
eventsourcing Documentation
Release 7.1.1

John Bywater

Jun 21, 2019





Contents

1 Introduction 3
1.1 What is event sourcing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 This library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A cohesive mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Register issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Support options 5
2.1 Community support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Training workshops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Advice and development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Quick start 7
3.1 Install library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Define model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Configure environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Run application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Design 13
4.1 Layered architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Domain event store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Features 15
5.1 Core features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Installation guide 17
6.1 Install options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Domain model layer 19
7.1 Domain events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Domain entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Aggregate root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Infrastructure layer 35
8.1 Sequenced item type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Sequenced item mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Record managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



8.4 Event store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Application layer 53
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Simple application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.3 Custom application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 Notifications 61
10.1 Three options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.2 Application sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.3 Notification logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.4 Local notification logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.5 Remote notification logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6 Notification log reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11 Projections 79
11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
11.2 Subscribing to events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
11.3 Tracking notification logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

12 Distributed systems 89
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.2 Process application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.3 System of processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
12.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.5 Integration with APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
12.6 Process event pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

13 Snapshotting 107
13.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13.3 Run the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

14 Deployment 111
14.1 Application object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
14.2 Database connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
14.3 Web interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
14.4 Task queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

15 Stand-alone example 121
15.1 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
15.2 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
15.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.4 Run the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

16 Background 133

17 Release notes 135
17.1 Version 7.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
17.2 Version 6.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
17.3 Version 5.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
17.4 Version 4.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
17.5 Version 3.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
17.6 Version 2.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
17.7 Version 1.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ii



17.8 Version 0.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

18 Contributing 141

19 Module docs 143
19.1 eventsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Python Module Index 211

Index 213

iii



iv



eventsourcing Documentation, Release 7.1.1

A library for event sourcing in Python.

Contents 1



eventsourcing Documentation, Release 7.1.1

2 Contents



CHAPTER 1

Introduction

This documentation:

• highlights the design and features of the library,

• has instructions for installing the package,

• describes the domain model layer, the infrastructure layer, and the application layer,

• shows how notifications and projections can be combined to make a reliable distributed system,

• has information about deployment, and

• has some background information about the project.

1.1 What is event sourcing?

What is event sourcing? One definition suggests the state of an event-sourced application is determined by a sequence
of events. Another definition has event sourcing as a persistence mechanism for domain driven design.

1.2 This library

This is a library for event sourcing in Python. At its core, this library supports storing and retrieving sequences of
items, such as the domain events of aggregates in a event-sourced domain driven design.

To demonstrate how its persistence mechanism can be used effectively, this library documentation has examples of
event-sourced applications with event-sourced domain models. The library base classes used in these examples can be
conveniently used to create your own applications. A style is suggested for writing event-sourced domain models, and
event-soured aggregates that have command methods which trigger domain events.

Using this library, it is also possible to define an entire distributed system of event-sourced applications indepen-
dently of infrastructure. That means system behaviours can be rapidly developed whilst running the entire system
synchronously in a single thread with a single in-memory database, and then the system can be run asynchronously on
a cluster with durable databases, with the system performing exactly the same behaviour.

3



eventsourcing Documentation, Release 7.1.1

1.3 A cohesive mechanism

Quoting from Eric Evans’ book Domain Driven Design:

“Partition a conceptually COHESIVE MECHANISM into a separate lightweight framework. Particularly
watch for formalisms for well-documented categories of algorithms. Expose the capabilities of the frame-
work with an INTENTION-REVEALING INTERFACE. Now the other elements of the domain can focus
on expressing the problem (‘what’), delegating the intricacies of the solution (‘how’) to the framework.”

Although the basic event sourcing patterns are quite simple, and can be reproduced in code for each project, the
persistence mechanism for event sourced domain driven design appears as a conceptually cohesive mechanism, and
so have been “partitioned into a separate lightweight framework”.

1.4 Register issues

This project is hosted on GitHub. Please register any issues, questions, and requests you may have.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Domain-driven_design
https://github.com/johnbywater/eventsourcing
https://github.com/johnbywater/eventsourcing/issues


CHAPTER 2

Support options

Although the library is free to use, it can take some time and effort to understand the library and to acquire sufficient
skill to make a working and well-designed event-sourced system. Training workshops and development services are
available to support professional users of the library in accomplishing their goals. Community support is also available.

2.1 Community support

The library has a growing community that may be able to help.

• You may ask questions on the Slack channel.

• You may also register issues and requests on our issue tracker.

2.2 Training workshops

Training workshops are available to help developers more quickly learn how to use the library. Workshop participants
will be guided through a series of topics, gradually discovering what the library is capable of doing, and learning how
to use the library effectively.

Please contact the Appropriate Software Foundation for more information about available training workshops.

2.3 Advice and development

Advice and development services are available to help managers and developers with the design and development of
their event-sourced applications and systems.

• Overall assessment of your existing implementation, with recommendations for improvement.

• Address your specific concerns with how your event-sourced system is built (and running).

• Coaching developers in the use of the library.

5

https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTUwZGQ4MDk0ZDJmZmU0MjM4MjdmOTBlZGI0ZTY4NWIxMGFkZTcwNmUxM2U4NGM3YjY5MTVmZTBiYzljZjI3ZTE
https://github.com/johnbywater/eventsourcing/issues
https://www.appropriatesoftware.net/


eventsourcing Documentation, Release 7.1.1

• Development of sample applications and systems for guidance or demonstration purposes.

• Development of working applications and systems for production use.

Please contact the Appropriate Software Foundation for more information about available consulting services.

6 Chapter 2. Support options

https://www.appropriatesoftware.net/


CHAPTER 3

Quick start

This section shows how to make a simple event sourced application using classes from the library. It shows the general
story, which is elaborated over the following pages.

• Install library

• Define model

• Configure environment

• Run application

3.1 Install library

Please use pip to install the library with the ‘sqlalchemy’ option.

$ pip install eventsourcing[sqlalchemy]

See the Install documentation for more information about installing the library.

3.2 Define model

Having installed the library, open a Python file in your favourite editor. The code snippets below form a working
program. You can either type in the code, or copy and paste. Then run the program.

Firstly let’s define a domain model, by defining an aggregate class. The class World defined below is a sub-
class of AggregateRoot. The class World has a property called history. It also has an event sourced
attribute called ruler. It has a command method called make_it_so which triggers a domain event of type
SomethingHappened which is defined as a nested class. The domain event class SomethingHappened has a
mutate() method, which happens to append triggered events to the history.

7



eventsourcing Documentation, Release 7.1.1

from eventsourcing.domain.model.aggregate import AggregateRoot
from eventsourcing.domain.model.decorators import attribute

class World(AggregateRoot):

def __init__(self, ruler=None, **kwargs):
super(World, self).__init__(**kwargs)
self._history = []
self._ruler = ruler

@property
def history(self):

return tuple(self._history)

@attribute
def ruler(self):

"""A mutable event-sourced attribute."""

def make_it_so(self, something):
self.__trigger_event__(World.SomethingHappened, what=something)

class SomethingHappened(AggregateRoot.Event):
def mutate(self, obj):

obj._history.append(self.what)

The most important thing here is to understand that an aggregate command method, such as make_it_so() above,
should not do some work and then update the attributes of the aggregate with the result of the work, but rather it should
trigger events with the results of the work, so that the events can be used to update the state of the aggregate then and,
importantly, each time the aggregate is reconstructed from its events.

This aggregate class can be used without any infrastructure. Without infrastructure however, there is no means of
recovering the state of the aggregate once the object goes out of scope.

# Call library factory method.
world = World.__create__(ruler='gods')

assert world.ruler == 'gods'

# Execute commands.
world.make_it_so('dinosaurs')
world.make_it_so('trucks')

# Assign attribute.
world.ruler = 'money'

assert world.history == ('dinosaurs', 'trucks'), world.history
assert world.ruler == 'money'

Although every aggregate is a “little world”, developing a more realistic domain model would involve defining at-
tributes, command methods, and domain events particular to a concrete domain.

See the Domain model documentation for more information about developing event-sourced domain models.

8 Chapter 3. Quick start



eventsourcing Documentation, Release 7.1.1

3.3 Configure environment

Generate cipher key (optional).

from eventsourcing.utils.random import encode_random_bytes

# Keep this safe.
cipher_key = encode_random_bytes(num_bytes=32)

Configure environment variables.

import os

# Optional cipher key (random bytes encoded with Base64).
os.environ['CIPHER_KEY'] = cipher_key

# SQLAlchemy-style database connection string.
os.environ['DB_URI'] = 'sqlite:///:memory:'

3.4 Run application

With the SimpleApplication from the library, you can create, read, update, and delete World aggregates that
are persisted in the database identified above.

The code below demonstrates many of the features of the library, such as optimistic concurrency control, data integrity,
and application-level encryption.

from eventsourcing.application.sqlalchemy import SQLAlchemyApplication
from eventsourcing.exceptions import ConcurrencyError

# Construct simple application (used here as a context manager).
with SQLAlchemyApplication(persist_event_type=World.Event) as app:

# Call library factory method.
world = World.__create__(ruler='gods')

# Execute commands.
world.make_it_so('dinosaurs')
world.make_it_so('trucks')

version = world.__version__ # note version at this stage
world.make_it_so('internet')

# Assign to event-sourced attribute.
world.ruler = 'money'

# View current state of aggregate.
assert world.ruler == 'money'
assert world.history[2] == 'internet'
assert world.history[1] == 'trucks'
assert world.history[0] == 'dinosaurs'

# Publish pending events (to persistence subscriber).
world.__save__()

(continues on next page)

3.3. Configure environment 9



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Retrieve aggregate (replay stored events).
copy = app.repository[world.id]
assert isinstance(copy, World)

# View retrieved state.
assert copy.ruler == 'money'
assert copy.history[2] == 'internet'
assert copy.history[1] == 'trucks'
assert copy.history[0] == 'dinosaurs'

# Verify retrieved state (cryptographically).
assert copy.__head__ == world.__head__

# Discard aggregate.
world.__discard__()
world.__save__()

# Discarded aggregate is not found.
assert world.id not in app.repository
try:

# Repository raises key error.
app.repository[world.id]

except KeyError:
pass

else:
raise Exception("Shouldn't get here")

# Get historical state (at version from above).
old = app.repository.get_entity(world.id, at=version)
assert old.history[-1] == 'trucks' # internet not happened
assert len(old.history) == 2
assert old.ruler == 'gods'

# Optimistic concurrency control (no branches).
old.make_it_so('future')
try:

old.__save__()
except ConcurrencyError:

pass
else:

raise Exception("Shouldn't get here")

# Check domain event data integrity (happens also during replay).
events = app.event_store.get_domain_events(world.id)
last_hash = ''
for event in events:

event.__check_hash__()
assert event.__previous_hash__ == last_hash
last_hash = event.__event_hash__

# Verify sequence of events (cryptographically).
assert last_hash == world.__head__

# Project application event notifications.
from eventsourcing.interface.notificationlog import NotificationLogReader
reader = NotificationLogReader(app.notification_log)
notifications = reader.read()

(continues on next page)

10 Chapter 3. Quick start



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

notification_ids = [n['id'] for n in notifications]
assert notification_ids == [1, 2, 3, 4, 5, 6]

# Check records are encrypted (values not visible in database).
record_manager = app.event_store.record_manager
items = record_manager.get_items(world.id)
for item in items:

assert item.originator_id == world.id
assert 'dinosaurs' not in item.state
assert 'trucks' not in item.state
assert 'internet' not in item.state

See the Application documentation for more information about event-sourced applications, and the Infrastructure
documentation for more information about infrastructure.

3.4. Run application 11



eventsourcing Documentation, Release 7.1.1

12 Chapter 3. Quick start



CHAPTER 4

Design

The design of the library follows the layered architecture of domain driven design: interfaces, application, domain,
and infrastructure.

The library is designed to allow its default functionality to be extended or replaced easily.

4.1 Layered architecture

Any interface layer will depend on the application layer.

The library’s application layer depends on the domain model and infrastructure layers. An application object has a
repository, from which existing aggregates can be retrieved. It may also have policies, such as a persistence policy
which stores domain events in an event store. The application’s repository shares the event store with the persistence
policy, and uses the event store to retrieve events when reconstructing the state of an aggregate.

The library’s domain layer contains domain model events and aggregates. Aggregates define a set of domain event
classes, and have command methods to trigger new domain events. Nothing in the domain layer depends on anything
in the infrastructure layer. These stand-alone library classes are implemented with “double underscore” methods, to
keep the normal object namespace free to be used for domain modelling.

The library’s infrastructure layer encapsulates infrastructural services required by event sourced applications, in par-
ticular by the event store. This layer is the original core of this library (the other layers were originally included merely
as reference examples, to demonstrate how to use the infrastructure).

4.2 Domain event store

The central object of the infrastructure layer is the event store. The event store object uses a sequenced item mapper
and a record manager. Domain events are serialised to (and deserialised from) sequenced items by the sequenced item
mapper. The record manager records (and reads) sequenced items in a particular database system.

13



eventsourcing Documentation, Release 7.1.1

14 Chapter 4. Design



CHAPTER 5

Features

5.1 Core features

Event store — appends and retrieves domain events. Uses a sequenced item mapper with a record manager to map
domain events to database records in ways that can be easily extended and replaced.

Layer base classes — suggest how to structure an event sourced application. The library has base classes for appli-
cation objects, domain entities, entity repositories, domain events of various types, mapping strategies, snapshotting
strategies, cipher strategies, etc. They are well factored, relatively simple, and can be easily extended for your own
purposes. If you wanted to create a domain model that is entirely stand-alone (recommended by purists for maximum
longevity), you might start by replicating the library classes.

Notifications and projections — reliable propagation of application events with pull-based notifications allows the
application state to be projected accurately into replicas, indexes, view models, and other applications.

Process and systems — scalable event processing with application pipelines. Parallel pipelines are synchronised with
causal dependencies. Runnable with single thread, multiprocessing on a single machine, and in a cluster of machines
using the actor model.

5.2 Additional features

Snapshotting — avoids replaying an entire event stream to obtain the state of an entity. A snapshot strategy is included
which reuses the capabilities of this library by implementing snapshots as events.

Optimistic concurrency control — can be used to ensure a distributed or horizontally scaled application doesn’t be-
come inconsistent due to concurrent method execution. Leverages any optimistic concurrency controls in the database
adapted by the record manager.

Data integrity — Sequences of events can be hash-chained, and the entire sequence of events checked for integrity.
If the last hash can be independently validated, then so can the entire sequence. Events records can be encrypted with
an authenticated encryption algorithm, so you cannot lose information in transit or at rest, or get database corruption
without being able to detect it.

15



eventsourcing Documentation, Release 7.1.1

Application-level encryption — encrypts and decrypts stored events, using a cipher strategy passed as an option to
the sequenced item mapper. Can be used to encrypt some events, or all events, or not applied at all (the default).

Worked examples — simple example application and systems, with an example entity class, example domain events,
and an example database table. Plus lots of examples in the documentation.

16 Chapter 5. Features



CHAPTER 6

Installation guide

Use pip to install the library from the Python Package Index.

$ pip install eventsourcing

6.1 Install options

Running the install command with again different options will just install the extra dependencies associated with that
option. If you installed without any options, you can easily install optional dependencies later by running the install
command again with the options you want.

6.1.1 SQLAlchemy

If you want to use SQLAlchemy, then install the library with the ‘sqlalchemy’ option.

$ pip install eventsourcing[sqlalchemy]

You can use SQLAlchemy with SQLite, in which case you don’t need to install any database driver. Otherwise please
also install a database driver that works with SQLAlchemy and your database system.

$ pip install psycopg2-binary # for PostgreSQL
$ pip install pymysql # for MySQL

See the Infrastructure doc for more information about crafting database connection strings for particular database
drivers.

6.1.2 Django

Similarly, if you want to use Django, then please install with the ‘django’ option.

17

https://pypi.org/project/eventsourcing/
https://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
https://www.djangoproject.com/


eventsourcing Documentation, Release 7.1.1

$ pip install eventsourcing[django]

You can use Django with SQLite, in which case you don’t need to install any database driver. Otherwise please also
install a database driver that works with Django and your database system.

6.1.3 Cassandra

If you want to use Apache Cassandra, then please install with the ‘cassandra’ option.

$ pip install eventsourcing[cassandra]

6.1.4 Tests

If you want to run the tests, then please install with the ‘tests’ option.

$ pip install eventsourcing[tests]

6.1.5 Docs

If you want build the docs, then please install with the ‘docs’ option.

$ pip install eventsourcing[docs]

18 Chapter 6. Installation guide

https://docs.djangoproject.com/en/2.2/ref/databases/
http://cassandra.apache.org/


CHAPTER 7

Domain model layer

The library’s domain layer has base classes for domain events and entities. They can be used to develop an event-
sourced domain model.

• Domain events

– Publish-subscribe

– Event library

– Custom events

• Domain entities

– Entity library

– Naming style

– Entity events

– Factory method

– Triggering events

– Discarding entities

– Custom entities

– Custom attributes

– Custom commands

– Custom events

• Aggregate root

– Data integrity

19



eventsourcing Documentation, Release 7.1.1

7.1 Domain events

The purpose of a domain event is to be published when something happens, normally the results from the work of a
command. The library has a base class for domain events called DomainEvent.

Domain events can be freely constructed from the DomainEvent class. Attributes are set directly from the construc-
tor keyword arguments.

from eventsourcing.domain.model.events import DomainEvent

domain_event = DomainEvent(a=1)
assert domain_event.a == 1

The attributes of domain events are read-only. New values cannot be assigned to existing objects. Domain events are
immutable in that sense.

# Fail to set attribute of already-existing domain event.
try:

domain_event.a = 2
except AttributeError:

pass
else:

raise Exception("Shouldn't get here")

Domain events can be compared for equality as value objects, instances are equal if they have the same type and the
same attributes.

DomainEvent(a=1) == DomainEvent(a=1)

DomainEvent(a=1) != DomainEvent(a=2)

DomainEvent(a=1) != DomainEvent(b=1)

7.1.1 Publish-subscribe

Domain events can be published, using the library’s publish-subscribe mechanism.

The publish() function is used to publish events. The event arg is required.

from eventsourcing.domain.model.events import publish

publish(event=domain_event)

The subscribe() function is used to subscribe a handler that will receive events.

The optional predicate arg can be used to provide a function that will decide whether or not the subscribed handler
will actually be called when an event is published.

from eventsourcing.domain.model.events import subscribe

received_events = []

def receive_event(event):
received_events.append(event)

def is_domain_event(event):

(continues on next page)

20 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

return isinstance(event, DomainEvent)

subscribe(handler=receive_event, predicate=is_domain_event)

# Publish the domain event.
publish(domain_event)

assert len(received_events) == 1
assert received_events[0] == domain_event

The unsubscribe() function can be used to stop the handler receiving further events.

from eventsourcing.domain.model.events import unsubscribe

unsubscribe(handler=receive_event, predicate=is_domain_event)

# Clean up.
del received_events[:] # received_events.clear()

7.1.2 Event library

The library has a small collection of domain event subclasses, such as EventWithOriginatorID,
EventWithOriginatorVersion, EventWithTimestamp, EventWithTimeuuid, Created,
AttributeChanged, Discarded.

Some of these classes provide useful defaults for particular attributes, such as a timestamp. Timestamps can be
used to sequence events.

from eventsourcing.domain.model.events import EventWithTimestamp
from eventsourcing.domain.model.events import EventWithTimeuuid
from decimal import Decimal
from uuid import UUID

# Automatic timestamp.
assert isinstance(EventWithTimestamp().timestamp, Decimal)

# Automatic UUIDv1.
assert isinstance(EventWithTimeuuid().event_id, UUID)

Some classes require particular arguments when constructed. The originator_id can be used to identify a se-
quence to which an event belongs. The originator_version can be used to position the event in a sequence.

from eventsourcing.domain.model.events import EventWithOriginatorVersion
from eventsourcing.domain.model.events import EventWithOriginatorID
from uuid import uuid4

# Requires originator_id.
EventWithOriginatorID(originator_id=uuid4())

# Requires originator_version.
EventWithOriginatorVersion(originator_version=0)

Some are just useful for their distinct type, for example in subscription predicates.

7.1. Domain events 21



eventsourcing Documentation, Release 7.1.1

from eventsourcing.domain.model.events import Created, AttributeChanged, Discarded

def is_created(event):
return isinstance(event, Created)

def is_attribute_changed(event):
return isinstance(event, AttributeChanged)

def is_discarded(event):
return isinstance(event, Discarded)

assert is_created(Created()) is True
assert is_created(Discarded()) is False
assert is_created(DomainEvent()) is False

assert is_discarded(Created()) is False
assert is_discarded(Discarded()) is True
assert is_discarded(DomainEvent()) is False

assert is_domain_event(Created()) is True
assert is_domain_event(Discarded()) is True
assert is_domain_event(DomainEvent()) is True

7.1.3 Custom events

Custom domain events can be coded by subclassing the library’s domain event classes.

Domain events are normally named using the past participle of a common verb, for example a regular past participle
such as “started”, “paused”, “stopped”, or an irregular past participle such as “chosen”, “done”, “found”, “paid”,
“quit”, “seen”.

class SomethingHappened(DomainEvent):
"""
Published whenever something happens.
"""

It is possible to code domain events as inner or nested classes.

class Job(object):

class Seen(EventWithTimestamp):
"""
Published when the job is seen.
"""

class Done(EventWithTimestamp):
"""
Published when the job is done.
"""

Inner or nested classes can be used, and are used in the library, to define the domain events of a domain entity on the
entity class itself.

seen = Job.Seen(job_id='#1')
done = Job.Done(job_id='#1')

(continues on next page)

22 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

assert done.timestamp > seen.timestamp

So long as the entity event classes inherit ultimately from library class QualnameABC, which DomainEvent does,
the utility functions get_topic() and resolve_topic() can work with domain events defined as inner or
nested classes in all versions of Python. These functions are used in the DomainEntity.Created event class, and
in the infrastructure class SequencedItemMapper. The requirement to inherit from QualnameABC actually only
applies when using nested classes in Python 2.7 with the utility functions get_topic() and resolve_topic().
Events classes that are not nested, or that will not be run with Python 2.7, do not need to inherit from QualnameABC
in order to work with these two functions (and hence the library domain and infrastructure classes which use those
functions).

7.2 Domain entities

A domain entity is an object that is not defined by its attributes, but rather by a thread of continuity and its identity.
The attributes of a domain entity can change, directly by assignment, or indirectly by calling a method of the object.

The library has a base class for domain entities called DomainEntity, which has an id attribute.

from eventsourcing.domain.model.entity import DomainEntity

entity_id = uuid4()

entity = DomainEntity(id=entity_id)

assert entity.id == entity_id

7.2.1 Entity library

The library also has a domain entity class called VersionedEntity, which extends the DomainEntity class
with a __version__ attribute.

from eventsourcing.domain.model.entity import VersionedEntity

entity = VersionedEntity(id=entity_id, __version__=1)

assert entity.id == entity_id
assert entity.__version__ == 1

The library also has a domain entity class called TimestampedEntity, which extends the DomainEntity class
with attributes __created_on__ and __last_modified__.

from eventsourcing.domain.model.entity import TimestampedEntity

entity = TimestampedEntity(id=entity_id, __created_on__=123)

assert entity.id == entity_id
assert entity.__created_on__ == 123
assert entity.__last_modified__ == 123

There is also a TimestampedVersionedEntity that has id, __version__, __created_on__, and
__last_modified__ attributes.

7.2. Domain entities 23



eventsourcing Documentation, Release 7.1.1

from eventsourcing.domain.model.entity import TimestampedVersionedEntity

entity = TimestampedVersionedEntity(id=entity_id, __version__=1, __created_on__=123)

assert entity.id == entity_id
assert entity.__created_on__ == 123
assert entity.__last_modified__ == 123
assert entity.__version__ == 1

A timestamped, versioned entity is both a timestamped entity and a versioned entity.

assert isinstance(entity, TimestampedEntity)
assert isinstance(entity, VersionedEntity)

7.2.2 Naming style

The double leading and trailing underscore naming style, seen above, is used consistently in the library’s domain
entity and event base classes for attribute and method names, so that developers can begin with a clean namespace.
The intention is that the library functionality is included in the application by aliasing these library names with names
that work within the project’s ubiquitous language.

This style breaks PEP8, but it seems worthwhile in order to keep the “normal” Python object namespace free for
domain modelling. It is a style used by other libraries (such as SQLAlchemy and Django) for similar reasons.

The exception is the id attribute of the domain entity base class, which is assumed to be required by all domain entities
(or aggregates) in all domains.

7.2.3 Entity events

The library’s domain entity classes have domain events defined as inner classes: Event, Created,
AttributeChanged, and Discarded.

DomainEntity.Event
DomainEntity.Created
DomainEntity.AttributeChanged
DomainEntity.Discarded

The domain event class DomainEntity.Event is a super type of the others. The others also inherit from the library
base classes Created, AttributeChanged, and Discarded. All these domain events classes are subclasses of
DomainEvent.

assert issubclass(DomainEntity.Created, DomainEntity.Event)
assert issubclass(DomainEntity.AttributeChanged, DomainEntity.Event)
assert issubclass(DomainEntity.Discarded, DomainEntity.Event)

assert issubclass(DomainEntity.Created, Created)
assert issubclass(DomainEntity.AttributeChanged, AttributeChanged)
assert issubclass(DomainEntity.Discarded, Discarded)

assert issubclass(DomainEntity.Event, DomainEvent)

These entity event classes can be freely constructed, with suitable arguments.

All events need an originator_id. Events of versioned entities also need an originator_version. Events
of timestamped entities generate a current timestamp value, unless one is given. Created events also need an

24 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

originator_topic. The other events need an __previous_hash__. AttributeChanged events also
need name and value.

All the events of DomainEntity use SHA-256 to generate an event_hash from the event attribute values when
constructed for the first time. Events can be chained together by constructing each subsequent event to have its
__previous_hash__ as the event_hash of the previous event.

from eventsourcing.utils.topic import get_topic

entity_id = UUID('b81d160d-d7ef-45ab-a629-c7278082a845')

created = VersionedEntity.Created(
originator_version=0,
originator_id=entity_id,
originator_topic=get_topic(VersionedEntity)

)

attribute_a_changed = VersionedEntity.AttributeChanged(
name='a',
value=1,
originator_version=1,
originator_id=entity_id,

)

attribute_b_changed = VersionedEntity.AttributeChanged(
name='b',
value=2,
originator_version=2,
originator_id=entity_id,

)

entity_discarded = VersionedEntity.Discarded(
originator_version=3,
originator_id=entity_id,

)

The events have a __mutate__() function, which can be used to mutate the state of a given object appropriately.

For example, the DomainEntity.Created event mutates to an entity instance. The class that is instantiated is
determined by the originator_topic attribute of the DomainEntity.Created event.

A domain event’s __mutate__() method normally requires an obj argument, but that is not required for
DomainEntity.Created events. The default is None, but if a value is provided it must be callable that re-
turns an object, such as a domain entity class. If a domain entity class is provided, the originator_topic will be
ignored.

entity = created.__mutate__()

assert entity.id == entity_id

As another example, when a versioned entity is mutated by an event of the VersionedEntity class, the entity
version number is set to the event originator_version.

assert entity.__version__ == 0

entity = attribute_a_changed.__mutate__(entity)
assert entity.__version__ == 1
assert entity.a == 1

(continues on next page)

7.2. Domain entities 25



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

entity = attribute_b_changed.__mutate__(entity)
assert entity.__version__ == 2
assert entity.b == 2

Similarly, when a timestamped entity is mutated by an event of the TimestampedEntity class, the
__last_modified__ attribute of the entity is set to have the event’s timestamp value.

7.2.4 Factory method

The DomainEntity has a class method __create__() which can return new entity objects. When called, it
constructs the Created event of the concrete class with suitable arguments such as a unique ID, and a topic repre-
senting the concrete entity class, and then it projects that event into an entity object using the event’s __mutate__()
method. Then it publishes the event, and then it returns the new entity to the caller. This technique works correctly for
subclasses of both the entity and the event class.

entity = DomainEntity.__create__()
assert entity.id
assert entity.__class__ is DomainEntity

entity = VersionedEntity.__create__()
assert entity.id
assert entity.__version__ == 0
assert entity.__class__ is VersionedEntity

entity = TimestampedEntity.__create__()
assert entity.id
assert entity.__created_on__
assert entity.__last_modified__
assert entity.__class__ is TimestampedEntity

entity = TimestampedVersionedEntity.__create__()
assert entity.id
assert entity.__created_on__
assert entity.__last_modified__
assert entity.__version__ == 0
assert entity.__class__ is TimestampedVersionedEntity

7.2.5 Triggering events

Commands methods will construct, apply, and publish events, using the results from working on command arguments.
The events need to be constructed with suitable arguments.

To help trigger events in an extensible manner, the DomainEntity class has a method called
__trigger_event__(), that is extended by subclasses in the library, which can be used in command methods to
construct, apply, and publish events with suitable arguments. The events’ __mutate__() methods update the entity
appropriately.

For example, triggering an AttributeChanged event on a timestamped, versioned entity will cause the attribute
value to be updated, but it will also cause the version number to increase, and it will update the last modified time.

26 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

entity = TimestampedVersionedEntity.__create__()
assert entity.__version__ == 0
assert entity.__created_on__ == entity.__last_modified__

# Trigger domain event.
entity.__trigger_event__(entity.AttributeChanged, name='c', value=3)

# Check the event was applied.
assert entity.c == 3
assert entity.__version__ == 1
assert entity.__last_modified__ > entity.__created_on__

The command method __change_attribute__() triggers an AttributeChanged event. In the code below,
the attribute full_name is set to ‘Mr Boots’. A subscriber receives the event.

subscribe(handler=receive_event, predicate=is_domain_event)
assert len(received_events) == 0

entity = VersionedEntity.__create__(entity_id)

# Change an attribute.
entity.__change_attribute__(name='full_name', value='Mr Boots')

# Check the event was applied.
assert entity.full_name == 'Mr Boots'

# Check two events were published.
assert len(received_events) == 2

first_event = received_events[0]
assert first_event.__class__ == VersionedEntity.Created
assert first_event.originator_id == entity_id
assert first_event.originator_version == 0

last_event = received_events[1]
assert last_event.__class__ == VersionedEntity.AttributeChanged
assert last_event.name == 'full_name'
assert last_event.value == 'Mr Boots'
assert last_event.originator_version == 1

# Clean up.
unsubscribe(handler=receive_event, predicate=is_domain_event)
del received_events[:] # received_events.clear()

7.2.6 Discarding entities

The entity method __discard__() can be used to discard the entity, by triggering a Discarded event, after
which the entity is unavailable for further changes.

from eventsourcing.exceptions import EntityIsDiscarded

entity.__discard__()

# Fail to change an attribute after entity was discarded.
try:

(continues on next page)

7.2. Domain entities 27



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

entity.__change_attribute__('full_name', 'Mr Boots')
except EntityIsDiscarded:

pass
else:

raise Exception("Shouldn't get here")

7.2.7 Custom entities

The library entity classes can be subclassed.

class User(VersionedEntity):
def __init__(self, full_name, *args, **kwargs):

super(User, self).__init__(*args, **kwargs)
self.full_name = full_name

Subclasses can extend the entity base classes, by adding event-based properties and methods.

7.2.8 Custom attributes

The library’s @attribute decorator provides a property getter and setter, which will triggers an
AttributeChanged event when the property is assigned. Simple mutable attributes can be coded as decorated
functions without a body, such as the full_name function of User below.

from eventsourcing.domain.model.decorators import attribute

class User(VersionedEntity):

def __init__(self, full_name, *args, **kwargs):
super(User, self).__init__(*args, **kwargs)
self._full_name = full_name

@attribute
def full_name(self):

"""Full name of the user."""

In the code below, after the entity has been created, assigning to the full_name attribute causes the entity to be
updated. An AttributeChanged event is published. Both the Created and AttributeChanged events are
received by a subscriber.

assert len(received_events) == 0
subscribe(handler=receive_event, predicate=is_domain_event)

# Publish a Created event.
user = User.__create__(full_name='Mrs Boots')

# Publish an AttributeChanged event.
user.full_name = 'Mr Boots'

assert len(received_events) == 2
assert received_events[0].__class__ == VersionedEntity.Created
assert received_events[0].full_name == 'Mrs Boots'
assert received_events[0].originator_version == 0

(continues on next page)

28 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

assert received_events[0].originator_id == user.id

assert received_events[1].__class__ == VersionedEntity.AttributeChanged
assert received_events[1].value == 'Mr Boots'
assert received_events[1].name == '_full_name'
assert received_events[1].originator_version == 1
assert received_events[1].originator_id == user.id

# Clean up.
unsubscribe(handler=receive_event, predicate=is_domain_event)
del received_events[:] # received_events.clear()

7.2.9 Custom commands

The entity base classes can be extended with custom command methods. In general, the arguments of a command will
be used to perform some work. Then, the result of the work will be used to trigger a domain event that represents what
happened. Please note, command methods normally have no return value.

For example, the set_password() method of the User entity below is given a raw password. It creates an
encoded string from the raw password, and then uses the __change_attribute__() method to trigger an
AttributeChanged event for the _password attribute with the encoded password.

from eventsourcing.domain.model.decorators import attribute

class User(VersionedEntity):

def __init__(self, *args, **kwargs):
super(User, self).__init__(*args, **kwargs)
self._password = None

def set_password(self, raw_password):
# Do some work using the arguments of a command.
password = self._encode_password(raw_password)

# Change private _password attribute.
self.__change_attribute__('_password', password)

def check_password(self, raw_password):
password = self._encode_password(raw_password)
return self._password == password

def _encode_password(self, password):
return ''.join(reversed(password))

user = User(id='1', __version__=0)

user.set_password('password')
assert user.check_password('password')

7.2. Domain entities 29



eventsourcing Documentation, Release 7.1.1

7.2.10 Custom events

Custom events can be defined as inner or nested classes of the custom entity class. In the code below, the entity class
World has a custom event called SomethingHappened.

Custom event classes can extend the __mutate__() method, so it affects entities in a way that is specific to that
type of event. More conveniently, event classes can implement a mutate() method, which avoids the need to call
the super method and return the obj. For example, the SomethingHappened event class has a mutate() method
which simply appends the event object to the entity’s history attribute.

Custom events are normally triggered by custom commands. In the example below, the command method
make_it_so() triggers the custom event SomethingHappened.

from eventsourcing.domain.model.decorators import mutator

class World(VersionedEntity):

def __init__(self, *args, **kwargs):
super(World, self).__init__(*args, **kwargs)
self.history = []

def make_it_so(self, something):
# Do some work using the arguments of a command.
what_happened = something

# Trigger event with the results of the work.
self.__trigger_event__(World.SomethingHappened, what=what_happened)

class SomethingHappened(VersionedEntity.Event):
"""Published when something happens in the world."""
def mutate(self, obj):

obj.history.append(self)

A new world can now be created, using the __create__() method. The command make_it_so() can be used
to make things happen in this world. When something happens, the history of the world is augmented with the new
event.

world = World.__create__()

world.make_it_so('dinosaurs')
world.make_it_so('trucks')
world.make_it_so('internet')

assert world.history[0].what == 'dinosaurs'
assert world.history[1].what == 'trucks'
assert world.history[2].what == 'internet'

7.3 Aggregate root

Eric Evans’ book Domain Driven Design describes an abstraction called “aggregate”:

“An aggregate is a cluster of associated objects that we treat as a unit for the purpose of data changes.
Each aggregate has a root and a boundary.”

Therefore,

30 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

“Cluster the entities and value objects into aggregates and define boundaries around each. Choose one
entity to be the root of each aggregate, and control all access to the objects inside the boundary through
the root. Allow external objects to hold references to the root only.”

In this situation, one aggregate command may result in many events. In order to construct a consistency boundary, we
need to prevent the situation where other threads pick up only some of the events, but not all of them, which could
present the aggregate in an inconsistent, or unusual, and perhaps unworkable state.

In other words, we need to avoid the situation where some of the events have been stored successfully but others have
not been. If the events from a command were stored in a series of independent database transactions, then some would
be written before others. If another thread needs the aggregate and gets its events whilst a series of new event are being
written, it would not receive some of the events, but not the events that have not yet been written. Worse still, events
could be lost due to an inconvenient database server problem, or sudden termination of the client. Even worse, later
events in the series could fall into conflict because another thread has started appending events to the same sequence,
potentially causing an incoherent state that would be difficult to repair.

Therefore, to implement the aggregate as a consistency boundary, all the events from a command on an aggregate must
be appended to the event store in a single atomic transaction, so that if some of the events resulting from executing a
command cannot be stored then none of them will be stored. If all the events from an aggregate are to be written to a
database as a single atomic operation, then they must have been published by the entity as a single list.

The library has a domain entity class called AggregateRoot that can be useful in a domain driven design, espe-
cially where a single command can cause many events to be published. The AggregateRoot entity class extends
TimestampedVersionedEntity. It overrides the __publish__() method of the base class, so that triggered
events are published only to a private list of pending events, rather than directly to the publish-subscribe mechanism.
It also adds a method called __save__(), which publishes all pending events to the publish-subscribe mechanism
as a single list.

It can be subclassed by custom aggregate root entities. In the example below, the entity class World inherits from
AggregateRoot.

from eventsourcing.domain.model.aggregate import AggregateRoot

class World(AggregateRoot):
"""
Example domain entity, with mutator function on domain event.
"""
def __init__(self, *args, **kwargs):

super(World, self).__init__(*args, **kwargs)
self.history = []

def make_things_so(self, *somethings):
for something in somethings:

self.__trigger_event__(World.SomethingHappened, what=something)

class SomethingHappened(AggregateRoot.Event):
def mutate(self, obj):

obj.history.append(self)

The World aggregate root has a command method make_things_so()which publishes SomethingHappened
events. The mutate() method of the SomethingHappened class simply appends the event (self) to the aggre-
gate object obj.

We can see the events that are published by subscribing to the handler receive_events().

assert len(received_events) == 0
subscribe(handler=receive_event)

(continues on next page)

7.3. Aggregate root 31



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Create new world.
world = World.__create__()
assert isinstance(world, World)

# Command that publishes many events.
world.make_things_so('dinosaurs', 'trucks', 'internet')

# State of aggregate object has changed
# but no events have been published yet.
assert len(received_events) == 0
assert world.history[0].what == 'dinosaurs'
assert world.history[1].what == 'trucks'
assert world.history[2].what == 'internet'

Events are pending, and will not be published until the __save__() method is called.

# Has pending events.
assert len(world.__pending_events__) == 4

# Publish pending events.
world.__save__()

# Pending events published as a list.
assert len(received_events) == 1
assert len(received_events[0]) == 4

# No longer any pending events.
assert len(world.__pending_events__) == 0

7.3.1 Data integrity

Domain events triggered by the library’s AggregateRoot class are both hashed and also hash-chained together.

The state of each event, including the hash of the previous event, is hashed using SHA-256. The state of each
event can be validated as a part of the chain. If the sequence of events is accidentally damaged in any way, then
a DataIntegrityError will almost certainly be raised from the domain layer when the sequence is replayed.

The hash of the last event applied to an aggregate root is available as an attribute called __head__ of the aggregate
root.

# Entity's head hash is determined exclusively
# by the entire sequence of events and SHA-256.
assert world.__head__ == received_events[0][-1].__event_hash__

A different sequence of events will almost certainly result a different head hash. So the entire history of an entity can
be verified by checking the head hash against an independent record.

The hashes can be salted by setting environment variable SALT_FOR_DATA_INTEGRITY, perhaps with random
bytes encoded as Base64.

from eventsourcing.utils.random import encode_random_bytes

# Keep this safe.
salt = encode_random_bytes(num_bytes=32)

(continues on next page)

32 Chapter 7. Domain model layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Configure environment (before importing library).
import os
os.environ['SALT_FOR_DATA_INTEGRITY'] = salt

The “genesis hash” used as the previous hash of the first event in a sequence can be set using environment variable
GENESIS_HASH.

# Clean up. unsubscribe(handler=receive_event) del received_events[:] # received_events.clear()

7.3. Aggregate root 33



eventsourcing Documentation, Release 7.1.1

34 Chapter 7. Domain model layer



CHAPTER 8

Infrastructure layer

The library’s infrastructure layer provides a cohesive mechanism for storing events as sequences of items.

The entire mechanism is encapsulated by the library’s EventStore class. The event store uses a sequenced item
mapper and a record manager.

The sequenced item mapper converts objects such as domain events to sequenced items, and the record manager writes
sequenced items to database records. The sequenced item mapper and the record manager operate by reflection off a
common sequenced item type.

• Sequenced item type

– SequencedItem namedtuple

– StoredEvent namedtuple

• Sequenced item mapper

– Custom JSON transcoding

– Application-level encryption

• Record managers

– SQLAlchemy

* SQLAlchemy dialects

* MySQL

* PostgreSQL

* SQLite

– Django ORM

* Django backends

– Contiguous record IDs

35



eventsourcing Documentation, Release 7.1.1

– Cassandra

– Sequenced item conflicts

• Event store

– Optimistic concurrency control

– Event store factory

– Timestamped event store

* TimeUUIDs

8.1 Sequenced item type

Sequenced item types are declared as named tuples (namedtuple from collections).

Below is an example of a sequenced item named tuple.

from collections import namedtuple

SequencedItem = namedtuple('SequencedItem', ['sequence_id', 'position', 'topic', 'data
→˓'])

The fields can be named differently, however a suitable database table will have matching column names.

Whatever the names of the fields, the first field of a sequenced item will represent the identity of a sequence to which
an item belongs. The second field will represent the position of the item in its sequence. The third field will represent
a topic to which the item pertains. And the fourth field will represent the state of the item.

8.1.1 SequencedItem namedtuple

The library provides a sequenced item named tuple called SequencedItem.

from eventsourcing.infrastructure.sequenceditem import SequencedItem

Like in the example above, the library’s SequencedItem namedtuple has four fields. The sequence_id identifies
the sequence to which the item belongs. The position identifies the position of the item in its sequence. The topic
identifies a dimension of concern to which the item pertains. The state holds the state of the item.

A sequenced item is just a tuple, and can be used as such. In the example below, a sequenced item happens to be
constructed with a UUID to identify a sequence. The item has also been given an integer position value, it has a topic
that happens to correspond to a domain event class in the library. The item’s state is a JSON string in which foo is
bar.

from uuid import uuid4

sequence1 = uuid4()

state = '{"foo":"bar","position":0,"sequence_id":{"UUID":"%s"}}' % sequence1.hex

sequenced_item1 = SequencedItem(
sequence_id=sequence1,
position=0,
topic='eventsourcing.domain.model.events#DomainEvent',

(continues on next page)

36 Chapter 8. Infrastructure layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

state=state,
)

As expected, the attributes of the sequenced item object are simply the values given when the object was constructed.

assert sequenced_item1.sequence_id == sequence1
assert sequenced_item1.position == 0
assert sequenced_item1.topic == 'eventsourcing.domain.model.events#DomainEvent'
assert sequenced_item1.state == state, sequenced_item1.state

8.1.2 StoredEvent namedtuple

The library provides a sequenced item named tuple called StoredEvent. The attributes of the StoredEvent
namedtuple are originator_id, originator_version, topic, and state.

The originator_id is the ID of the aggregate that published the event, and is equivalent to sequence_id
above. The originator_version is the version of the aggregate that published the event, and is equivalent to
position above. The topic identifies the class of the domain event that is stored, and is equivalent to topic
above. The state holds the state of the domain event, and is equivalent to state above.

from eventsourcing.infrastructure.sequenceditem import StoredEvent

aggregate1 = uuid4()

stored_event1 = StoredEvent(
originator_id=aggregate1,
originator_version=0,
topic='eventsourcing.domain.model.events#DomainEvent',
state='{"foo":"bar","originator_version":0,"originator_id":{"UUID":"%s"}}' %

→˓aggregate1.hex,
)
assert stored_event1.originator_id == aggregate1
assert stored_event1.originator_version == 0
assert stored_event1.topic == 'eventsourcing.domain.model.events#DomainEvent'
assert stored_event1.state == '{"foo":"bar","originator_version":0,"originator_id":{
→˓"UUID":"%s"}}' % aggregate1.hex

8.2 Sequenced item mapper

The event store uses a sequenced item mapper to map between sequenced items and application-level objects such as
domain events.

The library provides a sequenced item mapper object class called SequencedItemMapper.

from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper

The SequencedItemMapper has a constructor arg sequenced_item_class, which defaults to the library’s
sequenced item named tuple SequencedItem.

sequenced_item_mapper = SequencedItemMapper()

The method event_from_item() can be used to convert sequenced item objects to application-level objects.

8.2. Sequenced item mapper 37



eventsourcing Documentation, Release 7.1.1

domain_event = sequenced_item_mapper.event_from_item(sequenced_item1)

assert domain_event.foo == 'bar'

The method item_from_event() can be used to convert application-level objects to sequenced item named tuples.

recovered_state = sequenced_item_mapper.item_from_event(domain_event).state
assert recovered_state == sequenced_item1.state, (recovered_state, sequenced_item1.
→˓state)

If the names of the first two fields of the sequenced item named tuple (e.g. sequence_id and position) do
not match the names of the attributes of the application-level object which identify a sequence and a position (e.g.
originator_id and originator_version) then the attribute names can be given to the sequenced item map-
per using constructor args sequence_id_attr_name and position_attr_name.

from eventsourcing.domain.model.events import DomainEvent

domain_event1 = DomainEvent(
originator_id=aggregate1,
originator_version=1,
foo='baz',

)

sequenced_item_mapper = SequencedItemMapper(
sequence_id_attr_name='originator_id',
position_attr_name='originator_version'

)

assert domain_event1.foo == 'baz'

assert sequenced_item_mapper.item_from_event(domain_event1).sequence_id == aggregate1

Alternatively, a sequenced item named tuple type that is different from the default SequencedItem
namedtuple, for example the library’s StoredEvent namedtuple, can be passed with the constructor arg
sequenced_item_class.

sequenced_item_mapper = SequencedItemMapper(
sequenced_item_class=StoredEvent

)

domain_event1 = sequenced_item_mapper.event_from_item(stored_event1)

assert domain_event1.foo == 'bar', domain_event1

Since the alternative StoredEvent namedtuple can be used instead of the default SequencedItem namedtuple,
so it is possible to use a custom named tuple. Which alternative you use for your project depends on your preferences
for the names in the your domain events and your persistence model.

Please note, it is required of these application-level objects that the “topic” generated by get_topic() from the
object class is resolved by resolve_topic() back to the same object class.

from eventsourcing.domain.model.events import Created
from eventsourcing.utils.topic import get_topic, resolve_topic

topic = get_topic(Created)

(continues on next page)

38 Chapter 8. Infrastructure layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

assert resolve_topic(topic) == Created
assert topic == 'eventsourcing.domain.model.events#Created'

8.2.1 Custom JSON transcoding

The SequencedItemMapper can be constructed with optional args json_encoder_class and
json_decoder_class. The defaults are the library’s ObjectJSONEncoder and ObjectJSONDecoder
which can be extended to support types of value objects that are not currently supported by the library.

The code below extends the JSON transcoding to support sets.

from eventsourcing.utils.transcoding import ObjectJSONEncoder, ObjectJSONDecoder

class CustomObjectJSONEncoder(ObjectJSONEncoder):
def default(self, obj):

if isinstance(obj, set):
return {'__set__': list(obj)}

else:
return super(CustomObjectJSONEncoder, self).default(obj)

class CustomObjectJSONDecoder(ObjectJSONDecoder):
@classmethod
def from_jsonable(cls, d):

if '__set__' in d:
return cls._decode_set(d)

else:
return ObjectJSONDecoder.from_jsonable(d)

@staticmethod
def _decode_set(d):

return set(d['__set__'])

customized_sequenced_item_mapper = SequencedItemMapper(
json_encoder_class=CustomObjectJSONEncoder,
json_decoder_class=CustomObjectJSONDecoder,
sequenced_item_class=StoredEvent,

)

domain_event = customized_sequenced_item_mapper.event_from_item(
StoredEvent(

originator_id=sequence1,
originator_version=0,
topic='eventsourcing.domain.model.events#DomainEvent',
state='{"foo":{"__set__":["bar","baz"]},"originator_version":0,"originator_id

→˓":{"UUID":"%s"}}' % sequence1
.hex,

)
)
assert domain_event.foo == set(["bar", "baz"])

sequenced_item = customized_sequenced_item_mapper.item_from_event(domain_event)
assert sequenced_item.state.startswith('{"foo":{"__set__":["ba')

8.2. Sequenced item mapper 39



eventsourcing Documentation, Release 7.1.1

8.2.2 Application-level encryption

The SequencedItemMapper can be constructed with a symmetric cipher. If a cipher is given, then the state
field of every sequenced item will be encrypted before being sent to the database. The state retrieved from the database
will be decrypted and verified, which protects against tampering.

The library provides an AES cipher object class called AESCipher. It uses the AES cipher from the Python Cryp-
tography Toolkit, as forked by the actively maintained PyCryptodome project.

The AESCipher class uses AES in GCM mode, which is a padding-less, authenticated encryption mode. Other AES
modes aren’t supported by this class, at the moment.

The AESCipher constructor arg cipher_key is required. The key must be either 16, 24, or 32 random bytes (128,
192, or 256 bits). Longer keys take more time to encrypt plaintext, but produce more secure ciphertext.

Generating and storing a secure key requires functionality beyond the scope of this library. However, the utils package
does contain a function encode_random_bytes() that may help to generate a unicode key string, representing
random bytes encoded with Base64. A companion function decode_bytes() decodes the unicode key string into
a sequence of bytes.

from eventsourcing.utils.cipher.aes import AESCipher
from eventsourcing.utils.random import encode_random_bytes, decode_bytes

# Unicode string representing 256 random bits encoded with Base64.
cipher_key = encode_random_bytes(num_bytes=32)

# Construct AES-256 cipher.
cipher = AESCipher(cipher_key=decode_bytes(cipher_key))

# Encrypt some plaintext (using nonce arguments).
ciphertext = cipher.encrypt('plaintext')
assert ciphertext != 'plaintext'

# Decrypt some ciphertext.
plaintext = cipher.decrypt(ciphertext)
assert plaintext == 'plaintext'

The SequencedItemMapper has constructor arg cipher, which can be used to pass in a cipher object, and
thereby enable encryption.

