

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

v0.3.7 (November 27, 2019)

BUG FIXES:

	state: set account storage and nonce when creating accounts

v0.3.6 (November 7, 2019)

IMPROVEMENTS:

	service: new export function and endpoint that returns a full snapshot of the
state, which can be reused as a genesis file.

v0.3.5 (October 15, 2019)

IMPROVEMENTS:

	state: optimisations and performance tuning

v0.3.4 (September 18, 2019)

IMPROVEMENTS:

	state: more granular use of mutexes.

	service: higher throughput thanks to above improvement.

v0.3.3 (September 13, 2019)

FEATURES:

	currency: new denominations for token units

BUG FIXES:

	state: handling transaction promises and errors

v0.3.2 (September 6, 2019)

FEATURES:

	state: make use of coinbase address

	service: min gas price

v0.3.1 (August 29, 2019)

SECURITY:

	service: enable CORS

IMPROVEMENTS:

	service: make /tx synchronous (directly return receipt)

v0.3.0 (August 8, 2019)

Refactor. EVM-Lite becomes a library

SECURITY:

	service: removed keystore

	service: removed /tx endpoint for unsigned txs

	service: removed CORS

FEATURES:

	service: handlers registered to http.DefaultServerMux

v0.2.1 (July 22, 2019)

BUG FIXES:

	service: Force O gasPrice on readonly transactions (issue 5 of monetd)

v0.2.0 (July 22, 2019)

SECURITY:

FEATURES:

IMPROVEMENTS:

	demo: Use evm-lite-lib package in demo scripts.

	state: Move genesis account creation from service to state.

	state: PoA smart-contract bindings.

BUG FIXES:

	state: Initialize from empty state instead of latest trie root. This enables
bootstrapping evm-lite/babble nodes from the babble DB only.

V0.1.1 (January 28, 2019)

SECURITY:

FEATURES:

IMPROVEMENTS:

	deps: Use Geth v1.8.17

	consensus: Version 0.4.1 of Babble

BUG FIXES:

	deps: Update version of Geth. Version 1.7.0 had broken dependencies.

V0.1.0 (October 14, 2018)

FEATURES:

	state: EVM, Trie, and Database.

	service: account management and HTTP API.

	consensus: simple consensus interface.

	consensus/solo: consensus implementation that simply relays transactions from
service to state.

	consensus/babble: consensus implementation that uses an inmemory Babble node.

	consensus/raft: consensus implementation using hashicorp/raft

	engine: agent coordinating State, Service and Consensus.

	cmd: CLI

	deploy: scripts to create testnets locally or in AWS.

EVM-LITE

[image: _images/evm-lite.svg]CircleCI [https://circleci.com/gh/mosaicnetworks/evm-lite]
[image: _images/evm-lite1.svg]Go Report [https://goreportcard.com/report/github.com/mosaicnetworks/evm-lite]
[image: _images/License-MIT-yellow.svg]License: MIT [https://opensource.org/licenses/MIT]

A lean Ethereum node with interchangeable consensus.

We took the Go-Ethereum [https://github.com/ethereum/go-ethereum]
implementation (Geth) and extracted the EVM and Trie components to create a lean
and modular version with interchangeable consensus.

The EVM is a virtual machine specifically designed to run untrusted code on a
network of computers. Every transaction applied to the EVM modifies the State
which is persisted in a Merkle Patricia tree. This data structure allows to
simply check if a given transaction was actually applied to the VM and can
reduce the entire State to a single hash (merkle root) rather analogous to a
fingerprint.

The EVM is meant to be used in conjunction with a system that broadcasts
transactions across network participants and ensures that everyone executes the
same transactions in the same order. Ethereum uses a Blockchain and a Proof of
Work consensus algorithm. EVM-Lite makes it easy to use any consensus system,
including Babble [https://github.com/mosaicnetworks/babble] .

ARCHITECTURE

 +---+
+----------+ | +-------------+ +-------------+ |
			Service		State	
Client <----->		<------				
			-API		-EVM	
+----------+ | | | | -Trie | |
 | | | | -Database | |
 | +-------------+ +-------------+ |
 | | ^ |
 | v | |
 | +-------------------------------------+ |
 | | Engine | | | |
 | | | |
 | | +----------------------+ | |
 | | | Consensus | | |
 | | +----------------------+ | |
 | | | |
 | +-------------------------------------+ |
 | |
 +---+

Usage

EVM-Lite is a Go library, which is meant to be used in conjunction with a
consensus system like Babble, Tendermint, Raft, etc.

This repo contains Solo, a bare-bones implementation of the consensus
interface, which is used for testing or launching a standalone node. It relays
transactions directly from Service to State.

Configuration

The Ethereum genesis file defines Ethereum accounts and is stripped of all the
Ethereum POW stuff. This file is useful to predefine a set of accounts that own
all the initial Ether at the inception of the network.

