s binary encoding [https://docs.google.com/document/d/1-G11CnMA0My20KI9D7dBR6ZCPOBCRD0oCH6SHCPFGx0/edit?pref=2&pli=1]


	A Tree-Based Alternative to Java Byte-Code - ftp://ftp.cis.upenn.edu/pub/cis700/public_html/papers/Kistler96.pdf


	JavaTrees [http://central.kaserver5.org/Kasoft/Typeset/JavaTree/Pt06.html#Head363]


	Adaptive Compression of Syntax Trees and Iterative Dynamic Code Optimization: Two Basic Technologies for Mobile-Object Systems -ftp://ftp.cis.upenn.edu/pub/cis700/public_html/papers/Franz97b.pdf


	Computer Architecture A Quantitative Approach (5th edition) [http://www.cpp.edu/~kding/materials/Computer%20Architecture%20A%20Quantitative%20Approach%20(5th%20edition).pdf]








          

      

      

    

  

    
      
          
            
  
System Contracts (Revision 0)

System contracts are interfaces defined as contracts, which are essential or
recommended for an eWASM VM.

An eWASM VM implementation may opt to implement these interfaces natively
or to rely on implementations written in eWASM.

Each of these contracts have a pre defined address and can be executed through
regular contract invocations.


Sentinel Contract

Address: 0x000000000000000000000000000000000000000a

Every newly deployed eWASM contract must be processed by the Sentinel Contract
prior to including the code in the state. The sentinel will perform three very
important processing steps:


	Validate eWASM semantics


	Inject metering code


	Wrap the result in the deployer preamble (see Appendix A)




Input:


	variable length: eWASM contract code




Output:


	variable length: eWASM contract code







EVM Transcompiler

Address: 0x000000000000000000000000000000000000000b

Transcompiles EVM1 bytecode into eWASM bytecode. See the dedicated chapter about it.

The use of this is optional. A compatible client may implement EVM1 natively or
may choose to use this transcompiler.

Input:


	variable length: EVM1 contract code




Output:


	variable length: eWASM contract code







EVM Precompiled Contracts

Precompiled contracts are defined for EVM1 (see the Yellow Paper). Several
extensions have been proposed as Ethereum Improvement Proposals [http://github.com/ethereum/EIPs].

We assume the contracts defined in the Yellow Paper still apply for eWASM.


ecrecover

Address: 0x0000000000000000000000000000000000000001

Calculates the corresponding Ethereum address for the public key which created the given signature.

Input:


	32 bytes: message hash


	32 bytes: recovery id


	32 bytes: R component


	32 bytes: S component




Output:


	32 bytes: Ethereum address (left padded with zeroes)







sha2-256

Address: 0x0000000000000000000000000000000000000002

Returns the SHA2-256 hash of the input.

Input:


	variable length: input data




Output:


	32 bytes: sha2-256 hash







ripemd160

Address: 0x0000000000000000000000000000000000000003

Returns the RIPEMD-160 hash of the input.

Input:


	variable length: input data




Output:


	32 bytes: ripemd160 hash (left padded with zeroes)







identity

Address: 0x0000000000000000000000000000000000000004

Copies the input data to the output.

Input:


	variable length: input data




Output:


	variable length: output data







keccak256

Address: 0x0000000000000000000000000000000000000009

Returns the KECCAK-256 hash of the input. It is being used by the EVM Transcompiler.

Input:


	variable length: input data




Output:


	32 bytes: keccak-256 hash







Appendix A: eWASM deployer preamble

;;
;; Standard eWASM deployer code.
;;
;; We keep the to-be-deployed contract as a memory segment and simply return it.
;;

(module
  (memory 1
    (segment 0 "\10\00\00\00")     ;; Here comes the size of the code in LSB
    (segment 4 "Hello World CODE") ;; Here comes the code as a escaped hex string
  )
  (export "memory" memory)
  (export "main" $main)
  (import $ethereum_return "ethereum" "return" (param i32 i32))
  (func $main
    (call_import $ethereum_return (i32.const 4) (i32.load (i32.const 0)))
  )
)













          

      

      

    

  

    
      
          
            
  
VM Semantics

We assume an existing Ethereum client (with EVM1) as the basis for extension.

There are only 3 new rules:


	Whenever a contract is loaded from the state it must be checked for the eWASM signature.




If the signature is present, it must be executed as an eWASM contract, otherwise it must be executed as an EVM1 contract.


	If there’s no native EVM1 support in the client, it can use the EVM Transcompiler to translate the code.


	When deploying an eWASM contract, the bytecode must be verified and annotated by the Sentinel Contract.
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