# Construct sequenced item mapper to always encrypt domain events.
ciphered_sequenced_item_mapper = SequencedItemMapper(

sequenced_item_class=StoredEvent,
cipher=cipher,

)

# Domain event attribute ``foo`` has value ``'bar'``.
assert domain_event1.foo == 'bar'

# Map the domain event to an encrypted stored event namedtuple.
stored_event = ciphered_sequenced_item_mapper.item_from_event(domain_event1)

# Attribute names and values of the domain event are not visible in the encrypted
→˓``state`` field.
assert 'foo' not in stored_event.state
assert 'bar' not in stored_event.state

# Recover the domain event from the encrypted state.

(continues on next page)

40 Chapter 8. Infrastructure layer

https://pycryptodome.readthedocs.io/


eventsourcing Documentation, Release 7.1.1

(continued from previous page)

domain_event = ciphered_sequenced_item_mapper.event_from_item(stored_event)

# Domain event has decrypted attributes.
assert domain_event.foo == 'bar'

Please note, the sequence ID and position values are not encrypted, necessarily. However, by encrypting the state of
the item within the application, potentially sensitive information, for example personally identifiable information, will
be encrypted in transit to the database, at rest in the database, and in all backups and other copies.

8.3 Record managers

The event store uses a record manager to write sequenced items to database records.

The library has an abstract base class AbstractActiveRecordManager with abstract methods record() and
get_items(), which can be used on concrete implementations to read and write sequenced items in a database.

A record manager is constructed with a sequenced_item_class and a matching record_class. The field
names of a suitable record class will match the field names of the sequenced item named tuple.

8.3.1 SQLAlchemy

The library has a record manager for SQLAlchemy provided by the object class SQLAlchemyRecordManager.

To run the example below, please install the library with the ‘sqlalchemy’ option.

$ pip install eventsourcing[sqlalchemy]

The library provides record classes for SQLAlchemy, such as IntegerSequencedRecord and
StoredEventRecord. The IntegerSequencedRecord class matches the default SequencedItem
namedtuple. The StoredEventRecord class matches the alternative StoredEvent namedtuple. There is also a
TimestampSequencedRecord and a SnapshotRecord.

The code below uses the namedtuple StoredEvent and the record class StoredEventRecord.

from eventsourcing.infrastructure.sqlalchemy.records import StoredEventRecord

Database settings can be configured using SQLAlchemySettings, which is constructed with a uri connection
string. The code below uses an in-memory SQLite database.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings

settings = SQLAlchemySettings(uri='sqlite:///:memory:')

To help setup a database connection and tables, the library has object class SQLAlchemyDatastore.

The SQLAlchemyDatastore is constructed with the settings object, and a tuple of record classes passed using
the tables arg.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemyDatastore

datastore = SQLAlchemyDatastore(
settings=settings,
tables=(StoredEventRecord,)

)

8.3. Record managers 41



eventsourcing Documentation, Release 7.1.1

Please note, if you have declared your own SQLAlchemy model Base class, you may wish to define your own record
classes which inherit from your Base class. If so, if may help to refer to the library record classes to see how
SQLALchemy ORM columns and indexes can be used to persist sequenced items.

The methods setup_connection() and setup_tables() of the datastore object can be used to setup the
database connection and the tables.

datastore.setup_connection()
datastore.setup_tables()

As well as sequenced_item_class and a matching record_class, the SQLAlchemyRecordManager
requires a scoped session object, passed using the constructor arg session. For convenience, the
SQLAlchemyDatabase has a thread-scoped session facade set as its a session attribute. You may wish to
use a different scoped session facade, such as a request-scoped session object provided by a Web framework.

With the database setup, the SQLAlchemyRecordManager can be constructed, and used to store events using
SQLAlchemy.

from eventsourcing.infrastructure.sqlalchemy.manager import SQLAlchemyRecordManager

record_manager = SQLAlchemyRecordManager(
sequenced_item_class=StoredEvent,
record_class=StoredEventRecord,
session=datastore.session,
contiguous_record_ids=True,
application_name=uuid4().hex

)

Sequenced items (or “stored events” in this example) can be appended to the database using the append() method
of the record manager.

record_manager.record_sequenced_item(stored_event1)

(Please note, since the position is given by the sequenced item itself, the word “append” means here “to add something
extra” rather than the perhaps more common but stricter meaning “to add to the end of a document”. That is, the
database is deliberately not responsible for positioning a new item at the end of a sequence. So perhaps “save” would
be a better name for this operation.)

All the previously appended items of a sequence can be retrieved by using the get_items() method.

results = record_manager.list_items(aggregate1)

Since by now only one item was stored, so there is only one item in the results.

assert len(results) == 1
assert results[0] == stored_event1

SQLAlchemy dialects

The databases supported by core SQLAlchemy dialects are Firebird, Microsoft SQL Server, MySQL, Oracle, Post-
greSQL, SQLite, and Sybase. This library’s infrastructure classes for SQLAlchemy have been tested with MySQL,
PostgreSQL, and SQLite.

42 Chapter 8. Infrastructure layer

http://docs.sqlalchemy.org/en/latest/dialects/


eventsourcing Documentation, Release 7.1.1

MySQL

For MySQL, the Python package mysql-connector-python-rf can be used (licenced GPL v2). Please note, I had
problems running this driver with Python 2.7 (unicode error when it raises exceptions).

$ pip install pymysql-connector-python-rf

The uri for MySQL used with this driver would look something like this.

mysql+pymysql://username:password@localhost/eventsourcing?charset=utf8mb4&binary_
→˓prefix=true

Alternatively for MySQL, the Python package mysqlclient can be used (also licenced GPL v2). I didn’t have problems
using this driver with Python 2.7.

$ pip install mysqlclient

The uri for MySQL used with this driver would look something like this.

mysql+mysqldb://username:password@localhost/eventsourcing?charset=utf8mb4&binary_
→˓prefix=true

Another alternative is PyMySQL. It has a BSD licence.

$ pip install PyMySQL

The uri for MySQL used with this driver would look something like this.

mysql+pymysql://username:password@localhost/eventsourcing?charset=utf8mb4&binary_
→˓prefix=true

PostgreSQL

For PostgreSQL, the Python package psycopg2 can be used.

$ pip install psycopg2

The uri for PostgreSQL used with this driver would look something like this.

postgresql+psycopg2://username:password@localhost:5432/eventsourcing

SQLite

SQLite is shipped with core Python packages, so nothing extra needs to be installed.

The uri for a temporary SQLite database might look something like this.

sqlite:::////tmp/eventsourcing.db

Please note, the library’s SQLAlchemy insfrastructure defaults to using an in memory SQLite database, which is the
fastest way to run the library, and is recommended as a convenience for development.

8.3. Record managers 43

https://pypi.python.org/pypi/mysql-connector-python-rf
https://pypi.python.org/pypi/mysqlclient
https://pypi.python.org/pypi/PyMySQL
https://pypi.python.org/pypi/psycopg2


eventsourcing Documentation, Release 7.1.1

8.3.2 Django ORM

The library has a record manager for the Django ORM provided by DjangoRecordManager class.

To run the example below, please install the library with the ‘django’ option.

$ pip install eventsourcing[django]

For the DjangoRecordManager, the IntegerSequencedRecord from eventsourcing.
infrastructure.django.models matches the SequencedItem namedtuple. The
StoredEventRecord from the same module matches the StoredEvent namedtuple. There is also a
TimestampSequencedRecord and a SnapshotRecord. These are all Django models.

The package eventsourcing.infrastructure.django is a little Django app. To involve its models in your
Django project, simply include the application in your project’s list of INSTALLED_APPS.

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'eventsourcing.infrastructure.django'

]

Alternatively, import or write the classes you want into one of your own Django app’s models.py.

The Django application at eventsourcing.infrastructure.django has database migrations that will
add four tables, one for each of the record classes mentioned above. So if you use the application directly in
INSTALLED_APPS then the app’s migrations will be picked up by Django.

If, instead of using the app directly, you import some of its model classes into your own application’s models.py,
you will need to run python manage.py makemigrations before tables for event sourcing can be created by
Django. This way you can avoid creating tables you won’t use.

The library has a little Django project for testing the library’s Django app, it is used in this example to help run the
library’s Django app.

import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'eventsourcing.tests.djangoproject.
→˓djangoproject.settings'

This Django project is simply the files that django-admin.py startproject generates, with the SQLite
database set to be in memory, and with the library’s Django app added to the INSTALLED_APPS setting.

With the environment variable DJANGO_SETTINGS_MODULE referring to the Django project, Django can be started.
If you aren’t running tests with the Django test runner, you may need to run django.setup().

import django

django.setup()

Before using the database, make sure the migrations have been applied, so the necessary database tables exist.

An alternative to python manage.py migrate is the call_command() function, provided by Django. If you
aren’t running tests with the Django test runner, this can help e.g. to setup an SQLite database in memory before each
test by calling it in the setUp() method of a test case.

44 Chapter 8. Infrastructure layer



eventsourcing Documentation, Release 7.1.1

from django.core.management import call_command

call_command('migrate', verbosity=0, interactive=False)

So long as a table exists for its record class, the DjangoRecordManager can be used to store events using the
Django ORM.

from eventsourcing.infrastructure.django.manager import DjangoRecordManager
from eventsourcing.infrastructure.django.models import StoredEventRecord

django_record_manager = DjangoRecordManager(
record_class=StoredEventRecord,
sequenced_item_class=StoredEvent,
contiguous_record_ids=True,
application_name='demo',

)

results = django_record_manager.list_items(aggregate1)
assert len(results) == 0

django_record_manager.record_sequenced_item(stored_event1)

results = django_record_manager.list_items(aggregate1)
assert results[0] == stored_event1

Django backends

The supported Django backends are PostgreSQL, MySQL, SQLite, and Oracle. This library’s Django infrastructure
classes have been tested with PostgreSQL, MySQL, SQLite.

8.3.3 Contiguous record IDs

The contiguous_record_ids argument, used in the examples above, is optional, and is by default False. If
set to a True value, and if the record class has an ID field, then the records will be inserted (using an “insert select
from” query) that generates a table of records with IDs that form a contiguous integer sequence.

Application events recorded in this way can be accurately followed as a single sequence without overbearing com-
plexity to mitigate gaps and race conditions. This feature is only available on the relational record managers (Django
and SQLAlchemy, not Cassandra).

If the record ID is merely auto-incrementing, as it is when the the library’s integer sequenced record classes are used
without this feature being enabled, then gaps could be generated. Whenever there is contention in the aggregate
sequence (record ID) that causes the unique record ID constraint to be violated, the transaction will being rolled back,
and an ID that was issued was could be discarded and lost. Other greater IDs may already have been issued. The
complexity for followers is that a gap may be permanent or temporary. It may be that a gap is eventually filled by a
transaction that was somehow delayed. Although some database appear to have auto-incrementing functionality that
does not lead to gaps even with transactions being rolled back, I don’t understand when this happens and when it
doesn’t and so feel unable to reply on it, at least at the moment. It appears to be an inherently unreliable situation that
could probably be mitigated satisfactorily by followers if they need to project the application events accurately, but
only with increased complexity.

Each relational record manager has a raw SQL query with an “insert select from” statement. If possible, the raw query
is compiled when the record manager object is constructed. When a record is inserted, the new field values are bound
to the raw query and executed within a transaction. When executed, the query firstly selects the maximum ID from
all records currently existing in the table (as visible in its transaction), and then attempts to insert a record with an ID

8.3. Record managers 45

https://docs.djangoproject.com/en/2.0/ref/databases/


eventsourcing Documentation, Release 7.1.1

value of the max existing ID plus one (the next unused ID). The record table must have a unique constraint for the
ID, so that records aren’t overwritten by this query. The record ID must also be indexed, so that the max value can
be identified efficiently. The b-tree commonly used for databases indexes supports this purpose well. The transaction
isolation level must be at least “read committed”, which is true by default for MySQL and PostgreSQL.

Any resulting contention in the record ID will raise an exception so that the query can be retried. The library exception
class RecordConflictError will be raised.

8.3.4 Cassandra

The library has a record manager for Apache Cassandra provided by the CassandraRecordManager class.

from eventsourcing.infrastructure.cassandra.manager import CassandraRecordManager

To run the example below, please install the library with the ‘cassandra’ option.

$ pip install eventsourcing[cassandra]

It takes a while to build the driver. If you want to do that last step quickly, set the environment variable
CASS_DRIVER_NO_CYTHON.

$ CASS_DRIVER_NO_CYTHON=1 pip install eventsourcing[cassandra]

For the CassandraRecordManager, the IntegerSequencedRecord from eventsourcing.
infrastructure.cassandra.models matches the SequencedItem namedtuple. The
StoredEventRecord from the same module matches the StoredEvent namedtuple. There is also a
TimestampSequencedRecord, a TimeuuidSequencedRecord, and a SnapshotRecord.

The CassandraDatastore and CassandraSettings can be used in the same was as
SQLAlchemyDatastore and SQLAlchemySettings above. Please investigate library class
CassandraSettings for information about configuring away from default settings.

from eventsourcing.infrastructure.cassandra.datastore import CassandraDatastore,
→˓CassandraSettings
from eventsourcing.infrastructure.cassandra.records import StoredEventRecord

cassandra_datastore = CassandraDatastore(
settings=CassandraSettings(),
tables=(StoredEventRecord,)

)
cassandra_datastore.setup_connection()
cassandra_datastore.setup_tables()

With the database setup, the CassandraRecordManager can be constructed, and used to store events using
Apache Cassandra.

from eventsourcing.infrastructure.cassandra.manager import CassandraRecordManager

cassandra_record_manager = CassandraRecordManager(
record_class=StoredEventRecord,
sequenced_item_class=StoredEvent,

)

results = cassandra_record_manager.list_items(aggregate1)
assert len(results) == 0

(continues on next page)

46 Chapter 8. Infrastructure layer

http://cassandra.apache.org/


eventsourcing Documentation, Release 7.1.1

(continued from previous page)

cassandra_record_manager.record_sequenced_item(stored_event1)

results = cassandra_record_manager.list_items(aggregate1)
assert results[0] == stored_event1

cassandra_datastore.drop_tables()
cassandra_datastore.close_connection()

8.3.5 Sequenced item conflicts

It is a common feature of the record manager classes that it isn’t possible successfully to append two items at the same
position in the same sequence. If such an attempt is made, a RecordConflictError will be raised.

from eventsourcing.exceptions import RecordConflictError

# Fail to append an item at the same position in the same sequence as a previous item.
try:

record_manager.record_sequenced_item(stored_event1)
except RecordConflictError:

pass
else:

raise Exception("RecordConflictError not raised")

This feature is implemented using optimistic concurrency control features of the underlying database. With
SQLAlchemy, a unique constraint is used that involves both the sequence and the position columns. The Django
ORM strategy works in the same way.

With Cassandra the position is the primary key in the sequence partition, and the “IF NOT EXISTS” feature is applied.
The Cassandra database management system implements the Paxos protocol, and can thereby accomplish linearly-
scalable distributed optimistic concurrency control, guaranteeing sequential consistency of the events of an entity
despite the database being distributed. It is also possible to serialize calls to the methods of an entity, but that is out
of the scope of this package — if you wish to do that, perhaps something like an actor framework or Zookeeper might
help.

8.4 Event store

The library’s EventStore provides an interface to the library’s cohesive mechanism for storing events as sequences
of items, and can be used directly within an event sourced application to append and retrieve its domain events.

The EventStore is constructed with a sequenced item mapper and an record manager, both are discussed in detail
in the sections above.

from eventsourcing.infrastructure.eventstore import EventStore

event_store = EventStore(
sequenced_item_mapper=sequenced_item_mapper,
record_manager=record_manager,

)

The event store’s store() method can store a domain event in its sequence. The event store uses the
sequenced_item_mapper to obtain a sequenced item named tuple from a domain events, and it uses the
record_manager to record a sequenced item in the database.

In the code below, a DomainEvent is appended to sequence aggregate1 at position 1.

8.4. Event store 47

https://zookeeper.apache.org/


eventsourcing Documentation, Release 7.1.1

event_store.store(
DomainEvent(

originator_id=aggregate1,
originator_version=1,
foo='baz',

)
)

The event store’s method get_domain_events() is used to get events that have previously been stored.
The event store uses the record_manager to get the sequenced items from database records, and it uses the
sequenced_item_mapper to obtain domain events from the sequenced items.

results = event_store.get_domain_events(aggregate1)

Since by now two domain events have been stored, so there are two domain events in the results.

assert len(results) == 2

assert results[0].foo == 'bar'
assert results[1].foo == 'baz'

The optional arguments of get_domain_events() can be used to select some of the items in the sequence.

The lt arg is used to select items below the given position in the sequence.

The lte arg is used to select items below and at the given position in the sequence.

The gte arg is used to select items at and above the given position in the sequence.

The gt arg is used to select items above the given position in the sequence.

The limit arg is used to limit the number of items selected from the sequence.

The is_ascending arg is used when selecting items. It affects how any limit is applied, and determines the
order of the results. Hence, it can affect both the content of the results and the performance of the method.

# Get events below and at position 0.
result = event_store.get_domain_events(aggregate1, lte=0)
assert len(result) == 1, result
assert result[0].foo == 'bar'

# Get events at and above position 1.
result = event_store.get_domain_events(aggregate1, gte=1)
assert len(result) == 1, result
assert result[0].foo == 'baz'

# Get the first event in the sequence.
result = event_store.get_domain_events(aggregate1, limit=1)
assert len(result) == 1, result
assert result[0].foo == 'bar'

# Get the last event in the sequence.
result = event_store.get_domain_events(aggregate1, limit=1, is_ascending=False)
assert len(result) == 1, result
assert result[0].foo == 'baz'

48 Chapter 8. Infrastructure layer



eventsourcing Documentation, Release 7.1.1

8.4.1 Optimistic concurrency control

It is a feature of the event store that it isn’t possible successfully to append two events at the same position in the same
sequence. This condition is coded as a ConcurrencyError since a correct program running in a single thread
wouldn’t attempt to append an event that it had already successfully appended.

from eventsourcing.exceptions import ConcurrencyError

# Fail to append an event at the same position in the same sequence as a previous
→˓event.
try:

event_store.store(
DomainEvent(

originator_id=aggregate1,
originator_version=1,
foo='baz',

)
)

except ConcurrencyError:
pass

else:
raise Exception("ConcurrencyError not raised")

This feature depends on the behaviour of the record manager’s append() method: the event store will raise a
ConcurrencyError if a RecordConflictError is raised by its record manager.

If a command fails due to a concurrency error, the command can be retried with the latest state. The @retry decorator
can help code retries on commands.

from eventsourcing.domain.model.decorators import retry

errors = []

@retry(ConcurrencyError, max_attempts=5)
def set_password():

exc = ConcurrencyError()
errors.append(exc)
raise exc

try:
set_password()

except ConcurrencyError:
pass

else:
raise Exception("Shouldn't get here")

assert len(errors) == 5

This feature avoids the sequence of records being corrupted due to concurrent threads operating on the same aggregate.
However, the result is that success of appending an event in such circumstances is only probabilistic with respect to
concurrency conflicts. Concurrency conflicts can be avoided if all commands for a single aggregate are executed
in series, for example by treating each aggregate as an actor within an actor framework, or with locks provided by
something like Zookeeper.

8.4. Event store 49



eventsourcing Documentation, Release 7.1.1

8.4.2 Event store factory

As a convenience, the library function construct_sqlalchemy_eventstore() can be used to construct an
event store that uses the SQLAlchemy classes.

from eventsourcing.infrastructure.sqlalchemy import factory

event_store = factory.construct_sqlalchemy_eventstore(
session=datastore.session,
application_name=uuid4().hex,
contiguous_record_ids=True,

)

By default, the event store is constructed with the StoredEvent sequenced item named tuple, and the record class
StoredEventRecord. The optional args sequenced_item_class and record_class can be used to con-
struct different kinds of event store.

8.4.3 Timestamped event store

The examples so far have used an integer sequenced event store, where the items are sequenced by integer version.

The example below constructs an event store for timestamp-sequenced domain events, using the library record class
TimestampSequencedRecord.

from uuid import uuid4

from eventsourcing.infrastructure.sqlalchemy.records import TimestampSequencedRecord
from eventsourcing.utils.times import decimaltimestamp

# Setup database table for timestamped sequenced items.
datastore.setup_table(TimestampSequencedRecord)

# Construct event store for timestamp sequenced events.
timestamped_event_store = factory.construct_sqlalchemy_eventstore(

sequenced_item_class=SequencedItem,
record_class=TimestampSequencedRecord,
sequence_id_attr_name='originator_id',
position_attr_name='timestamp',
session=datastore.session,

)

# Construct an event.
aggregate_id = uuid4()
event = DomainEvent(

originator_id=aggregate_id,
timestamp=decimaltimestamp(),

)

# Store the event.
timestamped_event_store.store(event)

# Check the event was stored.
events = timestamped_event_store.get_domain_events(aggregate_id)
assert len(events) == 1
assert events[0].originator_id == aggregate_id
assert events[0].timestamp < decimaltimestamp()

50 Chapter 8. Infrastructure layer



eventsourcing Documentation, Release 7.1.1

Please note, optimistic concurrent control doesn’t work with timestamped sequenced items to maintain consistency
of a domain entity, because each event is likely to have a unique timestamp, and so branches can occur without
restraint. Optimistic concurrency control will prevent one timestamp sequenced event from overwritting another. For
this reason, although domain events are usefully timestamped, it is not a very good idea to store the events of an
entity or aggregate as timestamp-sequenced items. Timestamp-sequenced items are useful for storing events that are
logically independent of others, such as messages in a log, things that do not risk causing a consistency error due
to concurrent operations. It remains that timestamp sequenced items can happen to occur at the same timestamp, in
which case there would be a concurrency error exception, and the event could be retried with a later timestamp.

TimeUUIDs

If throughput is so high that such conflicts are too frequent, the library also supports sequencing items by TimeUUID,
which includes a random component that makes it very unlikely two events will conflict. This feature currently works
with Apache Cassandra only. Tests exist in the library, other documentation is forthcoming.

8.4. Event store 51



eventsourcing Documentation, Release 7.1.1

52 Chapter 8. Infrastructure layer



CHAPTER 9

Application layer

This section discusses how an event-sourced domain model can be combined with library infrastructure to make an
event sourced application. The normal layered architecture of an enterprise application is followed: an application
layer supports an interface layer and depends on both a domain layer and an infrastructure layer.

• Overview

• Simple application

– Application object

– Event store

– Persistence policy

– Repository

– Notification log

• Custom application

– Run the code

– Stored events

– Sequenced items

– Database records

– Close

9.1 Overview

In this library, an application object has an event store which encapsulates infrastructure required to store the state of
an application as a sequence of domain events. An application also has a persistence subscriber, a repository, and a

53



eventsourcing Documentation, Release 7.1.1

notification log. The event store is used by the repository and notification log to retrieve events, and by the persistence
subscriber to store events.

The state of an application is partitioned across a set of event-sourced “aggregates” (domain entities). Each aggregate
has a unique ID, and the state of an aggregate is determined by a sequence of domain events. Aggregates implement
commands which trigger domain events that mutate the state of their aggregate by augmenting the aggregate’s sequence
of events. The repository of an application allows individual aggregates of the application to be retrieved by ID,
optionally at a particular version.

An application object can have methods (“application services”) which provide a relatively simple interface for client
operations, hiding the complexity and usage of the application’s domain and infrastructure layers.

Application services can be developed outside-in, with a test- or behaviour-driven development approach. A test suite
can be imagined as an interface that uses the application. Interfaces are outside the scope of the application layer.

To run the examples below, please install the library with the ‘sqlalchemy’ option.

$ pip install eventsourcing[sqlalchemy]

9.2 Simple application

The library provides an abstract base class for applications called SimpleApplication. This application class is
independent of infrastructure, and as such can be used to define applications independently of infrastructure, but also
can’t be constructed directly.

For that reason, the example below uses a subclass that depends on SQLAlchemy. The base class is extended by
SQLAlchemyApplication which uses SQLAlchemy to store and retrieve domain event records.

9.2.1 Application object

The SQLAlchemy application class has a uri constructor argument, which is an (SQLAlchemy-style) database con-
nection string. The example below uses SQLite with an in-memory database (which is also the default). You can use
any valid connection string.

uri = 'sqlite:///:memory:'

Here are some example connection strings: for an SQLite file; for a PostgreSQL database; or for a MySQL database.
See SQLAlchemy’s create_engine() documentation for details. You may need to install drivers for your database
management system (such as psycopg2 for PostreSQL or pymysql or even mysql-connector-python-rf
for MySQL).

# SQLite with a file on disk.
sqlite:////tmp/mydatabase

# PostgreSQL with psycopg2.
postgresql+psycopg2://scott:tiger@localhost:5432/mydatabase

# MySQL with pymysql.
mysql+pymysql://scott:tiger@hostname/dbname?charset=utf8mb4&binary_prefix=true

# MySQL with mysql-connector-python-rf.
mysql+sqlconnector://scott:tiger@hostname/dbname

In case you were wondering, the uri value is used to construct an SQLAlchemy thread-scoped session facade.

54 Chapter 9. Application layer



eventsourcing Documentation, Release 7.1.1

Instead of providing a uri value, an already existing SQLAlchemy session can be passed in, using constructor ar-
gument session. For example, a session object provided by a framework integrations such as Flask-SQLAlchemy
could be passed to the application object.

Encryption is optionally enabled in SimpleApplication with a suitable AES key (16, 24, or 32 random bytes
encoded as Base64).

from eventsourcing.utils.random import encode_random_bytes

# Keep this safe (random bytes encoded with Base64).
cipher_key = encode_random_bytes(num_bytes=32)

These values can be given to the application object as constructor arguments uri and cipher_key. The
persist_event_type value determines which types of domain event will be persisted by the application. So
that different applications can be constructed in the same process, the default value of persist_event_type is
None.

from eventsourcing.application.sqlalchemy import SQLAlchemyApplication
from eventsourcing.domain.model.aggregate import AggregateRoot

application = SQLAlchemyApplication(
uri='sqlite:///:memory:',
cipher_key=cipher_key,
persist_event_type=AggregateRoot.Event,

)

Alternatively, the uri value can be set as environment variable DB_URI, and the cipher_key value can be set as
environment variable CIPHER_KEY.

9.2.2 Event store

Once constructed, the application object has an event store, provided by the library’s EventStore class.

from eventsourcing.infrastructure.eventstore import EventStore

assert isinstance(application.event_store, EventStore)

9.2.3 Persistence policy

The application has a persistence policy, an instance of the library class PersistencePolicy . The persis-
tence policy uses the event store.

from eventsourcing.application.policies import PersistencePolicy

assert isinstance(application.persistence_policy, PersistencePolicy)

The persistence policy will only persist particular types of domain events. The application class attribute per-
sist_event_type is used to define which classes of domain events will be persisted by the application’s persistence
policy.

9.2.4 Repository

The application also has a repository, an instance of the library class EventSourcedRepository . The
repository is generic, and can retrieve all aggregates in an application, regardless of their class. That is, there aren’t

9.2. Simple application 55

http://flask-sqlalchemy.pocoo.org/


eventsourcing Documentation, Release 7.1.1

different repositories for different types of aggregate in this application. The repository also uses the event store.

from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository

assert isinstance(application.repository, EventSourcedRepository)

The library class AggregateRoot can be used directly to create a new aggregate object that is available in the
application’s repository.

obj = AggregateRoot.__create__()
obj.__change_attribute__(name='a', value=1)
assert obj.a == 1
obj.__save__()

# Check the repository has the latest values.
copy = application.repository[obj.id]
assert copy.a == 1

# Check the aggregate can be discarded.
copy.__discard__()
copy.__save__()
assert copy.id not in application.repository

# Check optimistic concurrency control is working ok.
from eventsourcing.exceptions import ConcurrencyError
try:

obj.__change_attribute__(name='a', value=2)
obj.__save__()

except ConcurrencyError:
pass

else:
raise Exception("Shouldn't get here")

Because of the unique constraint on the sequenced item table, it isn’t possible to branch the evolution of an entity and
store two events at the same version. Hence, if the entity you are working on has been updated elsewhere, an attempt
to update your object will cause a ConcurrencyError exception to be raised.

Concurrency errors can be avoided if all commands for a single aggregate are executed in series, for example by
treating each aggregate as an actor, within an actor framework.

9.2.5 Notification log

The SimpleApplication has a notification_log attribute, which can be used to follow the application
events as a single sequence.

# Follow application event notifications.
from eventsourcing.interface.notificationlog import NotificationLogReader
reader = NotificationLogReader(application.notification_log)
notification_ids = [n['id'] for n in reader.read()]
assert notification_ids == [1, 2, 3], notification_ids

# - create two more aggregates
obj = AggregateRoot.__create__()
obj.__save__()

obj = AggregateRoot.__create__()
obj.__save__()

(continues on next page)

56 Chapter 9. Application layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# - get the new event notifications from the reader
notification_ids = [n['id'] for n in reader.read()]
assert notification_ids == [4, 5], notification_ids

9.3 Custom application

Firstly, a custom aggregate root class called CustomAggregate is defined below. It extends the library’s
AggregateRoot entity with event-sourced attribute a.

from eventsourcing.domain.model.decorators import attribute

class CustomAggregate(AggregateRoot):
def __init__(self, a, **kwargs):

super(CustomAggregate, self).__init__(**kwargs)
self._a = a

@attribute
def a(self):

"""Mutable attribute a."""

For more sophisticated domain models, please read about the custom entities, commands, and domain events that can
be developed using classes from the library’s domain model layer.

The example below shows a custom application class MyApplication that extends SQLAlchemyApplication
with application service create_aggregate() that can create new CustomAggregate entities.

The persist_event_type value can be set as a class attribute.

from eventsourcing.application.sqlalchemy import SQLAlchemyApplication

class MyApplication(SQLAlchemyApplication):
persist_event_type = AggregateRoot.Event

def create_aggregate(self, a):
return CustomAggregate.__create__(a=1)

9.3.1 Run the code

The custom application object can be constructed.

# Construct application object.
application = MyApplication(uri='sqlite:///:memory:')

The application service aggregate factor method create_aggregate() can be called.

# Create aggregate using application service, and save it.
aggregate = application.create_aggregate(a=1)
aggregate.__save__()

Existing aggregates can be retrieved by ID using the repository’s dictionary-like interface.

9.3. Custom application 57



eventsourcing Documentation, Release 7.1.1

# Aggregate is in the repository.
assert aggregate.id in application.repository

# Get aggregate using dictionary-like interface.
aggregate = application.repository[aggregate.id]

assert aggregate.a == 1

Changes to the aggregate’s attribute a are visible in the repository once pending events have been published.

# Change attribute value.
aggregate.a = 2
aggregate.a = 3

# Don't forget to save!
aggregate.__save__()

# Retrieve again from repository.
aggregate = application.repository[aggregate.id]

# Check attribute has new value.
assert aggregate.a == 3

The aggregate can be discarded. After being saved, a discarded aggregate will no longer be available in the repository.

# Discard the aggregate.
aggregate.__discard__()
aggregate.__save__()

# Check discarded aggregate no longer exists in repository.
assert aggregate.id not in application.repository

Attempts to retrieve an aggregate that does not exist will cause a KeyError to be raised.

# Fail to get aggregate from dictionary-like interface.
try:

application.repository[aggregate.id]
except KeyError:

pass
else:

raise Exception("Shouldn't get here")

9.3.2 Stored events

It is always possible to get the domain events for an aggregate, by using the application’s event store method
get_domain_events().

events = application.event_store.get_domain_events(originator_id=aggregate.id)
assert len(events) == 4

assert events[0].originator_id == aggregate.id
assert isinstance(events[0], CustomAggregate.Created)
assert events[0].a == 1

assert events[1].originator_id == aggregate.id

(continues on next page)

58 Chapter 9. Application layer



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

assert isinstance(events[1], CustomAggregate.AttributeChanged)
assert events[1].name == '_a'
assert events[1].value == 2

assert events[2].originator_id == aggregate.id
assert isinstance(events[2], CustomAggregate.AttributeChanged)
assert events[2].name == '_a'
assert events[2].value == 3

assert events[3].originator_id == aggregate.id
assert isinstance(events[3], CustomAggregate.Discarded)

9.3.3 Sequenced items

It is also possible to get the sequenced item namedtuples for an aggregate, by using the method get_items() of
the event store’s record manager.

items = application.event_store.record_manager.list_items(aggregate.id)
assert len(items) == 4

assert items[0].originator_id == aggregate.id
assert items[0].topic == 'eventsourcing.domain.model.aggregate#AggregateRoot.Created'
assert '"a":1' in items[0].state, items[0].state
assert '"timestamp":' in items[0].state

assert items[1].originator_id == aggregate.id
assert items[1].topic == 'eventsourcing.domain.model.aggregate#AggregateRoot.
→˓AttributeChanged'
assert '"name":"_a"' in items[1].state
assert '"timestamp":' in items[1].state

assert items[2].originator_id == aggregate.id
assert items[2].topic == 'eventsourcing.domain.model.aggregate#AggregateRoot.
→˓AttributeChanged'
assert '"name":"_a"' in items[2].state
assert '"timestamp":' in items[2].state

assert items[3].originator_id == aggregate.id
assert items[3].topic == 'eventsourcing.domain.model.aggregate#AggregateRoot.Discarded
→˓'
assert '"timestamp":' in items[3].state

In this example, the cipher_key was not set, so the stored data is visible.

9.3.4 Database records

Of course, it is also possible to just use the record class directly to obtain records. After all, it’s just an SQLAlchemy
ORM object.

application.event_store.record_manager.record_class

The orm_query() method of the SQLAlchemy record manager is a convenient way to get a query object from the
session for the record class.

9.3. Custom application 59



eventsourcing Documentation, Release 7.1.1

event_records = application.event_store.record_manager.orm_query().all()

assert len(event_records) == 4

9.3.5 Close

If the application isn’t being used as a context manager, then it is useful to unsubscribe any handlers subscribed by the
policies (avoids dangling handlers being called inappropriately, if the process isn’t going to terminate immediately,
such as when this documentation is tested as part of the library’s test suite).

# Clean up.
application.close()

60 Chapter 9. Application layer



CHAPTER 10

Notifications

This section discusses how to use notifications to propagate the domain events of an application.

If the domain events of an application can somehow be placed in a sequence, then the sequence of events can be
propagated as a sequence of notifications.

• Three options

– Bounded context controls notifications

• Application sequence

– Timestamps

– Integers

– Record managers

– BigArray

• Notification logs

• Local notification logs

– RecordManagerNotificationLog

– Notification records

– BigArrayNotificationLog

• Remote notification logs

– NotificationLogView

– Notification API

– RemoteNotificationLog

• Notification log reader

61



eventsourcing Documentation, Release 7.1.1

10.1 Three options

Vaughn Vernon suggests in his book Implementing Domain Driven Design:

“at least two mechanisms in a messaging solution must always be consistent with each other: the persis-
tence store used by the domain model, and the persistence store backing the messaging infrastructure used
to forward the Events published by the model. This is required to ensure that when the model’s changes
are persisted, Event delivery is also guaranteed, and that if an Event is delivered through messaging, it
indicates a true situation reflected by the model that published it. If either of these is out of lockstep with
the other, it will lead to incorrect states in one or more interdependent models”

He continues by describing three options. The first option is to have the messaging infrastructure and the domain
model share the same persistence store, so changes to the model and insertion of new messages commit in the same
local transaction.

The second option is to have separate datastores for domain model and messaging but have a two phase commit, or
global transaction, across the two.

The third option is to have the bounded context control notifications. The simple logic of an ascending sequence of
integers can allow others to progress along an application’s sequence of events. It is also possible to use timestamps.

The first option implies that each event sourced application functions cohesively also as a messaging service. Assuming
that “messaging service” means an AMQP system, it seems impractical in a small library such as this to implement
an AMQP broker, something that works with all of the library’s record manager classes. However, perhaps if Kafka
could be adapted as a record manager, it could be used both to persist and propagate events.

The second option, which is similar to the first, involves using a separate messaging infrastructure within a two-phase
commit, which could be possible, but seems unattractive. At least RabbitMQ can’t participate in a two-phase commit.

The third option is pursued below.

10.1.1 Bounded context controls notifications

The third option doesn’t depend on messaging infrastructure, but does involve “notifications”. If the events of an
application can be placed in a sequence, the sequence of events can be presented as a sequence of notifications, with
notifications being propagated in a standard way. For example, notifications could be presented by a server, and clients
could pull notifications they don’t have, in linked sections, perhaps using a standard format and standard protocols.

Pulling new notifications could resume whenever a “prompt” is received via an AMQP system. This way, the client
doesn’t have the latency or intensity of a polling interval, the messaging infrastructure doesn’t need to deliver messages
in order (which AMQP messaging systems don’t normally provide), and message size is minimised.

If the “substantive” changes enacted by a receiver are stored atomically with the position in the sequence of notifi-
cations, the receiver can resume by looking at the latest record it has written, and from that record identify the next
notification to consume. This is obvious when considering pure replication of a sequence of events. But in general,
by storing in the produced sequence the position of the receiver in the consumed sequence, and using optimistic con-
currency control when records are inserted in the produced sequence, at least from the point of view of consumers of
the produced sequence, “exactly once” processing can be achieved. Redundant (concurrent) processing of the same
sequence would then be possible, which may help to avoid interruptions in processing the application’s events.

If placing all the events in a single sequence is restrictive, then perhaps partitioning the application notifications may
offer a scalable approach. For example, if each user has one partition, each notification sequence would contain all
events from the aggregates pertaining to one user. So that the various sequences can be discovered, it would be useful
to have a sequence in which the creation of each partition is recorded. The application could then be scaled by partition.
(Please note, the library doesn’t currently support partitioning the aggregates of an application.)

If partitioning the aggregates of application is restrictive, then it would also be possible to have a notification sequence
for each aggregate; in this case, the events would already have been placed in a sequence and so they could be presented

62 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

directly as notifications. But as aggregates come and go, the overhead of keeping track of the notification sequences
may become restrictive. (Please note, the library doesn’t currently support notifications for individual aggregates.)

An alternative to sequencing events individually would be to sequence the lists of events published when saving the
pending events of an aggregate (see AggregateRoot), so that in cases where it is feasible to place all the commands
in a sequence, it would also be feasible to place the resulting lists of events in a sequence, assuming the number of such
lists is less than or equal to the number of commands. Sequencing the lists would allow these little units of coherence
to be propagated, which may be useful in some cases. (Please note, the library doesn’t currently support notifications
for lists of events.)

Before continuing with code examples below, we need to setup an event store.

from uuid import uuid4

from eventsourcing.application.policies import PersistencePolicy
from eventsourcing.domain.model.entity import DomainEntity
from eventsourcing.infrastructure.eventstore import EventStore
from eventsourcing.infrastructure.repositories.array import BigArrayRepository
from eventsourcing.infrastructure.sequenceditem import StoredEvent
from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper
from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemyDatastore,
→˓SQLAlchemySettings
from eventsourcing.infrastructure.sqlalchemy.manager import SQLAlchemyRecordManager
from eventsourcing.infrastructure.sqlalchemy.records import StoredEventRecord

# Setup the database.
datastore = SQLAlchemyDatastore(

settings=SQLAlchemySettings(),
tables=[StoredEventRecord],

)
datastore.setup_connection()
datastore.setup_tables()

# Setup the record manager.
record_manager = SQLAlchemyRecordManager(

session=datastore.session,
record_class=StoredEventRecord,
sequenced_item_class=StoredEvent,
contiguous_record_ids=True,
application_name=uuid4().hex,

)

# Setup a sequenced item mapper.
sequenced_item_mapper = SequencedItemMapper(

sequenced_item_class=StoredEvent,
)

# Setup the event store.
event_store = EventStore(

record_manager=record_manager,
sequenced_item_mapper=sequenced_item_mapper

)

# Set up a persistence policy.
persistence_policy = PersistencePolicy(

event_store=event_store,
persist_event_type=DomainEntity.Event

)

10.1. Three options 63



eventsourcing Documentation, Release 7.1.1

Please note, the SQLAlchemyRecordManager is has its contiguous_record_ids option enabled.

The infrastructure classes are explained in other sections of this documentation.

10.2 Application sequence

The fundamental concern here is to propagate the events of an application without events being missed, duplicated, or
jumbled.

The events of an application sequence could be sequenced with either timestamps or integers. Sequencing the appli-
cation events by timestamp is supported by the relational timestamp sequenced record classes, in that their position
column is indexed. However, the notification logs only work with integer sequences.

Sequencing with integers involves generating a sequence of integers, which is easy to follow, but can limit the rate at
which records can be written. Using timestamps allows records to be inserted independently of others, but timestamps
can cause uncertainty when following the events of an application.

If an application’s domain model involves the library’s AggregateRoot class, which publishes all pending events
together as a list, rather than inserting each event, it would be possible to insert the lists of events into the application
sequence as a single entry. This may reduce the number of inserts into the application sequence. The lists could be
sequenced by timestamp or integer. Timestamps may allow the greatest write-speed. (This approach currently hasn’t
been explored any further, but it should be.)

10.2.1 Timestamps

If time itself was ideal, then timestamps would be ideal. Each event could then have a timestamp that could be used
to index and iterate through the events of the application. However, there are many clocks, and each runs slightly
differently from the others.

If the timestamps of the application events are created by different clocks, then it is possible to write events in an order
that creates consistency errors when reconstructing the application state. Hence it is also possible for new records to
be written with a timestamp that is earlier than the latest one, which makes following the application sequence tricky.

A “jitter buffer” can be used, otherwise any events timestamped by a relatively retarded clock, and hence positioned
behind events that were inserted earlier, could be missed. The delay, or the length of the buffer, must be greater than
the differences between clocks, but how do we know for sure what is the maximum difference between the clocks?

Of course, there are lots of remedies. Clocks can be synchronised, more or less. A timestamp server could be used,
and hybrid monotonically increasing timestamps can implemented. Furthermore, the risk of simultaneous timestamps
can be mitigated by using a random component to the timestamp, as with UUID v1 (which randomizes the order of
otherwise “simultaneous” events).

These techniques (and others) are common, widely discussed, and entirely legitimate approaches to the complications
encountered when using timestamps to sequence events. The big advantage of using timestamps is that you don’t need
to generate a sequence of integers, and applications can be distributed and scaled without performance being limited
by a fragile single-threaded auto-incrementing integer-sequence bottleneck.

In support of this approach, the library’s relational record classes for timestamp sequenced items. In particular, the
TimestampSequencedRecord classes for SQLAlchemy and Django index their position field, which is a times-
tamp, and so this index can be used to get all application events ordered by timestamp. If you use this class in this
way, make sure your clocks are in sync, and query events from the last position until a time in the recent past, in order
to implement a jitter buffer.

Todo: Code example.

64 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

(An improvement could be to have a timestamp field that is populated by the database server, and index that instead
of the application event’s timestamp which would vary according to the variation between the clock of application
servers. Code changes and other suggestions are always welcome.)

10.2.2 Integers

To reproduce the application’s sequence of events perfectly, without any risk of gaps or duplicates or jumbled items,
or race conditions, we can generate and then follow a contiguous sequence of integers. It is also possible to generate
and follow a non-contiguous sequence of integers, but the gaps will need to be negotiated, by guessing how long an
unusually slow write would take to become visible, since such gaps could be filled in the future.

The library’s relational record managers with record classes that have an indexed integer ID column. Record IDs are
used to place all the application’s event records in a single sequence. This technique is recommended for enterprise
applications, and at least the earlier stages of more ambitious projects. There is an inherent limit to the rate at which
an application can write events using this technique, which essentially follows from the need to write events in series.
The rate limit is the reciprocal of the time it takes to write one event record, which depends on the insert statement.

By default, these library record classes have an auto-incrementing ID, which will generate an increasing sequence as
records are inserted, but which may have gaps if an insert fails. Optionally, the record managers can also can be used
to generate contiguous record IDs, with an “insert select from” SQL statement that, as a clause in the insert statement,
selects the maximum record ID from the visible table records. Since it is only possible to extend the sequence, the
visible record IDs will form a contiguous sequence, which is the easiest thing to follow, because there is no possibility
for race conditions where events appear behind the last visible event. The “insert select from” statement will probably
be slower than the default “insert values” and the auto-incrementing ID, and only one of many concurrent inserts will
be successful. Exceptions from concurrent inserts could be mitigated with retried, and avoided entirely by serialising
the inserts with a queue, for example in an actor framework. Although this will smooth over spikes, and unfortunate
coincidences will be avoided, the continuous maximum throughput will not be increased, a queue will eventually reach
a limit and a different exception will be raised.

Given the rate limit, it could take an application quite a long time to fill up a well provisioned database table. Never-
theless, if the rate of writing or the volume of domain event records in your system inclines you towards partitioning
the table of stored events, or if anyway your database works in this way (e.g. Cassandra), then the table would need
to be partitioned by sequence ID so that the aggregate performance isn’t compromised by having its events distributed
across partitions, which means maintaining an index of record IDs across such partitions, and hence sequencing the
events of an application in this way, will be problematic.

To proceed without an indexed record ID column, the library class BigArray can be used to sequence all the events
of an application. This technique can be used as an alternative to using a native database index of record IDs, es-
pecially in situations where a normal database index across all records is generally discouraged (e.g. in Cassandra),
or where records do not have an integer ID or timestamp that can be indexed (e.g. all the library’s record classes
for Cassandra, and the IntegerSequencedNoIDRecord for SQLAlchemy, or when storing an index for a large
number of records in a single partition is undesirable for infrastructure or performance reasons, or is not supported by
the database.

The BigArray can be used to construct both contiguous and non-contiguous integer sequences. As with the record
IDs above, if each item is positioned in the next position after the last visible record, then a contiguous sequence is
generated, but at the cost of finding the last visible record. However, if a number generator is used, the rate is limited
by the rate at which numbers can be issued, but if inserts can fail, then numbers can be lost and the integer sequence
will have gaps.

10.2.3 Record managers

A relational record manager can function as an application sequence, especially when its record class has an ID field,
and more so when the contiguous_record_ids option is enabled. This technique ensures that whenever an
entity or aggregate command returns successfully, any events will already have been simultaneously placed in both

10.2. Application sequence 65



eventsourcing Documentation, Release 7.1.1

the aggregate’s and the application’s sequence. Importantly, if inserting an event hits a uniqueness constraint and the
transaction is rolled back, the event will not appear in either sequence.

This approach provides perfect accuracy with great simplicity for followers, but it has a maximum total rate at which
records can be written into the database. In particular, the contiguous_record_ids feature executes an “insert
select from” SQL statement that generates contiguous record IDs when records are inserted, on the database-side as a
clause in the insert statement, by selecting the maximum existing ID in the table, adding one, and inserting that value,
along with the event data.

Because the IDs must be unique, applications may experience the library’s ConcurrencyError exception if they
happen to insert records simultaneously with others. Record ID conflicts are retried a finite number of times by
the library before a ConcurrencyError exception is raised. But with a load beyond the capability of a service,
increased congestion will be experienced by the application as an increased frequency of concurrency errors.

Please note, without the contiguous_record_ids feature enabled, the ID columns of library record classes
should be merely auto-incrementing, and so the record IDs can anyway be used to get all the records in
the order they were written. However, auto-incrementing the ID can lead to a sequence of IDs that has
gaps, a non-contiguous sequence, which could lead to race conditions and missed items. The gaps would
need to be negotiated, which is relatively complicated. To keep things relatively simple, a record man-
ager that does not have the contiguous_record_ids feature enabled cannot be used with the library’s
RecordManagerNotificationLog class (introduced below). If you want to sequence the application events
with a non-contiguous sequence, then you will need to write something that can negotiate the gaps.

To use contiguous IDs to sequence the events of an application, simply use a relational record manager with an
IntegerSequencedRecord that has an ID, such as the StoredEventRecord record class, and with a True
value for its contiguous_record_ids constructor argument. The record_manager above was constructed
in this way. The records can be then be obtained using the get_notifications() method of the record manager.
The record IDs will form a contiguous sequence, suitable for the RecordManagerNotificationLog.

from eventsourcing.domain.model.entity import VersionedEntity

notifications = record_manager.get_notifications()

assert len(notifications) == 0, notifications

first_entity = VersionedEntity.__create__()

notifications = record_manager.get_notifications(start=0, stop=5)

assert len(notifications) == 1, notifications

The local notification log class RecordManagerNotificationLog (see below) can adapt record managers,
presenting the application sequence as notifications in a standard way.

10.2.4 BigArray

This is a long section, and can be skipped if you aren’t currently required to scale beyond the limits of a database table
that has indexed record IDs.

To support ultra-high capacity requirements, the application sequence must be capable of having a very large number of
events, neither swamping an individual database partition (in Cassandra) nor distributing things across table partitions
without any particular order so that iterating through the sequence is slow and expensive. We also want the application
log effectively to have constant time read and write operations for normal usage.

The library class BigArray satisfies these requirements quite well, by spanning across many such partitions. It is
a tree of arrays, with a root array that stores references to the current apex, with an apex that contains references to
arrays, which either contain references to lower arrays or contain the items assigned to the big array. Each array uses

66 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

one database partition, limited in size (the array size) to ensure the partition is never too large. The identity of each
array can be calculated directly from the index number, so it is possible to identify arrays directly without traversing the
tree to discover entity IDs. The capacity of base arrays is the array size to the power of the array size. For a reasonable
size of array, it isn’t really possible to fill up the base of such an array tree, but the slow growing properties of this tree
mean that for all imaginable scenarios, the performance will be approximately constant as items are appended to the
big array.