Example Ethereum genesis.json defining two account:

{
 "alloc": {
 "629007eb99ff5c3539ada8a5800847eacfc25727": {
 "balance": "1337000000000000000000"
 },
 "e32e14de8b81d8d3aedacb1868619c74a68feab0": {
 "balance": "1337000000000000000000"
 }
 }
}

API

The Service exposes an HTTP API.

Get Account

Retrieve information about any account.

host:~$ curl http://[api_addr]/account/0x629007eb99ff5c3539ada8a5800847eacfc25727 -s | json_pp
{
 "address": "0xa10aae5609643848fF1Bceb76172652261dB1d6c",
 "balance": 1234567890000000000000,
 "nonce": 0,
 "bytecode": ""
}

Call

Call a smart-contract READONLY function. These calls will NOT modify the EVM
state, and the data does NOT need to be signed.

curl http://localhost:8080/call \
 -d '{"constant":true,"to":"0xabbaabbaabbaabbaabbaabbaabbaabbaabbaabba","value":0,"data":"0x8f82b8c4","gas":1000000,"gasPrice":0,"chainId":1}' \
 -H "Content-Type: application/json" \
 -X POST -s | json_pp
 {
 "data": "0x0001"
 }

Submit Transaction

Send a SIGNED, NON-READONLY transaction. The client is left to compose a
transaction, sign it and RLP encode it. The resulting bytes, represented as a
Hex string, are passed to this method to be forwarded to the EVM. This is a
SYNCHRONOUS operation; it waits for the transaction to go through consensus and
returns the transaction receipt.

example:

host:~$ curl -X POST http://[api_addr]/rawtx -d '0xf86904808398968094f7cd2ba6892341e568e9d825c4bdc2bd53b7524189031b9d1340ad2500008026a04eb7420aa52a1955d26ffb16d3a8cb8d969ae0eb6d75bb5076599c42a788e08da0178b3ddb264cdcc624121f55a95ae45de119bc44a0a85b721d8958b7ebe0553a' -s | json_pp
{
 "root": "0xda4529d2bc5e8b438edee4463637eb91d5490edb50d15e786e8d5276f2a2c8f4",
 "transactionHash": "0x3f5682786828d26946e12a08a858b6dd805d1ea8f7d39d93f1d4d5393b23f710",
 "from": "0x888980abf63d4133482e50bf8233f307e3c2b941",
 "to": "0xf7cd2ba6892341e568e9d825c4bdc2bd53b75241",
 "gasUsed": 21000,
 "cumulativeGasUsed": 21000,
 "contractAddress": "0x00",
 "logs": [],
 "logsBloom": "0x00",
 "status": 1
 }

Get Transaction Receipt

Get a transaction receipt. When a transaction is applied to the EVM, a receipt
is saved to record if/how the transaction affected the state. This contains
such information as the address of a newly created contract, how much gas was
use, and the EVM Logs produced by the execution of the transaction.

example:

host:~$ curl http://[api_addr]/tx/0xeeeed34877502baa305442e3a72df094cfbb0b928a7c53447745ff35d50020bf -s | json_pp
{
 "to" : "0xe32e14de8b81d8d3aedacb1868619c74a68feab0",
 "root" : "0xc8f90911c9280651a0cd84116826d31773e902e48cb9a15b7bb1e7a6abc850c5",
 "gasUsed" : "0x5208",
 "from" : "0x629007eb99ff5c3539ada8a5800847eacfc25727",
 "transactionHash" : "0xeeeed34877502baa305442e3a72df094cfbb0b928a7c53447745ff35d50020bf",
 "logs" : [],
 "cumulativeGasUsed" : "0x5208",
 "contractAddress" : null,
 "logsBloom" : "0x00"
}

Info

The /info endpoint exposes a map of information provided by the consensus
system.

example (with Babble consensus):

host:-$ curl http://[api_addr]/info | json_pp
{
 "rounds_per_second" : "0.00",
 "type" : "babble",
 "consensus_transactions" : "10",
 "num_peers" : "4",
 "consensus_events" : "10",
 "sync_rate" : "1.00",
 "transaction_pool" : "0",
 "state" : "Babbling",
 "events_per_second" : "0.00",
 "undetermined_events" : "22",
 "id" : "1785923847",
 "last_consensus_round" : "1",
 "last_block_index" : "0",
 "round_events" : "0"
}

CLIENT

Please refer to EVM-Lite CLI [https://github.com/mosaicnetworks/evm-lite-cli]
for Javascript utilities and a CLI to interact with the API.

DEV

DEPENDENCIES

We use glide to manage dependencies:

[...]/evm-lite$ curl https://glide.sh/get | sh
[...]/evm-lite$ glide install

This will download all dependencies and put them in the vendor folder; it
could take a few minutes.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