Items can be appended to a big array using the append() method. The append() method identifies the next available
index in the array, and then assigns the item to that index in the array. A ConcurrencyError will be raised if the
position is already taken.

The performance of the append() method is proportional to the log of the index in the array, to the base of the array
size used in the big array, rounded up to the nearest integer, plus one (because of the root sequence that tracks the
apex). For example, if the sub-array size is 10,000, then it will take only 50% longer to append the 100,000,000th item
to the big array than the 1st one. By the time the 1,000,000,000,000th index position is assigned to a big array, the
append() method will take only twice as long as the 1st.

That’s because the default performance of the append() method is dominated by the need to walk down the big
array’s tree of arrays to find the highest assigned index. Once the index of the next position is known, the item can be
assigned directly to an array. The performance can be improved by using an integer sequence generator, but departing
from using the current max ID risks creating gaps in the sequence of IDs.

from uuid import uuid4
from eventsourcing.domain.model.array import BigArray
from eventsourcing.infrastructure.repositories.array import BigArrayRepository

repo = BigArrayRepository(
event_store=event_store,
array_size=10000

)

big_array = repo[uuid4()]
big_array.append('item0')
big_array.append('item1')
big_array.append('item2')
big_array.append('item3')

Because there is a small duration of time between checking for the next position and using it, another thread could
jump in and use the position first. If that happens, a ConcurrencyError will be raised by the BigArray object.
In such a case, another attempt can be made to append the item.

Items can be assigned directly to a big array using an index number. If an item has already been assigned to the same
position, a concurrency error will be raised, and the original item will remain in place. Items cannot be unassigned
from an array, hence each position in the array can be assigned once only.

The average performance of assigning an item is a constant time. The worst case is the log of the index with base
equal to the array size, which occurs when containing arrays are added, so that the last highest assigned index can be
discovered. The probability of departing from average performance is inversely proportional to the array size, since
the arger the array size, the less often the base arrays fill up. For a decent array size, the probability of needing to build
the tree is very low. And when the tree does need building, it doesn’t take very long (and most of it probably already
exists).

from eventsourcing.exceptions import ConcurrencyError

assert big_array.get_next_position() == 4

big_array[4] = 'item4'
(continues on next page)

10.2. Application sequence 67



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

try:
big_array[4] = 'item4a'

except ConcurrencyError:
pass

else:
raise

If the next available position in the array must be identified each time an item is assigned, the amount of contention
will increase as the number of threads increases. Using the append() method alone will work if the time period
of appending events is greater than the time it takes to identify the next available index and assign to it. At that rate,
any contention will not lead to congestion. Different nodes can take their chances assigning to what they believe is an
unassigned index, and if another has already taken that position, the operation can be retried.

However, there will be an upper limit to the rate at which events can be appended, and contention will eventually lead
to congestion that will cause requests to backup or be spilled.

The rate of assigning items to the big array can be greatly increased by factoring out the generation of the sequence
of integers. Instead of discovering the next position from the array each time an item is assigned, an integer sequence
generator can be used to generate a contiguous sequence of integers. This technique eliminates contention around
assigning items to the big array entirely. In consequence, the bandwidth of assigning to a big array using an integer
sequence generator is much greater than using the append() method.

If the application is executed in only one process, for example during development, the number generator can be a
simple Python object. The library class SimpleIntegerSequenceGenerator generates a contiguous sequence
of integers that can be shared across multiple threads in the same process.

from eventsourcing.infrastructure.integersequencegenerators.base import
→˓SimpleIntegerSequenceGenerator

integers = SimpleIntegerSequenceGenerator()
generated = []
for i in integers:

if i >= 5:
break

generated.append(i)

expected = list(range(5))
assert generated == expected, (generated, expected)

If the application is deployed across many nodes, an external integer sequence generator can be used. There are many
possible solutions. The library class RedisIncr uses Redis’ INCR command to generate a contiguous sequence of
integers that can be shared be processes running on different nodes.

Using Redis doesn’t necessarily create a single point of failure. Redundancy can be obtained using clustered Redis.
Although there aren’t synchronous updates between nodes, so that the INCR command may issue the same numbers
more than once, these numbers can only ever be used once. As failures are retried, the position will eventually reach an
unassigned index position. Arrangements can be made to set the value from the highest assigned index. With care, the
worst case will be an occasional slight delay in storing events, caused by switching to a new Redis node and catching
up with the current index number. Please note, there is currently no code in the library to update or resync the Redis
key used in the Redis INCR integer sequence generator.

from eventsourcing.infrastructure.integersequencegenerators.redisincr import RedisIncr

integers = RedisIncr()
generated = []
for i in integers:

(continues on next page)

68 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

generated.append(i)
if i >= 4:

break

expected = list(range(5))
assert generated == expected, (generated, expected)

The integer sequence generator can be used when assigning items to the big array object.

big_array[next(integers)] = 'item5'
big_array[next(integers)] = 'item6'

assert big_array.get_next_position() == 7

Items can be read from the big array using an index or a slice.

The performance of reading an item at a given index is always constant time with respect to the number of the index.
The base array ID, and the index of the item in the base array, can be calculated from the number of the index.

The performance of reading a slice of items is proportional to the size of the slice. Consecutive items in a base array
are stored consecutively in the same database partition, and if the slice overlaps more than base array, the iteration
proceeds to the next partition.

assert big_array[0] == 'item0'
assert list(big_array[5:7]) == ['item5', 'item6']

The big array can be written to by a persistence policy. References to events could be assigned to the big array
before the domain event is written to the aggregate’s own sequence, so that it isn’t possible to store an event in the
aggregate’s sequence that is not already in the application sequence. To do that, construct the application logging
policy object before the normal application persistence policy. Also, make sure the application log policy excludes the
events published by the big array (otherwise there will be an infinite recursion). If the event fails to write, then the
application sequence will have a dangling reference, which followers will have to cope with.

Alternatively, if the database supports transactions across different tables (not Cassandra), the big array assignment
and the event record insert can be done in the same transaction, so they both appear or neither does. This will help
to avoid some complexity for followers. The library currently doesn’t have any code that writes to both in the same
transaction.

Todo: Code example of policy that places application domain events in a big array.

If the big array item is not assigned in the same separate transaction as the event record is inserted, commands that fail
to insert the event record after the event has been assigned to the big array (due to an operation error or a concurrency
error) should probably raise an exception, so that the command is seen to have failed and so may be retried. An event
would then be in the application sequence but not in the aggregate sequence, which is effectively a dangling reference,
one that may or may not be satisfied later. If the event record insert failed due to an operational error, and the command
is retried, a new event at the same position in the same sequence may be published, and so it would appear twice in
the application sequence. And so, whilst dangling references in the application log can perhaps be filtered out by
followers after a delay, care should be taken by followers to deduplicate events.

It may also happen that an item fails to be assigned to the big array. In this case, an ID that was issued by an integer
sequence generator would be lost. The result would be a gap, that would need to be negotiated by followers.

If writing the event to its aggregate sequence is successful, then it is possible to push a notification about the event to
a message queue. Failing to push the notification perhaps should not prevent the command returning normally. Push
notifications could also be generated by another process, something that pulls from the application log, and pushes
notifications for events that have not already been sent.

10.2. Application sequence 69



eventsourcing Documentation, Release 7.1.1

Since we can imagine there is quite a lot of noise in the sequence, it may be useful to process the application sequence
within the context by constructing another sequence that does not have duplicates or gaps, and then propagating that
sequence.

The local notification log class BigArrayNotificationLog (see below) can adapt big arrays, presenting the
assigned items as notifications in a standard way. Gaps in the array will result in notification items of None. But
where there are gaps, there can be race conditions, where the gaps are filled. Only a contiguous sequence, which has
no gaps, can exclude gaps being filled later.

Please note: there is an unimplemented enhancement which would allow this data structure to be modified in a single
transaction, because the new non-leaf nodes can be determined from the position of the new leaf node, however
currently a less optimal approach is used which attempts to add all non-leaf nodes and carries on in case of conflicts.

10.3 Notification logs

As described in Implementing Domain Driven Design, a notification log presents a sequence of notification items in
linked sections.

Sections are obtained from a notification log using Python’s “square brackets” sequence index syntax. The key is a
section ID. A special section ID called “current” can be used to obtain a section which contains the latest notification
(see examples below).

Each section contains a limited number items, the size is fixed by the notification log’s section_size constructor
argument. When the current section is full, it is considered to be an archived section.

All the archived sections have an ID for the next section. Similarly, all sections except the first have an ID for the
previous section.

A client can get the current section, go back until it reaches the last notification it has already received, and then go
forward until all existing notifications have been received.

The section ID numbering scheme follows Vaughn Vernon’s book. Section IDs are strings: a string formatted with
two integers separated by a comma. The integers represent the first and last number of the items included in a section.

The classes below can be used to present a sequence of items, such the domain events of an application, in linked
sections. They can also be used to present other sequences for example a projection of the application sequence,
where the events are rendered in a particular way for a particular purpose, such as analytics.

A local notification log could be presented by an API in a serialized format e.g. JSON or Atom XML. A remote
notification log could then access the API and provide notification items in the standard way. The serialized section
documents could then be cached using standard cacheing mechanisms.

10.4 Local notification logs

10.4.1 RecordManagerNotificationLog

A relational record manager can be adapted by the library class RecordManagerNotificationLog, which will
then present the application’s events as notifications.

The RecordManagerNotificationLog is constructed with a record_manager, and a section_size.

from eventsourcing.interface.notificationlog import RecordManagerNotificationLog

# Construct notification log.
notification_log = RecordManagerNotificationLog(record_manager, section_size=5)

(continues on next page)

70 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Get the "current" section from the record notification log.
section = notification_log['current']
assert section.section_id == '6,10', section.section_id
assert section.previous_id == '1,5', section.previous_id
assert section.next_id == None
assert len(section.items) == 4, len(section.items)

# Get the first section from the record notification log.
section = notification_log['1,5']
assert section.section_id == '1,5', section.section_id
assert section.previous_id == None, section.previous_id
assert section.next_id == '6,10', section.next_id
assert len(section.items) == 5, section.items

The notifications (section.items) from RecordManagerNotificationLog are Python dicts with keys:
id, topic, state, originator_id, originator_version, and casual_dependencies.

A domain event can be obtained from a notification by calling the method event_from_topic_and_state()
on a sequenced item mapper, passing in the topic and state values. The topic value can be resolved to a Python
class, such as a domain event class. An object instance, such as a domain event object, can then be reconstructed
using the notification’s state. The notification’s state is simply the stored event state, so if the record data was
encrypted, the notification data will also be encrypted. The sequenced item mapper needs to be configured accordingly.

In the code below, the function resolve_notifications shows how that can be done (this function doesn’t exist
in the library).

def resolve_notifications(notifications):
return [

sequenced_item_mapper.event_from_topic_and_state(
topic=notification['topic'],
state=notification['state']

) for notification in notifications
]

# Resolve a section of notifications into domain events.
domain_events = resolve_notifications(section.items)

from eventsourcing.domain.model.array import ItemAssigned
assert type(domain_events[0]) == VersionedEntity.Created
assert type(domain_events[1]) == ItemAssigned
assert type(domain_events[2]) == ItemAssigned
assert type(domain_events[3]) == ItemAssigned
assert type(domain_events[4]) == ItemAssigned

assert domain_events[0].originator_id == first_entity.id
assert domain_events[1].item == 'item0'
assert domain_events[3].item == 'item1'
assert domain_events[4].item == 'item2'

If the notification data was encrypted by the sequenced item mapper, the sequenced item mapper will decrypt the data
before reconstructing the domain event. In this example, the sequenced item mapper does not have a cipher, so the
notification data is not encrypted.

The library’s SimpleApplication has a notification_log that uses this
RecordManagerNotificationLog class.

10.4. Local notification logs 71



eventsourcing Documentation, Release 7.1.1

10.4.2 Notification records

An application could write separate notification records and event records. Having separate notification records allows
notifications to be arbitrarily and therefore evenly distributed across a variable set of notification logs.

The number of logs could governed automatically by a scaling process so the cadence of each notification log is
actively controlled to a constant level.

Todo: Merge these paragraphs, remove repetition (params below were moved from projections doc).

When an application has one notification log, any causal ordering between events will preserved in the log: you won’t
be informed that something changed without previously being informed that it was created. But if there are many
notification logs, then it would be possible to record casual ordering between events: the notifications recorded for the
last events that were applied to the aggregates used when triggering new events can be included in the notifications for
the new events. This avoids downstream needing to: serialise everything in order to recover order e.g. by merge sorting
all logs by timestamp; partitioning the application state; or to ignore causal ordering. For efficiency, prior events that
were notified in the same log wouldn’t need to be included. So it would make sense for all the events of a particular
aggregate to be notified in the same log, but if necessary they could be distributed across different notification logs
without downstream processing needing to incoherent or bottle-necked. To scale data, it might become necessary to
fix an aggregate to a notification log, so that many databases can be used with each having the notification records
and the event records together (and any upstream notification tracking records) so that atomic transactions for these
records are still workable.

If all events in a process are placed in the same notification log sequence, since a notification log will need to be
processed in series, the throughput is more or less limited by the rate at which a sequence can be processed by a single
thread. To scale throughput, the application event notifications could be distributed into many different notification
logs, and a separate operating system process (or thread) could run concurrently for each log. A set of notification
logs could be processed by a single thread, that perhaps takes one notification in turn from each log, but with parallel
processing, total throughput could be proportional to the number of notification logs used to propagate the domain
events of an application.

Causal ordering can be maintained across the logs, so long as each event notification references the notifications for
the last event in all the aggregates that were required to trigger the new events. If a notification references a notification
in another log, then the processing can wait until that other notification has been processed. Hence notifications do
not need to include notifications in the same log, as they will be processed first. On the other hand, if all notifications
include such references to other notifications, then a notification log could be processed in parallel: since it is unlikely
that each notification in a log depends on its immediate predecessor, wherever a sub-sequence of notifications all
depend on notifications that have already been processed, those notifications could perhaps be processed concurrently.

There will be a trade-off between evenly distributing events across the various logs and minimising the number of
causal ordering that go across logs. A simple and probably effective rule would be to place all the events of one
aggregate in the same log. But it may also help to partition the aggregates of an application by e.g. user, and place
the events of all aggregates created by a user in the same notification log, since they are perhaps most likely to be
causally related. This mechanism would allow the number of logs to be increased and decreased, with aggregate event
notifications switching from one log to another and still be processed coherently.

10.4.3 BigArrayNotificationLog

You can skip this section if you skipped the section about BigArray.

A big array can be adapted by the library class BigArrayNotificationLog, which will then present the items
assigned to the array as notifications.

The BigArrayNotificationLog is constructed with a big_array, and a section_size.

72 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

from eventsourcing.interface.notificationlog import BigArrayNotificationLog

# Construct notification log.
big_array_notification_log = BigArrayNotificationLog(big_array, section_size=5)

# Get the "current "section from the big array notification log.
section = big_array_notification_log['current']
assert section.section_id == '6,10', section.section_id
assert section.previous_id == '1,5', section.previous_id
assert section.next_id == None
assert len(section.items) == 2, len(section.items)

# Check we got the last two items assigned to the big array.
assert section.items == ['item5', 'item6']

# Get the first section from the notification log.
section = big_array_notification_log['1,10']
assert section.section_id == '1,5', section.section_id
assert section.previous_id == None, section.previous_id
assert section.next_id == '6,10', section.next_id
assert len(section.items) == 5, section.items

# Check we got the first five items assigned to the big array.
assert section.items == ['item0', 'item1', 'item2', 'item3', 'item4']

Please note, for simplicity, the items in this example are just strings (‘item0’ etc). If the big array is being used to
sequence the events of an application, it is possible to assign just the item’s sequence ID and position, and let followers
get the actual event using those references.

Todo: Fix problem with not being able to write all of big array with one SQL expression, since it involves constructing
the non-leaf records. Perhaps could be more precise about predicting which non-leaf records need to be inserted so
that we don’t walk down from the top each time discovering whether or not a record exists. It’s totally predictable, but
the code is cautious. But it would be possible to identify all the new records and add them. Still not really possible to
use “insert select max”, but if each log has it’s own process, then IDs can be issued from a generator, initialised from
a query, and reused if an insert fails so the sequence is contiguous.

10.5 Remote notification logs

The RESTful API design in Implementing Domain Driven Design suggests a good way to present the notification log,
a way that is simple and can scale using established HTTP technology.

This library has a pair of classes that can help to present a notification log remotely.

The RemoteNotificationLog class has the same interface for getting sections as the local notification log classes
described above, but instead of using a local datasource, it requests serialized sections from a Web API.

The NotificationLogView class serializes sections from a local notification log, and can be used to implement
a Web API that presents notifications to a network.

Alternatively to presenting domain event data and topic information, a Web API could present only the event’s se-
quence ID and position values, requiring clients to obtain the domain event from the event store using those references.
If the notification log uses a big array, and the big array is assigned with only sequence ID and position values, the
big array notification log could be used directly with the NotificationLogView to notify of domain events by
reference rather than by value. However, if the notification log uses a record manager, then a notification log adapter
would be needed to convert the events into the references.

10.5. Remote notification logs 73



eventsourcing Documentation, Release 7.1.1

If a notification log would then receive and would also return only sequence ID and position information to its caller.
The caller could then proceed by obtaining the domain event from the event store. Another adapter could be used to
perform the reverse operation: adapting a notification log that contains references to one that returns whole domain
event objects. Such adapters are not currently provided by this library.

10.5.1 NotificationLogView

The library class NotificationLogView presents sections from a local notification log, and can be used to
implement a Web API.

The NotificationLogView class is constructed with a local notification_log object and an optional
json_encoder_class (which defaults to the library’s. ObjectJSONEncoder class, used explicitly in the
example below).

The example below uses the record notification log, constructed above.

import json

from eventsourcing.interface.notificationlog import NotificationLogView
from eventsourcing.utils.transcoding import ObjectJSONEncoder, ObjectJSONDecoder

view = NotificationLogView(
notification_log=notification_log,
json_encoder_class=ObjectJSONEncoder

)

section_json, is_archived = view.present_section('1,5')

section_dict = json.loads(section_json, cls=ObjectJSONDecoder)

assert section_dict['section_id'] == '1,5'
assert section_dict['next_id'] == '6,10'
assert section_dict['previous_id'] == None
assert section_dict['items'] == notification_log['1,5'].items
assert len(section_dict['items']) == 5

item = section_dict['items'][0]
assert item['id'] == 1
assert item['topic'] == 'eventsourcing.domain.model.entity#VersionedEntity.Created'

assert section_dict['items'][1]['topic'] == 'eventsourcing.domain.model.array
→˓#ItemAssigned'
assert section_dict['items'][2]['topic'] == 'eventsourcing.domain.model.array
→˓#ItemAssigned'
assert section_dict['items'][3]['topic'] == 'eventsourcing.domain.model.array
→˓#ItemAssigned'
assert section_dict['items'][4]['topic'] == 'eventsourcing.domain.model.array
→˓#ItemAssigned'

# Resolve the notifications to domain events.
domain_events = resolve_notifications(section_dict['items'])

# Check we got the first entity's "created" event.
assert isinstance(domain_events[0], VersionedEntity.Created)
assert domain_events[0].originator_id == first_entity.id

74 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

10.5.2 Notification API

A Web application could identify a section ID from an HTTP request path, and respond by returning an HTTP response
with JSON content that represents that section of a notification log.

The example uses the library’s NotificationLogView to serialize the sections of the record notification log (see
above).

def notification_log_wsgi(environ, start_response):

# Identify section from request.
section_id = environ['PATH_INFO'].strip('/')

# Construct notification log view.
view = NotificationLogView(notification_log)

# Get serialized section.
section, is_archived = view.present_section(section_id)

# Start HTTP response.
status = '200 OK'
headers = [('Content-type', 'text/plain; charset=utf-8')]
start_response(status, headers)

# Return body.
return [(line + '\n').encode('utf8') for line in section.split('\n')]

A more sophisticated application might include an ETag header when responding with the current section, and a
Cache-Control header when responding with archived sections.

A more standard approach would be to use Atom (application/atom+xml) which is a common standard for producing
RSS feeds and thus a great fit for representing lists of events, rather than NotificationLogView. However, just
as this library doesn’t (currently) have any code that generates Atom feeds from domain events, there isn’t any code
that reads domain events from atom feeds. So if you wanted to use Atom rather than NotificationLogView in
your API, then you will also need to write a version of RemoteNotificationLog that can work with your Atom
API.

10.5.3 RemoteNotificationLog

The library class RemoteNotificationLog can be used in the same way as the local notification logs above. The
difference is that rather than accessing a database using a BigArray or record manager, it makes requests to an API.

The RemoteNotificationLog class is constructed with a base_url, a notification_log_id and a
json_decoder_class. The JSON decoder must be capable of decoding JSON encoded by the API. Hence,
the JSON decoder must match the JSON encoder used by the API.

The default json_decoder_class is the library’s ObjectJSONDecoder. This encoder matches the
default json_encoder_class of the library’s NotificationLogView class, which is the library’s
ObjectJSONEncoder class. If you want to extend the JSON encoder classes used here, just make sure they match,
otherwise you will get decoding errors.

The NotificationLogReader can use the RemoteNotificationLog in the same way that it uses a local
notification log object. Just construct it with a remote notification log object, rather than a local notification log object,
then read notifications in the same way (as described above).

If the API uses a NotificationLogView to serialise the sections of a local notification log, the remote notification
log object functions effectively as a proxy for a local notification log on a remote node.

10.5. Remote notification logs 75



eventsourcing Documentation, Release 7.1.1

from eventsourcing.interface.notificationlog import RemoteNotificationLog

remote_notification_log = RemoteNotificationLog("base_url")

If a server were running at “base_url” the remote_notification_log would function in the same was as the
local notification logs described above, returning section objects for section IDs using the square brackets syntax.

If the section objects were created by a NotifcationLogView that had the notification_log above, we
could obtain all the events of an application across an HTTP connection, accurately and without great complication.

See test_notificationlog.py for an example that uses a Flask app running in a local HTTP server to get
notifications remotely using these classes.

10.6 Notification log reader

The library object class NotificationLogReader effectively functions as an iterator, yielding a continuous
sequence of notifications that it discovers from the sections of a notification log, local or remote.

A notification log reader object will navigate the linked sections of a notification log, backwards from the “current”
section of the notification log, until reaching the position it seeks. The position, which defaults to 0, can be set directly
with the reader’s seek() method. Hence, by default, the reader will navigate all the way back to the first section.

After reaching the position it seeks, the reader will then navigate forwards, yielding as a continuous sequence all the
subsequent notifications in the notification log.

As it navigates forwards, yielding notifications, it maintains position so that it can continue when there are further
notifications. This position could be persisted, so that position is maintained across invocations, but that is not a
feature of the NotificationLogReader class, and would have to be added in a subclass or client object.

The NotificationLogReader supports slices. The position is set indirectly when a slice has a start index.

All the notification logs discussed above (local and remote) have the same interface, and can be used by
NotificationLogReader progressively to obtain unseen notifications.

The example below happens to yield notifications from a big array notification log, but it would work equally well
with a record notification log, or with a remote notification log.

Todo: Maybe just use “obj.read()” rather than “list(obj)”, so it’s more file-like.

from eventsourcing.interface.notificationlog import NotificationLogReader

# Construct log reader.
reader = NotificationLogReader(notification_log)

# The position is zero by default.
assert reader.position == 0

# The position can be set directly.
reader.seek(10)
assert reader.position == 10

# Reset the position.
reader.seek(0)

# Read all existing notifications.
all_notifications = reader.read_list()
assert len(all_notifications) == 9

(continues on next page)

76 Chapter 10. Notifications



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Resolve the notifications to domain events.
domain_events = resolve_notifications(all_notifications)

# Check we got the first entity's created event.
assert isinstance(domain_events[0], VersionedEntity.Created)
assert domain_events[0].originator_id == first_entity.id

# Check the position has advanced.
assert reader.position == 9

# Read all subsequent notifications (should be none).
subsequent_notifications = list(reader)
assert subsequent_notifications == []

# Publish two more events.
VersionedEntity.__create__()
VersionedEntity.__create__()

# Read all subsequent notifications (should be two).
subsequent_notifications = reader.read_list()
assert len(subsequent_notifications) == 2

# Check the position has advanced.
assert reader.position == 11

# Read all subsequent notifications (should be none).
subsequent_notifications = reader.read_list()
len(subsequent_notifications) == 0

# Publish three more events.
VersionedEntity.__create__()
VersionedEntity.__create__()
last_entity = VersionedEntity.__create__()

# Read all subsequent notifications (should be three).
subsequent_notifications = reader.read_list()
assert len(subsequent_notifications) == 3

# Check the position has advanced.
assert reader.position == 14

# Resolve the notifications.
domain_events = resolve_notifications(subsequent_notifications)
last_domain_event = domain_events[-1]

# Check we got the last entity's created event.
assert isinstance(last_domain_event, VersionedEntity.Created), last_domain_event
assert last_domain_event.originator_id == last_entity.id

# Read all subsequent notifications (should be none).
subsequent_notifications = reader.read_list()
assert subsequent_notifications == []

# Check the position has advanced.
assert reader.position == 14

10.6. Notification log reader 77



eventsourcing Documentation, Release 7.1.1

The position could be persisted, and the persisted value could be used to initialise the reader’s position when reading
is restarted.

In this way, the events of an application can be followed with perfect accuracy and without lots of complications. This
seems to be an inherently reliable approach to following the events of an application.

# Clean up.
persistence_policy.close()

78 Chapter 10. Notifications



CHAPTER 11

Projections

A projection is a function of application state. If the state of an application is event sourced, projections can operate
by processing the events of an application. There are lots of different kinds of projection.

• Overview

• Subscribing to events

• Tracking notification logs

– Application state replication

– Index of email addresses

11.1 Overview

Projected state can be updated by direct event subscription, or by following notification logs that propagate the events
of an application. Notification logs are described in the previous section.

Notifications in a notification log can be pulled. Pulling notifications can be prompted periodically, prompts could also
be pushed onto a message bus. Notifications could by pushed onto the message bus, but if order is lost, the projection
will need to refer to the notification log.

Projections can track the notifications that have been processed: the position in an upstream notification log can be
recorded. The position can be recorded as a value in the projected application state, if the nature of the projection
lends itself to be used also to track notifications. Alternatively, the position in the notification log can be recorded with
a separate tracking record.

Projections can update more or less anything. To be reliable, the projection must write in the same atomic database
transaction all the records that result from processing a notification. Otherwise it is possible to track the position and
fail to update the projection, or vice versa.

Since projections can update more or less anything, they can also call command methods on event sourced aggre-
gates. The important thing is for any new domain events that are triggered by the aggregates to be recorded in the

79



eventsourcing Documentation, Release 7.1.1

same database transaction as the tracking records. For reliability, if these new domain events are also placed in a
notification log, then the tracking record and the domain event records and the notification records can be written in
the same database transaction. A projection that operates by calling methods on aggregates and recording events with
notifications, can be called an “application process”.

11.2 Subscribing to events

The library function subscribe_to() can be used to decorate functions, so that the function is called each time a
matching event is published by the library’s pub-sub mechanism.

The example below, which is incomplete because the TodoView is not defined, suggests that record TodoView can
be created whenever a Todo.Created event is published. Perhaps there’s a TodoView table with an index of todo
titles, or perhaps it can be joined with a table of users.

from eventsourcing.domain.model.decorators import subscribe_to
from eventsourcing.domain.model.entity import DomainEntity

class Todo(DomainEntity):
class Created(DomainEntity.Created):

pass

@subscribe_to(Todo.Created)
def new_todo_projection(event):

todo = TodoView(id=event.originator_id, title=event.title, user_id=event.user_id)
todo.save()

It is possible to access aggregates and other views when updating a view, especially to avoid bloating events with
redundant information that might be added to avoid such queries. Transactions can be used to insert related records,
building a model for a view.

It is possible to use the decorator in a downstream application which republishes domain events perhaps published by
an original application that uses messaging infrastructure such as an AMQP system. The decorated function would be
called synchronously with the republishing of the event, but asynchronously with respect to the original application.

A naive projection might consume events as they are published and update the projection without considering whether
the event was a duplicate, or if previous events were missed. The trouble with this approach is that, without further
modification, without referring to a fixed sequence and maintaining position in that sequence, there is no way to
recover when events have been missed. If the projection somehow fails to update when an event is received, then the
event will be lost forever to the projection, and the projection will be forever inconsistent.

Of course, it is possible to follow a fixed sequence of events, for example by tracking notification logs.

11.3 Tracking notification logs

If the events of an application are presented as a sequence of notifications, then the events can be projected using a
notification reader to pull unseen items.

Getting new items can be triggered by pushing prompts to e.g. an AMQP messaging system, and having the remote
components handle the prompts by pulling the new notifications.

To minimise load on the messaging infrastructure, it may be sufficient simply to send an empty message, thereby
prompting receivers to pull new notifications. This may reduce latency or avoid excessive polling for updates, but the
benefit would be obtained at the cost of additional complexity. Prompts that include the position of the notification in

80 Chapter 11. Projections



eventsourcing Documentation, Release 7.1.1

its sequence would allow a follower to know when it is being prompted about notifications it already pulled, and could
then skip the pulling operation.

If an application has partitioned notification logs, they could be consumed concurrently.

If a projection creates a sequence that it appends to at least once for each notification, the position in the notification
log can be tracked as part of the projection’s sequence. Tracking the position is important when resuming to process
the notifications. An example of using the projection’s sequence to track the notifications is replication (see example
below). However, with this technique, something must be written to the projection’s sequence for each notification
received. That can be tolerated by writing “null” records that extend the sequence without spoiling the projections, for
example in the event sourced index example below, random keys are inserted instead of email addresses to extend the
sequence.

An alternative which avoids writing unnecessarily to a projection’s sequence is to separate the concerns, and write a
tracking record for each notification that is consumed, and then optionally any records created for the projection in
response to the notification.

A tracking record can simply have the position of a notification in a log. If the notifications are interpreted as com-
mands, then a command log could function effectively to track the notifications, so long as one command is written for
each notification (which might then involve “null” commands). For reliability, the tracking records need to be written
in the same atomic database transaction as the projection records.

The library’s Process class uses tracking records.

11.3.1 Application state replication

Using event record notifications, the state of an application can be replicated perfectly. If an application can present
its event records as a notification log, then a “replicator” can read the notification log and write copies of the original
records into a replica’s record manager.

In the example below, the SimpleApplication class is used, which has a
RecordManagerNotificationLog as its notification_log. Reading this log, locally or remotely,
will yield all the event records persisted by the SimpleApplication. The SimpleApplication uses a record
manager with contiguous record IDs which allows it to be used within a record manager notification log object.

A record manager notification log object represents records as record notifications. With record notifications, the ID
of the record in the notification is used to place the notification in its sequence. Therefore the ID of the last replicated
record is used to determine the current position in the original application’s notification log, which gives “exactly
once” processing.

from eventsourcing.application.sqlalchemy import SQLAlchemyApplication
from eventsourcing.exceptions import ConcurrencyError
from eventsourcing.domain.model.aggregate import AggregateRoot
from eventsourcing.interface.notificationlog import NotificationLogReader,
→˓RecordManagerNotificationLog

# Define record replicator.
class RecordReplicator(object):

def __init__(self, notification_log, record_manager):
self.reader = NotificationLogReader(notification_log)
self.manager = record_manager
# Position reader at max record ID.
self.reader.seek(self.manager.get_max_record_id() or 0)

def pull(self):
for notification in self.reader.read():

(continues on next page)

11.3. Tracking notification logs 81



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

notification_id = notification.pop('id')
record = self.manager.record_class(

notification_id=notification_id,

**notification
)
self.manager.write_records([record])

# Construct original application.
original = SQLAlchemyApplication(persist_event_type=AggregateRoot.Event)

# Construct replica application.
replica = SQLAlchemyApplication()

# Construct replicator.
replicator = RecordReplicator(

notification_log=original.notification_log,
record_manager=replica.event_store.record_manager

)

# Publish some events.
aggregate1 = AggregateRoot.__create__()
aggregate1.__save__()
aggregate2 = AggregateRoot.__create__()
aggregate2.__save__()
aggregate3 = AggregateRoot.__create__()
aggregate3.__save__()

assert aggregate1.__created_on__ != aggregate2.__created_on__
assert aggregate2.__created_on__ != aggregate3.__created_on__

# Check aggregates not in replica.
assert aggregate1.id in original.repository
assert aggregate1.id not in replica.repository
assert aggregate2.id in original.repository
assert aggregate2.id not in replica.repository
assert aggregate3.id in original.repository
assert aggregate3.id not in replica.repository

# Pull records.
replicator.pull()

# Check aggregates are now in replica.
assert aggregate1.id in replica.repository
assert aggregate2.id in replica.repository
assert aggregate3.id in replica.repository

# Check the aggregate attributes are correct.
assert aggregate1.__created_on__ == replica.repository[aggregate1.id].__created_on__
assert aggregate2.__created_on__ == replica.repository[aggregate2.id].__created_on__
assert aggregate3.__created_on__ == replica.repository[aggregate3.id].__created_on__

# Create another aggregate.
aggregate4 = AggregateRoot.__create__()
aggregate4.__save__()

# Check aggregate exists in the original only.
(continues on next page)

82 Chapter 11. Projections



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

assert aggregate4.id in original.repository
assert aggregate4.id not in replica.repository

# Resume pulling records.
replicator.pull()

# Check aggregate exists in the replica.
assert aggregate4.id in replica.repository

# Terminate replicator (position in notification sequence is lost).
replicator = None

# Create new replicator.
replicator = RecordReplicator(

notification_log=original.notification_log,
record_manager=replica.event_store.record_manager

)

# Create another aggregate.
aggregate5 = AggregateRoot.__create__()
aggregate5.__save__()

# Check aggregate exists in the original only.
assert aggregate5.id in original.repository
assert aggregate5.id not in replica.repository

# Pull after replicator restart.
replicator.pull()

# Check aggregate exists in the replica.
assert aggregate5.id in replica.repository

# Setup event driven pulling. Could prompt remote
# readers with an AMQP system, but to make a simple
# demonstration just subscribe to local events.

@subscribe_to(AggregateRoot.Event)
def prompt_replicator(_):

replicator.pull()

# Now, create another aggregate.
aggregate6 = AggregateRoot.__create__()
aggregate6.__save__()
assert aggregate6.id in original.repository

# Check aggregate was automatically replicated.
assert aggregate6.id in replica.repository

# Clean up.
original.close()
replica.close()

For simplicity in the example, the notification log reader uses a local notification log in the same process as the events
originated. Perhaps it would be better to run a replication job away from the application servers, on a node remote from
the application servers, away from where the domain events are triggered. A local notification log could be used on a
worker-tier node that can connect to the original application’s database. It could equally well use a remote notification
log without compromising the accuracy of the replication. A remote notification log, with an API service provided by

11.3. Tracking notification logs 83



eventsourcing Documentation, Release 7.1.1

the application servers, would avoid the original application database connections being shared by countless others.
Notification log sections can be cached in the network to avoid loading the application servers with requests from a
multitude of followers.

Since the replica application uses optimistic concurrency control for its event records, it isn’t possible to corrupt the
replica by attempting to write the same record twice. Hence jobs can pull at periodic intervals, and at the same
time message queue workers can respond to prompts pushed to AMQP-style messaging infrastructure by the original
application, without needing to serialise their access to the replica with locks: if the two jobs happen to collide, one
will succeed and the other will encounter a concurrency error exception that can be ignored.

The replica could itself be followed, by using its notification log. Although replicating replicas indefinitely is perhaps
pointless, it suggests how notification logs can be potentially be chained with processing being done at each stage.

For example, a sequence of events could be converted into a sequence of commands, and the sequence of commands
could be used to update an event sourced index, in an index application. An event that does not affect the projection can
be recorded as “noop”, so that the position is maintained. All but the last noop could be deleted from the command log.
If the command is committed in the same transaction as the events resulting from the command, then the reliability
of the arbitrary projection will be as good as the pure replica. The events resulting from each commands could be
many or none, which shows that a sequence of events can be projected equally reliably into a different sequence with
a different length.

11.3.2 Index of email addresses

This example is similar to the replication example above, in that notifications are tracked with the records of the
projected state. In consequence, an index entry is added for each notification received, which means progress can be
made along the notification log even when the notification doesn’t imply a real entry in the index.

import uuid

# Define domain model.
class User(AggregateRoot):

def __init__(self, *arg, **kwargs):
super(User, self).__init__(*arg, **kwargs)
self.email_addresses = {}

class Event(AggregateRoot.Event):
pass

class Created(Event, AggregateRoot.Created):
pass

def add_email_address(self, email_address):
self.__trigger_event__(User.EmailAddressAdded, email_address=email_address)

class EmailAddressAdded(Event):
def mutate(self, aggregate):

email_address = User.EmailAddress(self.email_address)
aggregate.email_addresses[self.email_address] = email_address

def verify_email_address(self, email_address):
self.__trigger_event__(User.EmailAddressVerified, email_address=email_address)

class EmailAddressVerified(Event):
def mutate(self, aggregate):

aggregate.email_addresses[self.email_address].is_verified = True

(continues on next page)

84 Chapter 11. Projections



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

class EmailAddress(object):
def __init__(self, email_address):

self.email_address = email_address
self.is_verified = False

class IndexItem(AggregateRoot):
def __init__(self, index_value=None, *args, **kwargs):

super(IndexItem, self).__init__(*args, **kwargs)
self.index_value = index_value

class Event(AggregateRoot.Event):
pass

class Created(Event, AggregateRoot.Created):
pass

class Updated(Event):
def mutate(self, aggregate):

aggregate.index_value = self.index_value

def update_index(self, index_value):
self.__trigger_event__(IndexItem.Updated, index_value=index_value)

def uuid_from_url(url):
return uuid.uuid5(uuid.NAMESPACE_URL, url.encode('utf8') if bytes == str else url)

# Define indexer.
class Indexer(object):

def __init__(self, notification_log, record_manager, repository):
self.reader = NotificationLogReader(notification_log)
self.repository = repository
self.manager = record_manager
# Position reader at max record ID.
# - this can be generalised to get the max ID from many
# e.g. big arrays so that many notification logs can
# be followed, consuming a group of notification logs
# would benefit from using transactions to set records
# in a big array per notification log atomically with
# inserting the result of combining the notification log
# because processing more than one stream would produce
# a stream that has a different sequence of record IDs
# which couldn't be used directly to position any of the
# notification log readers
# - if producing one stream from many can be as reliable as
# replicating a stream, then the unreliability will be
# caused by interoperating with systems that just do push,
# but the push notifications could be handled by adding
# to an application partition sequence, so e.g. all bank
# payment responses wouldn't need to go in the same sequence
# and therefore be replicated with mostly noops in all application
# partitions, or perhaps they could initially go in the same
# sequence, and transactions could used to project that into
# many different sequences, in order words splitting the stream
# (splitting is different from replicating many time). When splitting
# the stream, the splits's record ID couldn't be used to position to

→˓splitter (continues on next page)

11.3. Tracking notification logs 85



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# in the consumed notification log, so there would need to be a command
# log that tracks the consumed sequence whose record IDs can be used to

→˓position
# the splitter in the notification log, with the commands
# defining how the splits are extended, and everything committed in a

→˓transaction
# so the splits are atomic with the command log
# Todo: Bring out different projectors: splitter (one-many), combiner (many-

→˓one), repeater (one-one).
self.reader.seek(self.manager.get_max_record_id() or 0)

def pull(self):
# Project events into commands for the index.
for notification in self.reader.read():

# Construct index items.
# Todo: Be more careful, write record with an ID explicitly,
# (walk the event down the stack explicity, and then set the ID)
# so concurrent processing is safe. Providing the ID also avoids
# the cost of computing the next record ID.
# Alternatively, construct, execute, then record index commands in a big

→˓array.
# Could record commands in same transaction as result of commands if

→˓commands are not idempotent.
# Could use compaction to remove all blank items, but never remove the

→˓last record.
if notification['topic'].endswith('User.EmailAddressVerified'):

event = original.event_store.mapper.event_from_topic_and_state(
notification['topic'],
notification['state'],

)
index_key = uuid_from_url(event.email_address)
index_value = event.originator_id
try:

index_item = self.repository[index_key]
index_item.update_index(index_value)

except KeyError:
index_item = IndexItem.__create__(originator_id=index_key, index_

→˓value=index_value)
index_item.__save__()

# Construct original application.
original = SQLAlchemyApplication(persist_event_type=User.Event)

# Construct index application.
index = SQLAlchemyApplication(name='indexer', persist_event_type=IndexItem.Event)

# Setup event driven indexing.
indexer = Indexer(

notification_log=original.notification_log,
record_manager=index.event_store.record_manager,
repository=index.repository,

)

@subscribe_to(User.Event)
def prompt_indexer(_):

(continues on next page)

86 Chapter 11. Projections



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

indexer.pull()

user1 = User.__create__()
user1.__save__()
assert user1.id in original.repository
assert user1.id not in index.repository

user1.add_email_address('me@example.com')
user1.__save__()

assert not user1.email_addresses['me@example.com'].is_verified

index_key = uuid_from_url('me@example.com')
assert index_key not in index.repository

user1.verify_email_address('me@example.com')
user1.__save__()

assert user1.email_addresses['me@example.com'].is_verified

assert index_key in index.repository
assert index.repository[index_key].index_value == user1.id

user1.add_email_address('me@example.com')
user1.verify_email_address('me@example.com')
user1.__save__()
assert index_key in index.repository
assert index.repository[index_key].index_value == user1.id

assert uuid_from_url(u'mycat@example.com') not in index.repository

user1.add_email_address(u'mycat@example.com')
user1.verify_email_address(u'mycat@example.com')
user1.__save__()

assert uuid_from_url(u'mycat@example.com') in index.repository

assert user1.id in original.repository
assert user1.id not in index.repository

Todo: Projection into a timeline view?

Todo: Projection into snapshots (policy determines when to snapshot)?

Todo: Projection for data analytics?

Todo: Concurrent processing of notification logs, respecting causal relations.

Todo: Order reservation payments, system with many processes and many notification logs.

Todo: Single process with single log.

Todo: Single process with many logs.

Todo: Many processes with one log each.

Todo: Many processes with many logs each (static config).

Todo: Many processes with many logs each (dynamic config).

11.3. Tracking notification logs 87



eventsourcing Documentation, Release 7.1.1

Todo: Single process with state machine semantics (whatever they are)?

88 Chapter 11. Projections



CHAPTER 12

Distributed systems

This section discusses how to make a reliable distributed system that is scalable and maintainable.

• Overview

• Process application

– Reliability

– Notification tracking

– Policies

– Atomicity

• System of processes

– Infrastructure-independence

– System runners

– Maintainability

– Scalability

– Causal dependencies

– Kahn process networks

– Process managers

• Example

– Aggregates

– Commands

– Processes

– System

89



eventsourcing Documentation, Release 7.1.1

– Runners

* Single threaded runner

* Multiprocess runner

* Single pipeline

* Multiple pipelines

* Actor model runner

* Pool of workers

• Integration with APIs

• Process event pattern

12.1 Overview

A design for distributed systems is introduced that uses event-sourced applications as building blocks. The earlier
design of the event-sourced application is extended in the design of the “process application”. Process application
classes can be composed into a set of pipeline expressions that together define a system pipeline. This definition of a
system can be entirely independent of infrastructure. Such a system can be run in different ways with identical results.

Rather than seeking reliability in mathematics (e.g. CSP) or in physics (e.g. Actor model), the approach taken here
is to seek reliable foundations in engineering empiricism, specifically in the empirical reliability of counting and of
ACID database transactions.

Just as event sourcing “atomised” application state as a set of domain events, similarly the processing of domain events
can be atomised as a potentially distributed set of local “process events” in which new domain events may occur. The
subjective aim of a process event is “catching up on what happened”.

The processing of domain events is designed to be atomic and successive so that processing can progress in a determi-
nate manner according to infrastructure availability. A provisional description of a design pattern for process events is
included at the end of this section.

12.2 Process application

A process application is an event-sourced projection into an event-sourced application. One process application may
“follow” another. A process application projects the state of the applications it follows into its own state. Being an
event sourced application, the state of a process application can be obtained using a notification log reader to obtain
the state as a sequence of domain events. The projection itself is defined by the application’s policy, which defines
responses to domain events in terms of domain model operations, causing new domain events to be generated.

The library has a process application class ProcessApplication, it functions as a projection into an event-
sourced application. It extends SimpleApplication by having a notification log reader for each application it
follows. It has an application policy which defines how to respond to the domain events it reads from the notification
logs of the applications it follows. This process application class implements the process event pattern (notification
tracking and new domain event data are stored together atomically).

12.2.1 Reliability

Reliability is the most important concern in this section. A process is considered to be reliable if its result is entirely
unaffected (except in being delayed) by infrastructure failure such as network partitions or sudden termination of

90 Chapter 12. Distributed systems

https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Counting
https://en.wikipedia.org/wiki/ACID_(computer_science)


eventsourcing Documentation, Release 7.1.1

operating system processes. Infrastructure unreliability may cause processing delays, but disorderly environments
shouldn’t (at least by default) cause disorderly processing results.

The only trick was remembering that production is determined in general by consumption with recording. In particular,
if consumption and recording are reliable, then production is bound to be reliable. As shown below, the reliability of
this library’s approach to event processing depends only on counting and the atomicity of database transactions, both
of which are normally considered reliable.

12.2.2 Notification tracking

A process application consumes domain events by reading event notifications from its notification log readers. The
domain events are retrieved in a reliable order, without race conditions or duplicates or missing items. Each event
notification in a notification log has a unique integer ID, and the notification log IDs form a contiguous sequence
(counting).

To keep track of its position in the notification log, a process application will create a unique tracking record for
each event notification it processes. The tracking records determine how far the process has progressed through the
notification log. The tracking records are used to set the position of the notification log reader when the process
application is commenced or resumed.

There can only be one tracking record for each event notification. Once the tracking record has been written it can’t
be written again, in which case neither will any new domain events. Hence, if a domain event notification can be
processed at all, then it will be processed exactly once.

12.2.3 Policies

A process application will respond to domain events according to its policy. Its policy might do nothing in response
to one type of event, and it might call an aggregate command method in response to another type of event. If the

12.2. Process application 91



eventsourcing Documentation, Release 7.1.1

aggregate method generates new domain events, they will be available in its notification log for others to read, just like
a normal event-sourced application.

Whatever the policy response, the process application will write one tracking record for each event notification, along
with new stored event and notification records, in an atomic database transaction.

12.2.4 Atomicity

Just like a ratchet is as strong as its teeth and pawl, a process application is as reliable as the atomicity of its database
transactions. If some of the new records from processing a domain event can’t be written, then none will be committed.
If anything goes wrong before all the records are written, the transaction will abort, and none of the records will be
committed. On the other hand, if a some records are committed, then all will be committed, and the process will
complete an atomic progression.

The atomicity of the recording and consumption determines the production as atomic: a continuous stream of events
is processed in discrete, sequenced, indivisible units. Hence, interruptions can only cause delays.

Whilst the heart of this design is having the event processing proceed atomically so that any completed “process
events” are exactly what they should be, of course the “CID” parts of ACID database transactions are also crucial.
Especially, it is assumed that any records that have been committed will be available after any so-called “infrastructure
failure”. The continuing existence of data that has been successfully committed to a database is beyond the scope of
this discussion about reliability. However, the “single point of failure” this may represent is acknowledged.

12.3 System of processes

The library class System can be used to define a system of process applications, entirely independently of infrastruc-
ture. In a system, one process application can follow another. One process can follow two other processes in a slightly
more complicated system. A system could be just one process application following itself.

The reliability of the domain event processing allows a reliable “saga” or a “process manager” to be written without
restricting or cluttering the application logic with precaution and remediation for infrastructure failures.

12.3.1 Infrastructure-independence

A system of process applications can be defined independently of infrastructure so that the same system can be run
with different infrastructure at different times. For example, a system of process applications could be developed for
use with SQLAlchemy, and later reused in a Django project.

12.3.2 System runners

A system of process applications can run in a single thread, with synchronous propagation and processing of events
through the system pipeline. A system can also be run with multiple threads or multiple operating system processes,
with application state propagated asynchronously in various ways.

An asynchronous pipeline with multi-threading or multi-processing means one event can be processed by each process
application at the same time. This is very much like instruction pipelining in a CPU core.

12.3.3 Maintainability

Whilst maintainability is greatly assisted by having an entire system of applications defined independently of infras-
tructure, it also greatly helps to run such a system synchronously with a single thread. So long as the behaviours

92 Chapter 12. Distributed systems

https://en.wikipedia.org/wiki/Instruction_pipelining


eventsourcing Documentation, Release 7.1.1

are preserved, running the system without any concurrent threads or processes makes it much easier to develop and
maintain the system.

12.3.4 Scalability

Especially when using multiple operating system processes, throughput can be increased by breaking longer steps
into smaller steps, up but only to a limit provided by the number of steps actually required by the domain. Such
“diachronic” parallelism therefore provides limited opportunities for scaling throughput.

A system of process applications can also be run with many parallel instances of the system pipeline. This is very much
like the way a multi-core CPU has many cores (a core is a pipeline). This “synchronic” parallelism means that many
domain events can be processed by the same process application at the same time. This kind of parallelism allows the
system to be scaled, but only to a limit provided by the degree of parallelism inherent in the domain (greatest when
there are no causal dependencies between domain events, least when there are maximal causal dependencies between
domain events).

12.3.5 Causal dependencies

Causal dependencies are needed to synchronise between parallel processing of a sequence of events. This is used in
the library when a system is run with multiple pipelines.

Causal dependencies between events can be automatically detected and used to synchronise the processing of parallel
pipelines downstream. For example, if an aggregate is created and then updated, the second event is obviously causally
dependent on the first (you can’t update something that doesn’t exist). Downstream processing in one pipeline can
wait (stall) for a dependency to be processed in another pipeline. This is like a pipeline interlock in a multi-core CPU.

In the process applications, the causal dependencies are automatically inferred by detecting the originator ID and
version of aggregates as they are retrieved from the repository. The old notifications are referenced in the first new
notification. Downstream can then check all causal dependencies have been processed, using its tracking records.

In case there are many dependencies in the same pipeline, only the newest dependency in each pipeline is included. By
default in the library, only dependencies in different pipelines are included. If causal dependencies from all pipelines
were included in each notification, each pipeline could be processed in parallel, to an extent limited by the dependen-
cies between the notifications.

12.3.6 Kahn process networks

Because a notification log and reader functions effectively as a FIFO, a system of determinate process applications can
be recognised as a Kahn Process Network (KPN).

Kahn Process Networks are determinate systems. If a system of process applications happens to involve processes
that are not determinate, or if the processes split and combine or feedback in a random way so that nondeterminacy is
introduced by design, the system as a whole will not be determinate, and could be described in more general terms as
“dataflow” or “stream processing”.

Whether or not a system of process applications is determinate, the processing will be reliable (results unaffected by
infrastructure failures).

High performance or “real time” processing could be obtained by avoiding writing to a durable database and instead
running applications with an in-memory database.

12.3. System of processes 93

https://en.wikipedia.org/wiki/Kahn_process_networks


eventsourcing Documentation, Release 7.1.1

12.3.7 Process managers

A process application, specifically an aggregate combined with a policy in a process application, could function
effectively as a “saga”, or “process manager”, or “workflow manager”. That is, it could effectively control a sequence
of steps involving other aggregates in other bounded contexts, steps that might otherwise be controlled with a “long-
lived transaction”. It could ‘maintain the state of the sequence and determine the next processing step based on
intermediate results’, to quote a phrase from Enterprise Integration Patterns. Exceptional “unhappy path” behaviour
can be implemented as part of the logic of the application.

12.4 Example

The example below is suggestive of an orders-reservations-payments system. The system automatically processes a
new Order by making a Reservation, and then a Payment; facts registered with the Order as they happen.

The system is run: firstly as a single threaded system; then with multiprocessing using a single pipeline; multiprocess-
ing with multiple pipelines; and finally multiple pipelines with the actor model.

The behaviour of the system is entirely defined by the combination of the aggregates and the policies of its process
applications. This allows highly maintainable code, code that is easily tested, easily understood, easily changed, easily
reconfigured for use with different infrastructure.

Please note, the code presented in the example below works only with the library’s SQLAlchemy and Django infras-
tructure code. Support for Cassandra is being considered but such applications will probably be simple replications of
application state, due to the limited atomicity of Cassandra’s lightweight transactions. For example, Cassandra could
be used to archive events written firstly into a relational database. Events could be removed from the relational database
before storage limits are encountered. Events missing in the relational database could be sourced from Cassandra.

12.4.1 Aggregates

In the domain model below, event-sourced aggregates are defined for orders, reservations, and payments.

An Order can be created. An existing order can be set as reserved, which involves a reservation ID. Having been
created and reserved, an order can be set as paid, which involves a payment ID.

from eventsourcing.domain.model.aggregate import AggregateRoot

class Order(AggregateRoot):

class Event(AggregateRoot.Event):
pass

@classmethod
def create(cls, command_id):

return cls.__create__(command_id=command_id)

class Created(Event, AggregateRoot.Created):
pass

def __init__(self, command_id=None, **kwargs):
super(Order, self).__init__(**kwargs)
self.command_id = command_id
self.reservation_id = None
self.payment_id = None

(continues on next page)

94 Chapter 12. Distributed systems



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

@property
def is_reserved(self):

return self.reservation_id is not None

def set_is_reserved(self, reservation_id):
assert not self.is_reserved, "Order {} already reserved.".format(self.id)
self.__trigger_event__(

Order.Reserved, reservation_id=reservation_id
)

class Reserved(Event):
def mutate(self, order: "Order"):

order.reservation_id = self.reservation_id

@property
def is_paid(self):

return self.payment_id is not None

def set_is_paid(self, payment_id):
assert not self.is_paid, "Order {} already paid.".format(self.id)
self.__trigger_event__(

self.Paid, payment_id=payment_id, command_id=self.command_id
)

class Paid(Event):
def mutate(self, order: "Order"):

order.payment_id = self.payment_id

A Reservation can be created. A reservation has an order_id.

class Reservation(AggregateRoot):

class Event(AggregateRoot.Event):
pass

@classmethod
def create(cls, order_id):

return cls.__create__(order_id=order_id)

class Created(Event, AggregateRoot.Created):
pass

def __init__(self, order_id, **kwargs):
super(Reservation, self).__init__(**kwargs)
self.order_id = order_id

Similarly, a Payment can be created. A payment also has an order_id.

class Payment(AggregateRoot):

class Event(AggregateRoot.Event):
pass

@classmethod
def create(cls, order_id):

return cls.__create__(order_id=order_id)
(continues on next page)

12.4. Example 95



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

class Created(Event, AggregateRoot.Created):
pass

def __init__(self, order_id, **kwargs):
super(Payment, self).__init__(**kwargs)
self.order_id = order_id

All the domain event classes are defined explicitly on the aggregate root classes. This is important because the appli-
cation policies will use the domain event classes to decide how to respond to the events, and if the aggregate classes
use the event classes from the base aggregate root class, then one aggregate’s Created event can’t be distinguished
from another’s, and the application policy won’t work as expected.

The behaviours of this domain model can be fully tested with simple test cases, without involving any other compo-
nents.

12.4.2 Commands

Commands have been discussed previously as methods on domain entities. Here, system commands are introduced,
as event sourced aggregates created within a separate “commands application”.

One advantage of having distinct command aggregates is that old commands can be used to check the same application
state is generated by a new version of the system.

Another advantage of using a separate commands application is that commands can be introduced into an event pro-
cessing system without interrupting the event processing of the core process applications. (Treating a process applica-
tion as a normal application certainly works, but can potentially cause contention writing to the notification log.)

Responses can be collected by creating separate “command response” aggregates in a separate “responses” process
application. An alternative approach involves updating the command aggregate, and having the commands application
follow a core process application.

In the example below, the command class CreateOrder is defined using the library’s command class, Command,
which extends the library’s AggregateRoot class with a method done() and a property is_done.

The CreateOrder class extends the library’s Command. A CreateOrder command can be assigned an order
ID. Its order_id is initially None.

from eventsourcing.domain.model.command import Command
from eventsourcing.domain.model.decorators import attribute

class CreateOrder(Command):

class Event(Command.Event):
pass

@classmethod
def create(cls):

return cls.__create__()

class Created(Event, Command.Created):
pass

@attribute
def order_id(self):

(continues on next page)

96 Chapter 12. Distributed systems



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

pass

class AttributeChanged(Event, Command.AttributeChanged):
pass

The order_id will eventually be used to keep the ID of an Order aggregate created by the system in response to a
CreateOrder command being created.

The behaviour of a system command aggregate can be fully tested with simple test cases, without involving any other
components.

from uuid import uuid4

def test_create_order_command():

# Create a "create order" command.
cmd = CreateOrder.create()

# Check the initial values.
assert cmd.order_id is None
assert cmd.is_done is False

# Assign an order ID.
order_id = uuid4()
cmd.order_id = order_id
assert cmd.order_id == order_id

# Mark the command as "done".
cmd.done()
assert cmd.is_done is True

# Check the events.
events = cmd.__batch_pending_events__()
assert len(events) == 3
assert isinstance(events[0], CreateOrder.Created)
assert isinstance(events[1], CreateOrder.AttributeChanged)
assert isinstance(events[2], CreateOrder.Done)

# Run the test.
test_create_order_command()

12.4.3 Processes

A process application has a policy which defines how events are processed. In the code below, process applications
are defined for orders, reservations, and payments.

The Orders process application policy responds to new commands by creating a new Order aggregate. It responds
to new reservations by setting an Order as reserved. And it responds to a new Payment, by setting an Order as
paid.

from eventsourcing.application.process import ProcessApplication
from eventsourcing.application.decorators import applicationpolicy

(continues on next page)

12.4. Example 97



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

class Orders(ProcessApplication):

@applicationpolicy
def policy(self, repository, event):

pass

@policy.register(CreateOrder.Created)
def _(self, repository, event):

return self.create_order(command_id=event.originator_id)

@policy.register(Reservation.Created)
def _(self, repository, event):

self._set_order_is_reserved(repository, event)

@policy.register(Payment.Created)
def _(self, repository, event):

self._set_order_is_paid(repository, event)

@staticmethod
def create_order(command_id):

return Order.create(command_id=command_id)

def _set_order_is_reserved(self, repository, event):
order = repository[event.order_id]
assert not order.is_reserved
order.set_is_reserved(event.originator_id)

def _set_order_is_paid(self, repository, event):
order = repository[event.order_id]
assert not order.is_paid
order.set_is_paid(event.originator_id)

The decorator @applicationpolicy is similar to @singledispatch from the functools core Python
package. It isn’t magic, it’s just a slightly better alternative to an “if-instance-elif-isinstance-. . . ” block.

The Reservations process application responds to an Order.Created event by creating a new Reservation
aggregate.

class Reservations(ProcessApplication):

@applicationpolicy
def policy(self, repository, event):

pass

@policy.register(Order.Created)
def _(self, repository, event):

return self.create_reservation(event.originator_id)

@staticmethod
def create_reservation(order_id):

return Reservation.create(order_id=order_id)

The payments process application responds to an Order.Reserved event by creating a new Payment.

class Payments(ProcessApplication):

(continues on next page)

98 Chapter 12. Distributed systems



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

@applicationpolicy
def policy(self, repository, event):

pass

@policy.register(Order.Reserved)
def _(self, repository, event):

order_id = event.originator_id
return self.create_payment(order_id)

@staticmethod
def create_payment(order_id):

return Payment.create(order_id=order_id)

Additionally, the library class CommandProcess is extended by defining a policy that responds to Order.
Created events by setting the order_id on the command, and to Order.Paid events by setting the command
as done. It also has a factory method create_order() which can be used to create new Order aggregates.

from eventsourcing.application.command import CommandProcess
from eventsourcing.domain.model.decorators import retry
from eventsourcing.exceptions import OperationalError, RecordConflictError

class Commands(CommandProcess):

persist_event_type = CreateOrder.Event

@applicationpolicy
def policy(self, repository, event):

pass

@policy.register(Order.Created)
def _(self, repository, event):

cmd = repository[event.command_id]
cmd.order_id = event.originator_id

@policy.register(Order.Paid)
def _(self, repository, event):

cmd = repository[event.command_id]
cmd.done()

@staticmethod
@retry((OperationalError, RecordConflictError), max_attempts=10, wait=0.01)
def create_order():

cmd = CreateOrder.create()
cmd.__save__()
return cmd.id

The @retry decorator overcomes contention when creating new commands whilst also processing domain events
from the Orders application.

Please note, the __save__() method of aggregates must not be called in a process policy, because pending events
from both new and changed aggregates will be automatically collected by the process application after its policy()
method has returned. To be reliable, a process application needs to commit all the event records atomically with a
tracking record, and calling __save__() will instead commit events in a separate transaction. Policies must return
new aggregates to the caller, but do not need to return existing aggregates that have been accessed or changed.

Process policies are just functions, and are easy to test.

12.4. Example 99



eventsourcing Documentation, Release 7.1.1

In the orders policy test below, an existing order is marked as reserved because a reservation was created. The only
complication comes from needing to prepare at least a fake repository and a domain event, given as required arguments
when calling the policy in the test. If the policy response depends on already existing aggregates, they will need to be
added to the fake repository. A Python dict can function effectively as a fake repository in such tests. It seems simplest
to directly use the model domain event classes and aggregate classes in these tests, rather than coding test doubles.

def test_orders_policy():

# Prepare repository with a real Order aggregate.
order = Order.create(command_id=None)
repository = {order.id: order}

# Check order is not reserved.
assert not order.is_reserved

# Check order is reserved whenever a reservation is created.
event = Reservation.Created(originator_id=uuid4(), originator_topic='', order_

→˓id=order.id)
Orders().policy(repository, event)
assert order.is_reserved

# Run the test.
test_orders_policy()

In the payments policy test below, a new payment is created because an order was reserved.

def test_payments_policy():

# Prepare repository with a real Order aggregate.
order = Order.create(command_id=None)
repository = {order.id: order}

# Check payment is created whenever order is reserved.
event = Order.Reserved(originator_id=order.id, originator_version=1)
payment = Payments().policy(repository, event)
assert isinstance(payment, Payment), payment
assert payment.order_id == order.id

# Run the test.
test_payments_policy()

It isn’t necessary to return changed aggregates from the policy. The test will already have a reference to the aggregate,
since it will have constructed the aggregate before passing it to the policy in the fake repository, so the test will already
be in a good position to check that already existing aggregates are changed by the policy as expected. The test gives a
repository to the policy, which contains the order aggregate expected by the policy.

12.4.4 System

A system of process applications can be defined using one or many pipeline expressions.

The expression A | A would have a process application class called A following itself. The expression A | B | C
would have A followed by B and B followed by C. This can perhaps be recognised as the “pipes and filters” pattern,
where the process applications function effectively as the filters.

In this example, firstly the Orders process will follow the Commands process so that orders can be created. The

100 Chapter 12. Distributed systems

https://martinfowler.com/bliki/TestDouble.html


eventsourcing Documentation, Release 7.1.1

Commands process will follow the Orders process, so that commands can be marked as done when processing is
complete.

commands_pipeline = Commands | Orders | Commands

Similarly, the Orders process and the Reservations process will follow each other. Also the Orders and the
Payments process will follow each other.

reservations_pipeline = Orders | Reservations | Orders

payments_pipeline = Orders | Payments | Orders

The orders-reservations-payments system can be defined using these pipeline expressions.

from eventsourcing.application.system import System

system = System(commands_pipeline, reservations_pipeline, payments_pipeline)

This is equivalent to a system defined with the following single pipeline expression.

pipeline = Commands | Orders | Reservations | Orders | Payments | Orders | Commands

system = System(pipeline)

Although a process application class can appear many times in the pipeline expressions, there will only be one instance
of each process when the pipeline system is instantiated. Each application can follow one or many applications, and
can be followed by one or many applications.

In this system, application state is propagated between process applications through notification logs only. This can
perhaps be recognised as the “bounded context” pattern. Each application can access only the aggregates it has
created. For example, an Order aggregate created by the Orders process is available in neither the repository of
Reservations nor the repository of Payments. If an application could directly use the aggregates of another
application, then processing could produce different results at different times, and in consequence the processing
wouldn’t be reliable. If necessary, a process application can replicate upstream aggregates within its own state.

12.4.5 Runners

The system above has been defined entirely independently of infrastructure. Concrete application infrastructure is
introduced by the system runners. A concrete application infrastructure class can be specified when constructing
a system runner with a suitable value of infrastructure_class. A system runner can be used as a context
manager.

from eventsourcing.application.popo import PopoApplication
from eventsourcing.application.system import SingleThreadedRunner

with SingleThreadedRunner(system, infrastructure_class=PopoApplication):

# Do stuff here...
pass

Single threaded runner

If the system object is used with the library class SingleThreadedRunner, the process applications will run in
a single thread in the current process.

12.4. Example 101



eventsourcing Documentation, Release 7.1.1

Events will be processed with synchronous handling of prompts, so that policies effectively call each other recursively,
according to which applications each is followed by.

In the example below, the system object is used directly as a context manager. Using the system object in this
manner implicitly constructs a SingleThreadedRunner. As a special case, by default this runner introduces
concrete application infrastructure class PopoApplication, which literally uses plain old Python objects to store
domain events in memory, and is the fastest concrete application infrastructure class in the library (much faster than
in-memory SQLite). It can be used when proper disk-based durability is not required, for example during system
development.

with system:

# Create "create order" command.
cmd_id = system.commands.create_order()

# Check the command has an order ID and is done.
cmd = system.commands.repository[cmd_id]
assert cmd.order_id
assert cmd.is_done

# Check the order is reserved and paid.
order = system.orders.repository[cmd.order_id]
assert order.is_reserved
assert order.is_paid

# Check the reservation exists.
reservation = system.reservations.repository[order.reservation_id]

# Check the payment exists.
payment = system.payments.repository[order.payment_id]

Everything happens synchronously, in a single thread, so that by the time create_order() has returned, the
command has been fully processed by the system.

Running the system with a single thread and an in-memory database is useful when developing and testing a system
of process applications, because it runs very quickly and the behaviour is very easy to follow.

Multiprocess runner

The example below shows the same system of process applications running in different operating system processes,
using the library’s MultiprocessRunner class (which uses Python’s multiprocessing library).

Running the system with multiple operating system processes means the different processes are running concurrently,
so that as the payment is made for one order, another order might get reserved, whilst a third order is at the same time
created.

The code below uses the library’s MultiprocessRunner class to run the system. It will start one operating
system process for each process application in the system, which in this example will give a pipeline with four child
operating system processes. This example uses SQLAlchemy to access a MySQL database. The concrete infrastruc-
ture class is SQLAlchemyApplication.

from eventsourcing.application.multiprocess import MultiprocessRunner
from eventsourcing.application.sqlalchemy import SQLAlchemyApplication

runner = MultiprocessRunner(
system=system,
infrastructure_class=SQLAlchemyApplication,

(continues on next page)

102 Chapter 12. Distributed systems



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

setup_tables=True
)

The following MySQL database connection string is compatible with SQLAlchemy.

import os

os.environ['DB_URI'] = 'mysql+pymysql://{}:{}@{}/eventsourcing?charset=utf8mb4&binary_
→˓prefix=true'.format(

os.getenv('MYSQL_USER', 'root'),
os.getenv('MYSQL_PASSWORD', ''),
os.getenv('MYSQL_HOST', '127.0.0.1'),

)

The MySQL database needs to be created before running the next bit of code.

$ mysql -e "CREATE DATABASE eventsourcing;"

Single pipeline

Since the multi-processing pipeline is asynchronous, let’s define a method to check things are eventually done.

@retry((AssertionError, KeyError), max_attempts=50, wait=0.1)
def assert_eventually_done(repository, cmd_id):

"""Checks the command is eventually done."""
assert repository[cmd_id].is_done

The multiple operating system processes can be started by using the runner as a context manager.

with runner:

# Create "create order" command.
cmd_id = runner.commands.create_order()

# Wait for the processing to complete....
assert_eventually_done(system.commands.repository, cmd_id)

# Check the command has an order ID and is done.
cmd = runner.commands.repository[cmd_id]
assert cmd.order_id

# Check the order is reserved and paid.
order = runner.orders.repository[cmd.order_id]
assert order.is_reserved
assert order.is_paid

# Check the reservation exists.
reservation = runner.reservations.repository[order.reservation_id]

# Check the payment exists.
payment = runner.payments.repository[order.payment_id]

12.4. Example 103



eventsourcing Documentation, Release 7.1.1

Multiple pipelines

The system can run with many instances of its pipeline. By having more than one instance of the system pipeline, more
than one instance of each process application can be instantiated (one for each pipeline). Pipelines are distinguished
by integer ID. The pipeline_ids are given to the MultiprocessRunner class when the runner is constructed.

In this example, there are three pipeline IDs, so there will be three instances of the system pipeline, giving twelve child
operating system processes altogether.

runner = MultiprocessRunner(
system=system,
infrastructure_class=SQLAlchemyApplication,
setup_tables=True,
pipeline_ids = [0, 1, 2]

)

Fifteen orders will processed by the system altogether, five in each pipeline.

num_orders = 15

with runner:

# Create new orders.
command_ids = []
while len(command_ids) < num_orders:

for pipeline_id in runner.pipeline_ids:

# Change the pipeline for the command.
runner.commands.change_pipeline(pipeline_id)

# Create a "create new order" command.
cmd_id = runner.commands.create_order()
command_ids.append(cmd_id)

# Check all commands are eventually done.
assert len(command_ids)
for command_id in command_ids:

assert_eventually_done(runner.commands.repository, command_id)

It would be possible to run the system with e.g. pipelines 0-7 on one machine, pipelines 8-15 on another machine, and
so on. That sort of thing can be expressed in configuration management, for example with Kubernetes.

If cluster scaling is automated, it would be useful for processes to be distributed automatically across the cluster. Actor
model seems like one possible foundation for such automation.

Actor model runner

An Actor model library, in particular the Thespian Actor Library, can also be used to run a multi-pipeline system of
process applications.

The example below runs with Thespian’s “simple system base”. The actors will run by sending messages recursively.

from eventsourcing.application.actors import ActorModelRunner

with ActorModelRunner(system=system, setup_tables=True,
infrastructure_class=SQLAlchemyApplication,
pipeline_ids=[0, 1, 2]) as runner:

(continues on next page)

104 Chapter 12. Distributed systems

https://kubernetes.io/
https://github.com/kquick/Thespian


eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Create new orders.
command_ids = []
while len(command_ids) < num_orders:

for pipeline_id in runner.pipeline_ids:

# Change the pipeline for the command.
runner.commands.change_pipeline(pipeline_id)

# Create a "create new order" command.
cmd_id = runner.commands.create_order()
command_ids.append(cmd_id)

# Check all commands are eventually done.
assert len(command_ids)
for command_id in command_ids:

assert_eventually_done(runner.commands.repository, command_id)

With Thespian, a “system base” other than the default “simple system base” can be started by calling the func-
tions start_multiproc_tcp_base_system() or start_multiproc_queue_base_system() before
starting the system actors.

The base system can be shutdown by calling shutdown_actor_system(), which will shutdown any actors that
are running in that base system.

With the “multiproc” base systems, the process application system actors will be started in separate operating system
processes. After they have been started, they will continue to run until they are shutdown. The system actors can be
started by calling actors.start(). The actors can be shutdown with actors.shutdown().

If actors is used as a context manager, as above, the start() method is called when the context manager enters.
The close() method is called when the context manager exits. By default the shutdown() method is not called
by close(). If ActorModelRunner is constructed with shutdown_on_close=True, which is False by
default, then the actors will be shutdown by close(), and so also when the context manager exits. Even so, shutting
down the system actors will not shutdown a “multiproc” base system.

Pool of workers

An alternative to having a thread dedicated to every process application for each pipeline, the prompts could be sent to
via a queue to a pool of workers, which change pipeline and application according to the prompt. Causal dependencies
would be needed for all notifications, which is not the library default. The library does not currently support processing
events with a pool of workers.

12.5 Integration with APIs

Integration with systems that present a server API or otherwise need to be sent messages (rather than using notification
logs), can be integrated by responding to events with a policy that uses a client to call the API or send a message.
However, if there is a breakdown during the API call, or before the tracking record is written, then to avoid failing to
make the call, it may happen that the call is made twice. If the call is not idempotent, and is not otherwise guarded
against duplicate calls, there may be consequences to making the call twice, and so the situation cannot really be
described as reliable.

If the server response is asynchronous, any callbacks that the server will make could be handled by calling commands
on aggregates. If callbacks might be retried, perhaps because the handler crashes after successfully calling a command
but before returning successfully to the caller, unless the callbacks are also tracked (with exclusive tracking records

12.5. Integration with APIs 105



eventsourcing Documentation, Release 7.1.1

written atomically with new event and notification records) the aggregate commands will need to be idempotent, or
otherwise guarded against duplicate callbacks. Such an integration could be implemented as a separate “push-API
adapter” process, and it might be useful to have a generic implementation that can be reused, with documentation
describing how to make such an integration reliable, however the library doesn’t currently have any such adapter
process classes or documentation.

12.6 Process event pattern

draft

A set of EVENT SOURCED APPLICATIONS can be composed into a system of applications. Application state can
be propagated to other applications. Application state is defined by domain event records that have been committed.
Each application has a policy which defines how it responds to the domain events it processes.

Infrastructure may fail at any time. Although committed database transactions are expected to be durable, the oper-
ating system processes, the network, and the databases may go down at any time. Depending on the system design,
application state may be adversely affected by infrastructure failures.

Therefore. . .

Use counting to sequence the domain events of an application. Use a unique constraint to make sure only one domain
event is recorded for each position. Ensure there are no gaps by calculating the next position from the last recorded
position. Also use counting to follow the domain events of an upstream application. Use a tracking record to store
the current position in the upstream sequence. Use a unique constraint to make sure tracking can be recorded for each
upstream domain event only once.

Use atomic database transactions to record process event atomically. Include the tracking position, the new domain
events created by application policy, and their position in the application’s sequence. Use an object class (or other data
type) called “ProcessEvent” to keep these data together, so that they can be passed into functions as a single argument.

Then, the distributed system can be considered reliable in the sense that the facts in the database will represent either
that a process event occurred or that it didn’t occur, and so application state will by entirely unaffected by infrastructure
failures.

Event sourced applications may be implemented with EVENT SOURCED AGGREGATES. To scale the system, use
CAUSAL DEPENDENCIES to synchronise parallel pipelines. Use SYSTEM RUNNERS to bind system to infras-
tructure it needs to run.

106 Chapter 12. Distributed systems



CHAPTER 13

Snapshotting

Snapshots provide a fast path for obtaining the state of an entity or aggregate that skips replaying some or all of the
entity’s events.

If the library repository class EventSourcedRepository is constructed with a snapshot strategy object, it will
try to get the closest snapshot to the required version of a requested entity, and then replay only those events that will
take the snapshot up to the state at that version.

Snapshots can be taken manually. To automatically generate snapshots, a snapshotting policy can take snapshots
whenever a particular condition occurs, for example after every ten events.

• Domain

• Application

• Run the code

13.1 Domain

To avoid duplicating code from the previous sections, let’s use the example entity class Example and its factory
function create_new_example() from the library.

from eventsourcing.example.domainmodel import Example, create_new_example

13.2 Application

The library class SnapshottingApplication, extends Application by setting up the application for snap-
shotting with a snapshot store, a dedicated table for snapshots, and a policy to take snapshots every so many events. A
separate table is used for snapshot records.

107



eventsourcing Documentation, Release 7.1.1

from eventsourcing.application.snapshotting import SnapshottingApplication
from eventsourcing.application.sqlalchemy import SQLAlchemyApplication

class MyApplication(SQLAlchemyApplication, SnapshottingApplication):
pass

13.3 Run the code

In the example below, snapshots of entities are taken every period number of events.

with MyApplication(snapshot_period=2, persist_event_type=Example.Event) as app:

# Create an entity.
entity = create_new_example(foo='bar1')

# Check there's no snapshot, only one event so far.
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot is None

# Change an attribute, generates a second event.
entity.foo = 'bar2'

# Check the snapshot.
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot is not None
assert snapshot.state['_foo'] == 'bar2'

# Check can recover entity using snapshot.
assert entity.id in app.repository
assert app.repository[entity.id].foo == 'bar2'

# Check snapshot after five events.
entity.foo = 'bar3'
entity.foo = 'bar4'
entity.foo = 'bar5'
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state['_foo'] == 'bar4'

# Check snapshot after seven events.
entity.foo = 'bar6'
entity.foo = 'bar7'
assert app.repository[entity.id].foo == 'bar7'
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state['_foo'] == 'bar6'

# Check snapshot state is None after discarding the entity on the eighth event.
entity.__discard__()
assert entity.id not in app.repository
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state is None

try:
app.repository[entity.id]

except KeyError:
pass

(continues on next page)

108 Chapter 13. Snapshotting



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

else:
raise Exception('KeyError was not raised')

# Get historical snapshots.
snapshot = app.snapshot_strategy.get_snapshot(entity.id, lte=2)
assert snapshot.state['___version__'] == 1 # one behind
assert snapshot.state['_foo'] == 'bar2'

snapshot = app.snapshot_strategy.get_snapshot(entity.id, lte=3)
assert snapshot.state['___version__'] == 3
assert snapshot.state['_foo'] == 'bar4'

# Get historical entities.
entity = app.repository.get_entity(entity.id, at=0)
assert entity.__version__ == 0
assert entity.foo == 'bar1', entity.foo

entity = app.repository.get_entity(entity.id, at=1)
assert entity.__version__ == 1
assert entity.foo == 'bar2', entity.foo

entity = app.repository.get_entity(entity.id, at=2)
assert entity.__version__ == 2
assert entity.foo == 'bar3', entity.foo

entity = app.repository.get_entity(entity.id, at=3)
assert entity.__version__ == 3
assert entity.foo == 'bar4', entity.foo

13.3. Run the code 109



eventsourcing Documentation, Release 7.1.1

110 Chapter 13. Snapshotting



CHAPTER 14

Deployment

This section gives an overview of the concerns that arise when using an eventsourcing application in Web applications
and task queue workers. There are many combinations of frameworks, databases, and process models. The compli-
cated aspect is setting up the database configuration to work well with the framework. Your event sourcing application
can be constructed just after the database is configured, and before requests are handled.

Please note, unlike the code snippets in the other examples, the snippets of code in this section are merely suggestive,
and do not form a complete working program. For a working example using Flask and SQLAlchemy, please refer to
the library module eventsourcing.example.interface.flaskapp, which is tested both stand-alone and
with uWSGI.

• Application object

– Lazy initialization

• Database connection

– SQLAlchemy

– Cassandra

• Web interfaces

– uWSGI

– Flask

* Flask with SQLAlchemy

* Flask with Cassandra

– Django

* Django ORM

* Django with Cassandra

– Zope

111



eventsourcing Documentation, Release 7.1.1

* Zope with SQLAlchemy

• Task queues

– Celery

– Redis Queue

14.1 Application object

In general you want one, and only one, instance of your application class in each process. If your eventsourcing
application class has any subscriptions to the internal pub-sub mechanism, for example if has a persistence policy that
will persist events whenever they are published, then constructing more than one instance of the application will cause
the policy event handlers to be subscribed more than once, so for example more than one attempt will be made to save
each event, which won’t work very well.

To make sure there is only one instance of your application class in each process, one possible arrangement (see below)
is to have a module with two functions and a variable. The first function constructs an application object and assigns
it to the variable, and can perhaps be called when a module is imported, or from a suitable hook or signal designed
for setting things up before any requests are handled. A second function returns the application object assigned to the
variable, and can be called by any views, or request or task handlers, that depend on the application’s services.

Although the first function below must be called only once, the second function can be called many times. The example
functions below have been written relatively strictly so that, when it is called, the function init_application()
will raise an exception if it has already been called, and get_application() will raise an exception if
init_application() has not already been called.

By the way, it’s possible to have more than one application, but in general they need to have different do-
main event classes for the persist_event_type value of each application, so they don’t try to persist each
other’s events. However, in this example only one application is deployed and it is deployed without a value of
persist_event_type being set, so before this application would actually persist any events, the class of domain
events it will persist must be given.

from eventsourcing.application.sqlalchemy import SQLAlchemyApplication

def construct_application(**kwargs):
return SQLAlchemyApplication(**kwargs)

_application = None

def init_application(persist_event_type=None, **kwargs):
global _application
if _application is not None:

raise AssertionError("init_application() has already been called")
_application = construct_application(**kwargs)

def get_application():
if _application is None:

raise AssertionError("init_application() must be called first")
return _application

The expected behaviour is demonstrated below.

112 Chapter 14. Deployment



eventsourcing Documentation, Release 7.1.1

try:
get_application()

except AssertionError:
pass

else:
raise Exception("Shouldn't get here")

init_application()

app = get_application()

As an aside, if you will use these function also in your test suite, and your test suite needs to set up the application more
than once, you will also need a close_application() function that closes the application object, unsubscribing
any handlers, and resetting the module level variable so that init_application() can be called again. If doesn’t
really matter if you don’t close your application at the end of the process lifetime, however you may wish to close any
database or other connections to network services.

def close_application():
global _application
if _application is not None:

_application.close()
_application = None

The expected behaviour is demonstrated below.

close_application()
close_application()

14.1.1 Lazy initialization

An alternative to having separate “init” and “get” functions is having one “get” function that does lazy initialization of
the application object when first requested. With lazy initialization, the getter will first check if the object it needs to
return has been constructed, and will then return the object. If the object hasn’t been constructed, before returning the
object it will construct the object. So you could use a lock around the construction of the object, to make sure it only
happens once. After the lock is obtained and before the object is constructed, it is recommended to check again that
the object wasn’t constructed by another thread before the lock was acquired.

import threading

lock = threading.Lock()

def get_application():
global _application
if _application is None:

lock.acquire()
try:

# Check again to avoid a TOCTOU bug.
if _application is None:

_application = construct_application()
finally:

lock.release()
return _application

app = get_application()

(continues on next page)

14.1. Application object 113



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

app = get_application() # same object
app = get_application() # same object

close_application()

14.2 Database connection

Typically, your eventsourcing application object will be constructed after its database connection has been configured,
and before any requests are handled. Views or tasks can then safely use the already constructed application object.

If your eventsourcing application depends on receiving a database session object when it is constructed, for example
if you are using the SQLAlchemy classes in this library, then you will need to create a correctly scoped session object
first and use it to construct the application object.

On the other hand, if your eventsourcing application does not depend on receiving a database session object when it is
constructed, for example if you are using the Cassandra classes in this library, then you may construct the application
object before configuring the database connection - just be careful not to use the application object before the database
connection is configured otherwise your queries just won’t work.

Setting up connections to databases is out of scope of the eventsourcing application classes, and should be set up
in a “normal” way. The documentation for your Web or worker framework may describe when to set up database
connections, and your database documentation may also have some suggestions. It is recommended to make use of
any hooks or decorators or signals intended for the purpose of setting up the database connection also to construct the
application once for the process. See below for some suggestions.

14.2.1 SQLAlchemy

SQLAlchemy has very good documentation about constructing sessions. If you are an SQLAlchemy user, it is well
worth reading the documentation about sessions in full. Here’s a small quote:

Some web frameworks include infrastructure to assist in the task of aligning the lifespan of a Session with
that of a web request. This includes products such as Flask-SQLAlchemy for usage in conjunction with the
Flask web framework, and Zope-SQLAlchemy, typically used with the Pyramid framework. SQLAlchemy
recommends that these products be used as available.

In those situations where the integration libraries are not provided or are insufficient, SQLAlchemy in-
cludes its own “helper” class known as scoped_session. A tutorial on the usage of this object is at
Contextual/Thread-local Sessions. It provides both a quick way to associate a Session with the current
thread, as well as patterns to associate Session objects with other kinds of scopes.

The important thing is to use a scoped session, and it is better to have the session scoped to the request or task, rather
than the thread, but scoping to the thread is ok.

As soon as you have a scoped session object, you can construct your eventsourcing application.

14.2.2 Cassandra

Cassandra connections can be set up entirely independently of the application object.

114 Chapter 14. Deployment

http://docs.sqlalchemy.org/en/latest/orm/session_basics.html


eventsourcing Documentation, Release 7.1.1

14.3 Web interfaces

14.3.1 uWSGI

If you are running uWSGI in prefork mode, and not using a Web application framework, please note that uWSGI has
a postfork decorator which may help.

Your “wsgi.py” file can have a module-level function decorated with the @postfork decorator that initialises your
eventsourcing application for the Web application process after child workers have been forked.

from uwsgidecorators import postfork

@postfork
def init_process():

# Set up database connection.
database = {}
# Construct eventsourcing application.
init_application()

Other decorators are available.

14.3.2 Flask

Flask with SQLAlchemy

If you wish to use eventsourcing with Flask and SQLAlchemy, then you may wish to use Flask-SQLAlchemy. You
just need to define your record class(es) using the model classes from that library, and then use it instead of the library
classes in your eventsourcing application object, along with the session object it provides.

The docs snippet below shows that it can work simply to construct the eventsourcing application in the same place as
the Flask application object.

The Flask-SQLAlchemy class SQLAlchemy is used to set up a session object that is scoped to the request.

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy_utils.types.uuid import UUIDType

# Construct Flask application.
application = Flask(__name__)
application.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite://'
application.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

# Construct Flask-SQLAlchemy object.
db = SQLAlchemy(application)

# Define database table using Flask-SQLAlchemy library.
class StoredEventRecord(db.Model):

__tablename__ = 'integer_sequenced_items'

id = db.Column(db.BigInteger().with_variant(db.Integer, "sqlite"), primary_
→˓key=True)

# Sequence ID (e.g. an entity or aggregate ID).
originator_id = db.Column(UUIDType(), nullable=False)

(continues on next page)

14.3. Web interfaces 115

http://uwsgi-docs.readthedocs.io/en/latest/PythonDecorators.html#uwsgidecorators.postfork
http://flask-sqlalchemy.pocoo.org/


eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Position (index) of item in sequence.
originator_version = db.Column(db.BigInteger(), nullable=False)

# Topic of the item (e.g. path to domain event class).
topic = db.Column(db.String(255))

# State of the item (serialized dict, possibly encrypted).
state = db.Column(db.Text())

# Index.
__table_args__ = db.Index('index', 'originator_id', 'originator_version',

→˓unique=True),

# Construct eventsourcing application with Flask-SQLAlchemy table and session.
@application.before_first_request
def before_first_request():

init_application(
session=db.session,
stored_event_record_class=StoredEventRecord,

)

For a working example using Flask and SQLAlchemy, please refer to the library module eventsourcing.
example.interface.flaskapp, which is tested both stand-alone and with uWSGI. The Flask application
method “before_first_request” is used to decorate an application object constructor, just before a request is made,
so that the module can be imported by the test suite, without immediately constructing the application.

Flask with Cassandra

The Cassandra Driver FAQ has a code snippet about establishing the connection with the uWSGI postfork decorator,
when running in a forked mode.

from flask import Flask
from uwsgidecorators import postfork
from cassandra.cluster import Cluster

session = None
prepared = None

@postfork
def connect():

global session, prepared
session = Cluster().connect()
prepared = session.prepare("SELECT release_version FROM system.local WHERE key=?")

app = Flask(__name__)

@app.route('/')
def server_version():

row = session.execute(prepared, ('local',))[0]
return row.release_version

The Flask-Cassandra project serves a similar function to Flask-SQLAlchemy.

116 Chapter 14. Deployment

https://datastax.github.io/python-driver/faq.html
https://github.com/TerbiumLabs/flask-cassandra


eventsourcing Documentation, Release 7.1.1

14.3.3 Django

When deploying an event sourcing application with Django, just remember that there must only be one instance of
the application in any given process, otherwise its subscribers will be registered too many times. There are perhaps
three different processes to consider. Firstly, running the test suite for your Django project or app. Secondly, running
the Django project with WSGI (or equivalent). Thirdly, running the Django project from a task queue worker, such as
RabbitMQ.

For the first case, if your application needs to be created fresh for each test, it is recommended to have a base test case
class, which initialises the application during setUp() and closes the application during tearDown(). Another
option is to use a yield fixture in pytest with the application object yielded whilst acting as a context manager. Just
make sure the application is constructed once, and then closed if it is constructed again.

Of course if you only have one application object to test, then you could perhaps just create it at the start of the test
suite. If so, closing the application doesn’t matter, because no other application object will be created before the
process ends.

For the second case, it is recommended to construct the application object from the project’s wsgi.py file, which
doesn’t get used when running Django from a test suite, or from a task queue worker. Views can then get the application
object freely. Closing the application doesn’t matter, because it will be used until the process ends.

For the third case, it is recommended to construct the application in a suitable signal from the task queue framework,
so that the application is constructed before request threads begin. Jobs can then get the application object freely.
Closing the application doesn’t matter, because it will be used until the process ends.

In each case, to make things very clear for other developers of your code, it is recommended to construct the application
object with a module level function called init_application() that assigns to a module level variable, and then
obtain the application object with another module level function called get_application(), which raises an
exception if the application has not been constructed.

Django ORM

If you wish to use eventsourcing with Django ORM, the simplest way is having your application’s event store use
this library’s DjangoRecordManager, and making sure the record classes (Django models) are included in your
Django project. See infrastructure doc for more information.

The independent project djangoevents by Applause is a Django app that provides a more integrated approach to event
sourcing in a Django project. It also uses the Django ORM to store events. Using djangoevents is well documented
in its README file. It adds some nice enhancements to the capabilities of this library, and shows how various
components can be extended or replaced. Please note, the djangoevents project currently works with a much older
version of this library which isn’t recommended for new projects.

Django with Cassandra

If you wish to use eventsourcing with Django and Cassandra, regardless of any event sourcing, you may wish to use
Django-Cassandra. The library’s Cassandra classes use the Cassandra Python library which the Django-Cassandra
project integrates into Django. So you can easily develop an event sourcing application using the capabilities of this
library, and then write views in Django, and use the Django-Cassandra project as a means of integrating Django as an
Web interface to an event sourced application that uses Cassandra.

It’s also possible to use this library directly with Django and Cassandra. You just need to configure the connection
and initialise the application before handling requests in a way that is correct for your configuration (which is what
Django-Cassandra tries to make easy).

14.3. Web interfaces 117

https://github.com/ApplauseOSS/djangoevents
https://www.applause.com/
https://pypi.python.org/pypi/django-cassandra-engine/


eventsourcing Documentation, Release 7.1.1

14.3.4 Zope

Zope with SQLAlchemy

The Zope-SQLAlchemy project serves a similar function to Flask-SQLAlchemy.

14.4 Task queues

This section contains suggestions about using an eventsourcing application in task queue workers.

14.4.1 Celery

Celery has a worker_process_init signal decorator, which may be appropriate if you are running Celery workers in
prefork mode. Other decorators are available.

Your Celery tasks or config module can have a module-level function decorated with the @worker-process-init
decorator that initialises your eventsourcing application for the Celery worker process.

from celery.signals import worker_process_init

@worker_process_init.connect
def init_process(sender=None, conf=None, **kwargs):

# Set up database connection.
database = {}
# Construct eventsourcing application.
init_application()

As an alternative, it may work to use decorator @task_prerun with a getter that supports lazy initialization.

from celery.signals import task_prerun
@task_prerun.connect
def init_process(*args, **kwargs):

get_appliation(lazy_init=True)

Once the application has been safely initialized once in the process, your Celery tasks can use function
get_application() to complete their work. Of course, you could just call a getter with lazy initialization from
the tasks.

from celery import Celery

app = Celery()

# Use Celery app to route the task to the worker.
@app.task
def hello_world():

# Use eventsourcing app to complete the task.
app = get_application()
return "Hello World, {}".format(id(app))

Again, the most important thing is configuring the database, and making things work across all modes of execution,
including your test suite.

118 Chapter 14. Deployment

https://pypi.python.org/pypi/zope.sqlalchemy
http://docs.celeryproject.org/en/latest/userguide/signals.html#worker-process-init


eventsourcing Documentation, Release 7.1.1

14.4.2 Redis Queue

Redis queue workers are quite similar to Celery workers. You can call get_application() from within a job
function. To fit with the style in the RQ documentation, you could perhaps use your eventsourcing application as a
context manager, just like the Redis connection example.

14.4. Task queues 119

http://python-rq.org/docs/workers/


eventsourcing Documentation, Release 7.1.1

120 Chapter 14. Deployment



CHAPTER 15

Stand-alone example

In this section, an event sourced application is developed that has minimal dependencies on the library.

A stand-alone domain model is developed without library classes, which shows how event sourcing in Python can
work. The stand-alone code examples here are simplified versions of the library classes. Infrastructure classes from the
library are used explicitly to show the different components involved, so you can understand how to make variations.

• Domain

– Domain events

– Publish-subscribe

– Domain entity

– Mutator function

– Run the code

• Infrastructure

– Database table

– Event store

– Entity repository

– Run the code

– Sequenced items

• Application

– Persistence policy

– Application object

• Run the code

121



eventsourcing Documentation, Release 7.1.1

15.1 Domain

Let’s start with the domain model. If the state of an event sourced application is determined by a sequence of events,
then we need to define some events.

15.1.1 Domain events

You may wish to use a technique such as “event storming” to identify or decide what happens in your domain. In
this example, for the sake of general familiarity let’s assume we have a domain in which things can be “created”,
“changed”, and “discarded”. With that in mind, we can begin to write some domain event classes.

In the example below, there are three domain event classes: Created, AttributeChanged, and Discarded.
The common aspects of the domain event classes have been pulled up to a layer supertype DomainEvent.

import time

class DomainEvent(object):
"""
Supertype for domain event objects.
"""
def __init__(self, originator_id, originator_version, **kwargs):

self.originator_id = originator_id
self.originator_version = originator_version
self.__dict__.update(kwargs)

class Created(DomainEvent):
"""
Published when an entity is created.
"""
def __init__(self, **kwargs):

super(Created, self).__init__(originator_version=0, **kwargs)

class AttributeChanged(DomainEvent):
"""
Published when an attribute value is changed.
"""
def __init__(self, name, value, **kwargs):

super(AttributeChanged, self).__init__(**kwargs)
self.name = name
self.value = value

class Discarded(DomainEvent):
"""
Published when an entity is discarded.
"""

Please note, the domain event classes above do not depend on the library. The library does however contain a
collection of different kinds of domain event classes that you can use in your models, for example see Created,
AttributeChanged, and Discarded.

122 Chapter 15. Stand-alone example



eventsourcing Documentation, Release 7.1.1

15.1.2 Publish-subscribe

Since we are dealing with events, let’s define a simple publish-subscribe mechanism for them.

subscribers = []

def publish(event):
for subscriber in subscribers:

subscriber(event)

def subscribe(subscriber):
subscribers.append(subscriber)

def unsubscribe(subscriber):
subscribers.remove(subscriber)

15.1.3 Domain entity

Now, let’s define a domain entity that publishes the event classes defined above.

The entity class Example below has an ID and a version number. It also has a property foo with a “setter” method,
and a method __discard__() to use when the entity is no longer needed.

The entity methods follow a similar pattern. At some point, each constructs an event that represents the result of the
operation. Then each uses a “mutator function” mutate() (see below) to apply the event to the entity. Finally, each
publishes the event for the benefit of any subscribers, by using the function publish().

import uuid

class Example(object):
"""
Example domain entity.
"""
def __init__(self, originator_id, originator_version=0, foo=''):

self._id = originator_id
self.___version__ = originator_version
self._is_discarded = False
self._foo = foo

@property
def id(self):

return self._id

@property
def __version__(self):

return self.___version__

@property
def foo(self):

return self._foo

@foo.setter
def foo(self, value):

assert not self._is_discarded
(continues on next page)

15.1. Domain 123



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

# Construct an 'AttributeChanged' event object.
event = AttributeChanged(

originator_id=self.id,
originator_version=self.__version__,
name='foo',
value=value,

)

# Apply the event to self.
mutate(self, event)

# Publish the event for others.
publish(event)

def discard(self):
assert not self._is_discarded

# Construct a 'Discarded' event object.
event = Discarded(

originator_id=self.id,
originator_version=self.__version__

)

# Apply the event to self.
mutate(self, event)

# Publish the event for others.
publish(event)

A factory can be used to create new “example” entities. The function create_new_example() below works
in a similar way to the entity methods, creating new entities by firstly constructing a Created event, then using
the function mutate() (see below) to construct the entity object, and finally publishing the event for others before
returning the new entity object to the caller.

def create_new_example(foo):
"""
Factory for Example entities.
"""
# Construct an entity ID.
entity_id = uuid.uuid4()

# Construct a 'Created' event object.
event = Created(

originator_id=entity_id,
foo=foo

)

# Use the mutator function to construct the entity object.
entity = mutate(None, event)

# Publish the event for others.
publish(event=event)

# Return the new entity.
return entity

124 Chapter 15. Stand-alone example



eventsourcing Documentation, Release 7.1.1

The example entity class does not depend on the library. In particular, it doesn’t inherit from a “magical” entity base
class that makes everything work. The example here just publishes events that it has applied to itself. The library
does however contain domain entity classes that you can use to build your domain model, for example the class
AggregateRoot. The library classes are more developed than the examples here.

15.1.4 Mutator function

The mutator function mutate() below handles Created events by constructing an object. It handles
AttributeChanged events by setting an attribute value, and it handles Discarded events by marking the entity
as discarded. Each handler increases the version of the entity, so that the version of the entity is always one plus the
the originator version of the last event that was applied.

When replaying a sequence of events, for example when reconstructing an entity from its domain events, the mutator
function is called many times in order to apply each event in the sequence to an evolving initial state.

def mutate(entity, event):
"""
Mutator function for Example entities.
"""
# Handle "created" events by constructing the entity object.
if isinstance(event, Created):

entity = Example(**event.__dict__)
entity.___version__ += 1
return entity

# Handle "value changed" events by setting the named value.
elif isinstance(event, AttributeChanged):

assert not entity._is_discarded
setattr(entity, '_' + event.name, event.value)
entity.___version__ += 1
return entity

# Handle "discarded" events by returning 'None'.
elif isinstance(event, Discarded):

assert not entity._is_discarded
entity.___version__ += 1
entity._is_discarded = True
return None

else:
raise NotImplementedError(type(event))

For the sake of simplicity in this example, an if-else block is used to structure the mutator function. The library has a
function decorator mutator() that allows a default mutator function to register handlers for different types of event,
much like singledispatch.

15.1.5 Run the code

Let’s firstly subscribe to receive the events that will be published, so we can see what happened.

# A list of received events.
received_events = []

# Subscribe to receive published events.
subscribe(lambda e: received_events.append(e))

15.1. Domain 125



eventsourcing Documentation, Release 7.1.1

With this stand-alone code, we can create a new example entity object. We can update its property foo, and we can
discard the entity using the discard() method.

# Create a new entity using the factory.
entity = create_new_example(foo='bar')

# Check the entity has an ID.
assert entity.id

# Check the entity has a version number.
assert entity.__version__ == 1

# Check the received events.
assert len(received_events) == 1, received_events
assert isinstance(received_events[0], Created)
assert received_events[0].originator_id == entity.id
assert received_events[0].originator_version == 0
assert received_events[0].foo == 'bar'

# Check the value of property 'foo'.
assert entity.foo == 'bar'

# Update property 'foo'.
entity.foo = 'baz'

# Check the new value of 'foo'.
assert entity.foo == 'baz'

# Check the version number has increased.
assert entity.__version__ == 2

# Check the received events.
assert len(received_events) == 2, received_events
assert isinstance(received_events[1], AttributeChanged)
assert received_events[1].originator_version == 1
assert received_events[1].name == 'foo'
assert received_events[1].value == 'baz'

15.2 Infrastructure

Since the application state is determined by a sequence of events, the application must somehow be able both to persist
the events, and then recover the entities.

Please note, storing and replaying events to persist and to reconstruct the state of an application is the primary capa-
bility of this library. The domain and application and interface capabilities are offered as a supplement to the infras-
tructural capabilities, and have been added to the library partly as a way of shaping and validating the infrastructure,
partly to demonstrate how the core capabilities may be applied, but also as a convenient way of reusing foundational
code so that attention can remain on the problem domain (framework).

To run the code in this section, please install the library with the ‘sqlalchemy’ option.

$ pip install eventsourcing[sqlalchemy]

126 Chapter 15. Stand-alone example



eventsourcing Documentation, Release 7.1.1

15.2.1 Database table

Let’s start by setting up a simple database table that can store sequences of items. We can use SQLAlchemy directly
to define a database table that stores items in sequences, with a single identity for each sequence, and with each item
positioned in its sequence by an integer index number.

from sqlalchemy.ext.declarative.api import declarative_base
from sqlalchemy.sql.schema import Column, Sequence, Index
from sqlalchemy.sql.sqltypes import BigInteger, Integer, String, Text
from sqlalchemy_utils import UUIDType

Base = declarative_base()

class IntegerSequencedRecord(Base):
__tablename__ = 'integer_sequenced_items'

id = Column(BigInteger().with_variant(Integer, "sqlite"), primary_key=True)

# Sequence ID (e.g. an entity or aggregate ID).
sequence_id = Column(UUIDType(), nullable=False)

# Position (index) of item in sequence.
position = Column(BigInteger(), nullable=False)

# Topic of the item (e.g. path to domain event class).
topic = Column(String(255))

# State of the item (serialized dict, possibly encrypted).
state = Column(Text())

__table_args__ = Index('index', 'sequence_id', 'position', unique=True),

The library has a class IntegerSequencedRecord which is very similar to the above.

Next, create the database table. For convenience, the SQLAlchemy objects can be adapted with the
class SQLAlchemyDatastore, which provides a simple interface for the two operations we require:
setup_connection() and setup_tables().

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore

datastore = SQLAlchemyDatastore(
base=Base,
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),

)

datastore.setup_connection()
datastore.setup_table(IntegerSequencedRecord)

As you can see from the uri argument above, this example is using SQLite to manage an in memory relational
database. You can change uri to any valid connection string. Here are some example connection strings: for an
SQLite file; for a PostgreSQL database; and for a MySQL database. See SQLAlchemy’s create_engine() documenta-
tion for details. You may need to install drivers for your database management system.

sqlite:////tmp/mydatabase

(continues on next page)

15.2. Infrastructure 127



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

postgresql://scott:tiger@localhost:5432/mydatabase

mysql://scott:tiger@hostname/dbname

15.2.2 Event store

To support different kinds of sequences in the domain model, and to allow for different database schemas, the library
has an event store class EventStore that uses a “sequenced item mapper” for mapping domain events to “sequenced
items” - this library’s archetype persistence model for storing events. The sequenced item mapper derives the values
of sequenced item fields from the attributes of domain events.

The event store then uses a record manager to persist the sequenced items into a particular database management
system. The record manager uses an record class to manipulate records in a particular database table.

Hence you can use a different database table by substituting an alternative record class. You can use a different
database management system by substituting an alternative record manager.

from eventsourcing.infrastructure.eventstore import EventStore
from eventsourcing.infrastructure.sqlalchemy.manager import SQLAlchemyRecordManager
from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper

record_manager = SQLAlchemyRecordManager(
session=datastore.session,
record_class=IntegerSequencedRecord,

)

sequenced_item_mapper = SequencedItemMapper(
sequence_id_attr_name='originator_id',
position_attr_name='originator_version'

)

event_store = EventStore(
record_manager=record_manager,
sequenced_item_mapper=sequenced_item_mapper

)

In the code above, the sequence_id_attr_name value given to the sequenced item mapper is the name of the
domain events attribute that will be used as the ID of the mapped sequenced item, The position_attr_name
argument informs the sequenced item mapper which event attribute should be used to position the item in the sequence.
The values originator_id and originator_version correspond to attributes of the domain event classes we
defined in the domain model section above.

15.2.3 Entity repository

It is common to retrieve entities from a repository. An event sourced repository for the example entity class can be
constructed directly using library class EventSourcedRepository .

In this example, the repository is given an event store object. The repository is also given the mutator function
mutate() defined above.

from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository

example_repository = EventSourcedRepository(
event_store=event_store,

(continues on next page)

128 Chapter 15. Stand-alone example



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

mutator_func=mutate
)

15.2.4 Run the code

Now, let’s firstly write the events we received earlier into the event store.

# Put each received event into the event store.
for event in received_events:

event_store.store(event)

# Check the events exist in the event store.
stored_events = event_store.get_domain_events(entity.id)
assert len(stored_events) == 2, (received_events, stored_events)

The entity can now be retrieved from the repository, using its dictionary-like interface.

retrieved_entity = example_repository[entity.id]
assert retrieved_entity.foo == 'baz'

15.2.5 Sequenced items

Remember that we can always get the sequenced items directly from the record manager. A sequenced item is tuple
containing a serialised representation of the domain event. The library class SequencedItem is a Python namedtu-
ple with four fields: sequence_id, position, topic, and state.

In this example, an event’s originator_id attribute is mapped to the sequence_id field, and the event’s
originator_version attribute is mapped to the position field. The topic field of a sequenced item is
used to identify the event class, and the state field represents the state of the event (normally a JSON string).

sequenced_items = event_store.record_manager.list_items(entity.id)

assert len(sequenced_items) == 2

assert sequenced_items[0].sequence_id == entity.id
assert sequenced_items[0].position == 0
assert 'Created' in sequenced_items[0].topic
assert 'bar' in sequenced_items[0].state

assert sequenced_items[1].sequence_id == entity.id
assert sequenced_items[1].position == 1
assert 'AttributeChanged' in sequenced_items[1].topic
assert 'baz' in sequenced_items[1].state

15.3 Application

Although we can do everything at the module level, an application object brings it all together. In the example below,
the class ExampleApplication has an event store, and an entity repository. The application also has a persistence
policy.

15.3. Application 129



eventsourcing Documentation, Release 7.1.1

15.3.1 Persistence policy

The persistence policy below subscribes to receive events whenever they are published. It uses an event store to store
events whenever they are received.

class PersistencePolicy(object):
def __init__(self, event_store):

self.event_store = event_store
subscribe(self.store_event)

def close(self):
unsubscribe(self.store_event)

def store_event(self, event):
self.event_store.store(event)

A slightly more developed class PersistencePolicy is included in the library.

15.3.2 Application object

As a convenience, it is useful to make the application function as a Python context manager, so that the application
can close the persistence policy, and unsubscribe from receiving further domain events.

class ExampleApplication(object):
def __init__(self, session):

# Construct event store.
self.event_store = EventStore(

record_manager=SQLAlchemyRecordManager(
record_class=IntegerSequencedRecord,
session=session,

),
sequenced_item_mapper=SequencedItemMapper(

sequence_id_attr_name='originator_id',
position_attr_name='originator_version'

)
)
# Construct persistence policy.
self.persistence_policy = PersistencePolicy(

event_store=self.event_store
)
# Construct example repository.
self.example_repository = EventSourcedRepository(

event_store=self.event_store,
mutator_func=mutate

)

def __enter__(self):
return self

def __exit__(self, exc_type, exc_val, exc_tb):
self.persistence_policy.close()

A more developed class ExampleApplication can be found in the library. It is used in later sections of this guide.

130 Chapter 15. Stand-alone example



eventsourcing Documentation, Release 7.1.1

15.4 Run the code

With the application object, we can create more example entities and expect they will be available immediately in the
repository.

Please note, an entity that has been discarded by using its discard() method cannot subsequently be retrieved
from the repository using its ID. In particular, the repository’s dictionary-like interface will raise a Python KeyError
exception instead of returning an entity.

with ExampleApplication(datastore.session) as app:

# Create a new entity.
example = create_new_example(foo='bar')

# Read.
assert example.id in app.example_repository
assert app.example_repository[example.id].foo == 'bar'

# Update.
example.foo = 'baz'
assert app.example_repository[example.id].foo == 'baz'

# Delete.
example.discard()
assert example.id not in app.example_repository

15.4. Run the code 131



eventsourcing Documentation, Release 7.1.1

132 Chapter 15. Stand-alone example



CHAPTER 16

Background

Inspiration:

• Martin Fowler’s article on event sourcing

• Greg Young’s discussions about event sourcing, and Event Store system

• Robert Smallshire’s brilliant example on Bitbucket

• Various professional projects that called for this approach, for which I didn’t want to rewrite the same things
each time

See also:

• An introduction to event storming by a Steven Lowe

• An Introduction to Domain Driven Design by Dan Haywood

• Object-relational impedance mismatch page on Wikipedia

• From CRUD to Event Sourcing (Why CRUD is the wrong approach for microservices) by James Roper

• Event Sourcing and Stream Processing at Scale by Martin Kleppmann

• Data Intensive Applications with Martin Kleppmann

• The Path Towards Simplyfying Consistency In Distributed Systems by Caitie McCaffrey

• Kahn Process Networks page on Wikipedia

• Don’t Let the Internet Dupe You, Event Sourcing is Hard by Chris Kiehl

Citations:

• An Evaluation on Using Coarse grained Events in an Event Sourcing Context and its Effects Compared to
Fine-grained Events by Brian Ye

133

http://martinfowler.com/eaaDev/EventSourcing.html
https://www.youtube.com/watch?v=JHGkaShoyNs
https://eventstore.org/
https://bitbucket.org/sixty-north/d5-kanban-python/src
https://techbeacon.com/introduction-event-storming-easy-way-achieve-domain-driven-design
http://www.methodsandtools.com/archive/archive.php?id=97
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://www.youtube.com/watch?v=holjbuSbv3k
https://www.youtube.com/watch?v=avi-TZI9t2I
https://softwareengineeringdaily.com/2017/05/02/data-intensive-applications-with-martin-kleppmann/
https://www.deconstructconf.com/2017/caitie-mccaffrey-the-path-towards-simplifying-consistency-in-distributed-systems
https://en.wikipedia.org/wiki/Kahn_process_networks
https://chriskiehl.com/article/event-sourcing-is-hard
http://www.nada.kth.se/~ann/exjobb/brian_ye.pdf
http://www.nada.kth.se/~ann/exjobb/brian_ye.pdf


eventsourcing Documentation, Release 7.1.1

134 Chapter 16. Background



CHAPTER 17

Release notes

It is the aim of the project that releases with the same major version number are backwards compatible, within the scope
of the documented examples. New major versions indicate a backward incompatible changes have been introduced
since the previous major version.

If you need help upgrading code and migrating data, please get in touch.

17.1 Version 7.x

Version 7.x series brought many incremental improvements across the library.

17.1.1 Version 7.1.1 (released 21 Jun 2019)

Version 7.1.1 adds ‘Support options’ and ‘Contributing’ sections to the documentation.

17.1.2 Version 7.1.0 (released 11 Jun 2019)

Version 7.1.0 brings improved structure to the documentation.

17.1.3 Version 7.0.0 (released 21 Feb 2019)

Version 7.0.0 brought many incremental improvements across the library, especially the ability to define an entire
system of process applications independently of infrastructure. Please note, records fields have been renamed.

17.2 Version 6.x

Version 6.x series was the first release of the “process and system” code.

135



eventsourcing Documentation, Release 7.1.1

17.2.1 Version 6.2.0 (released 15 Jul 2018)

17.2.2 Version 6.2.0 (released 26 Jun 2018)

17.2.3 Version 6.1.0 (released 14 Jun 2018)

17.2.4 Version 6.0.0 (released 23 Apr 2018)

17.3 Version 5.x

Version 5.x series was released after quite a lot of refactoring made things backward-incompatible. Support for Django
ORM was added in version 5.0.0.

17.3.1 Version 5.1.1 (released 4 Apr 2018)

17.3.2 Version 5.1.0 (released 16 Feb 2018)

17.3.3 Version 5.0.0 (released 24 Jan 2018)

17.4 Version 4.x

Version 4.x series was released after quite a lot of refactoring made things backward-incompatible. Object namespaces
for entity and event classes was cleaned up, by moving library names to double-underscore prefixed and postfixed
names. Domain events can be hashed, and also hash-chained together, allowing entity state to be verified. Created
events were changed to have originator_topic, which allowed other things such as mutators and repositories to be
greatly simplified. Mutators are now by default expected to be implemented on entity event classes. Event timestamps
were changed from floats to decimal objects, an exact number type. Cipher was changed to use AES-GCM to allow
verification of encrypted data retrieved from a database.

Also, the record classes for SQLAlchemy were changed to have an auto-incrementing ID, to make it easy to follow
the events of an application, for example when updating view models, without additional complication of a separate
application log. This change makes the SQLAlchemy library classes ultimately less “scalable” than the Cassandra
classes, because an auto-incrementing ID must operate from a single thread. Overall, it seems like a good trade-off
for early-stage development. Later, when the auto-incrementing ID bottleneck would otherwise throttle performance,
“scaling-up” could involve switching application infrastructure to use a separate application log.

17.4.1 Version 4.0.0 (released 11 Dec 2017)

17.5 Version 3.x

Version 3.x series was a released after quite of a lot of refactoring made things backwards-incompatible. Documen-
tation was greatly improved, in particular with pages reflecting the architectural layers of the library (infrastructure,
domain, application).

136 Chapter 17. Release notes



eventsourcing Documentation, Release 7.1.1

17.5.1 Version 3.1.0 (released 23 Nov 2017)

17.5.2 Version 3.0.0 (released 25 May 2017)

17.6 Version 2.x

Version 2.x series was a major rewrite that implemented two distinct kinds of sequences: events sequenced by integer
version numbers and events sequenced in time, with an archetypal “sequenced item” persistence model for storing
events.

17.6.1 Version 2.1.1 (released 30 Mar 2017)

17.6.2 Version 2.1.0 (released 27 Mar 2017)

17.6.3 Version 2.0.0 (released 27 Mar 2017)

17.7 Version 1.x

Version 1.x series was an extension of the version 0.x series, and attempted to bridge between sequencing events with
both timestamps and version numbers.

17.6. Version 2.x 137



eventsourcing Documentation, Release 7.1.1

17.7.1 Version 1.2.1 (released 23 Oct 2016)

17.7.2 Version 1.2.0 (released 23 Oct 2016)

17.7.3 Version 1.1.0 (released 19 Oct 2016)

17.7.4 Version 1.0.10 (released 5 Oct 2016)

17.7.5 Version 1.0.9 (released 17 Aug 2016)

17.7.6 Version 1.0.8 (released 30 Jul 2016)

17.7.7 Version 1.0.7 (released 13 Jul 2016)

17.7.8 Version 1.0.6 (released 7 Jul 2016)

17.7.9 Version 1.0.5 (released 1 Jul 2016)

17.7.10 Version 1.0.4 (released 30 Jun 2016)

17.7.11 Version 1.0.3 (released 30 Jun 2016)

17.7.12 Version 1.0.2 (released 8 Jun 2016)

17.7.13 Version 1.0.1 (released 7 Jun 2016)

17.8 Version 0.x

Version 0.x series was the initial cut of the code, all events were sequenced by timestamps, or TimeUUIDs in Cassan-
dra, because the project originally emerged whilst working with Cassandra.

138 Chapter 17. Release notes



eventsourcing Documentation, Release 7.1.1

17.8.1 Version 0.9.4 (released 11 Feb 2016)

17.8.2 Version 0.9.3 (released 1 Dec 2015)

17.8.3 Version 0.9.2 (released 1 Dec 2015)

17.8.4 Version 0.9.1 (released 10 Nov 2015)

17.8.5 Version 0.9.0 (released 14 Sep 2015)

17.8.6 Version 0.8.4 (released 14 Sep 2015)

17.8.7 Version 0.8.3 (released 5 Sep 2015)

17.8.8 Version 0.8.2 (released 5 Sep 2015)

17.8.9 Version 0.8.1 (released 4 Sep 2015)

17.8.10 Version 0.8.0 (released 29 Aug 2015)

17.8.11 Version 0.7.0 (released 29 Aug 2015)

17.8.12 Version 0.6.0 (released 28 Aug 2015)

17.8.13 Version 0.5.0 (released 28 Aug 2015)

17.8.14 Version 0.4.0 (released 28 Aug 2015)

17.8.15 Version 0.3.0 (released 28 Aug 2015)

17.8.16 Version 0.2.0 (released 27 Aug 2015)

17.8.17 Version 0.1.0 (released 27 Aug 2015)

17.8.18 Version 0.0.1 (released 27 Aug 2015)

17.8. Version 0.x 139



eventsourcing Documentation, Release 7.1.1

140 Chapter 17. Release notes



CHAPTER 18

Contributing

This library depends on its community. As interest keeps growing, we always need more people to help others. As
soon as you learn the library, you can contribute in many ways.

• Join the Slack channel and answer questions. The library has a growing audience, and we really want to maintain
a friendly and helpful atmosphere.

• Blog and tweet about the library. If you would like others to see your blog or tweet, send a message about it to
the Slack channel.

• Contribute to open-source projects that use this library, write some documentation, or release your own event
sourcing project.

If you think using the library is a lot of fun, wait until you start working on it. We’re passionate about helping users
of the library make the jump to contributing members of the community, so there are several ways you can help the
library’s development:

• Report bugs on our issue tracker.

• Join the Slack channel and share your ideas for how to improve the library. We’re always open to suggestions.

• Submit patches or pull requests for new and/or fixed behavior.

• Improve the documentation or write unit tests.

141

https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTUwZGQ4MDk0ZDJmZmU0MjM4MjdmOTBlZGI0ZTY4NWIxMGFkZTcwNmUxM2U4NGM3YjY5MTVmZTBiYzljZjI3ZTE
https://github.com/johnbywater/eventsourcing/issues
https://join.slack.com/t/eventsourcinginpython/shared_invite/enQtMjczNTc2MzcxNDI0LTUwZGQ4MDk0ZDJmZmU0MjM4MjdmOTBlZGI0ZTY4NWIxMGFkZTcwNmUxM2U4NGM3YjY5MTVmZTBiYzljZjI3ZTE


eventsourcing Documentation, Release 7.1.1

142 Chapter 18. Contributing



CHAPTER 19

Module docs

This document describes the packages, modules, classes, functions and other code details of the library.

• genindex

• modindex

19.1 eventsourcing

The eventsourcing package contains packages for the application layer, the domain layer, the infrastructure layer, and
the interface layer. There is also a module for exceptions, an example package, and a utils package.

19.1.1 application

The application layer brings together the domain and infrastructure layers.

actors

class eventsourcing.application.actors.ActorModelRunner(system: eventsourc-
ing.application.system.System,
pipeline_ids, sys-
tem_actor_name=’system’,
shut-
down_on_close=False,
**kwargs)

Bases: eventsourcing.application.system.SystemRunner

Uses actor model framework to run a system of process applications.

actor_system

close()
Stops all the actors running a system of process applications.

143



eventsourcing Documentation, Release 7.1.1

forward_prompt(prompt)

static is_prompt(event)

shutdown()

start()
Starts all the actors to run a system of process applications.

class eventsourcing.application.actors.PipelineActor
Bases: thespian.actors.Actor

forward_prompt(msg)

init_pipeline(msg)

receiveMessage(msg, sender)
Main entry point handling a request received by this Actor. Runs without interruption and may access
locals to this Actor (only) without concern that these locals will be modified externally.

class eventsourcing.application.actors.PipelineInitRequest(process_classes, in-
frastructure_class,
system_followings,
pipeline_id)

Bases: object

class eventsourcing.application.actors.ProcessInitRequest(process_application_class,
infrastructure_class,
pipeline_id, up-
stream_application_names,
downstream_actors,
pipeline_actor)

Bases: object

class eventsourcing.application.actors.ProcessMaster
Bases: thespian.actors.Actor

consume_prompt(prompt)

handle_slave_run_response()

init_process(msg)

receiveMessage(msg, sender)
Main entry point handling a request received by this Actor. Runs without interruption and may access
locals to this Actor (only) without concern that these locals will be modified externally.

run_slave()

class eventsourcing.application.actors.ProcessSlave
Bases: thespian.actors.Actor

close()

init_process(msg)

is_my_prompt(prompt)

receiveMessage(msg, sender)
Main entry point handling a request received by this Actor. Runs without interruption and may access
locals to this Actor (only) without concern that these locals will be modified externally.

run_process(msg)

send_prompt(prompt)

144 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.application.actors.SlaveRunRequest(last_prompts, master)
Bases: object

class eventsourcing.application.actors.SlaveRunResponse
Bases: object

class eventsourcing.application.actors.SystemActor
Bases: thespian.actors.Actor

init_pipelines(msg)

receiveMessage(msg, sender)
Main entry point handling a request received by this Actor. Runs without interruption and may access
locals to this Actor (only) without concern that these locals will be modified externally.

class eventsourcing.application.actors.SystemInitRequest(process_classes, in-
frastructure_class,
system_followings,
pipeline_ids)

Bases: object

class eventsourcing.application.actors.SystemInitResponse(pipeline_actors)
Bases: object

eventsourcing.application.actors.shutdown_actor_system()

eventsourcing.application.actors.start_actor_system(system_base=None,
logcfg={’formatters’: {’nor-
mal’: {’format’: ’%(levelname)-
8s %(message)s’}}, ’handlers’:
{}, ’loggers’: {}, ’version’: 1})

eventsourcing.application.actors.start_multiproc_tcp_base_system()

command

class eventsourcing.application.command.CommandProcess(name=None, policy=None,
setup_table=False,
**kwargs)

Bases: eventsourcing.application.process.ProcessApplication

persist_event_type
alias of eventsourcing.domain.model.command.Command.Event

19.1. eventsourcing 145



eventsourcing Documentation, Release 7.1.1

django

class eventsourcing.application.django.DjangoApplication(name=”, persis-
tence_policy=None, per-
sist_event_type=None,
cipher_key=None, se-
quenced_item_class=None,
se-
quenced_item_mapper_class=None,
record_manager_class=None,
stored_event_record_class=None,
snap-
shot_record_class=None,
setup_table=True,
contigu-
ous_record_ids=True,
pipeline_id=0,
json_encoder_class=None,
json_decoder_class=None,
notifica-
tion_log_section_size=None)

Bases: eventsourcing.application.simple.ApplicationWithConcreteInfrastructure

record_manager_class
alias of eventsourcing.infrastructure.django.manager.DjangoRecordManager

classmethod reset_connection_after_forking()
Resets database connection after forking.

snapshot_record_class
alias of eventsourcing.infrastructure.django.models.EntitySnapshotRecord

stored_event_record_class
alias of eventsourcing.infrastructure.django.models.StoredEventRecord

multiprocess

class eventsourcing.application.multiprocess.MultiprocessRunner(system:
eventsourc-
ing.application.system.System,
pipeline_ids=(0,
),
poll_interval=None,
setup_tables=False,
sleep_for_setup_tables=0,
*args,
**kwargs)

Bases: eventsourcing.application.system.SystemRunner

broadcast_prompt(prompt)

close()

static is_prompt(event)

start()

146 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.application.multiprocess.OperatingSystemProcess(application_process_class,
infras-
truc-
ture_class,
up-
stream_names,
pipeline_id=0,
poll_interval=5,
setup_tables=False,
in-
box=None,
out-
box=None,
*args,
**kwargs)

Bases: multiprocessing.context.Process

broadcast_prompt(prompt)

static is_prompt(event)

loop_on_prompts()

run()
Method to be run in sub-process; can be overridden in sub-class

run_process(prompt=None)

pipeline

class eventsourcing.application.pipeline.Pipeable
Bases: object

class eventsourcing.application.pipeline.PipeableMetaclass
Bases: abc.ABCMeta

class eventsourcing.application.pipeline.PipelineExpression(left, right)
Bases: object

policies

class eventsourcing.application.policies.PersistencePolicy(event_store, per-
sist_event_type=None)

Bases: object

Stores events of given type to given event store, whenever they are published.

close()

is_event(event)

store_event(event)

class eventsourcing.application.policies.SnapshottingPolicy(repository, snap-
shot_store, per-
sist_event_type=<class
’eventsourc-
ing.domain.model.events.EventWithOriginatorVersion’>,
period=2)

19.1. eventsourcing 147



eventsourcing Documentation, Release 7.1.1

Bases: object

close()

condition(event)

take_snapshot(event)

popo

class eventsourcing.application.popo.PopoApplication(name=”, persis-
tence_policy=None, per-
sist_event_type=None,
cipher_key=None, se-
quenced_item_class=None, se-
quenced_item_mapper_class=None,
record_manager_class=None,
stored_event_record_class=None,
snapshot_record_class=None,
setup_table=True, con-
tiguous_record_ids=True,
pipeline_id=0,
json_encoder_class=None,
json_decoder_class=None,
notifica-
tion_log_section_size=None)

Bases: eventsourcing.application.simple.ApplicationWithConcreteInfrastructure

infrastructure_factory_class
alias of eventsourcing.infrastructure.popo.factory.
PopoInfrastructureFactory

sequenced_item_mapper_class
alias of eventsourcing.infrastructure.popo.mapper.SequencedItemMapperForPopo

stored_event_record_class
alias of eventsourcing.infrastructure.popo.records.StoredEventRecord

process

class eventsourcing.application.process.ProcessApplication(name=None,
policy=None,
setup_table=False,
**kwargs)

Bases: eventsourcing.application.pipeline.Pipeable, eventsourcing.
application.simple.SimpleApplication

call_policy(event)

close()

collect_pending_events(aggregates)

construct_event_records(pending_events, causal_dependencies=None)

construct_tracking_kwargs(notification_id, upstream_application_name)

del_notification_generator(upstream_name)

148 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

drop_table()

follow(upstream_application_name, notification_log)

get_event_from_notification(notification)

get_notification_generator(upstream_name, advance_by)

static policy(repository, event)
Empty method, can be overridden in subclasses to implement concrete policy.

process_upstream_event(event, notification_id, upstream_name)

publish_prompt(event=None)
Publishes prompt for a given event.

Used to prompt downstream process application when an event is published by this application’s model,
which can happen when application command methods, rather than the process policy, are called.

Wraps exceptions with PromptFailed, to avoid application policy exceptions being seen directly in other
applications when running synchronously in single thread.

read_reader(upstream_name, advance_by=None)

record_process_event(process_event)

run(prompt=None, advance_by=None)

set_notification_ids = False

set_reader_position_from_tracking_records(upstream_name)

setup_table()

take_snapshots(new_events)

use_causal_dependencies = False

class eventsourcing.application.process.ProcessApplicationWithSnapshotting(snapshot_period=None,
snap-
shot_record_class=None,
**kwargs)

Bases: eventsourcing.application.snapshotting.SnapshottingApplication,
eventsourcing.application.process.ProcessApplication

take_snapshots(new_events)

class eventsourcing.application.process.ProcessEvent(new_events, track-
ing_kwargs=None,
causal_dependencies=None)

Bases: object

class eventsourcing.application.process.Prompt(process_name, pipeline_id)
Bases: object

class eventsourcing.application.process.RepositoryWrapper(repository)
Bases: object

19.1. eventsourcing 149



eventsourcing Documentation, Release 7.1.1

simple

class eventsourcing.application.simple.ApplicationWithConcreteInfrastructure(name=”,
per-
sis-
tence_policy=None,
per-
sist_event_type=None,
ci-
pher_key=None,
se-
quenced_item_class=None,
se-
quenced_item_mapper_class=None,
record_manager_class=None,
stored_event_record_class=None,
snap-
shot_record_class=None,
setup_table=True,
con-
tigu-
ous_record_ids=True,
pipeline_id=0,
json_encoder_class=None,
json_decoder_class=None,
no-
ti-
fi-
ca-
tion_log_section_size=None)

Bases: eventsourcing.application.simple.SimpleApplication

Subclasses have actual infrastructure.

class eventsourcing.application.simple.SimpleApplication(name=”, persis-
tence_policy=None, per-
sist_event_type=None,
cipher_key=None, se-
quenced_item_class=None,
se-
quenced_item_mapper_class=None,
record_manager_class=None,
stored_event_record_class=None,
snap-
shot_record_class=None,
setup_table=True,
contigu-
ous_record_ids=True,
pipeline_id=0,
json_encoder_class=None,
json_decoder_class=None,
notifica-
tion_log_section_size=None)

Bases: abc.ABC

Base class for event sourced applications.

150 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

Constructs infrastructure objects such as the repository and event store, and also the notification log which
presents the application state as a sequence of events.

Needs actual infrastructure classes.

classmethod bind(*bases, **kwargs)

change_pipeline(pipeline_id)

close()

construct_cipher(cipher_key)

construct_datastore()

construct_event_store()

construct_infrastructure(*args, **kwargs)

construct_infrastructure_factory(*args, **kwargs)

Return type InfrastructureFactory

construct_notification_log()

construct_persistence_policy()

construct_repository(**kwargs)

datastore

drop_table()

event_store

event_store_class
alias of eventsourcing.infrastructure.eventstore.EventStore

infrastructure_factory_class
alias of eventsourcing.infrastructure.factory.InfrastructureFactory

is_constructed_with_session = False

json_decoder_class = None

json_encoder_class = None

classmethod mixin(*bases)

notification_log_section_size = None

persist_event_type = None

record_manager_class = None

repository

repository_class
alias of eventsourcing.infrastructure.eventsourcedrepository.
EventSourcedRepository

classmethod reset_connection_after_forking()

sequenced_item_class = None

sequenced_item_mapper_class = None

setup_table()

snapshot_record_class = None

19.1. eventsourcing 151



eventsourcing Documentation, Release 7.1.1

stored_event_record_class = None

use_cache = False

snapshotting

class eventsourcing.application.snapshotting.SnapshottingApplication(snapshot_period=None,
snap-
shot_record_class=None,
**kwargs)

Bases: eventsourcing.application.simple.SimpleApplication

close()

construct_event_store()

construct_persistence_policy()

construct_repository(**kwargs)

drop_table()

setup_table()

snapshot_period = 2

sqlalchemy

class eventsourcing.application.sqlalchemy.SQLAlchemyApplication(uri=None,
ses-
sion=None,
**kwargs)

Bases: eventsourcing.application.simple.ApplicationWithConcreteInfrastructure

construct_infrastructure(*args, **kwargs)

infrastructure_factory_class
alias of eventsourcing.infrastructure.sqlalchemy.factory.
SQLAlchemyInfrastructureFactory

is_constructed_with_session = True

snapshot_record_class
alias of eventsourcing.infrastructure.sqlalchemy.records.
EntitySnapshotRecord

stored_event_record_class
alias of eventsourcing.infrastructure.sqlalchemy.records.StoredEventRecord

152 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

system

class eventsourcing.application.system.BarrierControlledApplicationThread(process:
eventsourc-
ing.application.process.ProcessApplication,
fetch_barrier:
thread-
ing.Barrier,
ex-
e-
cute_barrier:
thread-
ing.Barrier,
stop_event:
thread-
ing.Event)

Bases: threading.Thread

abort()

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

class eventsourcing.application.system.BarrierControllingClockThread(normal_speed,
scale_factor,
tick_interval,
fetch_barrier:
thread-
ing.Barrier,
exe-
cute_barrier:
thread-
ing.Barrier,
stop_event:
thread-
ing.Event,
is_verbose=False)

Bases: eventsourcing.application.system.ClockThread

actual_clock_speed

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

class eventsourcing.application.system.ClockThread(*args, **kwargs)
Bases: threading.Thread

call_commands()

call_in_future(cmd, ticks_delay)

19.1. eventsourcing 153



eventsourcing Documentation, Release 7.1.1

class eventsourcing.application.system.InProcessRunner(system: eventsourc-
ing.application.system.System,
infrastructure_class=None,
setup_tables=False)

Bases: eventsourcing.application.system.SystemRunner

Runs a system in the current process, either in the current thread, or with one thread for each process in the
system.

close()

handle_prompt(prompt)

start()

class eventsourcing.application.system.MultiThreadedRunner(system: eventsourc-
ing.application.system.System,
poll_interval=None,
clock_speed=None)

Bases: eventsourcing.application.system.InProcessRunner

Runs a system with a thread for each process.

broadcast_prompt(prompt)

close()

handle_prompt(prompt)

start()

start_clock()

class eventsourcing.application.system.ProcessRunningClockThread(normal_speed,
scale_factor,
stop_event:
thread-
ing.Event,
is_verbose=False,
seen_prompt_events=None,
pro-
cesses=None)

Bases: eventsourcing.application.system.ClockThread

actual_clock_speed

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

class eventsourcing.application.system.PromptOutbox
Bases: object

Has a collection of downstream prompt inboxes.

put(prompt)
Puts prompt in each downstream inbox (an actual queue).

154 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.application.system.PromptQueuedApplicationThread(process:
eventsourc-
ing.application.process.ProcessApplication,
poll_interval=5,
in-
box=None,
out-
box=None,
clock_event=None)

Bases: threading.Thread

Application thread which uses queues of prompts.

It loops on an “inbox” queue of prompts, and adds its prompts to an “outbox” queue.

loop_on_prompts()

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

run_process(prompt=None)

class eventsourcing.application.system.SingleThreadedRunner(system: eventsourc-
ing.application.system.System,
infrastruc-
ture_class=<class
’eventsourc-
ing.application.popo.PopoApplication’>,
*args, **kwargs)

Bases: eventsourcing.application.system.InProcessRunner

Runs a system in the current thread.

handle_prompt(prompt)

run_followers(prompt)
First caller adds a prompt to queue and runs followers until there are no more pending prompts.

Subsequent callers just add a prompt to the queue, avoiding recursion.

class eventsourcing.application.system.SteppingMultiThreadedRunner(*args,
**kwargs)

Bases: eventsourcing.application.system.SteppingRunner

Has a clock thread, and a thread for each application process in the system. The clock thread loops until
stopped, waiting for a barrier, after sleeping for remaining tick interval timer. Application threads loop until
stopped, waiting for the same barrier. Then, after all threads are waiting at the barrier, the barrier is lifted. The
clock thread proceeds by sleeping for the clock tick interval. The application threads proceed by getting new
notifications and processing all of them.

There are actually two barriers, so that each application thread waits before getting notifications, and then waits
for all processes to complete getting notification before processing the notifications through the application
policy. This avoids events created by a process application “bleeding” into the notifications of another process
application in the same clock cycle.

Todo: Receive prompts, but set an event for the prompting process, to avoid unnecessary runs.

Allow commands to be scheduled at future clock tick number, and execute when reached.

19.1. eventsourcing 155



eventsourcing Documentation, Release 7.1.1

close()

handle_prompt(prompt)

start()

class eventsourcing.application.system.SteppingRunner(normal_speed=1,
scale_factor=1,
is_verbose=False, *args,
**kwargs)

Bases: eventsourcing.application.system.InProcessRunner

call_in_future(cmd, ticks_delay)

class eventsourcing.application.system.SteppingSingleThreadedRunner(*args,
**kwargs)

Bases: eventsourcing.application.system.SteppingRunner

close()

handle_prompt(prompt)

start()

class eventsourcing.application.system.System(*pipeline_exprs, **kwargs)
Bases: object

__init__(*pipeline_exprs, **kwargs)
Initialises a “process network” system object.

Parameters pipeline_exprs – Pipeline expressions involving process application classes.

Each pipeline expression of process classes shows directly which process follows which other process in
the system.

For example, the pipeline expression (A | B | C) shows that B follows A, and C follows B.

The pipeline expression (A | A) shows that A follows A.

The pipeline expression (A | B | A) shows that B follows A, and A follows B.

The pipeline expressions ((A | B | A), (A | C | A)) are equivalent to (A | B | A | C | A).

construct_app(process_class, infrastructure_class=None, **kwargs)

is_prompt(event)

class eventsourcing.application.system.SystemRunner(system: eventsourc-
ing.application.system.System,
infrastructure_class=None,
setup_tables=False)

Bases: abc.ABC

close()

start()

19.1.2 domain.model

The domain layer contains a domain model, and optionally services that work across different entities or aggregates.

The domain model package contains classes and functions that can help develop an event sourced domain model.

156 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

aggregate

Base classes for aggregates in a domain driven design.

class eventsourcing.domain.model.aggregate.AggregateRoot(*args, **kwargs)
Bases: eventsourcing.domain.model.aggregate.AggregateRootWithHashchainedEvents

class AttributeChanged(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.aggregate.AttributeChanged

Published when an AggregateRoot is changed.

__module__ = 'eventsourcing.domain.model.aggregate'

class Created(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.aggregate.Created

Published when an AggregateRoot is created.

__module__ = 'eventsourcing.domain.model.aggregate'

class Discarded(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.aggregate.Discarded

Published when an AggregateRoot is discarded.

__module__ = 'eventsourcing.domain.model.aggregate'

class Event(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event

Supertype for aggregate events.

__module__ = 'eventsourcing.domain.model.aggregate'

__module__ = 'eventsourcing.domain.model.aggregate'

class eventsourcing.domain.model.aggregate.AggregateRootWithHashchainedEvents(*args,
**kwargs)

Bases: eventsourcing.domain.model.entity.EntityWithHashchain, eventsourcing.
domain.model.aggregate.BaseAggregateRoot

class AttributeChanged(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.aggregate.AttributeChanged

Published when an AggregateRoot is changed.

__module__ = 'eventsourcing.domain.model.aggregate'

class Created(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.Created, eventsourcing.domain.model.aggregate.Created

Published when an AggregateRoot is created.

__module__ = 'eventsourcing.domain.model.aggregate'

class Discarded(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.Discarded, eventsourcing.domain.model.aggregate.Discarded

19.1. eventsourcing 157



eventsourcing Documentation, Release 7.1.1

Published when an AggregateRoot is discarded.

__module__ = 'eventsourcing.domain.model.aggregate'

class Event(**kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.aggregate.Event

Supertype for aggregate events.

__module__ = 'eventsourcing.domain.model.aggregate'

__module__ = 'eventsourcing.domain.model.aggregate'

class eventsourcing.domain.model.aggregate.BaseAggregateRoot(**kwargs)
Bases: eventsourcing.domain.model.entity.TimestampedVersionedEntity

Root entity for an aggregate in a domain driven design.

class AttributeChanged(originator_version, **kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when an AggregateRoot is changed.

__module__ = 'eventsourcing.domain.model.aggregate'

class Created(originator_version=0, **kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.Created

Published when an AggregateRoot is created.

__module__ = 'eventsourcing.domain.model.aggregate'

class Discarded(originator_version, **kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.Discarded

Published when an AggregateRoot is discarded.

__module__ = 'eventsourcing.domain.model.aggregate'

class Event(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Supertype for aggregate events.

__module__ = 'eventsourcing.domain.model.aggregate'

__batch_pending_events__()

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'eventsourcing.domain.model.aggregate'

__publish__(event)
Appends event to internal collection of pending events.

__save__()
Publishes pending events for others in application.

158 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

array

A kind of collection, indexed by integer. Doesn’t need to replay all events to exist.

class eventsourcing.domain.model.array.AbstractArrayRepository(array_size=10000,
*args,
**kwargs)

Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

Repository for sequence objects.

__getitem__(array_id)
Returns sequence for given ID.

__init__(array_size=10000, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'eventsourcing.domain.model.array'

class eventsourcing.domain.model.array.AbstractBigArrayRepository
Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

Repository for compound sequence objects.

__getitem__(array_id)
Returns sequence for given ID.

__module__ = 'eventsourcing.domain.model.array'

subrepo
Sub-sequence repository.

class eventsourcing.domain.model.array.Array(array_id, repo)
Bases: object

__dict__ = mappingproxy({'__module__': 'eventsourcing.domain.model.array', '__init__': <function Array.__init__>, 'append': <function Array.append>, '__setitem__': <function Array.__setitem__>, '__getitem__': <function Array.__getitem__>, '__len__': <function Array.__len__>, 'get_next_position': <function Array.get_next_position>, 'get_last_item_and_next_position': <function Array.get_last_item_and_next_position>, 'get_items_assigned': <function Array.get_items_assigned>, 'get_item_assigned': <function Array.get_item_assigned>, '__eq__': <function Array.__eq__>, '__ne__': <function Array.__ne__>, '__dict__': <attribute '__dict__' of 'Array' objects>, '__weakref__': <attribute '__weakref__' of 'Array' objects>, '__doc__': None, '__hash__': None})

__eq__(other)
Return self==value.

__getitem__(item)
Returns item at index, or items in slice.

__hash__ = None

__init__(array_id, repo)
Initialize self. See help(type(self)) for accurate signature.

__len__()
Returns length of array.

__module__ = 'eventsourcing.domain.model.array'

__ne__(other)
Return self!=value.

__setitem__(index, item)
Sets item in array, at given index.

Won’t overrun the end of the array, because the position is fixed to be less than base_size.

__weakref__
list of weak references to the object (if defined)

append(item)
Sets item in next position after the last item.

19.1. eventsourcing 159



eventsourcing Documentation, Release 7.1.1

get_item_assigned(index)

get_items_assigned(start_index=None, stop_index=None, limit=None, is_ascending=True)

get_last_item_and_next_position()

get_next_position()

class eventsourcing.domain.model.array.BigArray(array_id, repo)
Bases: eventsourcing.domain.model.array.Array

A virtual array holding items in indexed positions, across a number of Array instances.

Getting and setting items at index position is supported. Slices are supported, and operate across the underlying
arrays. Appending is also supported.

BigArray is designed to overcome the concern of needing a single large sequence that may not be suitably stored
in any single partiton. In simple terms, if events of an aggregate can fit in a partition, we can use the same size
partition to make a tree of arrays that will certainly be capable of sequencing all the events of the application in
a single stream.

With normal size base arrays, enterprise applications can expect read and write time to be approximately constant
with respect to the number of items in the array.

The array is composed of a tree of arrays, which gives the capacity equal to the size of each array to the power
of the size of each array. If the arrays are limited to be about the maximum size of an aggregate event stream (a
large number but not too many that would cause there to be too much data in any one partition, let’s say 1000s
to be safe) then it would be possible to fit such a large number of aggregates in the corresponding BigArray, that
we can be confident it would be full.

Write access time in the worst case, and the time to identify the index of the last item in the big array, is
proportional to the log of the highest assigned index to base the underlying array size. Write time on average,
and read time given an index, is constant with respect to the number of items in a BigArray.

Items can be appended in log time in a single thread. However, the time between reading the current last index
and claiming the next position leads to contention and retries when there are lots of threads of execution all
attempting to append items, which inherently limits throughput.

Todo: Not possible in Cassandra, but maybe do it in a transaction in SQLAlchemy?

An alternative to reading the last item before writing the next is to use an integer sequence generator to generate
a stream of integers. Items can be assigned to index positions in a big array, according to the integers that are
issued. Throughput will then be much better, and will be limited only by the rate at which the database can have
events written to it (unless the number generator is quite slow).

An external integer sequence generator, such as Redis’ INCR command, or an auto-incrementing database
column, may constitute a single point of failure.

__getitem__(item)
Returns item at index, or items in slice.

__init__(array_id, repo)
Initialize self. See help(type(self)) for accurate signature.

__len__()
Returns length of array.

__module__ = 'eventsourcing.domain.model.array'

__setitem__(position, item)
Sets item in array, at given index.

Won’t overrun the end of the array, because the position is fixed to be less than base_size.

160 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

calc_parent(i, j, h)
Returns get_big_array and end of span of parent sequence that contains given child.

calc_required_height(n, size)

create_array_id(i, j)

get_item(position)

get_last_array()
Returns last array in compound.

Return type CompoundSequenceReader

get_last_item_and_next_position()

get_slice(start, stop)

class eventsourcing.domain.model.array.ItemAssigned(item, index, *args, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Occurs when an item is set at a position in an array.

__init__(item, index, *args, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.array'

index

item

collection

Collections.

class eventsourcing.domain.model.collection.AbstractCollectionRepository
Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

__module__ = 'eventsourcing.domain.model.collection'

class eventsourcing.domain.model.collection.Collection(**kwargs)
Bases: eventsourcing.domain.model.entity.TimestampedVersionedEntity

class Created(originator_version=0, **kwargs)
Bases: eventsourcing.domain.model.collection.Event, eventsourcing.domain.
model.entity.Created

Published when collection is created.

__module__ = 'eventsourcing.domain.model.collection'

class Discarded(originator_version, **kwargs)
Bases: eventsourcing.domain.model.collection.Event, eventsourcing.domain.
model.entity.Discarded

Published when collection is discarded.

__module__ = 'eventsourcing.domain.model.collection'

class Event(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Supertype for events of collection entities.

__module__ = 'eventsourcing.domain.model.collection'

19.1. eventsourcing 161



eventsourcing Documentation, Release 7.1.1

class EventWithItem(originator_version, **kwargs)
Bases: eventsourcing.domain.model.collection.Event

__module__ = 'eventsourcing.domain.model.collection'

item

class ItemAdded(originator_version, **kwargs)
Bases: eventsourcing.domain.model.collection.EventWithItem

__module__ = 'eventsourcing.domain.model.collection'

__mutate__(obj)
Update obj with values from self.

class ItemRemoved(originator_version, **kwargs)
Bases: eventsourcing.domain.model.collection.EventWithItem

__module__ = 'eventsourcing.domain.model.collection'

__mutate__(obj)
Update obj with values from self.

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

__iter__()

__module__ = 'eventsourcing.domain.model.collection'

add_item(item)

items

remove_item(item)

eventsourcing.domain.model.collection.register_new_collection(collection_id=None)

command

Commands as aggregates.

class eventsourcing.domain.model.command.Command(**kwargs)
Bases: eventsourcing.domain.model.aggregate.AggregateRoot

class AttributeChanged(**kwargs)
Bases: eventsourcing.domain.model.command.Event, eventsourcing.domain.
model.aggregate.AttributeChanged

__module__ = 'eventsourcing.domain.model.command'

class Created(**kwargs)
Bases: eventsourcing.domain.model.command.Event, eventsourcing.domain.
model.aggregate.Created

__module__ = 'eventsourcing.domain.model.command'

class Discarded(**kwargs)
Bases: eventsourcing.domain.model.command.Event, eventsourcing.domain.
model.aggregate.Discarded

__module__ = 'eventsourcing.domain.model.command'

class Done(**kwargs)
Bases: eventsourcing.domain.model.command.Event

162 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

__module__ = 'eventsourcing.domain.model.command'

mutate(obj)
Convenience for use in custom models, to update obj with values from self without needing to call
super method and return obj (two extra lines).

Can be overridden by subclasses. Any value returned by this method will be ignored.

Please note, subclasses that extend mutate() might not have fully completed that method before this
method is called. To ensure all base classes have completed their mutate behaviour before mutating
an event in a concrete class, extend mutate() instead of overriding this method.

Parameters obj – object to be mutated

class Event(**kwargs)
Bases: eventsourcing.domain.model.aggregate.Event

__module__ = 'eventsourcing.domain.model.command'

__init__(**kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'eventsourcing.domain.model.command'

done()

is_done

decorator

Decorators useful in domain models based on the classes in this library.

eventsourcing.domain.model.decorators.attribute(getter)
When used as a method decorator, returns a property object with the method as the getter and a setter defined to
call instance method change_attribute(), which publishes an AttributeChanged event.

eventsourcing.domain.model.decorators.mutator(arg=None)
Structures mutator functions by allowing handlers to be registered for different types of event. When the deco-
rated function is called with an initial value and an event, it will call the handler that has been registered for that
type of event.

It works like singledispatch, which it uses. The difference is that when the decorated function is called, this
decorator dispatches according to the type of last call arg, which fits better with reduce(). The builtin Python
function reduce() is used by the library to replay a sequence of events against an initial state. If a mutator
function is given to reduce(), along with a list of events and an initializer, reduce() will call the mutator function
once for each event in the list, but the initializer will be the first value, and the event will be the last argument, and
we want to dispatch according to the type of the event. It happens that singledispatch is coded to switch on the
type of the first argument, which makes it unsuitable for structuring a mutator function without the modifications
introduced here.

The other aspect introduced by this decorator function is the option to set the type of the handled entity in
the decorator. When an entity is replayed from scratch, in other words when all its events are replayed, the
initial state is None. The handler which handles the first event in the sequence will probably construct an object
instance. It is possible to write the type into the handler, but that makes the entity more difficult to subclass
because you will also need to write a handler for it. If the decorator is invoked with the type, when the initial
value passed as a call arg to the mutator function is None, the handler will instead receive the type of the entity,
which it can use to construct the entity object.

class Entity(object):
class Created(object):

(continues on next page)

19.1. eventsourcing 163



eventsourcing Documentation, Release 7.1.1

(continued from previous page)

pass

@mutator(Entity)
def mutate(initial, event):

raise NotImplementedError(type(event))

@mutate.register(Entity.Created)
def _(initial, event):

return initial(**event.__dict__)

entity = mutate(None, Entity.Created())

eventsourcing.domain.model.decorators.random()→ x in the interval [0, 1).

eventsourcing.domain.model.decorators.retry(exc=<class ’Exception’>, max_attempts=1,
wait=0, stall=0, verbose=False)

eventsourcing.domain.model.decorators.subscribe_to(*event_classes)
Decorator for making a custom event handler function subscribe to a certain class of event.

The decorated function will be called once for each matching event that is published, and will be given one
argument, the event, when it is called. If events are published in lists, for example the AggregateRoot publishes
a list of pending events when its __save__() method is called, then the decorated function will be called once
for each event that is an instance of the given event_class.

Please note, this decorator isn’t suitable for use with object class methods. The decorator receives in Python 3 an
unbound function, and defines a handler which it subscribes that calls the decorated function for each matching
event. However the method isn’t called on the object, so the object instance is never available in the decorator,
so the decorator can’t call a normal object method because it doesn’t have a value for ‘self’.

event_class: type used to match published events, an event matches if it is an instance of this type

The following example shows a custom handler that reacts to Todo.Created event and saves a projection of a
Todo model object.

@subscribe_to(Todo.Created)
def new_todo_projection(event):

todo = TodoProjection(id=event.originator_id, title=event.title)
todo.save()

entity

Base classes for domain entities of different kinds.

The entity module provides base classes for domain entities.

class eventsourcing.domain.model.entity.AbstractEntityRepository
Bases: eventsourcing.domain.model.entity.AbstractEventPlayer

__contains__(entity_id)
Returns True or False, according to whether or not entity exists.

__getitem__(entity_id)
Returns entity for given ID.

__module__ = 'eventsourcing.domain.model.entity'

event_store
Returns event store object used by this repository.

164 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

get_entity(entity_id, at=None)
Returns entity for given ID.

take_snapshot(entity_id, lt=None, lte=None)
Takes snapshot of entity state, using stored events. :return: Snapshot

class eventsourcing.domain.model.entity.AbstractEventPlayer
Bases: object

__dict__ = mappingproxy({'__module__': 'eventsourcing.domain.model.entity', '__dict__': <attribute '__dict__' of 'AbstractEventPlayer' objects>, '__weakref__': <attribute '__weakref__' of 'AbstractEventPlayer' objects>, '__doc__': None})

__module__ = 'eventsourcing.domain.model.entity'

__weakref__
list of weak references to the object (if defined)

class eventsourcing.domain.model.entity.DomainEntity(id)
Bases: object

Base class for domain entities.

class AttributeChanged(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.events.AttributeChanged

Published when a DomainEntity is discarded.

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

class Created(originator_topic, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.events.Created

Published when an entity is created.

__entity_kwargs__

__init__(originator_topic, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(entity_class=None)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

originator_topic

class Discarded(originator_id, **kwargs)
Bases: eventsourcing.domain.model.events.Discarded, eventsourcing.domain.
model.entity.Event

Published when a DomainEntity is discarded.

__module__ = 'eventsourcing.domain.model.entity'

19.1. eventsourcing 165



eventsourcing Documentation, Release 7.1.1

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

class Event(originator_id, **kwargs)
Bases: eventsourcing.domain.model.events.EventWithOriginatorID,
eventsourcing.domain.model.events.DomainEvent

Supertype for events of domain entities.

__check_obj__(obj)
Checks obj state before mutating.

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

__assert_not_discarded__()
Raises exception if entity has been discarded already.

__change_attribute__(name, value)
Changes named attribute with the given value, by triggering an AttributeChanged event.

classmethod __create__(originator_id=None, event_class=None, **kwargs)

__dict__ = mappingproxy({'__module__': 'eventsourcing.domain.model.entity', '__doc__': '\n Base class for domain entities.\n ', '__init__': <function DomainEntity.__init__>, 'id': <property object>, 'Event': <class 'eventsourcing.domain.model.entity.DomainEntity.Event'>, '__create__': <classmethod object>, 'Created': <class 'eventsourcing.domain.model.entity.DomainEntity.Created'>, '__change_attribute__': <function DomainEntity.__change_attribute__>, 'AttributeChanged': <class 'eventsourcing.domain.model.entity.DomainEntity.AttributeChanged'>, '__discard__': <function DomainEntity.__discard__>, 'Discarded': <class 'eventsourcing.domain.model.entity.DomainEntity.Discarded'>, '__assert_not_discarded__': <function DomainEntity.__assert_not_discarded__>, '__trigger_event__': <function DomainEntity.__trigger_event__>, '__publish__': <function DomainEntity.__publish__>, '__publish_to_subscribers__': <function DomainEntity.__publish_to_subscribers__>, '__hash__': None, '__eq__': <function DomainEntity.__eq__>, '__ne__': <function DomainEntity.__ne__>, '__dict__': <attribute '__dict__' of 'DomainEntity' objects>, '__weakref__': <attribute '__weakref__' of 'DomainEntity' objects>})

__discard__()
Discards self, by triggering a Discarded event.

__eq__(other)
Return self==value.

__hash__ = None

__init__(id)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'eventsourcing.domain.model.entity'

__ne__(other)
Return self!=value.

__publish__(event)
Publishes given event for subscribers in the application.

Parameters event – domain event or list of events

__publish_to_subscribers__(event)
Actually dispatches given event to publish-subscribe mechanism.

Parameters event – domain event or list of events

__trigger_event__(event_class, **kwargs)
Constructs, applies, and publishes a domain event.

166 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

__weakref__
list of weak references to the object (if defined)

id
Entity ID allows an entity instance to be referenced and distinguished from others, even though its state
may change over time.

class eventsourcing.domain.model.entity.EntityWithHashchain(*args, **kwargs)
Bases: eventsourcing.domain.model.entity.DomainEntity

class Created(**kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Created

__entity_kwargs__

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(entity_class=None)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

class Discarded(**kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

class Event(**kwargs)
Bases: eventsourcing.domain.model.events.EventWithHash, eventsourcing.
domain.model.entity.Event

Supertype for events of domain entities.

__check_obj__(obj)
Extends superclass method by checking the __previous_hash__ of this event matches the __head__
hash of the entity obj.

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

classmethod __create__(*args, **kwargs)

__genesis_hash__ = ''

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

19.1. eventsourcing 167



eventsourcing Documentation, Release 7.1.1

__module__ = 'eventsourcing.domain.model.entity'

__trigger_event__(event_class, **kwargs)
Constructs, applies, and publishes a domain event.

class eventsourcing.domain.model.entity.TimestampedEntity(__created_on__=None,
**kwargs)

Bases: eventsourcing.domain.model.entity.DomainEntity

class AttributeChanged(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when a TimestampedEntity is changed.

__module__ = 'eventsourcing.domain.model.entity'

class Created(originator_topic, **kwargs)
Bases: eventsourcing.domain.model.entity.Created, eventsourcing.domain.
model.entity.Event

Published when a TimestampedEntity is created.

__entity_kwargs__

__module__ = 'eventsourcing.domain.model.entity'

class Discarded(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded

Published when a TimestampedEntity is discarded.

__module__ = 'eventsourcing.domain.model.entity'

class Event(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.events.EventWithTimestamp

Supertype for events of timestamped entities.

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(obj)
Update obj with values from self.

__created_on__

__init__(__created_on__=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__last_modified__

__module__ = 'eventsourcing.domain.model.entity'

class eventsourcing.domain.model.entity.TimestampedVersionedEntity(__created_on__=None,
**kwargs)

Bases: eventsourcing.domain.model.entity.TimestampedEntity , eventsourcing.
domain.model.entity.VersionedEntity

class AttributeChanged(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.AttributeChanged, eventsourcing.domain.model.entity.
AttributeChanged

Published when a TimestampedVersionedEntity is created.

168 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

__module__ = 'eventsourcing.domain.model.entity'

class Created(originator_version=0, **kwargs)
Bases: eventsourcing.domain.model.entity.Created, eventsourcing.domain.
model.entity.Created, eventsourcing.domain.model.entity.Event

Published when a TimestampedVersionedEntity is created.

__module__ = 'eventsourcing.domain.model.entity'

class Discarded(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded, eventsourcing.domain.model.entity.Discarded

Published when a TimestampedVersionedEntity is discarded.

__module__ = 'eventsourcing.domain.model.entity'

class Event(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Event

Supertype for events of timestamped, versioned entities.

__module__ = 'eventsourcing.domain.model.entity'

__module__ = 'eventsourcing.domain.model.entity'

class eventsourcing.domain.model.entity.TimeuuidedEntity(event_id, **kwargs)
Bases: eventsourcing.domain.model.entity.DomainEntity

__created_on__

__init__(event_id, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__last_modified__

__module__ = 'eventsourcing.domain.model.entity'

class eventsourcing.domain.model.entity.TimeuuidedVersionedEntity(event_id,
**kwargs)

Bases: eventsourcing.domain.model.entity.TimeuuidedEntity , eventsourcing.
domain.model.entity.VersionedEntity

__module__ = 'eventsourcing.domain.model.entity'

class eventsourcing.domain.model.entity.VersionedEntity(__version__=None,
**kwargs)

Bases: eventsourcing.domain.model.entity.DomainEntity

class AttributeChanged(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when a VersionedEntity is changed.

__module__ = 'eventsourcing.domain.model.entity'

class Created(originator_version=0, **kwargs)
Bases: eventsourcing.domain.model.entity.Created, eventsourcing.domain.
model.entity.Event

Published when a VersionedEntity is created.

__entity_kwargs__

19.1. eventsourcing 169



eventsourcing Documentation, Release 7.1.1

__init__(originator_version=0, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.entity'

class Discarded(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded

Published when a VersionedEntity is discarded.

__module__ = 'eventsourcing.domain.model.entity'

class Event(originator_version, **kwargs)
Bases: eventsourcing.domain.model.events.EventWithOriginatorVersion,
eventsourcing.domain.model.entity.Event

Supertype for events of versioned entities.

__check_obj__(obj)
Extends superclass method by checking the event’s originator version follows (1 +) this entity’s ver-
sion.

__module__ = 'eventsourcing.domain.model.entity'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.
Parameters obj – object to be mutated
Returns mutated object

__init__(__version__=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'eventsourcing.domain.model.entity'

__trigger_event__(event_class, **kwargs)
Triggers domain event with entity’s next version number.

The event carries the version number that the originator will have when the originator is mutated with
this event. (The event’s originator version isn’t the version of the originator that triggered the event. The
Created event has version 0, and so a newly created instance is at version 0. The second event has originator
version 1, and so will the originator when the second event has been applied.)

__version__

events

Base classes for domain events of different kinds.

class eventsourcing.domain.model.events.AttributeChanged(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Can be published when an attribute of an entity is created.

__module__ = 'eventsourcing.domain.model.events'

name

value

170 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.domain.model.events.Created(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Can be published when an entity is created.

__module__ = 'eventsourcing.domain.model.events'

class eventsourcing.domain.model.events.Discarded(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Published when something is discarded.

__module__ = 'eventsourcing.domain.model.events'

class eventsourcing.domain.model.events.DomainEvent(**kwargs)
Bases: object

Base class for domain events.

Implements methods to make instances read-only, comparable for equality, have recognisable representations,
and hashable.

__dict__ = mappingproxy({'__module__': 'eventsourcing.domain.model.events', '__doc__': '\n Base class for domain events.\n\n Implements methods to make instances read-only, comparable\n for equality, have recognisable representations, and hashable.\n ', '__json_encoder_class__': <class 'eventsourcing.utils.transcoding.ObjectJSONEncoder'>, '__notifiable__': True, '__init__': <function DomainEvent.__init__>, '__repr__': <function DomainEvent.__repr__>, '__mutate__': <function DomainEvent.__mutate__>, 'mutate': <function DomainEvent.mutate>, '__setattr__': <function DomainEvent.__setattr__>, '__eq__': <function DomainEvent.__eq__>, '__ne__': <function DomainEvent.__ne__>, '__hash__': <function DomainEvent.__hash__>, '__hash_object__': <classmethod object>, '__dict__': <attribute '__dict__' of 'DomainEvent' objects>, '__weakref__': <attribute '__weakref__' of 'DomainEvent' objects>})

__eq__(other)
Tests for equality of two event objects.

__hash__()
Computes a Python integer hash for an event, using its event hash string.

Supports equality and inequality comparisons.

classmethod __hash_object__(obj)

__init__(**kwargs)
Initialises event attribute values directly from constructor kwargs.

__json_encoder_class__
alias of eventsourcing.utils.transcoding.ObjectJSONEncoder

__module__ = 'eventsourcing.domain.model.events'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.

Parameters obj – object to be mutated

Returns mutated object

__ne__(other)
Negates the equality test.

__notifiable__ = True

__repr__()
Returns string representing the type and attribute values of the event.

__setattr__(key, value)
Inhibits event attributes from being updated by assignment.

__weakref__
list of weak references to the object (if defined)

19.1. eventsourcing 171



eventsourcing Documentation, Release 7.1.1

mutate(obj)
Convenience for use in custom models, to update obj with values from self without needing to call super
method and return obj (two extra lines).

Can be overridden by subclasses. Any value returned by this method will be ignored.

Please note, subclasses that extend mutate() might not have fully completed that method before this method
is called. To ensure all base classes have completed their mutate behaviour before mutating an event in a
concrete class, extend mutate() instead of overriding this method.

Parameters obj – object to be mutated

exception eventsourcing.domain.model.events.EventHandlersNotEmptyError
Bases: Exception

__module__ = 'eventsourcing.domain.model.events'

__weakref__
list of weak references to the object (if defined)

class eventsourcing.domain.model.events.EventWithHash(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Base class for domain events.

Implements methods to make instances read-only, comparable for equality, have recognisable representations,
and hashable.

__check_hash__()

__event_hash__

__hash__()
Computes a Python integer hash for an event, using its event hash string.

Supports equality and inequality comparisons.

__init__(**kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.events'

__mutate__(obj)
Update obj with values from self.

Can be extended, but subclasses must call super method, and return an object.

Parameters obj – object to be mutated

Returns mutated object

class eventsourcing.domain.model.events.EventWithOriginatorID(originator_id,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

__init__(originator_id, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.events'

originator_id

class eventsourcing.domain.model.events.EventWithOriginatorVersion(originator_version,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

For events that have an originator version number.

172 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

__init__(originator_version, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.events'

originator_version

class eventsourcing.domain.model.events.EventWithTimestamp(timestamp=None,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

For events that have a timestamp value.

__init__(timestamp=None, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.events'

timestamp

class eventsourcing.domain.model.events.EventWithTimeuuid(event_id=None,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

For events that have an UUIDv1 event ID.

__init__(event_id=None, **kwargs)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.events'

event_id

class eventsourcing.domain.model.events.Logged(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Published when something is logged.

__module__ = 'eventsourcing.domain.model.events'

eventsourcing.domain.model.events.assert_event_handlers_empty()

eventsourcing.domain.model.events.clear_event_handlers()

eventsourcing.domain.model.events.create_timesequenced_event_id()

eventsourcing.domain.model.events.publish(event)

eventsourcing.domain.model.events.subscribe(handler, predicate=None)

eventsourcing.domain.model.events.unsubscribe(handler, predicate=None)

snapshot

Snapshotting is implemented in the domain layer as an event.

class eventsourcing.domain.model.snapshot.AbstractSnapshop
Bases: abc.ABC

__abstractmethods__ = frozenset({'originator_id', 'originator_version', 'topic', 'state'})

__dict__ = mappingproxy({'__module__': 'eventsourcing.domain.model.snapshot', 'topic': <property object>, 'state': <property object>, 'originator_id': <property object>, 'originator_version': <property object>, '__dict__': <attribute '__dict__' of 'AbstractSnapshop' objects>, '__weakref__': <attribute '__weakref__' of 'AbstractSnapshop' objects>, '__doc__': None, '__abstractmethods__': frozenset({'originator_id', 'originator_version', 'topic', 'state'}), '_abc_impl': <_abc_data object>})

__module__ = 'eventsourcing.domain.model.snapshot'

__weakref__
list of weak references to the object (if defined)

19.1. eventsourcing 173



eventsourcing Documentation, Release 7.1.1

originator_id
ID of the snapshotted entity.

originator_version
Version of the last event applied to the entity.

state
State of the snapshotted entity.

topic
Path to the class of the snapshotted entity.

class eventsourcing.domain.model.snapshot.Snapshot(originator_id, originator_version,
topic, state)

Bases: eventsourcing.domain.model.events.EventWithTimestamp, eventsourcing.
domain.model.events.EventWithOriginatorVersion, eventsourcing.domain.
model.events.EventWithOriginatorID, eventsourcing.domain.model.snapshot.
AbstractSnapshop

__abstractmethods__ = frozenset()

__init__(originator_id, originator_version, topic, state)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.snapshot'

state
State of the snapshotted entity.

topic
Path to the class of the snapshotted entity.

timebucketedlog

Time-bucketed logs allow a sequence of the items that is sequenced by timestamp to be split across a number of
different database partitions, which avoids one partition becoming very large (and then unworkable).

class eventsourcing.domain.model.timebucketedlog.MessageLogged(message, origi-
nator_id)

Bases: eventsourcing.domain.model.events.EventWithTimestamp, eventsourcing.
domain.model.events.EventWithOriginatorID, eventsourcing.domain.model.
events.Logged

__init__(message, originator_id)
Initialises event attribute values directly from constructor kwargs.

__module__ = 'eventsourcing.domain.model.timebucketedlog'

message

class eventsourcing.domain.model.timebucketedlog.Timebucketedlog(name,
bucket_size=None,
**kwargs)

Bases: eventsourcing.domain.model.entity.TimestampedVersionedEntity

class BucketSizeChanged(originator_version, **kwargs)
Bases: eventsourcing.domain.model.timebucketedlog.Event, eventsourcing.
domain.model.entity.AttributeChanged

__module__ = 'eventsourcing.domain.model.timebucketedlog'

174 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class Event(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Supertype for events of time-bucketed log.

__module__ = 'eventsourcing.domain.model.timebucketedlog'

class Started(originator_version=0, **kwargs)
Bases: eventsourcing.domain.model.entity.Created, eventsourcing.domain.
model.timebucketedlog.Event

__module__ = 'eventsourcing.domain.model.timebucketedlog'

__init__(name, bucket_size=None, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__module__ = 'eventsourcing.domain.model.timebucketedlog'

bucket_size

log_message(message)

name

started_on

class eventsourcing.domain.model.timebucketedlog.TimebucketedlogRepository
Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

__module__ = 'eventsourcing.domain.model.timebucketedlog'

get_or_create(log_name, bucket_size)
Gets or creates a log.

Return type Timebucketedlog

eventsourcing.domain.model.timebucketedlog.bucket_duration(bucket_size)

eventsourcing.domain.model.timebucketedlog.bucket_starts(timestamp, bucket_size)

eventsourcing.domain.model.timebucketedlog.make_timebucket_id(log_id,
timestamp,
bucket_size)

eventsourcing.domain.model.timebucketedlog.next_bucket_starts(timestamp,
bucket_size)

eventsourcing.domain.model.timebucketedlog.previous_bucket_starts(timestamp,
bucket_size)

eventsourcing.domain.model.timebucketedlog.start_new_timebucketedlog(name,
bucket_size=None)

eventsourcing.domain.model.timebucketedlog.timestamp_from_datetime(dt)

19.1.3 infrastructure

The infrastructure layer adapts external devices in ways that are useful for the application, such as the way an event
store encapsulates a database.

base

Abstract base classes for the infrastructure layer.

19.1. eventsourcing 175



eventsourcing Documentation, Release 7.1.1

class eventsourcing.infrastructure.base.ACIDRecordManager(record_class, se-
quenced_item_class=<class
’eventsourc-
ing.infrastructure.sequenceditem.SequencedItem’>,
contigu-
ous_record_ids=False,
applica-
tion_name=None,
pipeline_id=0)

Bases: eventsourcing.infrastructure.base.AbstractSequencedItemRecordManager

ACID record managers can write tracking records and event records in an atomic transaction, needed for atomic
processing in process applications.

get_max_record_id()
Return maximum notification ID in pipeline.

get_max_tracking_record_id(upstream_application_name)
Return maximum tracking record ID for notification from upstream application in pipeline.

get_pipeline_and_notification_id(sequence_id, position)
Returns pipeline ID and notification ID for event at given position in given sequence.

has_tracking_record(upstream_application_name, pipeline_id, notification_id)
True if tracking record exists for notification from upstream in pipeline.

tracking_record_class = None

tracking_record_field_names = ['application_name', 'upstream_application_name', 'pipeline_id', 'notification_id']

write_records(records, tracking_kwargs=None)
Writes tracking, event and notification records for a process event.

class eventsourcing.infrastructure.base.AbstractSequencedItemRecordManager(record_class,
se-
quenced_item_class=<class
’eventsourc-
ing.infrastructure.sequenceditem.SequencedItem’>,
con-
tigu-
ous_record_ids=False,
ap-
pli-
ca-
tion_name=None,
pipeline_id=0)

Bases: abc.ABC

all_sequence_ids()
Returns all sequence IDs.

clone(application_name, pipeline_id, **kwargs)

delete_record(record)
Removes permanently given record from the table.

from_record(record)
Constructs and returns a sequenced item object, from given ORM object.

get_field_kwargs(item)

176 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

get_item(sequence_id, position)
Gets sequenced item from the datastore.

get_items(sequence_id, gt=None, gte=None, lt=None, lte=None, limit=None,
query_ascending=True, results_ascending=True)

Returns sequenced item generator.

get_notifications(start=None, stop=None, *args, **kwargs)
Returns records sequenced by notification ID, from application, for pipeline, in given range.

Args ‘start’ and ‘stop’ are positions in a zero-based integer sequence.

get_record(sequence_id, position)
Gets record at position in sequence.

get_records(sequence_id, gt=None, gte=None, lt=None, lte=None, limit=None,
query_ascending=True, results_ascending=True)

Returns records for a sequence.

list_items(*args, **kwargs)
Returns list of sequenced items.

list_sequence_ids()

raise_index_error(position)

raise_operational_error(e)

raise_record_integrity_error(e)

raise_sequenced_item_conflict()

record_sequenced_item(sequenced_item)
Writes sequenced item into the datastore.

record_sequenced_items(sequenced_item_or_items)
Writes sequenced item(s) into the datastore.

to_record(sequenced_item)
Constructs a record object from given sequenced item object.

class eventsourcing.infrastructure.base.SQLRecordManager(*args, **kwargs)
Bases: eventsourcing.infrastructure.base.ACIDRecordManager

This is has code common to (extracted from) the SQLAlchemy and Django record managers.

This makes the subclasses harder to read and probably more brittle. So it might be better to inline this with
the subclasses, so that each looks more like normal Django or SQLAlchemy code. Also, the record manager
test cases don’t cover the notification log and tracking record functionality needed by ProcessApplication, and
should so that other record managers can more easily be developed.

_prepare_insert(tmpl, record_class, field_names, placeholder_for_id=False)
Compile SQL statement with placeholders for bind parameters.

get_record_table_name(record_class)
Returns table name - used in raw queries.

Return type str

insert_select_max
SQL statement that inserts records with contiguous IDs, by selecting max ID from indexed table records.

insert_tracking_record
SQL statement that inserts tracking records.

19.1. eventsourcing 177



eventsourcing Documentation, Release 7.1.1

insert_values
SQL statement that inserts records without ID.

record_sequenced_items(sequenced_item_or_items)
Writes sequenced item(s) into the datastore.

to_records(sequenced_item_or_items)

cassandra

Classes for event sourcing with Apache Cassandra.

class eventsourcing.infrastructure.cassandra.datastore.CassandraDatastore(tables,
*args,
**kwargs)

Bases: eventsourcing.infrastructure.datastore.Datastore

close_connection()
Drops connection to a datastore.

drop_table(*_)

drop_tables()
Drops tables used to store events.

setup_connection()
Sets up a connection to a datastore.

setup_tables()
Sets up tables used to store events.

truncate_tables()
Truncates tables used to store events.

class eventsourcing.infrastructure.cassandra.datastore.CassandraSettings(hosts=None,
port=None,
pro-
to-
col_version=None,
de-
fault_keyspace=None,
con-
sis-
tency=None,
repli-
ca-
tion_factor=None,
user-
name=None,
pass-
word=None)

Bases: eventsourcing.infrastructure.datastore.DatastoreSettings

CONSISTENCY_LEVEL = 'LOCAL_QUORUM'

DEFAULT_KEYSPACE = 'eventsourcing'

HOSTS = ['127.0.0.1']

PORT = 9042

178 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

PROTOCOL_VERSION = 3

REPLICATION_FACTOR = 1

class eventsourcing.infrastructure.cassandra.factory.CassandraInfrastructureFactory(record_manager_class=None,
se-
quenced_item_class=None,
in-
te-
ger_sequenced_record_class=None,
times-
tamp_sequenced_record_class=None,
snap-
shot_record_class=None,
con-
tigu-
ous_record_ids=False,
ap-
pli-
ca-
tion_name=None,
pipeline_id=0)

Bases: eventsourcing.infrastructure.factory.InfrastructureFactory

integer_sequenced_record_class
alias of eventsourcing.infrastructure.cassandra.records.
IntegerSequencedRecord

record_manager_class
alias of eventsourcing.infrastructure.cassandra.manager.
CassandraRecordManager

snapshot_record_class
alias of eventsourcing.infrastructure.cassandra.records.SnapshotRecord

timestamp_sequenced_record_class
alias of eventsourcing.infrastructure.cassandra.records.
TimestampSequencedRecord

class eventsourcing.infrastructure.cassandra.manager.CassandraRecordManager(record_class,
se-
quenced_item_class=<class
’eventsourc-
ing.infrastructure.sequenceditem.SequencedItem’>,
con-
tigu-
ous_record_ids=False,
ap-
pli-
ca-
tion_name=None,
pipeline_id=0)

Bases: eventsourcing.infrastructure.base.AbstractSequencedItemRecordManager

all_sequence_ids()
Returns all sequence IDs.

delete_record(record)
Removes permanently given record from the table.

19.1. eventsourcing 179



eventsourcing Documentation, Release 7.1.1

filter(**kwargs)

get_notifications(start=None, stop=None, *args, **kwargs)
Not implemented.

get_record(sequence_id, position)
Gets record at position in sequence.

get_records(sequence_id, gt=None, gte=None, lt=None, lte=None, limit=None,
query_ascending=True, results_ascending=True)

Returns records for a sequence.

record_sequenced_items(sequenced_item_or_items)
Writes sequenced item(s) into the datastore.

class eventsourcing.infrastructure.cassandra.records.IntegerSequencedRecord(**values)
Bases: cassandra.cqlengine.models.Model

Stores integer-sequenced items in Cassandra.

exception DoesNotExist
Bases: cassandra.cqlengine.models.DoesNotExist

exception MultipleObjectsReturned
Bases: cassandra.cqlengine.models.MultipleObjectsReturned

pk = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

position = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

sequence_id = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

state = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

topic = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

class eventsourcing.infrastructure.cassandra.records.SnapshotRecord(**values)
Bases: cassandra.cqlengine.models.Model

Stores snapshots in Cassandra.

exception DoesNotExist
Bases: cassandra.cqlengine.models.DoesNotExist

exception MultipleObjectsReturned
Bases: cassandra.cqlengine.models.MultipleObjectsReturned

pk = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

position = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

sequence_id = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

state = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

topic = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

class eventsourcing.infrastructure.cassandra.records.StoredEventRecord(**values)
Bases: cassandra.cqlengine.models.Model

Stores integer-sequenced items in Cassandra.

exception DoesNotExist
Bases: cassandra.cqlengine.models.DoesNotExist

exception MultipleObjectsReturned
Bases: cassandra.cqlengine.models.MultipleObjectsReturned

180 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

originator_id = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

originator_version = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

pk = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

state = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

topic = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

class eventsourcing.infrastructure.cassandra.records.TimestampSequencedRecord(**values)
Bases: cassandra.cqlengine.models.Model

Stores timestamp-sequenced items in Cassandra.

exception DoesNotExist
Bases: cassandra.cqlengine.models.DoesNotExist

exception MultipleObjectsReturned
Bases: cassandra.cqlengine.models.MultipleObjectsReturned

pk = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

position = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

sequence_id = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

state = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

topic = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

class eventsourcing.infrastructure.cassandra.records.TimeuuidSequencedRecord(**values)
Bases: cassandra.cqlengine.models.Model

Stores timeuuid-sequenced items in Cassandra.

exception DoesNotExist
Bases: cassandra.cqlengine.models.DoesNotExist

exception MultipleObjectsReturned
Bases: cassandra.cqlengine.models.MultipleObjectsReturned

pk = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

position = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

sequence_id = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

state = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

topic = <cassandra.cqlengine.models.ColumnQueryEvaluator object>

datastore

Base classes for concrete datastore classes.

class eventsourcing.infrastructure.datastore.Datastore(settings)
Bases: abc.ABC

close_connection()
Drops connection to a datastore.

drop_tables()
Drops tables used to store events.

19.1. eventsourcing 181



eventsourcing Documentation, Release 7.1.1

setup_connection()
Sets up a connection to a datastore.

setup_tables()
Sets up tables used to store events.

truncate_tables()
Truncates tables used to store events.

exception eventsourcing.infrastructure.datastore.DatastoreConnectionError
Bases: eventsourcing.infrastructure.datastore.DatastoreError

exception eventsourcing.infrastructure.datastore.DatastoreError
Bases: Exception

class eventsourcing.infrastructure.datastore.DatastoreSettings
Bases: object

Base class for settings for database connection used by a stored event repository.

exception eventsourcing.infrastructure.datastore.DatastoreTableError
Bases: eventsourcing.infrastructure.datastore.DatastoreError

django

A Django application for event sourcing with the Django ORM.

class eventsourcing.infrastructure.django.factory.DjangoInfrastructureFactory(record_manager_class=None,
se-
quenced_item_class=None,
in-
te-
ger_sequenced_record_class=None,
times-
tamp_sequenced_record_class=None,
snap-
shot_record_class=None,
con-
tigu-
ous_record_ids=False,
ap-
pli-
ca-
tion_name=None,
pipeline_id=0)

Bases: eventsourcing.infrastructure.factory.InfrastructureFactory

integer_sequenced_record_class
alias of eventsourcing.infrastructure.django.models.IntegerSequencedRecord

record_manager_class
alias of eventsourcing.infrastructure.django.manager.DjangoRecordManager

snapshot_record_class
alias of eventsourcing.infrastructure.django.models.SnapshotRecord

timestamp_sequenced_record_class
alias of eventsourcing.infrastructure.django.models.
TimestampSequencedRecord

182 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.infrastructure.django.manager.DjangoRecordManager(*args,
**kwargs)

Bases: eventsourcing.infrastructure.base.SQLRecordManager

_prepare_insert(tmpl, record_class, field_names, placeholder_for_id=False)
With transaction isolation level of “read committed” this should generate records with a contiguous se-
quence of integer IDs, using an indexed ID column, the database-side SQL max function, the insert-select-
from form, and optimistic concurrency control.

all_sequence_ids()
Returns all sequence IDs.

delete_record(record)
Permanently removes record from table.

get_max_record_id()
Return maximum notification ID in pipeline.

get_max_tracking_record_id(upstream_application_name)
Return maximum tracking record ID for notification from upstream application in pipeline.

get_notifications(start=None, stop=None, *args, **kwargs)
Returns all records in the table.

get_record(sequence_id, position)
Gets record at position in sequence.

get_record_table_name(record_class)
Returns table name from SQLAlchemy record class.

get_records(sequence_id, gt=None, gte=None, lt=None, lte=None, limit=None,
query_ascending=True, results_ascending=True)

Returns records for a sequence.

has_tracking_record(upstream_application_name, pipeline_id, notification_id)
True if tracking record exists for notification from upstream in pipeline.

tracking_record_class
alias of eventsourcing.infrastructure.django.models.
NotificationTrackingRecord

write_records(records, tracking_kwargs=None)
Writes tracking, event and notification records for a process event.

class eventsourcing.infrastructure.django.models.EntitySnapshotRecord(uid,
appli-
ca-
tion_name,
orig-
ina-
tor_id,
orig-
ina-
tor_version,
topic,
state)

Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

19.1. eventsourcing 183



eventsourcing Documentation, Release 7.1.1

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

application_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

originator_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

originator_version
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

topic
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

uid
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class eventsourcing.infrastructure.django.models.IntegerSequencedRecord(id,
se-
quence_id,
po-
si-
tion,
topic,
state)

Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

position
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

sequence_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

184 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

topic
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class eventsourcing.infrastructure.django.models.NotificationTrackingRecord(uid,
ap-
pli-
ca-
tion_name,
up-
stream_application_name,
pipeline_id,
no-
ti-
fi-
ca-
tion_id)

Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

application_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

notification_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

pipeline_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

uid
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

upstream_application_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class eventsourcing.infrastructure.django.models.SnapshotRecord(uid, se-
quence_id,
position, topic,
state)

Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

objects = <django.db.models.manager.Manager object>

19.1. eventsourcing 185



eventsourcing Documentation, Release 7.1.1

position
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

sequence_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

topic
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

uid
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class eventsourcing.infrastructure.django.models.StoredEventRecord(uid,
applica-
tion_name,
origina-
tor_id,
origina-
tor_version,
pipeline_id,
notifica-
tion_id,
topic,
state,
causal_dependencies)

Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

application_name
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

causal_dependencies
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

notification_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

originator_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

originator_version
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is

186 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

executed.

pipeline_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

topic
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

uid
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class eventsourcing.infrastructure.django.models.TimestampSequencedRecord(id,
se-
quence_id,
po-
si-
tion,
topic,
state)

Bases: django.db.models.base.Model

exception DoesNotExist
Bases: django.core.exceptions.ObjectDoesNotExist

exception MultipleObjectsReturned
Bases: django.core.exceptions.MultipleObjectsReturned

id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

position
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

sequence_id
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

state
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

topic
A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

eventsourcing.infrastructure.django.utils.close_django_connection()

eventsourcing.infrastructure.django.utils.setup_django()

19.1. eventsourcing 187



eventsourcing Documentation, Release 7.1.1

eventplayer

Base classes for event players of different kinds.

class eventsourcing.infrastructure.eventplayer.EventPlayer(event_store, snap-
shot_strategy=None,
use_cache=False,
mutator_func=None)

Bases: eventsourcing.domain.model.entity.AbstractEventPlayer

event_store

static mutate(initial, event)

project_events(initial_state, domain_events)
Evolves initial state using the sequence of domain events and a mutator function.

eventsourcedrepository

Base classes for event sourced repositories (not abstract, can be used directly).

class eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository(event_store,
snap-
shot_strategy=None,
use_cache=False,
mu-
ta-
tor_func=None)

Bases: eventsourcing.infrastructure.eventplayer.EventPlayer, eventsourcing.
domain.model.entity.AbstractEntityRepository

__contains__(entity_id)
Returns a boolean value according to whether entity with given ID exists.

__getitem__(entity_id)
Returns entity with given ID.

get_and_project_events(entity_id, gt=None, gte=None, lt=None, lte=None, limit=None, ini-
tial_state=None, query_descending=False)

Reconstitutes requested domain entity from domain events found in event store.

get_entity(entity_id, at=None)
Returns entity with given ID, optionally until position.

take_snapshot(entity_id, lt=None, lte=None)
Takes a snapshot of the entity as it existed after the most recent event, optionally less than, or less than or
equal to, a particular position.

eventstore

The event store provides the application-level interface to the event sourcing persistence mechanism.

class eventsourcing.infrastructure.eventstore.AbstractEventStore
Bases: abc.ABC

Abstract base class for event stores. Defines the methods expected of an event store by other classes in the
library.

all_domain_events()
Returns all domain events in the event store.

188 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

get_domain_event(originator_id, position)
Returns a single domain event.

get_domain_events(originator_id, gt=None, gte=None, lt=None, lte=None, limit=None,
is_ascending=True, page_size=None)

Returns domain events for given entity ID.

get_most_recent_event(originator_id, lt=None, lte=None)
Returns most recent domain event for given entity ID.

store(domain_event_or_events)
Put domain event in event store for later retrieval.

class eventsourcing.infrastructure.eventstore.EventStore(record_manager, se-
quenced_item_mapper)

Bases: eventsourcing.infrastructure.eventstore.AbstractEventStore

Event store appends domain events to stored sequences. It uses a record manager to map named tuples to
database records, and it uses a sequenced item mapper to map named tuples to application-level objects.

__init__(record_manager, sequenced_item_mapper)
Initialises event store object.

Parameters

• record_manager – record manager

• sequenced_item_mapper – sequenced item mapper

all_domain_events()
Yields all domain events in the event store.

get_domain_event(originator_id, position)
Gets a domain event from the sequence identified by originator_id at position eq.

Parameters

• originator_id – ID of a sequence of events

• position – get item at this position

Returns domain event

get_domain_events(originator_id, gt=None, gte=None, lt=None, lte=None, limit=None,
is_ascending=True, page_size=None)

Gets domain events from the sequence identified by originator_id.

Parameters

• originator_id – ID of a sequence of events

• gt – get items after this position

• gte – get items at or after this position

• lt – get items before this position

• lte – get items before or at this position

• limit – get limited number of items

• is_ascending – get items from lowest position

• page_size – restrict and repeat database query

Returns list of domain events

19.1. eventsourcing 189



eventsourcing Documentation, Release 7.1.1

get_most_recent_event(originator_id, lt=None, lte=None)
Gets a domain event from the sequence identified by originator_id at the highest position.

Parameters

• originator_id – ID of a sequence of events

• lt – get highest before this position

• lte – get highest at or before this position

Returns domain event

item_from_event(domain_event_or_events)
Maps domain event to sequenced item namedtuple.

Parameters domain_event_or_events – application-level object (or list)

Returns namedtuple: sequence item namedtuple (or list)

iterator_class
alias of eventsourcing.infrastructure.iterators.SequencedItemIterator

store(domain_event_or_events)
Appends given domain event, or list of domain events, to their sequence.

Parameters domain_event_or_events – domain event, or list of domain events

integersequencegenerators

Different ways of generating sequences of integers.

class eventsourcing.infrastructure.integersequencegenerators.base.AbstractIntegerSequenceGenerator
Bases: object

__next__()
Returns the next item in the container.

class eventsourcing.infrastructure.integersequencegenerators.base.SimpleIntegerSequenceGenerator(i=0)
Bases: eventsourcing.infrastructure.integersequencegenerators.base.
AbstractIntegerSequenceGenerator

class eventsourcing.infrastructure.integersequencegenerators.redisincr.RedisIncr(redis=None,
key=None)

Bases: eventsourcing.infrastructure.integersequencegenerators.base.
AbstractIntegerSequenceGenerator

Generates a sequence of integers, using Redis’ INCR command.

Maximum number is 2**63, or 9223372036854775807, the maximum value of a 64 bit signed integer.

iterators

Different ways of getting sequenced items from a datastore.

190 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.infrastructure.iterators.AbstractSequencedItemIterator(record_manager,
se-
quence_id,
page_size=None,
gt=None,
gte=None,
lt=None,
lte=None,
limit=None,
is_ascending=True)

Bases: abc.ABC

DEFAULT_PAGE_SIZE = 1000

__iter__()
Yields a continuous sequence of items.

_inc_page_counter()
Increments the page counter.

Each query result as a page, even if there are no items in the page. This really counts queries.

• it is easy to divide the number of events by the page size if the “correct” answer is required

• there will be a difference in the counts when the number of events can be exactly divided by the
page size, because there is no way to know in advance that a full page is also the last page.

_inc_query_counter()
Increments the query counter.

class eventsourcing.infrastructure.iterators.GetEntityEventsThread(record_manager,
se-
quence_id,
gt=None,
gte=None,
lt=None,
lte=None,
page_size=None,
is_ascending=True,
*args,
**kwargs)

Bases: threading.Thread

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

class eventsourcing.infrastructure.iterators.SequencedItemIterator(record_manager,
se-
quence_id,
page_size=None,
gt=None,
gte=None,
lt=None,
lte=None,
limit=None,
is_ascending=True)

19.1. eventsourcing 191



eventsourcing Documentation, Release 7.1.1

Bases: eventsourcing.infrastructure.iterators.AbstractSequencedItemIterator

__iter__()
Yields a continuous sequence of items from “pages” of sequenced items retrieved using the record manager.

class eventsourcing.infrastructure.iterators.ThreadedSequencedItemIterator(record_manager,
se-
quence_id,
page_size=None,
gt=None,
gte=None,
lt=None,
lte=None,
limit=None,
is_ascending=True)

Bases: eventsourcing.infrastructure.iterators.AbstractSequencedItemIterator

start_thread()

repositories

Repository base classes for entity classes defined in the library.

class eventsourcing.infrastructure.repositories.array.ArrayRepository(array_size=10000,
*args,
**kwargs)

Bases: eventsourcing.domain.model.array.AbstractArrayRepository ,
eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository

class eventsourcing.infrastructure.repositories.array.BigArrayRepository(array_size=10000,
*args,
**kwargs)

Bases: eventsourcing.domain.model.array.AbstractBigArrayRepository ,
eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository

subrepo
Sub-sequence repository.

subrepo_class
alias of ArrayRepository

class eventsourcing.infrastructure.repositories.collection_repo.CollectionRepository(event_store,
snap-
shot_strategy=None,
use_cache=False,
mu-
ta-
tor_func=None)

Bases: eventsourcing.infrastructure.eventsourcedrepository.
EventSourcedRepository , eventsourcing.domain.model.collection.
AbstractCollectionRepository

Event sourced repository for the Collection domain model entity.

192 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.infrastructure.repositories.timebucketedlog_repo.TimebucketedlogRepo(event_store,
snap-
shot_strategy=None,
use_cache=False,
mu-
ta-
tor_func=None)

Bases: eventsourcing.infrastructure.eventsourcedrepository.
EventSourcedRepository , eventsourcing.domain.model.timebucketedlog.
TimebucketedlogRepository

Event sourced repository for the Example domain model entity.

sequenceditem

The persistence model for storing events.

class eventsourcing.infrastructure.sequenceditem.SequencedItem(sequence_id,
position, topic,
state)

Bases: tuple

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

static __new__(_cls, sequence_id, position, topic, state)
Create new instance of SequencedItem(sequence_id, position, topic, state)

__repr__()
Return a nicely formatted representation string

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable)
Make a new SequencedItem object from a sequence or iterable

_replace(**kwds)
Return a new SequencedItem object replacing specified fields with new values

position
Alias for field number 1

sequence_id
Alias for field number 0

state
Alias for field number 3

topic
Alias for field number 2

class eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames(sequenced_item_class)
Bases: object

other_names

position

sequence_id

state

19.1. eventsourcing 193



eventsourcing Documentation, Release 7.1.1

topic

class eventsourcing.infrastructure.sequenceditem.StoredEvent(originator_id,
originator_version,
topic, state)

Bases: tuple

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

static __new__(_cls, originator_id, originator_version, topic, state)
Create new instance of StoredEvent(originator_id, originator_version, topic, state)

__repr__()
Return a nicely formatted representation string

_asdict()
Return a new OrderedDict which maps field names to their values.

classmethod _make(iterable)
Make a new StoredEvent object from a sequence or iterable

_replace(**kwds)
Return a new StoredEvent object replacing specified fields with new values

originator_id
Alias for field number 0

originator_version
Alias for field number 1

state
Alias for field number 3

topic
Alias for field number 2

sequenceditemmapper

The sequenced item mapper maps sequenced items to application-level objects.

class eventsourcing.infrastructure.sequenceditemmapper.AbstractSequencedItemMapper
Bases: abc.ABC

event_from_item(sequenced_item)
Constructs and returns a domain event for given sequenced item.

item_from_event(domain_event)
Constructs and returns a sequenced item for given domain event.

194 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

class eventsourcing.infrastructure.sequenceditemmapper.SequencedItemMapper(sequenced_item_class=<class
’eventsourc-
ing.infrastructure.sequenceditem.SequencedItem’>,
se-
quence_id_attr_name=None,
po-
si-
tion_attr_name=None,
json_encoder_class=None,
json_decoder_class=None,
ci-
pher=None,
other_attr_names=())

Bases: eventsourcing.infrastructure.sequenceditemmapper.
AbstractSequencedItemMapper

Uses JSON to transcode domain events.

construct_item_args(domain_event)
Constructs attributes of a sequenced item from the given domain event.

construct_sequenced_item(item_args)

event_from_item(sequenced_item)
Reconstructs domain event from stored event topic and event attrs. Used in the event store when getting
domain events.

event_from_topic_and_state(topic, state)

get_event_class_and_attrs(topic, state)

get_item_topic_and_state(domain_event_class, event_attrs)

item_from_event(domain_event)
Constructs a sequenced item from a domain event.

eventsourcing.infrastructure.sequenceditemmapper.reconstruct_object(obj_class,
obj_state)

snapshotting

Snapshotting avoids having to replay an entire sequence of events to obtain the current state of a projection.

class eventsourcing.infrastructure.snapshotting.AbstractSnapshotStrategy
Bases: abc.ABC

get_snapshot(entity_id, lt=None, lte=None)
Gets the last snapshot for entity, optionally until a particular version number.

Return type Snapshot

take_snapshot(entity_id, entity, last_event_version)
Takes a snapshot of entity, using given ID, state and version number.

Return type AbstractSnapshop

class eventsourcing.infrastructure.snapshotting.EventSourcedSnapshotStrategy(snapshot_store)
Bases: eventsourcing.infrastructure.snapshotting.AbstractSnapshotStrategy

Snapshot strategy that uses an event sourced snapshot.

19.1. eventsourcing 195



eventsourcing Documentation, Release 7.1.1

get_snapshot(entity_id, lt=None, lte=None)
Gets the last snapshot for entity, optionally until a particular version number.

Return type Snapshot

take_snapshot(entity_id, entity, last_event_version)
Creates a Snapshot from the given state, and appends it to the snapshot store.

Return type Snapshot

eventsourcing.infrastructure.snapshotting.entity_from_snapshot(snapshot)
Reconstructs domain entity from given snapshot.

sqlalchemy

Classes for event sourcing with SQLAlchemy.

class eventsourcing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore(base=<class
’sqlalchemy.ext.declarative.api.Base’>,
ta-
bles=None,
con-
nec-
tion_strategy=’plain’,
ses-
sion=None,
**kwargs)

Bases: eventsourcing.infrastructure.datastore.Datastore

close_connection()
Drops connection to a datastore.

drop_table(table)

drop_tables()
Drops tables used to store events.

is_sqlite()

session

setup_connection()
Sets up a connection to a datastore.

setup_table(table)

setup_tables(tables=None)
Sets up tables used to store events.

truncate_tables()
Truncates tables used to store events.

class eventsourcing.infrastructure.sqlalchemy.datastore.SQLAlchemySettings(uri=None,
pool_size=None)

Bases: eventsourcing.infrastructure.datastore.DatastoreSettings

class eventsourcing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory(session,
uri=None,
pool_size=None,
*args,
**kwargs)

Bases: eventsourcing.infrastructure.factory.InfrastructureFactory

196 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

construct_datastore()

construct_record_manager(**kwargs)

integer_sequenced_record_class
alias of eventsourcing.infrastructure.sqlalchemy.records.
IntegerSequencedWithIDRecord

record_manager_class
alias of eventsourcing.infrastructure.sqlalchemy.manager.
SQLAlchemyRecordManager

snapshot_record_class
alias of eventsourcing.infrastructure.sqlalchemy.records.SnapshotRecord

timestamp_sequenced_record_class
alias of eventsourcing.infrastructure.sqlalchemy.records.
TimestampSequencedNoIDRecord

eventsourcing.infrastructure.sqlalchemy.factory.construct_sqlalchemy_eventstore(session,
se-
quenced_item_class=None,
se-
quence_id_attr_name=None,
po-
si-
tion_attr_name=None,
json_encoder_class=None,
json_decoder_class=None,
ci-
pher=None,
record_class=None,
con-
tigu-
ous_record_ids=False,
ap-
pli-
ca-
tion_name=None,
pipeline_id=0)

class eventsourcing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager(session,
*args,
**kwargs)

Bases: eventsourcing.infrastructure.base.SQLRecordManager

_prepare_insert(tmpl, record_class, field_names, placeholder_for_id=False)
With transaction isolation level of “read committed” this should generate records with a contiguous se-
quence of integer IDs, assumes an indexed ID column, the database-side SQL max function, the insert-
select-from form, and optimistic concurrency control.

all_sequence_ids()
Returns all sequence IDs.

clone(**kwargs)

delete_record(record)
Permanently removes record from table.

filter_by(**kwargs)

19.1. eventsourcing 197



eventsourcing Documentation, Release 7.1.1

get_max_record_id()
Return maximum notification ID in pipeline.

get_max_tracking_record_id(upstream_application_name)
Return maximum tracking record ID for notification from upstream application in pipeline.

get_notifications(start=None, stop=None, *args, **kwargs)
Returns records sequenced by notification ID, from application, for pipeline, in given range.

Args ‘start’ and ‘stop’ are positions in a zero-based integer sequence.

get_record(sequence_id, position)
Gets record at position in sequence.

get_record_table_name(record_class)
Returns table name - used in raw queries.

Return type str

get_records(sequence_id, gt=None, gte=None, lt=None, lte=None, limit=None,
query_ascending=True, results_ascending=True)

Returns records for a sequence.

has_tracking_record(upstream_application_name, pipeline_id, notification_id)
True if tracking record exists for notification from upstream in pipeline.

orm_query()

tracking_record_class
alias of eventsourcing.infrastructure.sqlalchemy.records.
NotificationTrackingRecord

write_records(records, tracking_kwargs=None)
Writes tracking, event and notification records for a process event.

class eventsourcing.infrastructure.sqlalchemy.records.EntitySnapshotRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

application_name

originator_id

originator_version

state

topic

class eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedNoIDRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

198 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

position

sequence_id

state

topic

eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedRecord
alias of eventsourcing.infrastructure.sqlalchemy.records.
IntegerSequencedWithIDRecord

class eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

id

position

sequence_id

state

topic

class eventsourcing.infrastructure.sqlalchemy.records.NotificationTrackingRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

application_name

notification_id

pipeline_id

upstream_application_name

class eventsourcing.infrastructure.sqlalchemy.records.SnapshotRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

position

sequence_id

state

19.1. eventsourcing 199



eventsourcing Documentation, Release 7.1.1

topic

class eventsourcing.infrastructure.sqlalchemy.records.StoredEventRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

application_name

causal_dependencies

notification_id

originator_id

originator_version

pipeline_id

state

topic

class eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedNoIDRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

position

sequence_id

state

topic

eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedRecord
alias of eventsourcing.infrastructure.sqlalchemy.records.
TimestampSequencedNoIDRecord

class eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Base

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

id

position

sequence_id

200 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

state

topic

timebucketedlog_reader

Reader for timebucketed logs.

class eventsourcing.infrastructure.timebucketedlog_reader.TimebucketedlogReader(log,
event_store,
page_size=50)

Bases: object

get_events(gt=None, gte=None, lt=None, lte=None, limit=None, is_ascending=False,
page_size=None)

get_messages(gt=None, gte=None, lt=None, lte=None, limit=None, is_ascending=False,
page_size=None)

eventsourcing.infrastructure.timebucketedlog_reader.get_timebucketedlog_reader(log,
event_store)

Return type TimebucketedlogReader

19.1.4 interface

The interface layer uses an application to service client requests.

notificationlog

Notification log is a pull-based mechanism for updating other applications.

class eventsourcing.interface.notificationlog.AbstractNotificationLog
Bases: abc.ABC

Presents a sequence of sections from a sequence of notifications.

__getitem__(section_id)
Get section of notification log.

Return type Section

class eventsourcing.interface.notificationlog.BigArrayNotificationLog(big_array,
sec-
tion_size)

Bases: eventsourcing.interface.notificationlog.LocalNotificationLog

get_items(start, stop, next_position=None)
Returns items for section.

Return type list

get_next_position()
Returns items for section.

Return type int

class eventsourcing.interface.notificationlog.LocalNotificationLog(section_size=None)
Bases: eventsourcing.interface.notificationlog.AbstractNotificationLog

Presents a sequence of sections from a sequence of notifications.

19.1. eventsourcing 201



eventsourcing Documentation, Release 7.1.1

static format_section_id(first_item_number, last_item_number)

get_items(start, stop, next_position=None)
Returns items for section.

Return type list

get_next_position()
Returns items for section.

Return type int

class eventsourcing.interface.notificationlog.NotificationLogReader(notification_log,
use_direct_query_if_available=False)

Bases: abc.ABC

read(advance_by=None)

read_items(stop_index=None, advance_by=None)

read_list(advance_by=None)

seek(position)

class eventsourcing.interface.notificationlog.NotificationLogView(notification_log,
json_encoder_class=None)

Bases: object

present_section(section_id)

class eventsourcing.interface.notificationlog.RecordManagerNotificationLog(record_manager,
sec-
tion_size)

Bases: eventsourcing.interface.notificationlog.LocalNotificationLog

get_items(start, stop, next_position=None)
Returns items for section.

Return type list

get_next_position()
Next unoccupied position in zero-based sequence.

Since the notification IDs are one-based, the next position is the current max notification ID. If there are
no records, the max notification ID will be None, and the next position is zero.

class eventsourcing.interface.notificationlog.RemoteNotificationLog(base_url,
json_decoder_class=None)

Bases: eventsourcing.interface.notificationlog.AbstractNotificationLog

deserialize_section(section_json)

get_json(section_id)

get_resource(doc_url)

make_notification_log_url(section_id)

class eventsourcing.interface.notificationlog.Section(section_id, items,
previous_id=None,
next_id=None)

Bases: object

Section of a notification log.

Contains items, and has an ID.

May also have either IDs of previous and next sections of the notification log.

202 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

19.1.5 utils

The utils package contains common functions that are used in more than one layer.

cipher

class eventsourcing.utils.cipher.aes.AESCipher(cipher_key)
Bases: object

Cipher strategy that uses Crypto library AES cipher in GCM mode.

__init__(cipher_key)
Initialises AES cipher strategy with cipher_key.

Parameters cipher_key – 16, 24, or 32 random bytes

decrypt(ciphertext)
Return plaintext for given ciphertext.

encrypt(plaintext)
Return ciphertext for given plaintext.

time

eventsourcing.utils.times.datetime_from_timestamp(t)
Returns naive UTC datetime from decimal UNIX timestamps such as time.time().

Parameters t – timestamp, either Decimal or float

Returns datetime.datetime object

eventsourcing.utils.times.decimaltimestamp(t=None)
A UNIX timestamp as a Decimal object (exact number type).

Returns current time when called without args, otherwise converts given floating point number t to a Decimal
with 9 decimal places.

Parameters t – Floating point UNIX timestamp (“seconds since epoch”).

Returns A Decimal with 6 decimal places, representing the given floating point or the value returned
by time.time().

eventsourcing.utils.times.decimaltimestamp_from_uuid(uuid_arg)
Return a floating point unix timestamp.

Parameters uuid_arg –

Returns Unix timestamp in seconds, with microsecond precision.

Return type float

eventsourcing.utils.times.timestamp_long_from_uuid(uuid_arg)
Returns an integer value representing a unix timestamp in tenths of microseconds.

Parameters uuid_arg –

Returns Unix timestamp integer in tenths of microseconds.

Return type int

19.1. eventsourcing 203



eventsourcing Documentation, Release 7.1.1

topic

eventsourcing.utils.topic.get_topic(domain_class)
Returns a string describing a class.

Args: domain_class: A class.

Returns: A string describing the class.

eventsourcing.utils.topic.resolve_attr(obj, path)
A recursive version of getattr for navigating dotted paths.

Args: obj: An object for which we want to retrieve a nested attribute. path: A dot separated string containing
zero or more attribute names.

Returns: The attribute referred to by obj.a1.a2.a3. . .

Raises: AttributeError: If there is no such attribute.

eventsourcing.utils.topic.resolve_topic(topic)
Return class described by given topic.

Args: topic: A string describing a class.

Returns: A class.

Raises: TopicResolutionError: If there is no such class.

transcoding

class eventsourcing.utils.transcoding.ObjectJSONDecoder(object_hook=None,
**kwargs)

Bases: json.decoder.JSONDecoder

classmethod from_jsonable(d)

class eventsourcing.utils.transcoding.ObjectJSONEncoder(sort_keys=True, *args,
**kwargs)

Bases: json.encoder.JSONEncoder

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
# Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

iterencode(o, _one_shot=False)
Encode the given object and yield each string representation as available.

For example:

204 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

for chunk in JSONEncoder().iterencode(bigobject):
mysocket.write(chunk)

eventsourcing.utils.transcoding.json_dumps(obj, cls=None)

eventsourcing.utils.transcoding.json_loads(s, cls=None)

19.1.6 exceptions

A few exception classes are defined by the library to indicate particular kinds of error.

exception eventsourcing.exceptions.ArrayIndexError
Bases: IndexError, eventsourcing.exceptions.EventSourcingError

Raised when appending item to an array that is full.

exception eventsourcing.exceptions.CausalDependencyFailed
Bases: eventsourcing.exceptions.EventSourcingError

Raised when a causal dependency fails (after its tracking record not found).

exception eventsourcing.exceptions.ConcurrencyError
Bases: eventsourcing.exceptions.RecordConflictError

Raised when a record conflict is due to concurrency.

exception eventsourcing.exceptions.ConsistencyError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when applying an event stream to a versioned entity.

exception eventsourcing.exceptions.DataIntegrityError
Bases: ValueError, eventsourcing.exceptions.EventSourcingError

Raised when a sequenced item is damaged (hash doesn’t match data)

exception eventsourcing.exceptions.DatasourceSettingsError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when an error is detected in settings for a datasource.

exception eventsourcing.exceptions.EntityIsDiscarded
Bases: AssertionError

Raised when access to a recently discarded entity object is attempted.

exception eventsourcing.exceptions.EntityVersionNotFound
Bases: eventsourcing.exceptions.EventSourcingError

Raise when accessing an entity version that does not exist.

exception eventsourcing.exceptions.EventHashError
Bases: eventsourcing.exceptions.DataIntegrityError

Raised when an event’s seal hash doesn’t match the hash of the state of the event.

exception eventsourcing.exceptions.EventRecordNotFound
Bases: eventsourcing.exceptions.EventSourcingError

Raised when an event record is not found.

exception eventsourcing.exceptions.EventSourcingError
Bases: Exception

19.1. eventsourcing 205



eventsourcing Documentation, Release 7.1.1

Base eventsourcing exception.

exception eventsourcing.exceptions.HeadHashError
Bases: eventsourcing.exceptions.DataIntegrityError, eventsourcing.exceptions.
MismatchedOriginatorError

Raised when applying an event with hash different from aggregate head.

exception eventsourcing.exceptions.MismatchedOriginatorError
Bases: eventsourcing.exceptions.ConsistencyError

Raised when applying an event to an inappropriate object.

exception eventsourcing.exceptions.MutatorRequiresTypeNotInstance
Bases: eventsourcing.exceptions.ConsistencyError

Raised when mutator function received a class rather than an entity.

exception eventsourcing.exceptions.OperationalError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when an operational error is encountered.

exception eventsourcing.exceptions.OriginatorIDError
Bases: eventsourcing.exceptions.MismatchedOriginatorError

Raised when applying an event to the wrong entity or aggregate.

exception eventsourcing.exceptions.OriginatorVersionError
Bases: eventsourcing.exceptions.MismatchedOriginatorError

Raised when applying an event to the wrong version of an entity or aggregate.

exception eventsourcing.exceptions.ProgrammingError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when programming errors are encountered.

exception eventsourcing.exceptions.PromptFailed
Bases: eventsourcing.exceptions.EventSourcingError

Raised when prompt fails.

exception eventsourcing.exceptions.RecordConflictError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when database raises an integrity error.

exception eventsourcing.exceptions.RepositoryKeyError
Bases: KeyError, eventsourcing.exceptions.EventSourcingError

Raised when using entity repository’s dictionary like interface to get an entity that does not exist.

exception eventsourcing.exceptions.TimeSequenceError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when a time sequence error occurs e.g. trying to save a timestamp that already exists.

exception eventsourcing.exceptions.TopicResolutionError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when unable to resolve a topic to a Python class.

exception eventsourcing.exceptions.TrackingRecordNotFound
Bases: eventsourcing.exceptions.EventSourcingError

Raised when a tracking record is not found.

206 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

19.1.7 example

A simple, unit-tested, event sourced application.

application

class eventsourcing.example.application.ApplicationWithEventStores(entity_record_manager=None,
log_record_manager=None,
snap-
shot_record_manager=None,
ci-
pher=None,
se-
quenced_item_mapper_class=<class
’eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper’>)

Bases: abc.ABC

Event sourced application object class.

Can construct event stores using given database records. Supports three different event stores: for log events,
for entity events, and for snapshot events.

close()

construct_event_store(sequenced_item_mapper_class, event_sequence_id_attr,
event_position_attr, record_manager, cipher=None)

construct_sequenced_item_mapper(sequenced_item_mapper_class, sequenced_item_class,
event_sequence_id_attr, event_position_attr, ci-
pher=None, json_encoder_class=<class ’eventsourc-
ing.utils.transcoding.ObjectJSONEncoder’>,
json_decoder_class=<class ’eventsourc-
ing.utils.transcoding.ObjectJSONDecoder’>)

class eventsourcing.example.application.ApplicationWithPersistencePolicies(**kwargs)
Bases: eventsourcing.example.application.ApplicationWithEventStores

close()

construct_entity_persistence_policy()

construct_log_persistence_policy()

construct_snapshot_persistence_policy()

class eventsourcing.example.application.ExampleApplication(**kwargs)
Bases: eventsourcing.example.application.ApplicationWithPersistencePolicies

Example event sourced application with entity factory and repository.

create_new_example(foo=”, a=”, b=”)
Entity object factory.

eventsourcing.example.application.close_example_application()
Shuts down single global instance of application.

To be called when tearing down, perhaps between tests, in order to allow a subsequent call to
init_example_application().

eventsourcing.example.application.construct_example_application(**kwargs)
Application object factory.

19.1. eventsourcing 207



eventsourcing Documentation, Release 7.1.1

eventsourcing.example.application.get_example_application()
Returns single global instance of application.

To be called when handling a worker request, if required.

eventsourcing.example.application.init_example_application(**kwargs)
Constructs single global instance of application.

To be called when initialising a worker process.

domainmodel

class eventsourcing.example.domainmodel.AbstractExampleRepository
Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

class eventsourcing.example.domainmodel.Example(foo=”, a=”, b=”, **kwargs)
Bases: eventsourcing.domain.model.entity.EntityWithHashchain, eventsourcing.
domain.model.entity.TimestampedVersionedEntity

An example event sourced domain model entity.

class AttributeChanged(**kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when an Example is created.

class Created(**kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.Created, eventsourcing.domain.model.entity.Created

Published when an Example is created.

class Discarded(**kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.Discarded

Published when an Example is discarded.

class Event(**kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Event

Supertype for events of example entities.

class Heartbeat(**kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.Event

Published when a heartbeat in the entity occurs (see below).

mutate(obj)
Update obj with values from self.

a
An example attribute.

b
Another example attribute.

beat_heart(number_of_beats=1)

count_heartbeats()

208 Chapter 19. Module docs



eventsourcing Documentation, Release 7.1.1

foo
An example attribute.

eventsourcing.example.domainmodel.create_new_example(foo=”, a=”, b=”)
Factory method for example entities.

Return type Example

infrastructure

class eventsourcing.example.infrastructure.ExampleRepository(event_store, snap-
shot_strategy=None,
use_cache=False,
muta-
tor_func=None)

Bases: eventsourcing.infrastructure.eventsourcedrepository.
EventSourcedRepository , eventsourcing.example.domainmodel.
AbstractExampleRepository

Event sourced repository for the Example domain model entity.

interface

class eventsourcing.example.interface.flaskapp.IntegerSequencedItem(**kwargs)
Bases: sqlalchemy.ext.declarative.api.Model

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

id

position

sequence_id

state

topic

eventsourcing.example.interface.flaskapp.hello()

eventsourcing.example.interface.flaskapp.init_example_application_with_sqlalchemy()

19.1. eventsourcing 209



eventsourcing Documentation, Release 7.1.1

210 Chapter 19. Module docs



Python Module Index

e
eventsourcing.application.actors, 143
eventsourcing.application.command, 145
eventsourcing.application.django, 146
eventsourcing.application.multiprocess,

146
eventsourcing.application.pipeline, 147
eventsourcing.application.policies, 147
eventsourcing.application.popo, 148
eventsourcing.application.process, 148
eventsourcing.application.simple, 150
eventsourcing.application.snapshotting,

152
eventsourcing.application.sqlalchemy,

152
eventsourcing.application.system, 153
eventsourcing.domain.model.aggregate,

156
eventsourcing.domain.model.array, 159
eventsourcing.domain.model.collection,

161
eventsourcing.domain.model.command, 162
eventsourcing.domain.model.decorators,

163
eventsourcing.domain.model.entity, 164
eventsourcing.domain.model.events, 170
eventsourcing.domain.model.snapshot, 173
eventsourcing.domain.model.timebucketedlog,

174
eventsourcing.example.application, 207
eventsourcing.example.domainmodel, 208
eventsourcing.example.infrastructure,

209
eventsourcing.example.interface.flaskapp,

209
eventsourcing.exceptions, 205
eventsourcing.infrastructure.base, 175
eventsourcing.infrastructure.cassandra.datastore,

178

eventsourcing.infrastructure.cassandra.factory,
179

eventsourcing.infrastructure.cassandra.manager,
179

eventsourcing.infrastructure.cassandra.records,
180

eventsourcing.infrastructure.datastore,
181

eventsourcing.infrastructure.django.factory,
182

eventsourcing.infrastructure.django.manager,
182

eventsourcing.infrastructure.django.models,
183

eventsourcing.infrastructure.django.utils,
187

eventsourcing.infrastructure.eventplayer,
188

eventsourcing.infrastructure.eventsourcedrepository,
188

eventsourcing.infrastructure.eventstore,
188

eventsourcing.infrastructure.integersequencegenerators.base,
190

eventsourcing.infrastructure.integersequencegenerators.redisincr,
190

eventsourcing.infrastructure.iterators,
190

eventsourcing.infrastructure.repositories.array,
192

eventsourcing.infrastructure.repositories.collection_repo,
192

eventsourcing.infrastructure.repositories.timebucketedlog_repo,
192

eventsourcing.infrastructure.sequenceditem,
193

eventsourcing.infrastructure.sequenceditemmapper,
194

eventsourcing.infrastructure.snapshotting,
195

211



eventsourcing Documentation, Release 7.1.1

eventsourcing.infrastructure.sqlalchemy.datastore,
196

eventsourcing.infrastructure.sqlalchemy.factory,
196

eventsourcing.infrastructure.sqlalchemy.manager,
197

eventsourcing.infrastructure.sqlalchemy.records,
198

eventsourcing.infrastructure.timebucketedlog_reader,
201

eventsourcing.interface.notificationlog,
201

eventsourcing.utils.cipher.aes, 203
eventsourcing.utils.times, 203
eventsourcing.utils.topic, 204
eventsourcing.utils.transcoding, 204

212 Python Module Index



Index

Symbols
__abstractmethods__ (eventsourc-

ing.domain.model.snapshot.AbstractSnapshop
attribute), 173

__abstractmethods__ (eventsourc-
ing.domain.model.snapshot.Snapshot at-
tribute), 174

__assert_not_discarded__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__batch_pending_events__() (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot
method), 158

__change_attribute__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__check_hash__() (eventsourc-
ing.domain.model.events.EventWithHash
method), 172

__check_obj__() (eventsourc-
ing.domain.model.entity.DomainEntity.Event
method), 166

__check_obj__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Event
method), 167

__check_obj__() (eventsourc-
ing.domain.model.entity.VersionedEntity.Event
method), 170

__contains__() (eventsourc-
ing.domain.model.entity.AbstractEntityRepository
method), 164

__contains__() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 188

__create__() (eventsourc-
ing.domain.model.entity.DomainEntity class
method), 166

__create__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain

class method), 167
__created_on__ (eventsourc-

ing.domain.model.entity.TimestampedEntity
attribute), 168

__created_on__ (eventsourc-
ing.domain.model.entity.TimeuuidedEntity
attribute), 169

__dict__ (eventsourcing.domain.model.array.Array
attribute), 159

__dict__ (eventsourc-
ing.domain.model.entity.AbstractEventPlayer
attribute), 165

__dict__ (eventsourc-
ing.domain.model.entity.DomainEntity at-
tribute), 166

__dict__ (eventsourc-
ing.domain.model.events.DomainEvent at-
tribute), 171

__dict__ (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 173

__discard__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__entity_kwargs__ (eventsourc-
ing.domain.model.entity.DomainEntity.Created
attribute), 165

__entity_kwargs__ (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Created
attribute), 167

__entity_kwargs__ (eventsourc-
ing.domain.model.entity.TimestampedEntity.Created
attribute), 168

__entity_kwargs__ (eventsourc-
ing.domain.model.entity.VersionedEntity.Created
attribute), 169

__eq__() (eventsourcing.domain.model.array.Array
method), 159

__eq__() (eventsourc-
ing.domain.model.entity.DomainEntity

213



eventsourcing Documentation, Release 7.1.1

method), 166
__eq__() (eventsourc-

ing.domain.model.events.DomainEvent
method), 171

__event_hash__ (eventsourc-
ing.domain.model.events.EventWithHash
attribute), 172

__genesis_hash__ (eventsourc-
ing.domain.model.entity.EntityWithHashchain
attribute), 167

__getitem__() (eventsourc-
ing.domain.model.array.AbstractArrayRepository
method), 159

__getitem__() (eventsourc-
ing.domain.model.array.AbstractBigArrayRepository
method), 159

__getitem__() (eventsourc-
ing.domain.model.array.Array method),
159

__getitem__() (eventsourc-
ing.domain.model.array.BigArray method),
160

__getitem__() (eventsourc-
ing.domain.model.entity.AbstractEntityRepository
method), 164

__getitem__() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 188

__getitem__() (eventsourc-
ing.interface.notificationlog.AbstractNotificationLog
method), 201

__getnewargs__() (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
method), 193

__getnewargs__() (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
method), 194

__hash__ (eventsourcing.domain.model.array.Array
attribute), 159

__hash__ (eventsourc-
ing.domain.model.entity.DomainEntity at-
tribute), 166

__hash__() (eventsourc-
ing.domain.model.events.DomainEvent
method), 171

__hash__() (eventsourc-
ing.domain.model.events.EventWithHash
method), 172

__hash_object__() (eventsourc-
ing.domain.model.events.DomainEvent class
method), 171

__init__() (eventsourcing.application.system.System
method), 156

__init__() (eventsourc-

ing.domain.model.aggregate.BaseAggregateRoot
method), 158

__init__() (eventsourc-
ing.domain.model.array.AbstractArrayRepository
method), 159

__init__() (eventsourcing.domain.model.array.Array
method), 159

__init__() (eventsourc-
ing.domain.model.array.BigArray method),
160

__init__() (eventsourc-
ing.domain.model.array.ItemAssigned
method), 161

__init__() (eventsourc-
ing.domain.model.collection.Collection
method), 162

__init__() (eventsourc-
ing.domain.model.command.Command
method), 163

__init__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__init__() (eventsourc-
ing.domain.model.entity.DomainEntity.Created
method), 165

__init__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain
method), 167

__init__() (eventsourc-
ing.domain.model.entity.TimestampedEntity
method), 168

__init__() (eventsourc-
ing.domain.model.entity.TimeuuidedEntity
method), 169

__init__() (eventsourc-
ing.domain.model.entity.VersionedEntity
method), 170

__init__() (eventsourc-
ing.domain.model.entity.VersionedEntity.Created
method), 169

__init__() (eventsourc-
ing.domain.model.events.DomainEvent
method), 171

__init__() (eventsourc-
ing.domain.model.events.EventWithHash
method), 172

__init__() (eventsourc-
ing.domain.model.events.EventWithOriginatorID
method), 172

__init__() (eventsourc-
ing.domain.model.events.EventWithOriginatorVersion
method), 172

__init__() (eventsourc-
ing.domain.model.events.EventWithTimestamp

214 Index



eventsourcing Documentation, Release 7.1.1

method), 173
__init__() (eventsourc-

ing.domain.model.events.EventWithTimeuuid
method), 173

__init__() (eventsourc-
ing.domain.model.snapshot.Snapshot method),
174

__init__() (eventsourc-
ing.domain.model.timebucketedlog.MessageLogged
method), 174

__init__() (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog
method), 175

__init__() (eventsourc-
ing.example.interface.flaskapp.IntegerSequencedItem
method), 209

__init__() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 189

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.EntitySnapshotRecord
method), 198

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.IntegerSequencedNoIDRecord
method), 198

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord
method), 199

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.NotificationTrackingRecord
method), 199

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.SnapshotRecord
method), 199

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
method), 200

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.TimestampSequencedNoIDRecord
method), 200

__init__() (eventsourc-
ing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord
method), 200

__init__() (eventsourc-
ing.utils.cipher.aes.AESCipher method),
203

__iter__() (eventsourc-
ing.domain.model.collection.Collection
method), 162

__iter__() (eventsourc-
ing.infrastructure.iterators.AbstractSequencedItemIterator
method), 191

__iter__() (eventsourc-
ing.infrastructure.iterators.SequencedItemIterator

method), 192
__json_encoder_class__ (eventsourc-

ing.domain.model.events.DomainEvent at-
tribute), 171

__last_modified__ (eventsourc-
ing.domain.model.entity.TimestampedEntity
attribute), 168

__last_modified__ (eventsourc-
ing.domain.model.entity.TimeuuidedEntity
attribute), 169

__len__() (eventsourcing.domain.model.array.Array
method), 159

__len__() (eventsourc-
ing.domain.model.array.BigArray method),
160

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRoot
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRoot.AttributeChanged
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRoot.Created
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRoot.Discarded
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRoot.Event
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRootWithHashchainedEvents
attribute), 158

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRootWithHashchainedEvents.AttributeChanged
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRootWithHashchainedEvents.Created
attribute), 157

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRootWithHashchainedEvents.Discarded
attribute), 158

__module__ (eventsourc-
ing.domain.model.aggregate.AggregateRootWithHashchainedEvents.Event
attribute), 158

__module__ (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot
attribute), 158

__module__ (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot.AttributeChanged
attribute), 158

__module__ (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot.Created
attribute), 158

Index 215



eventsourcing Documentation, Release 7.1.1

__module__ (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot.Discarded
attribute), 158

__module__ (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot.Event
attribute), 158

__module__ (eventsourc-
ing.domain.model.array.AbstractArrayRepository
attribute), 159

__module__ (eventsourc-
ing.domain.model.array.AbstractBigArrayRepository
attribute), 159

__module__ (eventsourcing.domain.model.array.Array
attribute), 159

__module__ (eventsourc-
ing.domain.model.array.BigArray attribute),
160

__module__ (eventsourc-
ing.domain.model.array.ItemAssigned at-
tribute), 161

__module__ (eventsourc-
ing.domain.model.collection.AbstractCollectionRepository
attribute), 161

__module__ (eventsourc-
ing.domain.model.collection.Collection at-
tribute), 162

__module__ (eventsourc-
ing.domain.model.collection.Collection.Created
attribute), 161

__module__ (eventsourc-
ing.domain.model.collection.Collection.Discarded
attribute), 161

__module__ (eventsourc-
ing.domain.model.collection.Collection.Event
attribute), 161

__module__ (eventsourc-
ing.domain.model.collection.Collection.EventWithItem
attribute), 162

__module__ (eventsourc-
ing.domain.model.collection.Collection.ItemAdded
attribute), 162

__module__ (eventsourc-
ing.domain.model.collection.Collection.ItemRemoved
attribute), 162

__module__ (eventsourc-
ing.domain.model.command.Command at-
tribute), 163

__module__ (eventsourc-
ing.domain.model.command.Command.AttributeChanged
attribute), 162

__module__ (eventsourc-
ing.domain.model.command.Command.Created
attribute), 162

__module__ (eventsourc-

ing.domain.model.command.Command.Discarded
attribute), 162

__module__ (eventsourc-
ing.domain.model.command.Command.Done
attribute), 162

__module__ (eventsourc-
ing.domain.model.command.Command.Event
attribute), 163

__module__ (eventsourc-
ing.domain.model.entity.AbstractEntityRepository
attribute), 164

__module__ (eventsourc-
ing.domain.model.entity.AbstractEventPlayer
attribute), 165

__module__ (eventsourc-
ing.domain.model.entity.DomainEntity at-
tribute), 166

__module__ (eventsourc-
ing.domain.model.entity.DomainEntity.AttributeChanged
attribute), 165

__module__ (eventsourc-
ing.domain.model.entity.DomainEntity.Created
attribute), 165

__module__ (eventsourc-
ing.domain.model.entity.DomainEntity.Discarded
attribute), 165

__module__ (eventsourc-
ing.domain.model.entity.DomainEntity.Event
attribute), 166

__module__ (eventsourc-
ing.domain.model.entity.EntityWithHashchain
attribute), 167

__module__ (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Created
attribute), 167

__module__ (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Discarded
attribute), 167

__module__ (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Event
attribute), 167

__module__ (eventsourc-
ing.domain.model.entity.TimestampedEntity
attribute), 168

__module__ (eventsourc-
ing.domain.model.entity.TimestampedEntity.AttributeChanged
attribute), 168

__module__ (eventsourc-
ing.domain.model.entity.TimestampedEntity.Created
attribute), 168

__module__ (eventsourc-
ing.domain.model.entity.TimestampedEntity.Discarded
attribute), 168

__module__ (eventsourc-

216 Index



eventsourcing Documentation, Release 7.1.1

ing.domain.model.entity.TimestampedEntity.Event
attribute), 168

__module__ (eventsourc-
ing.domain.model.entity.TimestampedVersionedEntity
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.TimestampedVersionedEntity.AttributeChanged
attribute), 168

__module__ (eventsourc-
ing.domain.model.entity.TimestampedVersionedEntity.Created
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.TimestampedVersionedEntity.Discarded
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.TimestampedVersionedEntity.Event
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.TimeuuidedEntity
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.TimeuuidedVersionedEntity
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.VersionedEntity
attribute), 170

__module__ (eventsourc-
ing.domain.model.entity.VersionedEntity.AttributeChanged
attribute), 169

__module__ (eventsourc-
ing.domain.model.entity.VersionedEntity.Created
attribute), 170

__module__ (eventsourc-
ing.domain.model.entity.VersionedEntity.Discarded
attribute), 170

__module__ (eventsourc-
ing.domain.model.entity.VersionedEntity.Event
attribute), 170

__module__ (eventsourc-
ing.domain.model.events.AttributeChanged
attribute), 170

__module__ (eventsourc-
ing.domain.model.events.Created attribute),
171

__module__ (eventsourc-
ing.domain.model.events.Discarded attribute),
171

__module__ (eventsourc-
ing.domain.model.events.DomainEvent at-
tribute), 171

__module__ (eventsourc-
ing.domain.model.events.EventHandlersNotEmptyError
attribute), 172

__module__ (eventsourc-

ing.domain.model.events.EventWithHash
attribute), 172

__module__ (eventsourc-
ing.domain.model.events.EventWithOriginatorID
attribute), 172

__module__ (eventsourc-
ing.domain.model.events.EventWithOriginatorVersion
attribute), 173

__module__ (eventsourc-
ing.domain.model.events.EventWithTimestamp
attribute), 173

__module__ (eventsourc-
ing.domain.model.events.EventWithTimeuuid
attribute), 173

__module__ (eventsourc-
ing.domain.model.events.Logged attribute),
173

__module__ (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 173

__module__ (eventsourc-
ing.domain.model.snapshot.Snapshot at-
tribute), 174

__module__ (eventsourc-
ing.domain.model.timebucketedlog.MessageLogged
attribute), 174

__module__ (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog
attribute), 175

__module__ (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog.BucketSizeChanged
attribute), 174

__module__ (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog.Event
attribute), 175

__module__ (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog.Started
attribute), 175

__module__ (eventsourc-
ing.domain.model.timebucketedlog.TimebucketedlogRepository
attribute), 175

__mutate__() (eventsourc-
ing.domain.model.collection.Collection.ItemAdded
method), 162

__mutate__() (eventsourc-
ing.domain.model.collection.Collection.ItemRemoved
method), 162

__mutate__() (eventsourc-
ing.domain.model.entity.DomainEntity.AttributeChanged
method), 165

__mutate__() (eventsourc-
ing.domain.model.entity.DomainEntity.Created
method), 165

__mutate__() (eventsourc-

Index 217



eventsourcing Documentation, Release 7.1.1

ing.domain.model.entity.DomainEntity.Discarded
method), 165

__mutate__() (eventsourc-
ing.domain.model.entity.DomainEntity.Event
method), 166

__mutate__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Created
method), 167

__mutate__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Discarded
method), 167

__mutate__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain.Event
method), 167

__mutate__() (eventsourc-
ing.domain.model.entity.TimestampedEntity.Event
method), 168

__mutate__() (eventsourc-
ing.domain.model.entity.VersionedEntity.Event
method), 170

__mutate__() (eventsourc-
ing.domain.model.events.DomainEvent
method), 171

__mutate__() (eventsourc-
ing.domain.model.events.EventWithHash
method), 172

__ne__() (eventsourcing.domain.model.array.Array
method), 159

__ne__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__ne__() (eventsourc-
ing.domain.model.events.DomainEvent
method), 171

__new__() (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
static method), 193

__new__() (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
static method), 194

__next__() (eventsourc-
ing.infrastructure.integersequencegenerators.base.AbstractIntegerSequenceGenerator
method), 190

__notifiable__ (eventsourc-
ing.domain.model.events.DomainEvent at-
tribute), 171

__publish__() (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot
method), 158

__publish__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__publish_to_subscribers__() (eventsourc-
ing.domain.model.entity.DomainEntity

method), 166
__repr__() (eventsourc-

ing.domain.model.events.DomainEvent
method), 171

__repr__() (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
method), 193

__repr__() (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
method), 194

__save__() (eventsourc-
ing.domain.model.aggregate.BaseAggregateRoot
method), 158

__setattr__() (eventsourc-
ing.domain.model.events.DomainEvent
method), 171

__setitem__() (eventsourc-
ing.domain.model.array.Array method),
159

__setitem__() (eventsourc-
ing.domain.model.array.BigArray method),
160

__trigger_event__() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 166

__trigger_event__() (eventsourc-
ing.domain.model.entity.EntityWithHashchain
method), 168

__trigger_event__() (eventsourc-
ing.domain.model.entity.VersionedEntity
method), 170

__version__ (eventsourc-
ing.domain.model.entity.VersionedEntity
attribute), 170

__weakref__ (eventsourc-
ing.domain.model.array.Array attribute),
159

__weakref__ (eventsourc-
ing.domain.model.entity.AbstractEventPlayer
attribute), 165

__weakref__ (eventsourc-
ing.domain.model.entity.DomainEntity at-
tribute), 166

__weakref__ (eventsourc-
ing.domain.model.events.DomainEvent at-
tribute), 171

__weakref__ (eventsourc-
ing.domain.model.events.EventHandlersNotEmptyError
attribute), 172

__weakref__ (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 173

_asdict() (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem

218 Index



eventsourcing Documentation, Release 7.1.1

method), 193
_asdict() (eventsourc-

ing.infrastructure.sequenceditem.StoredEvent
method), 194

_inc_page_counter() (eventsourc-
ing.infrastructure.iterators.AbstractSequencedItemIterator
method), 191

_inc_query_counter() (eventsourc-
ing.infrastructure.iterators.AbstractSequencedItemIterator
method), 191

_make() (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
class method), 193

_make() (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
class method), 194

_prepare_insert() (eventsourc-
ing.infrastructure.base.SQLRecordManager
method), 177

_prepare_insert() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

_prepare_insert() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 197

_replace() (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
method), 193

_replace() (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
method), 194

A
a (eventsourcing.example.domainmodel.Example at-

tribute), 208
abort() (eventsourc-

ing.application.system.BarrierControlledApplicationThread
method), 153

AbstractArrayRepository (class in eventsourc-
ing.domain.model.array), 159

AbstractBigArrayRepository (class in
eventsourcing.domain.model.array), 159

AbstractCollectionRepository (class in
eventsourcing.domain.model.collection), 161

AbstractEntityRepository (class in eventsourc-
ing.domain.model.entity), 164

AbstractEventPlayer (class in eventsourc-
ing.domain.model.entity), 165

AbstractEventStore (class in eventsourc-
ing.infrastructure.eventstore), 188

AbstractExampleRepository (class in
eventsourcing.example.domainmodel), 208

AbstractIntegerSequenceGenerator
(class in eventsourc-

ing.infrastructure.integersequencegenerators.base),
190

AbstractNotificationLog (class in eventsourc-
ing.interface.notificationlog), 201

AbstractSequencedItemIterator (class in
eventsourcing.infrastructure.iterators), 190

AbstractSequencedItemMapper
(class in eventsourc-
ing.infrastructure.sequenceditemmapper),
194

AbstractSequencedItemRecordManager (class
in eventsourcing.infrastructure.base), 176

AbstractSnapshop (class in eventsourc-
ing.domain.model.snapshot), 173

AbstractSnapshotStrategy (class in eventsourc-
ing.infrastructure.snapshotting), 195

ACIDRecordManager (class in eventsourc-
ing.infrastructure.base), 175

actor_system (eventsourc-
ing.application.actors.ActorModelRunner
attribute), 143

ActorModelRunner (class in eventsourc-
ing.application.actors), 143

actual_clock_speed (eventsourc-
ing.application.system.BarrierControllingClockThread
attribute), 153

actual_clock_speed (eventsourc-
ing.application.system.ProcessRunningClockThread
attribute), 154

add_item() (eventsourc-
ing.domain.model.collection.Collection
method), 162

AESCipher (class in eventsourcing.utils.cipher.aes),
203

AggregateRoot (class in eventsourc-
ing.domain.model.aggregate), 157

AggregateRoot.AttributeChanged (class in
eventsourcing.domain.model.aggregate), 157

AggregateRoot.Created (class in eventsourc-
ing.domain.model.aggregate), 157

AggregateRoot.Discarded (class in eventsourc-
ing.domain.model.aggregate), 157

AggregateRoot.Event (class in eventsourc-
ing.domain.model.aggregate), 157

AggregateRootWithHashchainedEvents (class
in eventsourcing.domain.model.aggregate), 157

AggregateRootWithHashchainedEvents.AttributeChanged
(class in eventsourc-
ing.domain.model.aggregate), 157

AggregateRootWithHashchainedEvents.Created
(class in eventsourc-
ing.domain.model.aggregate), 157

AggregateRootWithHashchainedEvents.Discarded
(class in eventsourc-

Index 219



eventsourcing Documentation, Release 7.1.1

ing.domain.model.aggregate), 157
AggregateRootWithHashchainedEvents.Event

(class in eventsourc-
ing.domain.model.aggregate), 158

all_domain_events() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 188

all_domain_events() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 189

all_sequence_ids() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 176

all_sequence_ids() (eventsourc-
ing.infrastructure.cassandra.manager.CassandraRecordManager
method), 179

all_sequence_ids() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

all_sequence_ids() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 197

append() (eventsourcing.domain.model.array.Array
method), 159

application_name (eventsourc-
ing.infrastructure.django.models.EntitySnapshotRecord
attribute), 184

application_name (eventsourc-
ing.infrastructure.django.models.NotificationTrackingRecord
attribute), 185

application_name (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 186

application_name (eventsourc-
ing.infrastructure.sqlalchemy.records.EntitySnapshotRecord
attribute), 198

application_name (eventsourc-
ing.infrastructure.sqlalchemy.records.NotificationTrackingRecord
attribute), 199

application_name (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

ApplicationWithConcreteInfrastructure
(class in eventsourcing.application.simple),
150

ApplicationWithEventStores (class in
eventsourcing.example.application), 207

ApplicationWithPersistencePolicies (class
in eventsourcing.example.application), 207

Array (class in eventsourcing.domain.model.array), 159
ArrayIndexError, 205
ArrayRepository (class in eventsourc-

ing.infrastructure.repositories.array), 192
assert_event_handlers_empty() (in module

eventsourcing.domain.model.events), 173
attribute() (in module eventsourc-

ing.domain.model.decorators), 163
AttributeChanged (class in eventsourc-

ing.domain.model.events), 170

B
b (eventsourcing.example.domainmodel.Example at-

tribute), 208
BarrierControlledApplicationThread (class

in eventsourcing.application.system), 153
BarrierControllingClockThread (class in

eventsourcing.application.system), 153
BaseAggregateRoot (class in eventsourc-

ing.domain.model.aggregate), 158
BaseAggregateRoot.AttributeChanged (class

in eventsourcing.domain.model.aggregate), 158
BaseAggregateRoot.Created (class in

eventsourcing.domain.model.aggregate),
158

BaseAggregateRoot.Discarded (class in
eventsourcing.domain.model.aggregate), 158

BaseAggregateRoot.Event (class in eventsourc-
ing.domain.model.aggregate), 158

beat_heart() (eventsourc-
ing.example.domainmodel.Example method),
208

BigArray (class in eventsourc-
ing.domain.model.array), 160

BigArrayNotificationLog (class in eventsourc-
ing.interface.notificationlog), 201

BigArrayRepository (class in eventsourc-
ing.infrastructure.repositories.array), 192

bind() (eventsourcing.application.simple.SimpleApplication
class method), 151

broadcast_prompt() (eventsourc-
ing.application.multiprocess.MultiprocessRunner
method), 146

broadcast_prompt() (eventsourc-
ing.application.multiprocess.OperatingSystemProcess
method), 147

broadcast_prompt() (eventsourc-
ing.application.system.MultiThreadedRunner
method), 154

bucket_duration() (in module eventsourc-
ing.domain.model.timebucketedlog), 175

bucket_size (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog
attribute), 175

bucket_starts() (in module eventsourc-
ing.domain.model.timebucketedlog), 175

C
calc_parent() (eventsourc-

220 Index



eventsourcing Documentation, Release 7.1.1

ing.domain.model.array.BigArray method),
160

calc_required_height() (eventsourc-
ing.domain.model.array.BigArray method),
161

call_commands() (eventsourc-
ing.application.system.ClockThread method),
153

call_in_future() (eventsourc-
ing.application.system.ClockThread method),
153

call_in_future() (eventsourc-
ing.application.system.SteppingRunner
method), 156

call_policy() (eventsourc-
ing.application.process.ProcessApplication
method), 148

CassandraDatastore (class in eventsourc-
ing.infrastructure.cassandra.datastore), 178

CassandraInfrastructureFactory
(class in eventsourc-
ing.infrastructure.cassandra.factory), 179

CassandraRecordManager (class in eventsourc-
ing.infrastructure.cassandra.manager), 179

CassandraSettings (class in eventsourc-
ing.infrastructure.cassandra.datastore), 178

causal_dependencies (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 186

causal_dependencies (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

CausalDependencyFailed, 205
change_pipeline() (eventsourc-

ing.application.simple.SimpleApplication
method), 151

clear_event_handlers() (in module eventsourc-
ing.domain.model.events), 173

ClockThread (class in eventsourc-
ing.application.system), 153

clone() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 176

clone() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 197

close() (eventsourc-
ing.application.actors.ActorModelRunner
method), 143

close() (eventsourc-
ing.application.actors.ProcessSlave method),
144

close() (eventsourc-
ing.application.multiprocess.MultiprocessRunner

method), 146
close() (eventsourc-

ing.application.policies.PersistencePolicy
method), 147

close() (eventsourc-
ing.application.policies.SnapshottingPolicy
method), 148

close() (eventsourc-
ing.application.process.ProcessApplication
method), 148

close() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

close() (eventsourc-
ing.application.snapshotting.SnapshottingApplication
method), 152

close() (eventsourc-
ing.application.system.InProcessRunner
method), 154

close() (eventsourc-
ing.application.system.MultiThreadedRunner
method), 154

close() (eventsourc-
ing.application.system.SteppingMultiThreadedRunner
method), 155

close() (eventsourc-
ing.application.system.SteppingSingleThreadedRunner
method), 156

close() (eventsourc-
ing.application.system.SystemRunner method),
156

close() (eventsourc-
ing.example.application.ApplicationWithEventStores
method), 207

close() (eventsourc-
ing.example.application.ApplicationWithPersistencePolicies
method), 207

close_connection() (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraDatastore
method), 178

close_connection() (eventsourc-
ing.infrastructure.datastore.Datastore method),
181

close_connection() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

close_django_connection() (in module
eventsourcing.infrastructure.django.utils),
187

close_example_application() (in module
eventsourcing.example.application), 207

collect_pending_events() (eventsourc-
ing.application.process.ProcessApplication
method), 148

Index 221



eventsourcing Documentation, Release 7.1.1

Collection (class in eventsourc-
ing.domain.model.collection), 161

Collection.Created (class in eventsourc-
ing.domain.model.collection), 161

Collection.Discarded (class in eventsourc-
ing.domain.model.collection), 161

Collection.Event (class in eventsourc-
ing.domain.model.collection), 161

Collection.EventWithItem (class in eventsourc-
ing.domain.model.collection), 161

Collection.ItemAdded (class in eventsourc-
ing.domain.model.collection), 162

Collection.ItemRemoved (class in eventsourc-
ing.domain.model.collection), 162

CollectionRepository (class in eventsourc-
ing.infrastructure.repositories.collection_repo),
192

Command (class in eventsourc-
ing.domain.model.command), 162

Command.AttributeChanged (class in eventsourc-
ing.domain.model.command), 162

Command.Created (class in eventsourc-
ing.domain.model.command), 162

Command.Discarded (class in eventsourc-
ing.domain.model.command), 162

Command.Done (class in eventsourc-
ing.domain.model.command), 162

Command.Event (class in eventsourc-
ing.domain.model.command), 163

CommandProcess (class in eventsourc-
ing.application.command), 145

ConcurrencyError, 205
condition() (eventsourc-

ing.application.policies.SnapshottingPolicy
method), 148

CONSISTENCY_LEVEL (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraSettings
attribute), 178

ConsistencyError, 205
construct_app() (eventsourc-

ing.application.system.System method), 156
construct_cipher() (eventsourc-

ing.application.simple.SimpleApplication
method), 151

construct_datastore() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

construct_datastore() (eventsourc-
ing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory
method), 196

construct_entity_persistence_policy()
(eventsourcing.example.application.ApplicationWithPersistencePolicies
method), 207

construct_event_records() (eventsourc-

ing.application.process.ProcessApplication
method), 148

construct_event_store() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

construct_event_store() (eventsourc-
ing.application.snapshotting.SnapshottingApplication
method), 152

construct_event_store() (eventsourc-
ing.example.application.ApplicationWithEventStores
method), 207

construct_example_application() (in mod-
ule eventsourcing.example.application), 207

construct_infrastructure() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

construct_infrastructure() (eventsourc-
ing.application.sqlalchemy.SQLAlchemyApplication
method), 152

construct_infrastructure_factory()
(eventsourcing.application.simple.SimpleApplication
method), 151

construct_item_args() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

construct_log_persistence_policy()
(eventsourcing.example.application.ApplicationWithPersistencePolicies
method), 207

construct_notification_log() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

construct_persistence_policy()
(eventsourcing.application.simple.SimpleApplication
method), 151

construct_persistence_policy()
(eventsourcing.application.snapshotting.SnapshottingApplication
method), 152

construct_record_manager() (eventsourc-
ing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory
method), 197

construct_repository() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

construct_repository() (eventsourc-
ing.application.snapshotting.SnapshottingApplication
method), 152

construct_sequenced_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

construct_sequenced_item_mapper()
(eventsourcing.example.application.ApplicationWithEventStores
method), 207

construct_snapshot_persistence_policy()
(eventsourcing.example.application.ApplicationWithPersistencePolicies

222 Index



eventsourcing Documentation, Release 7.1.1

method), 207
construct_sqlalchemy_eventstore()

(in module eventsourc-
ing.infrastructure.sqlalchemy.factory), 197

construct_tracking_kwargs() (eventsourc-
ing.application.process.ProcessApplication
method), 148

consume_prompt() (eventsourc-
ing.application.actors.ProcessMaster method),
144

count_heartbeats() (eventsourc-
ing.example.domainmodel.Example method),
208

create_array_id() (eventsourc-
ing.domain.model.array.BigArray method),
161

create_new_example() (eventsourc-
ing.example.application.ExampleApplication
method), 207

create_new_example() (in module eventsourc-
ing.example.domainmodel), 209

create_timesequenced_event_id() (in mod-
ule eventsourcing.domain.model.events), 173

Created (class in eventsourcing.domain.model.events),
170

D
DataIntegrityError, 205
DatasourceSettingsError, 205
Datastore (class in eventsourc-

ing.infrastructure.datastore), 181
datastore (eventsourc-

ing.application.simple.SimpleApplication
attribute), 151

DatastoreConnectionError, 182
DatastoreError, 182
DatastoreSettings (class in eventsourc-

ing.infrastructure.datastore), 182
DatastoreTableError, 182
datetime_from_timestamp() (in module

eventsourcing.utils.times), 203
decimaltimestamp() (in module eventsourc-

ing.utils.times), 203
decimaltimestamp_from_uuid() (in module

eventsourcing.utils.times), 203
decrypt() (eventsourcing.utils.cipher.aes.AESCipher

method), 203
default() (eventsourc-

ing.utils.transcoding.ObjectJSONEncoder
method), 204

DEFAULT_KEYSPACE (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraSettings
attribute), 178

DEFAULT_PAGE_SIZE (eventsourc-
ing.infrastructure.iterators.AbstractSequencedItemIterator
attribute), 191

del_notification_generator() (eventsourc-
ing.application.process.ProcessApplication
method), 148

delete_record() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 176

delete_record() (eventsourc-
ing.infrastructure.cassandra.manager.CassandraRecordManager
method), 179

delete_record() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

delete_record() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 197

deserialize_section() (eventsourc-
ing.interface.notificationlog.RemoteNotificationLog
method), 202

Discarded (class in eventsourc-
ing.domain.model.events), 171

DjangoApplication (class in eventsourc-
ing.application.django), 146

DjangoInfrastructureFactory (class in
eventsourcing.infrastructure.django.factory),
182

DjangoRecordManager (class in eventsourc-
ing.infrastructure.django.manager), 182

DomainEntity (class in eventsourc-
ing.domain.model.entity), 165

DomainEntity.AttributeChanged (class in
eventsourcing.domain.model.entity), 165

DomainEntity.Created (class in eventsourc-
ing.domain.model.entity), 165

DomainEntity.Discarded (class in eventsourc-
ing.domain.model.entity), 165

DomainEntity.Event (class in eventsourc-
ing.domain.model.entity), 166

DomainEvent (class in eventsourc-
ing.domain.model.events), 171

done() (eventsourcing.domain.model.command.Command
method), 163

drop_table() (eventsourc-
ing.application.process.ProcessApplication
method), 148

drop_table() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

drop_table() (eventsourc-
ing.application.snapshotting.SnapshottingApplication
method), 152

drop_table() (eventsourc-

Index 223



eventsourcing Documentation, Release 7.1.1

ing.infrastructure.cassandra.datastore.CassandraDatastore
method), 178

drop_table() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

drop_tables() (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraDatastore
method), 178

drop_tables() (eventsourc-
ing.infrastructure.datastore.Datastore method),
181

drop_tables() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

E
encrypt() (eventsourcing.utils.cipher.aes.AESCipher

method), 203
entity_from_snapshot() (in module eventsourc-

ing.infrastructure.snapshotting), 196
EntityIsDiscarded, 205
EntitySnapshotRecord (class in eventsourc-

ing.infrastructure.django.models), 183
EntitySnapshotRecord (class in eventsourc-

ing.infrastructure.sqlalchemy.records), 198
EntitySnapshotRecord.DoesNotExist, 183
EntitySnapshotRecord.MultipleObjectsReturned,

183
EntityVersionNotFound, 205
EntityWithHashchain (class in eventsourc-

ing.domain.model.entity), 167
EntityWithHashchain.Created (class in

eventsourcing.domain.model.entity), 167
EntityWithHashchain.Discarded (class in

eventsourcing.domain.model.entity), 167
EntityWithHashchain.Event (class in

eventsourcing.domain.model.entity), 167
event_from_item() (eventsourc-

ing.infrastructure.sequenceditemmapper.AbstractSequencedItemMapper
method), 194

event_from_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

event_from_topic_and_state() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

event_id (eventsourc-
ing.domain.model.events.EventWithTimeuuid
attribute), 173

event_store (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

event_store (eventsourc-
ing.domain.model.entity.AbstractEntityRepository

attribute), 164
event_store (eventsourc-

ing.infrastructure.eventplayer.EventPlayer
attribute), 188

event_store_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

EventHandlersNotEmptyError, 172
EventHashError, 205
EventPlayer (class in eventsourc-

ing.infrastructure.eventplayer), 188
EventRecordNotFound, 205
EventSourcedRepository (class in eventsourc-

ing.infrastructure.eventsourcedrepository), 188
EventSourcedSnapshotStrategy (class in

eventsourcing.infrastructure.snapshotting), 195
eventsourcing.application.actors (mod-

ule), 143
eventsourcing.application.command (mod-

ule), 145
eventsourcing.application.django (mod-

ule), 146
eventsourcing.application.multiprocess

(module), 146
eventsourcing.application.pipeline (mod-

ule), 147
eventsourcing.application.policies (mod-

ule), 147
eventsourcing.application.popo (module),

148
eventsourcing.application.process (mod-

ule), 148
eventsourcing.application.simple (mod-

ule), 150
eventsourcing.application.snapshotting

(module), 152
eventsourcing.application.sqlalchemy

(module), 152
eventsourcing.application.system (mod-

ule), 153
eventsourcing.domain.model.aggregate

(module), 156
eventsourcing.domain.model.array (mod-

ule), 159
eventsourcing.domain.model.collection

(module), 161
eventsourcing.domain.model.command (mod-

ule), 162
eventsourcing.domain.model.decorators

(module), 163
eventsourcing.domain.model.entity (mod-

ule), 164
eventsourcing.domain.model.events (mod-

ule), 170

224 Index



eventsourcing Documentation, Release 7.1.1

eventsourcing.domain.model.snapshot
(module), 173

eventsourcing.domain.model.timebucketedlog
(module), 174

eventsourcing.example.application (mod-
ule), 207

eventsourcing.example.domainmodel (mod-
ule), 208

eventsourcing.example.infrastructure
(module), 209

eventsourcing.example.interface.flaskapp
(module), 209

eventsourcing.exceptions (module), 205
eventsourcing.infrastructure.base (mod-

ule), 175
eventsourcing.infrastructure.cassandra.datastore

(module), 178
eventsourcing.infrastructure.cassandra.factory

(module), 179
eventsourcing.infrastructure.cassandra.manager

(module), 179
eventsourcing.infrastructure.cassandra.records

(module), 180
eventsourcing.infrastructure.datastore

(module), 181
eventsourcing.infrastructure.django.factory

(module), 182
eventsourcing.infrastructure.django.manager

(module), 182
eventsourcing.infrastructure.django.models

(module), 183
eventsourcing.infrastructure.django.utils

(module), 187
eventsourcing.infrastructure.eventplayer

(module), 188
eventsourcing.infrastructure.eventsourcedrepository

(module), 188
eventsourcing.infrastructure.eventstore

(module), 188
eventsourcing.infrastructure.integersequencegenerators.base

(module), 190
eventsourcing.infrastructure.integersequencegenerators.redisincr

(module), 190
eventsourcing.infrastructure.iterators

(module), 190
eventsourcing.infrastructure.repositories.array

(module), 192
eventsourcing.infrastructure.repositories.collection_repo

(module), 192
eventsourcing.infrastructure.repositories.timebucketedlog_repo

(module), 192
eventsourcing.infrastructure.sequenceditem

(module), 193
eventsourcing.infrastructure.sequenceditemmapper

(module), 194
eventsourcing.infrastructure.snapshotting

(module), 195
eventsourcing.infrastructure.sqlalchemy.datastore

(module), 196
eventsourcing.infrastructure.sqlalchemy.factory

(module), 196
eventsourcing.infrastructure.sqlalchemy.manager

(module), 197
eventsourcing.infrastructure.sqlalchemy.records

(module), 198
eventsourcing.infrastructure.timebucketedlog_reader

(module), 201
eventsourcing.interface.notificationlog

(module), 201
eventsourcing.utils.cipher.aes (module),

203
eventsourcing.utils.times (module), 203
eventsourcing.utils.topic (module), 204
eventsourcing.utils.transcoding (module),

204
EventSourcingError, 205
EventStore (class in eventsourc-

ing.infrastructure.eventstore), 189
EventWithHash (class in eventsourc-

ing.domain.model.events), 172
EventWithOriginatorID (class in eventsourc-

ing.domain.model.events), 172
EventWithOriginatorVersion (class in

eventsourcing.domain.model.events), 172
EventWithTimestamp (class in eventsourc-

ing.domain.model.events), 173
EventWithTimeuuid (class in eventsourc-

ing.domain.model.events), 173
Example (class in eventsourc-

ing.example.domainmodel), 208
Example.AttributeChanged (class in eventsourc-

ing.example.domainmodel), 208
Example.Created (class in eventsourc-

ing.example.domainmodel), 208
Example.Discarded (class in eventsourc-

ing.example.domainmodel), 208
Example.Event (class in eventsourc-

ing.example.domainmodel), 208
Example.Heartbeat (class in eventsourc-

ing.example.domainmodel), 208
ExampleApplication (class in eventsourc-

ing.example.application), 207
ExampleRepository (class in eventsourc-

ing.example.infrastructure), 209

F
filter() (eventsourc-

ing.infrastructure.cassandra.manager.CassandraRecordManager

Index 225



eventsourcing Documentation, Release 7.1.1

method), 179
filter_by() (eventsourc-

ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 197

follow() (eventsourc-
ing.application.process.ProcessApplication
method), 149

foo (eventsourcing.example.domainmodel.Example at-
tribute), 208

format_section_id() (eventsourc-
ing.interface.notificationlog.LocalNotificationLog
static method), 201

forward_prompt() (eventsourc-
ing.application.actors.ActorModelRunner
method), 144

forward_prompt() (eventsourc-
ing.application.actors.PipelineActor method),
144

from_jsonable() (eventsourc-
ing.utils.transcoding.ObjectJSONDecoder
class method), 204

from_record() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 176

G
get_and_project_events() (eventsourc-

ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 188

get_domain_event() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 188

get_domain_event() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 189

get_domain_events() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 189

get_domain_events() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 189

get_entity() (eventsourc-
ing.domain.model.entity.AbstractEntityRepository
method), 164

get_entity() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 188

get_event_class_and_attrs() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

get_event_from_notification() (eventsourc-
ing.application.process.ProcessApplication
method), 149

get_events() (eventsourc-

ing.infrastructure.timebucketedlog_reader.TimebucketedlogReader
method), 201

get_example_application() (in module
eventsourcing.example.application), 207

get_field_kwargs() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 176

get_item() (eventsourc-
ing.domain.model.array.BigArray method),
161

get_item() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 176

get_item_assigned() (eventsourc-
ing.domain.model.array.Array method),
160

get_item_topic_and_state() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

get_items() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

get_items() (eventsourc-
ing.interface.notificationlog.BigArrayNotificationLog
method), 201

get_items() (eventsourc-
ing.interface.notificationlog.LocalNotificationLog
method), 202

get_items() (eventsourc-
ing.interface.notificationlog.RecordManagerNotificationLog
method), 202

get_items_assigned() (eventsourc-
ing.domain.model.array.Array method),
160

get_json() (eventsourc-
ing.interface.notificationlog.RemoteNotificationLog
method), 202

get_last_array() (eventsourc-
ing.domain.model.array.BigArray method),
161

get_last_item_and_next_position()
(eventsourcing.domain.model.array.Array
method), 160

get_last_item_and_next_position()
(eventsourcing.domain.model.array.BigArray
method), 161

get_max_record_id() (eventsourc-
ing.infrastructure.base.ACIDRecordManager
method), 176

get_max_record_id() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

get_max_record_id() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager

226 Index



eventsourcing Documentation, Release 7.1.1

method), 197
get_max_tracking_record_id() (eventsourc-

ing.infrastructure.base.ACIDRecordManager
method), 176

get_max_tracking_record_id() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

get_max_tracking_record_id() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

get_messages() (eventsourc-
ing.infrastructure.timebucketedlog_reader.TimebucketedlogReader
method), 201

get_most_recent_event() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 189

get_most_recent_event() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 189

get_next_position() (eventsourc-
ing.domain.model.array.Array method),
160

get_next_position() (eventsourc-
ing.interface.notificationlog.BigArrayNotificationLog
method), 201

get_next_position() (eventsourc-
ing.interface.notificationlog.LocalNotificationLog
method), 202

get_next_position() (eventsourc-
ing.interface.notificationlog.RecordManagerNotificationLog
method), 202

get_notification_generator() (eventsourc-
ing.application.process.ProcessApplication
method), 149

get_notifications() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

get_notifications() (eventsourc-
ing.infrastructure.cassandra.manager.CassandraRecordManager
method), 180

get_notifications() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

get_notifications() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

get_or_create() (eventsourc-
ing.domain.model.timebucketedlog.TimebucketedlogRepository
method), 175

get_pipeline_and_notification_id()
(eventsourcing.infrastructure.base.ACIDRecordManager
method), 176

get_record() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager

method), 177
get_record() (eventsourc-

ing.infrastructure.cassandra.manager.CassandraRecordManager
method), 180

get_record() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

get_record() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

get_record_table_name() (eventsourc-
ing.infrastructure.base.SQLRecordManager
method), 177

get_record_table_name() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

get_record_table_name() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

get_records() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

get_records() (eventsourc-
ing.infrastructure.cassandra.manager.CassandraRecordManager
method), 180

get_records() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

get_records() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

get_resource() (eventsourc-
ing.interface.notificationlog.RemoteNotificationLog
method), 202

get_slice() (eventsourc-
ing.domain.model.array.BigArray method),
161

get_snapshot() (eventsourc-
ing.infrastructure.snapshotting.AbstractSnapshotStrategy
method), 195

get_snapshot() (eventsourc-
ing.infrastructure.snapshotting.EventSourcedSnapshotStrategy
method), 195

get_timebucketedlog_reader()
(in module eventsourc-
ing.infrastructure.timebucketedlog_reader),
201

get_topic() (in module eventsourcing.utils.topic),
204

GetEntityEventsThread (class in eventsourc-
ing.infrastructure.iterators), 191

H
handle_prompt() (eventsourc-

Index 227



eventsourcing Documentation, Release 7.1.1

ing.application.system.InProcessRunner
method), 154

handle_prompt() (eventsourc-
ing.application.system.MultiThreadedRunner
method), 154

handle_prompt() (eventsourc-
ing.application.system.SingleThreadedRunner
method), 155

handle_prompt() (eventsourc-
ing.application.system.SteppingMultiThreadedRunner
method), 156

handle_prompt() (eventsourc-
ing.application.system.SteppingSingleThreadedRunner
method), 156

handle_slave_run_response() (eventsourc-
ing.application.actors.ProcessMaster method),
144

has_tracking_record() (eventsourc-
ing.infrastructure.base.ACIDRecordManager
method), 176

has_tracking_record() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

has_tracking_record() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

HeadHashError, 206
hello() (in module eventsourc-

ing.example.interface.flaskapp), 209
HOSTS (eventsourcing.infrastructure.cassandra.datastore.CassandraSettings

attribute), 178

I
id (eventsourcing.domain.model.entity.DomainEntity at-

tribute), 167
id (eventsourcing.example.interface.flaskapp.IntegerSequencedItem

attribute), 209
id (eventsourcing.infrastructure.django.models.IntegerSequencedRecord

attribute), 184
id (eventsourcing.infrastructure.django.models.TimestampSequencedRecord

attribute), 187
id (eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord

attribute), 199
id (eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord

attribute), 200
index (eventsourcing.domain.model.array.ItemAssigned

attribute), 161
infrastructure_factory_class (eventsourc-

ing.application.popo.PopoApplication at-
tribute), 148

infrastructure_factory_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

infrastructure_factory_class (eventsourc-
ing.application.sqlalchemy.SQLAlchemyApplication
attribute), 152

init_example_application() (in module
eventsourcing.example.application), 208

init_example_application_with_sqlalchemy()
(in module eventsourc-
ing.example.interface.flaskapp), 209

init_pipeline() (eventsourc-
ing.application.actors.PipelineActor method),
144

init_pipelines() (eventsourc-
ing.application.actors.SystemActor method),
145

init_process() (eventsourc-
ing.application.actors.ProcessMaster method),
144

init_process() (eventsourc-
ing.application.actors.ProcessSlave method),
144

InProcessRunner (class in eventsourc-
ing.application.system), 153

insert_select_max (eventsourc-
ing.infrastructure.base.SQLRecordManager
attribute), 177

insert_tracking_record (eventsourc-
ing.infrastructure.base.SQLRecordManager
attribute), 177

insert_values (eventsourc-
ing.infrastructure.base.SQLRecordManager
attribute), 177

integer_sequenced_record_class
(eventsourcing.infrastructure.cassandra.factory.CassandraInfrastructureFactory
attribute), 179

integer_sequenced_record_class
(eventsourcing.infrastructure.django.factory.DjangoInfrastructureFactory
attribute), 182

integer_sequenced_record_class
(eventsourcing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory
attribute), 197

IntegerSequencedItem (class in eventsourc-
ing.example.interface.flaskapp), 209

IntegerSequencedNoIDRecord
(class in eventsourc-
ing.infrastructure.sqlalchemy.records), 198

IntegerSequencedRecord (class in eventsourc-
ing.infrastructure.cassandra.records), 180

IntegerSequencedRecord (class in eventsourc-
ing.infrastructure.django.models), 184

IntegerSequencedRecord (in module eventsourc-
ing.infrastructure.sqlalchemy.records), 199

IntegerSequencedRecord.DoesNotExist,
180, 184

IntegerSequencedRecord.MultipleObjectsReturned,

228 Index



eventsourcing Documentation, Release 7.1.1

180, 184
IntegerSequencedWithIDRecord

(class in eventsourc-
ing.infrastructure.sqlalchemy.records), 199

is_constructed_with_session (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

is_constructed_with_session (eventsourc-
ing.application.sqlalchemy.SQLAlchemyApplication
attribute), 152

is_done (eventsourc-
ing.domain.model.command.Command at-
tribute), 163

is_event() (eventsourc-
ing.application.policies.PersistencePolicy
method), 147

is_my_prompt() (eventsourc-
ing.application.actors.ProcessSlave method),
144

is_prompt() (eventsourc-
ing.application.actors.ActorModelRunner
static method), 144

is_prompt() (eventsourc-
ing.application.multiprocess.MultiprocessRunner
static method), 146

is_prompt() (eventsourc-
ing.application.multiprocess.OperatingSystemProcess
static method), 147

is_prompt() (eventsourc-
ing.application.system.System method), 156

is_sqlite() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

item (eventsourcing.domain.model.array.ItemAssigned
attribute), 161

item (eventsourcing.domain.model.collection.Collection.EventWithItem
attribute), 162

item_from_event() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 190

item_from_event() (eventsourc-
ing.infrastructure.sequenceditemmapper.AbstractSequencedItemMapper
method), 194

item_from_event() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 195

ItemAssigned (class in eventsourc-
ing.domain.model.array), 161

items (eventsourcing.domain.model.collection.Collection
attribute), 162

iterator_class (eventsourc-
ing.infrastructure.eventstore.EventStore at-
tribute), 190

iterencode() (eventsourc-

ing.utils.transcoding.ObjectJSONEncoder
method), 204

J
json_decoder_class (eventsourc-

ing.application.simple.SimpleApplication
attribute), 151

json_dumps() (in module eventsourc-
ing.utils.transcoding), 205

json_encoder_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

json_loads() (in module eventsourc-
ing.utils.transcoding), 205

L
list_items() (eventsourc-

ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

list_sequence_ids() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

LocalNotificationLog (class in eventsourc-
ing.interface.notificationlog), 201

log_message() (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog
method), 175

Logged (class in eventsourcing.domain.model.events),
173

loop_on_prompts() (eventsourc-
ing.application.multiprocess.OperatingSystemProcess
method), 147

loop_on_prompts() (eventsourc-
ing.application.system.PromptQueuedApplicationThread
method), 155

M
make_notification_log_url() (eventsourc-

ing.interface.notificationlog.RemoteNotificationLog
method), 202

make_timebucket_id() (in module eventsourc-
ing.domain.model.timebucketedlog), 175

message (eventsourc-
ing.domain.model.timebucketedlog.MessageLogged
attribute), 174

MessageLogged (class in eventsourc-
ing.domain.model.timebucketedlog), 174

MismatchedOriginatorError, 206
mixin() (eventsourc-

ing.application.simple.SimpleApplication
class method), 151

MultiprocessRunner (class in eventsourc-
ing.application.multiprocess), 146

Index 229



eventsourcing Documentation, Release 7.1.1

MultiThreadedRunner (class in eventsourc-
ing.application.system), 154

mutate() (eventsourc-
ing.domain.model.command.Command.Done
method), 163

mutate() (eventsourc-
ing.domain.model.events.DomainEvent
method), 171

mutate() (eventsourc-
ing.example.domainmodel.Example.Heartbeat
method), 208

mutate() (eventsourc-
ing.infrastructure.eventplayer.EventPlayer
static method), 188

mutator() (in module eventsourc-
ing.domain.model.decorators), 163

MutatorRequiresTypeNotInstance, 206

N
name (eventsourcing.domain.model.events.AttributeChanged

attribute), 170
name (eventsourcing.domain.model.timebucketedlog.Timebucketedlog

attribute), 175
next_bucket_starts() (in module eventsourc-

ing.domain.model.timebucketedlog), 175
notification_id (eventsourc-

ing.infrastructure.django.models.NotificationTrackingRecord
attribute), 185

notification_id (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 186

notification_id (eventsourc-
ing.infrastructure.sqlalchemy.records.NotificationTrackingRecord
attribute), 199

notification_id (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

notification_log_section_size (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

NotificationLogReader (class in eventsourc-
ing.interface.notificationlog), 202

NotificationLogView (class in eventsourc-
ing.interface.notificationlog), 202

NotificationTrackingRecord (class in
eventsourcing.infrastructure.django.models),
185

NotificationTrackingRecord
(class in eventsourc-
ing.infrastructure.sqlalchemy.records), 199

NotificationTrackingRecord.DoesNotExist,
185

NotificationTrackingRecord.MultipleObjectsReturned,
185

O
ObjectJSONDecoder (class in eventsourc-

ing.utils.transcoding), 204
ObjectJSONEncoder (class in eventsourc-

ing.utils.transcoding), 204
objects (eventsourc-

ing.infrastructure.django.models.EntitySnapshotRecord
attribute), 184

objects (eventsourc-
ing.infrastructure.django.models.IntegerSequencedRecord
attribute), 184

objects (eventsourc-
ing.infrastructure.django.models.NotificationTrackingRecord
attribute), 185

objects (eventsourc-
ing.infrastructure.django.models.SnapshotRecord
attribute), 185

objects (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 186

objects (eventsourc-
ing.infrastructure.django.models.TimestampSequencedRecord
attribute), 187

OperatingSystemProcess (class in eventsourc-
ing.application.multiprocess), 146

OperationalError, 206
originator_id (eventsourc-

ing.domain.model.events.EventWithOriginatorID
attribute), 172

originator_id (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 174

originator_id (eventsourc-
ing.infrastructure.cassandra.records.StoredEventRecord
attribute), 180

originator_id (eventsourc-
ing.infrastructure.django.models.EntitySnapshotRecord
attribute), 184

originator_id (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 186

originator_id (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
attribute), 194

originator_id (eventsourc-
ing.infrastructure.sqlalchemy.records.EntitySnapshotRecord
attribute), 198

originator_id (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

originator_topic (eventsourc-
ing.domain.model.entity.DomainEntity.Created
attribute), 165

originator_version (eventsourc-

230 Index



eventsourcing Documentation, Release 7.1.1

ing.domain.model.events.EventWithOriginatorVersion
attribute), 173

originator_version (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 174

originator_version (eventsourc-
ing.infrastructure.cassandra.records.StoredEventRecord
attribute), 181

originator_version (eventsourc-
ing.infrastructure.django.models.EntitySnapshotRecord
attribute), 184

originator_version (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 186

originator_version (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
attribute), 194

originator_version (eventsourc-
ing.infrastructure.sqlalchemy.records.EntitySnapshotRecord
attribute), 198

originator_version (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

OriginatorIDError, 206
OriginatorVersionError, 206
orm_query() (eventsourc-

ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

other_names (eventsourc-
ing.infrastructure.sequenceditem.SequencedItemFieldNames
attribute), 193

P
persist_event_type (eventsourc-

ing.application.command.CommandProcess
attribute), 145

persist_event_type (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

PersistencePolicy (class in eventsourc-
ing.application.policies), 147

Pipeable (class in eventsourcing.application.pipeline),
147

PipeableMetaclass (class in eventsourc-
ing.application.pipeline), 147

pipeline_id (eventsourc-
ing.infrastructure.django.models.NotificationTrackingRecord
attribute), 185

pipeline_id (eventsourc-
ing.infrastructure.django.models.StoredEventRecord
attribute), 187

pipeline_id (eventsourc-
ing.infrastructure.sqlalchemy.records.NotificationTrackingRecord
attribute), 199

pipeline_id (eventsourc-
ing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

PipelineActor (class in eventsourc-
ing.application.actors), 144

PipelineExpression (class in eventsourc-
ing.application.pipeline), 147

PipelineInitRequest (class in eventsourc-
ing.application.actors), 144

pk (eventsourcing.infrastructure.cassandra.records.IntegerSequencedRecord
attribute), 180

pk (eventsourcing.infrastructure.cassandra.records.SnapshotRecord
attribute), 180

pk (eventsourcing.infrastructure.cassandra.records.StoredEventRecord
attribute), 181

pk (eventsourcing.infrastructure.cassandra.records.TimestampSequencedRecord
attribute), 181

pk (eventsourcing.infrastructure.cassandra.records.TimeuuidSequencedRecord
attribute), 181

policy() (eventsourc-
ing.application.process.ProcessApplication
static method), 149

PopoApplication (class in eventsourc-
ing.application.popo), 148

PORT (eventsourcing.infrastructure.cassandra.datastore.CassandraSettings
attribute), 178

position (eventsourc-
ing.example.interface.flaskapp.IntegerSequencedItem
attribute), 209

position (eventsourc-
ing.infrastructure.cassandra.records.IntegerSequencedRecord
attribute), 180

position (eventsourc-
ing.infrastructure.cassandra.records.SnapshotRecord
attribute), 180

position (eventsourc-
ing.infrastructure.cassandra.records.TimestampSequencedRecord
attribute), 181

position (eventsourc-
ing.infrastructure.cassandra.records.TimeuuidSequencedRecord
attribute), 181

position (eventsourc-
ing.infrastructure.django.models.IntegerSequencedRecord
attribute), 184

position (eventsourc-
ing.infrastructure.django.models.SnapshotRecord
attribute), 185

position (eventsourc-
ing.infrastructure.django.models.TimestampSequencedRecord
attribute), 187

position (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
attribute), 193

position (eventsourc-

Index 231



eventsourcing Documentation, Release 7.1.1

ing.infrastructure.sequenceditem.SequencedItemFieldNames
attribute), 193

position (eventsourc-
ing.infrastructure.sqlalchemy.records.IntegerSequencedNoIDRecord
attribute), 198

position (eventsourc-
ing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord
attribute), 199

position (eventsourc-
ing.infrastructure.sqlalchemy.records.SnapshotRecord
attribute), 199

position (eventsourc-
ing.infrastructure.sqlalchemy.records.TimestampSequencedNoIDRecord
attribute), 200

position (eventsourc-
ing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord
attribute), 200

present_section() (eventsourc-
ing.interface.notificationlog.NotificationLogView
method), 202

previous_bucket_starts() (in module
eventsourcing.domain.model.timebucketedlog),
175

process_upstream_event() (eventsourc-
ing.application.process.ProcessApplication
method), 149

ProcessApplication (class in eventsourc-
ing.application.process), 148

ProcessApplicationWithSnapshotting (class
in eventsourcing.application.process), 149

ProcessEvent (class in eventsourc-
ing.application.process), 149

ProcessInitRequest (class in eventsourc-
ing.application.actors), 144

ProcessMaster (class in eventsourc-
ing.application.actors), 144

ProcessRunningClockThread (class in
eventsourcing.application.system), 154

ProcessSlave (class in eventsourc-
ing.application.actors), 144

ProgrammingError, 206
project_events() (eventsourc-

ing.infrastructure.eventplayer.EventPlayer
method), 188

Prompt (class in eventsourcing.application.process),
149

PromptFailed, 206
PromptOutbox (class in eventsourc-

ing.application.system), 154
PromptQueuedApplicationThread (class in

eventsourcing.application.system), 154
PROTOCOL_VERSION (eventsourc-

ing.infrastructure.cassandra.datastore.CassandraSettings
attribute), 178

publish() (in module eventsourc-
ing.domain.model.events), 173

publish_prompt() (eventsourc-
ing.application.process.ProcessApplication
method), 149

put() (eventsourcing.application.system.PromptOutbox
method), 154

R
raise_index_error() (eventsourc-

ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

raise_operational_error() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

raise_record_integrity_error()
(eventsourcing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

raise_sequenced_item_conflict()
(eventsourcing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

random() (in module eventsourc-
ing.domain.model.decorators), 164

read() (eventsourcing.interface.notificationlog.NotificationLogReader
method), 202

read_items() (eventsourc-
ing.interface.notificationlog.NotificationLogReader
method), 202

read_list() (eventsourc-
ing.interface.notificationlog.NotificationLogReader
method), 202

read_reader() (eventsourc-
ing.application.process.ProcessApplication
method), 149

receiveMessage() (eventsourc-
ing.application.actors.PipelineActor method),
144

receiveMessage() (eventsourc-
ing.application.actors.ProcessMaster method),
144

receiveMessage() (eventsourc-
ing.application.actors.ProcessSlave method),
144

receiveMessage() (eventsourc-
ing.application.actors.SystemActor method),
145

reconstruct_object() (in module eventsourc-
ing.infrastructure.sequenceditemmapper), 195

record_manager_class (eventsourc-
ing.application.django.DjangoApplication
attribute), 146

record_manager_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

232 Index



eventsourcing Documentation, Release 7.1.1

record_manager_class (eventsourc-
ing.infrastructure.cassandra.factory.CassandraInfrastructureFactory
attribute), 179

record_manager_class (eventsourc-
ing.infrastructure.django.factory.DjangoInfrastructureFactory
attribute), 182

record_manager_class (eventsourc-
ing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory
attribute), 197

record_process_event() (eventsourc-
ing.application.process.ProcessApplication
method), 149

record_sequenced_item() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

record_sequenced_items() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

record_sequenced_items() (eventsourc-
ing.infrastructure.base.SQLRecordManager
method), 178

record_sequenced_items() (eventsourc-
ing.infrastructure.cassandra.manager.CassandraRecordManager
method), 180

RecordConflictError, 206
RecordManagerNotificationLog (class in

eventsourcing.interface.notificationlog), 202
RedisIncr (class in eventsourc-

ing.infrastructure.integersequencegenerators.redisincr),
190

register_new_collection() (in module
eventsourcing.domain.model.collection),
162

RemoteNotificationLog (class in eventsourc-
ing.interface.notificationlog), 202

remove_item() (eventsourc-
ing.domain.model.collection.Collection
method), 162

REPLICATION_FACTOR (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraSettings
attribute), 179

repository (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

repository_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

RepositoryKeyError, 206
RepositoryWrapper (class in eventsourc-

ing.application.process), 149
reset_connection_after_forking()

(eventsourcing.application.django.DjangoApplication
class method), 146

reset_connection_after_forking()

(eventsourcing.application.simple.SimpleApplication
class method), 151

resolve_attr() (in module eventsourc-
ing.utils.topic), 204

resolve_topic() (in module eventsourc-
ing.utils.topic), 204

retry() (in module eventsourc-
ing.domain.model.decorators), 164

run() (eventsourcing.application.multiprocess.OperatingSystemProcess
method), 147

run() (eventsourcing.application.process.ProcessApplication
method), 149

run() (eventsourcing.application.system.BarrierControlledApplicationThread
method), 153

run() (eventsourcing.application.system.BarrierControllingClockThread
method), 153

run() (eventsourcing.application.system.ProcessRunningClockThread
method), 154

run() (eventsourcing.application.system.PromptQueuedApplicationThread
method), 155

run() (eventsourcing.infrastructure.iterators.GetEntityEventsThread
method), 191

run_followers() (eventsourc-
ing.application.system.SingleThreadedRunner
method), 155

run_process() (eventsourc-
ing.application.actors.ProcessSlave method),
144

run_process() (eventsourc-
ing.application.multiprocess.OperatingSystemProcess
method), 147

run_process() (eventsourc-
ing.application.system.PromptQueuedApplicationThread
method), 155

run_slave() (eventsourc-
ing.application.actors.ProcessMaster method),
144

S
Section (class in eventsourc-

ing.interface.notificationlog), 202
seek() (eventsourcing.interface.notificationlog.NotificationLogReader

method), 202
send_prompt() (eventsourc-

ing.application.actors.ProcessSlave method),
144

sequence_id (eventsourc-
ing.example.interface.flaskapp.IntegerSequencedItem
attribute), 209

sequence_id (eventsourc-
ing.infrastructure.cassandra.records.IntegerSequencedRecord
attribute), 180

sequence_id (eventsourc-
ing.infrastructure.cassandra.records.SnapshotRecord

Index 233



eventsourcing Documentation, Release 7.1.1

attribute), 180
sequence_id (eventsourc-

ing.infrastructure.cassandra.records.TimestampSequencedRecord
attribute), 181

sequence_id (eventsourc-
ing.infrastructure.cassandra.records.TimeuuidSequencedRecord
attribute), 181

sequence_id (eventsourc-
ing.infrastructure.django.models.IntegerSequencedRecord
attribute), 184

sequence_id (eventsourc-
ing.infrastructure.django.models.SnapshotRecord
attribute), 186

sequence_id (eventsourc-
ing.infrastructure.django.models.TimestampSequencedRecord
attribute), 187

sequence_id (eventsourc-
ing.infrastructure.sequenceditem.SequencedItem
attribute), 193

sequence_id (eventsourc-
ing.infrastructure.sequenceditem.SequencedItemFieldNames
attribute), 193

sequence_id (eventsourc-
ing.infrastructure.sqlalchemy.records.IntegerSequencedNoIDRecord
attribute), 199

sequence_id (eventsourc-
ing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord
attribute), 199

sequence_id (eventsourc-
ing.infrastructure.sqlalchemy.records.SnapshotRecord
attribute), 199

sequence_id (eventsourc-
ing.infrastructure.sqlalchemy.records.TimestampSequencedNoIDRecord
attribute), 200

sequence_id (eventsourc-
ing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord
attribute), 200

sequenced_item_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

sequenced_item_mapper_class (eventsourc-
ing.application.popo.PopoApplication at-
tribute), 148

sequenced_item_mapper_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

SequencedItem (class in eventsourc-
ing.infrastructure.sequenceditem), 193

SequencedItemFieldNames (class in eventsourc-
ing.infrastructure.sequenceditem), 193

SequencedItemIterator (class in eventsourc-
ing.infrastructure.iterators), 191

SequencedItemMapper (class in eventsourc-
ing.infrastructure.sequenceditemmapper),

194
session (eventsourc-

ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
attribute), 196

set_notification_ids (eventsourc-
ing.application.process.ProcessApplication
attribute), 149

set_reader_position_from_tracking_records()
(eventsourcing.application.process.ProcessApplication
method), 149

setup_connection() (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraDatastore
method), 178

setup_connection() (eventsourc-
ing.infrastructure.datastore.Datastore method),
181

setup_connection() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

setup_django() (in module eventsourc-
ing.infrastructure.django.utils), 187

setup_table() (eventsourc-
ing.application.process.ProcessApplication
method), 149

setup_table() (eventsourc-
ing.application.simple.SimpleApplication
method), 151

setup_table() (eventsourc-
ing.application.snapshotting.SnapshottingApplication
method), 152

setup_table() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

setup_tables() (eventsourc-
ing.infrastructure.cassandra.datastore.CassandraDatastore
method), 178

setup_tables() (eventsourc-
ing.infrastructure.datastore.Datastore method),
182

setup_tables() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

shutdown() (eventsourc-
ing.application.actors.ActorModelRunner
method), 144

shutdown_actor_system() (in module
eventsourcing.application.actors), 145

SimpleApplication (class in eventsourc-
ing.application.simple), 150

SimpleIntegerSequenceGenerator
(class in eventsourc-
ing.infrastructure.integersequencegenerators.base),
190

SingleThreadedRunner (class in eventsourc-

234 Index



eventsourcing Documentation, Release 7.1.1

ing.application.system), 155
SlaveRunRequest (class in eventsourc-

ing.application.actors), 144
SlaveRunResponse (class in eventsourc-

ing.application.actors), 145
Snapshot (class in eventsourc-

ing.domain.model.snapshot), 174
snapshot_period (eventsourc-

ing.application.snapshotting.SnapshottingApplication
attribute), 152

snapshot_record_class (eventsourc-
ing.application.django.DjangoApplication
attribute), 146

snapshot_record_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

snapshot_record_class (eventsourc-
ing.application.sqlalchemy.SQLAlchemyApplication
attribute), 152

snapshot_record_class (eventsourc-
ing.infrastructure.cassandra.factory.CassandraInfrastructureFactory
attribute), 179

snapshot_record_class (eventsourc-
ing.infrastructure.django.factory.DjangoInfrastructureFactory
attribute), 182

snapshot_record_class (eventsourc-
ing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory
attribute), 197

SnapshotRecord (class in eventsourc-
ing.infrastructure.cassandra.records), 180

SnapshotRecord (class in eventsourc-
ing.infrastructure.django.models), 185

SnapshotRecord (class in eventsourc-
ing.infrastructure.sqlalchemy.records), 199

SnapshotRecord.DoesNotExist, 180, 185
SnapshotRecord.MultipleObjectsReturned,

180, 185
SnapshottingApplication (class in eventsourc-

ing.application.snapshotting), 152
SnapshottingPolicy (class in eventsourc-

ing.application.policies), 147
SQLAlchemyApplication (class in eventsourc-

ing.application.sqlalchemy), 152
SQLAlchemyDatastore (class in eventsourc-

ing.infrastructure.sqlalchemy.datastore), 196
SQLAlchemyInfrastructureFactory

(class in eventsourc-
ing.infrastructure.sqlalchemy.factory), 196

SQLAlchemyRecordManager (class in eventsourc-
ing.infrastructure.sqlalchemy.manager), 197

SQLAlchemySettings (class in eventsourc-
ing.infrastructure.sqlalchemy.datastore),
196

SQLRecordManager (class in eventsourc-

ing.infrastructure.base), 177
start() (eventsourc-

ing.application.actors.ActorModelRunner
method), 144

start() (eventsourc-
ing.application.multiprocess.MultiprocessRunner
method), 146

start() (eventsourc-
ing.application.system.InProcessRunner
method), 154

start() (eventsourc-
ing.application.system.MultiThreadedRunner
method), 154

start() (eventsourc-
ing.application.system.SteppingMultiThreadedRunner
method), 156

start() (eventsourc-
ing.application.system.SteppingSingleThreadedRunner
method), 156

start() (eventsourc-
ing.application.system.SystemRunner method),
156

start_actor_system() (in module eventsourc-
ing.application.actors), 145

start_clock() (eventsourc-
ing.application.system.MultiThreadedRunner
method), 154

start_multiproc_tcp_base_system() (in
module eventsourcing.application.actors), 145

start_new_timebucketedlog() (in module
eventsourcing.domain.model.timebucketedlog),
175

start_thread() (eventsourc-
ing.infrastructure.iterators.ThreadedSequencedItemIterator
method), 192

started_on (eventsourc-
ing.domain.model.timebucketedlog.Timebucketedlog
attribute), 175

state (eventsourcing.domain.model.snapshot.AbstractSnapshop
attribute), 174

state (eventsourcing.domain.model.snapshot.Snapshot
attribute), 174

state (eventsourcing.example.interface.flaskapp.IntegerSequencedItem
attribute), 209

state (eventsourcing.infrastructure.cassandra.records.IntegerSequencedRecord
attribute), 180

state (eventsourcing.infrastructure.cassandra.records.SnapshotRecord
attribute), 180

state (eventsourcing.infrastructure.cassandra.records.StoredEventRecord
attribute), 181

state (eventsourcing.infrastructure.cassandra.records.TimestampSequencedRecord
attribute), 181

state (eventsourcing.infrastructure.cassandra.records.TimeuuidSequencedRecord
attribute), 181

Index 235



eventsourcing Documentation, Release 7.1.1

state (eventsourcing.infrastructure.django.models.EntitySnapshotRecord
attribute), 184

state (eventsourcing.infrastructure.django.models.IntegerSequencedRecord
attribute), 184

state (eventsourcing.infrastructure.django.models.SnapshotRecord
attribute), 186

state (eventsourcing.infrastructure.django.models.StoredEventRecord
attribute), 187

state (eventsourcing.infrastructure.django.models.TimestampSequencedRecord
attribute), 187

state (eventsourcing.infrastructure.sequenceditem.SequencedItem
attribute), 193

state (eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames
attribute), 193

state (eventsourcing.infrastructure.sequenceditem.StoredEvent
attribute), 194

state (eventsourcing.infrastructure.sqlalchemy.records.EntitySnapshotRecord
attribute), 198

state (eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedNoIDRecord
attribute), 199

state (eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord
attribute), 199

state (eventsourcing.infrastructure.sqlalchemy.records.SnapshotRecord
attribute), 199

state (eventsourcing.infrastructure.sqlalchemy.records.StoredEventRecord
attribute), 200

state (eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedNoIDRecord
attribute), 200

state (eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord
attribute), 200

SteppingMultiThreadedRunner (class in
eventsourcing.application.system), 155

SteppingRunner (class in eventsourc-
ing.application.system), 156

SteppingSingleThreadedRunner (class in
eventsourcing.application.system), 156

store() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 189

store() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 190

store_event() (eventsourc-
ing.application.policies.PersistencePolicy
method), 147

stored_event_record_class (eventsourc-
ing.application.django.DjangoApplication
attribute), 146

stored_event_record_class (eventsourc-
ing.application.popo.PopoApplication at-
tribute), 148

stored_event_record_class (eventsourc-
ing.application.simple.SimpleApplication
attribute), 151

stored_event_record_class (eventsourc-
ing.application.sqlalchemy.SQLAlchemyApplication
attribute), 152

StoredEvent (class in eventsourc-
ing.infrastructure.sequenceditem), 194

StoredEventRecord (class in eventsourc-
ing.infrastructure.cassandra.records), 180

StoredEventRecord (class in eventsourc-
ing.infrastructure.django.models), 186

StoredEventRecord (class in eventsourc-
ing.infrastructure.sqlalchemy.records), 200

StoredEventRecord.DoesNotExist, 180, 186
StoredEventRecord.MultipleObjectsReturned,

180, 186
subrepo (eventsourc-

ing.domain.model.array.AbstractBigArrayRepository
attribute), 159

subrepo (eventsourc-
ing.infrastructure.repositories.array.BigArrayRepository
attribute), 192

subrepo_class (eventsourc-
ing.infrastructure.repositories.array.BigArrayRepository
attribute), 192

subscribe() (in module eventsourc-
ing.domain.model.events), 173

subscribe_to() (in module eventsourc-
ing.domain.model.decorators), 164

System (class in eventsourcing.application.system), 156
SystemActor (class in eventsourc-

ing.application.actors), 145
SystemInitRequest (class in eventsourc-

ing.application.actors), 145
SystemInitResponse (class in eventsourc-

ing.application.actors), 145
SystemRunner (class in eventsourc-

ing.application.system), 156

T
take_snapshot() (eventsourc-

ing.application.policies.SnapshottingPolicy
method), 148

take_snapshot() (eventsourc-
ing.domain.model.entity.AbstractEntityRepository
method), 165

take_snapshot() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 188

take_snapshot() (eventsourc-
ing.infrastructure.snapshotting.AbstractSnapshotStrategy
method), 195

take_snapshot() (eventsourc-
ing.infrastructure.snapshotting.EventSourcedSnapshotStrategy
method), 196

236 Index



eventsourcing Documentation, Release 7.1.1

take_snapshots() (eventsourc-
ing.application.process.ProcessApplication
method), 149

take_snapshots() (eventsourc-
ing.application.process.ProcessApplicationWithSnapshotting
method), 149

ThreadedSequencedItemIterator (class in
eventsourcing.infrastructure.iterators), 192

Timebucketedlog (class in eventsourc-
ing.domain.model.timebucketedlog), 174

Timebucketedlog.BucketSizeChanged
(class in eventsourc-
ing.domain.model.timebucketedlog), 174

Timebucketedlog.Event (class in eventsourc-
ing.domain.model.timebucketedlog), 174

Timebucketedlog.Started (class in eventsourc-
ing.domain.model.timebucketedlog), 175

TimebucketedlogReader (class in eventsourc-
ing.infrastructure.timebucketedlog_reader),
201

TimebucketedlogRepo (class in eventsourc-
ing.infrastructure.repositories.timebucketedlog_repo),
192

TimebucketedlogRepository (class in
eventsourcing.domain.model.timebucketedlog),
175

TimeSequenceError, 206
timestamp (eventsourc-

ing.domain.model.events.EventWithTimestamp
attribute), 173

timestamp_from_datetime() (in module
eventsourcing.domain.model.timebucketedlog),
175

timestamp_long_from_uuid() (in module
eventsourcing.utils.times), 203

timestamp_sequenced_record_class
(eventsourcing.infrastructure.cassandra.factory.CassandraInfrastructureFactory
attribute), 179

timestamp_sequenced_record_class
(eventsourcing.infrastructure.django.factory.DjangoInfrastructureFactory
attribute), 182

timestamp_sequenced_record_class
(eventsourcing.infrastructure.sqlalchemy.factory.SQLAlchemyInfrastructureFactory
attribute), 197

TimestampedEntity (class in eventsourc-
ing.domain.model.entity), 168

TimestampedEntity.AttributeChanged (class
in eventsourcing.domain.model.entity), 168

TimestampedEntity.Created (class in
eventsourcing.domain.model.entity), 168

TimestampedEntity.Discarded (class in
eventsourcing.domain.model.entity), 168

TimestampedEntity.Event (class in eventsourc-
ing.domain.model.entity), 168

TimestampedVersionedEntity (class in
eventsourcing.domain.model.entity), 168

TimestampedVersionedEntity.AttributeChanged
(class in eventsourcing.domain.model.entity),
168

TimestampedVersionedEntity.Created (class
in eventsourcing.domain.model.entity), 169

TimestampedVersionedEntity.Discarded
(class in eventsourcing.domain.model.entity),
169

TimestampedVersionedEntity.Event (class in
eventsourcing.domain.model.entity), 169

TimestampSequencedNoIDRecord
(class in eventsourc-
ing.infrastructure.sqlalchemy.records), 200

TimestampSequencedRecord (class in eventsourc-
ing.infrastructure.cassandra.records), 181

TimestampSequencedRecord (class in eventsourc-
ing.infrastructure.django.models), 187

TimestampSequencedRecord
(in module eventsourc-
ing.infrastructure.sqlalchemy.records), 200

TimestampSequencedRecord.DoesNotExist,
181, 187

TimestampSequencedRecord.MultipleObjectsReturned,
181, 187

TimestampSequencedWithIDRecord
(class in eventsourc-
ing.infrastructure.sqlalchemy.records), 200

TimeuuidedEntity (class in eventsourc-
ing.domain.model.entity), 169

TimeuuidedVersionedEntity (class in
eventsourcing.domain.model.entity), 169

TimeuuidSequencedRecord (class in eventsourc-
ing.infrastructure.cassandra.records), 181

TimeuuidSequencedRecord.DoesNotExist,
181

TimeuuidSequencedRecord.MultipleObjectsReturned,
181

to_record() (eventsourc-
ing.infrastructure.base.AbstractSequencedItemRecordManager
method), 177

to_records() (eventsourc-
ing.infrastructure.base.SQLRecordManager
method), 178

topic (eventsourcing.domain.model.snapshot.AbstractSnapshop
attribute), 174

topic (eventsourcing.domain.model.snapshot.Snapshot
attribute), 174

topic (eventsourcing.example.interface.flaskapp.IntegerSequencedItem
attribute), 209

topic (eventsourcing.infrastructure.cassandra.records.IntegerSequencedRecord
attribute), 180

topic (eventsourcing.infrastructure.cassandra.records.SnapshotRecord

Index 237



eventsourcing Documentation, Release 7.1.1

attribute), 180
topic (eventsourcing.infrastructure.cassandra.records.StoredEventRecord

attribute), 181
topic (eventsourcing.infrastructure.cassandra.records.TimestampSequencedRecord

attribute), 181
topic (eventsourcing.infrastructure.cassandra.records.TimeuuidSequencedRecord

attribute), 181
topic (eventsourcing.infrastructure.django.models.EntitySnapshotRecord

attribute), 184
topic (eventsourcing.infrastructure.django.models.IntegerSequencedRecord

attribute), 184
topic (eventsourcing.infrastructure.django.models.SnapshotRecord

attribute), 186
topic (eventsourcing.infrastructure.django.models.StoredEventRecord

attribute), 187
topic (eventsourcing.infrastructure.django.models.TimestampSequencedRecord

attribute), 187
topic (eventsourcing.infrastructure.sequenceditem.SequencedItem

attribute), 193
topic (eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames

attribute), 193
topic (eventsourcing.infrastructure.sequenceditem.StoredEvent

attribute), 194
topic (eventsourcing.infrastructure.sqlalchemy.records.EntitySnapshotRecord

attribute), 198
topic (eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedNoIDRecord

attribute), 199
topic (eventsourcing.infrastructure.sqlalchemy.records.IntegerSequencedWithIDRecord

attribute), 199
topic (eventsourcing.infrastructure.sqlalchemy.records.SnapshotRecord

attribute), 199
topic (eventsourcing.infrastructure.sqlalchemy.records.StoredEventRecord

attribute), 200
topic (eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedNoIDRecord

attribute), 200
topic (eventsourcing.infrastructure.sqlalchemy.records.TimestampSequencedWithIDRecord

attribute), 201
TopicResolutionError, 206
tracking_record_class (eventsourc-

ing.infrastructure.base.ACIDRecordManager
attribute), 176

tracking_record_class (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
attribute), 183

tracking_record_class (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
attribute), 198

tracking_record_field_names (eventsourc-
ing.infrastructure.base.ACIDRecordManager
attribute), 176

TrackingRecordNotFound, 206
truncate_tables() (eventsourc-

ing.infrastructure.cassandra.datastore.CassandraDatastore
method), 178

truncate_tables() (eventsourc-
ing.infrastructure.datastore.Datastore method),
182

truncate_tables() (eventsourc-
ing.infrastructure.sqlalchemy.datastore.SQLAlchemyDatastore
method), 196

U
uid (eventsourcing.infrastructure.django.models.EntitySnapshotRecord

attribute), 184
uid (eventsourcing.infrastructure.django.models.NotificationTrackingRecord

attribute), 185
uid (eventsourcing.infrastructure.django.models.SnapshotRecord

attribute), 186
uid (eventsourcing.infrastructure.django.models.StoredEventRecord

attribute), 187
unsubscribe() (in module eventsourc-

ing.domain.model.events), 173
upstream_application_name (eventsourc-

ing.infrastructure.django.models.NotificationTrackingRecord
attribute), 185

upstream_application_name (eventsourc-
ing.infrastructure.sqlalchemy.records.NotificationTrackingRecord
attribute), 199

use_cache (eventsourc-
ing.application.simple.SimpleApplication
attribute), 152

use_causal_dependencies (eventsourc-
ing.application.process.ProcessApplication
attribute), 149

V
value (eventsourcing.domain.model.events.AttributeChanged

attribute), 170
VersionedEntity (class in eventsourc-

ing.domain.model.entity), 169
VersionedEntity.AttributeChanged (class in

eventsourcing.domain.model.entity), 169
VersionedEntity.Created (class in eventsourc-

ing.domain.model.entity), 169
VersionedEntity.Discarded (class in

eventsourcing.domain.model.entity), 170
VersionedEntity.Event (class in eventsourc-

ing.domain.model.entity), 170

W
write_records() (eventsourc-

ing.infrastructure.base.ACIDRecordManager
method), 176

write_records() (eventsourc-
ing.infrastructure.django.manager.DjangoRecordManager
method), 183

238 Index



eventsourcing Documentation, Release 7.1.1

write_records() (eventsourc-
ing.infrastructure.sqlalchemy.manager.SQLAlchemyRecordManager
method), 198

Index 239


	Introduction
	What is event sourcing?
	This library
	A cohesive mechanism
	Register issues

	Support options
	Community support
	Training workshops
	Advice and development

	Quick start
	Install library
	Define model
	Configure environment
	Run application

	Design
	Layered architecture
	Domain event store

	Features
	Core features
	Additional features

	Installation guide
	Install options

	Domain model layer
	Domain events
	Domain entities
	Aggregate root

	Infrastructure layer
	Sequenced item type
	Sequenced item mapper
	Record managers
	Event store

	Application layer
	Overview
	Simple application
	Custom application

	Notifications
	Three options
	Application sequence
	Notification logs
	Local notification logs
	Remote notification logs
	Notification log reader

	Projections
	Overview
	Subscribing to events
	Tracking notification logs

	Distributed systems
	Overview
	Process application
	System of processes
	Example
	Integration with APIs
	Process event pattern

	Snapshotting
	Domain
	Application
	Run the code

	Deployment
	Application object
	Database connection
	Web interfaces
	Task queues

	Stand-alone example
	Domain
	Infrastructure
	Application
	Run the code

	Background
	Release notes
	Version 7.x
	Version 6.x
	Version 5.x
	Version 4.x
	Version 3.x
	Version 2.x
	Version 1.x
	Version 0.x

	Contributing
	Module docs
	eventsourcing

	Python Module Index
	Index

