
eventsourcing Documentation
Release 3.1.0

John Bywater

Jan 25, 2018

Contents

1 Overview 3
1.1 Background . 3
1.2 Quick start . 4
1.3 Installation . 5
1.4 Features . 6
1.5 Design . 6
1.6 Infrastructure . 7
1.7 Domain model . 18
1.8 Applications . 30
1.9 Examples . 34
1.10 Release notes . 81

2 Reference 83

3 Modules 85
3.1 eventsourcing . 85

Python Module Index 107

i

ii

eventsourcing Documentation, Release 3.1.0

A library for event sourcing in Python.

Contents 1

eventsourcing Documentation, Release 3.1.0

2 Contents

CHAPTER 1

Overview

What is event sourcing? One definition suggests the state of an event sourced application is determined by a sequence
of events. Another definition has event sourcing as a persistence mechanism for domain driven design. In any case, it
is common for the state of a software application to be distributed or partitioned across a set of entities or aggregates
in a domain model.

Therefore, this library provides mechanisms useful in event sourced applications: a style for coding entity behaviours
that emit events; and a way for the events of an entity to be stored and replayed to obtain the entities on demand.

This documentation provides: instructions for installing the package, highlights the main features of the library, de-
scribes the design of the software, the infrastructure layer, the domain model layer, the application layer, and has
examples and some background information about the project.

This project is hosted on GitHub. Please register any issues, questions, and requests on GitHub.

1.1 Background

Although the event sourcing patterns are each quite simple, and they can be reproduced in code for each project, they
do suggest cohesive mechanisms, for example applying and publishing the events generated within domain entities,
storing and retrieving selections of the events in a highly scalable manner, replaying the stored events for a particular
entity to obtain the current state, and projecting views of the event stream that are persisted in other models.

Therefore, quoting from Eric Evans’ book about domain-driven design:

“Partition a conceptually COHESIVE MECHANISM into a separate lightweight framework. Particularly
watch for formalisms for well-documented categories of algorithms. Expose the capabilities of the frame-
work with an INTENTION-REVEALING INTERFACE. Now the other elements of the domain can focus
on expressing the problem (‘what’), delegating the intricacies of the solution (‘how’) to the framework.”

Inspiration:

• Martin Fowler’s article on event sourcing

• Greg Young’s discussions about event sourcing, and EventStore system

• Robert Smallshire’s brilliant example on Bitbucket

3

https://github.com/johnbywater/eventsourcing
https://github.com/johnbywater/eventsourcing/issues
https://en.wikipedia.org/wiki/Domain-driven_design
http://martinfowler.com/eaaDev/EventSourcing.html
https://www.youtube.com/watch?v=JHGkaShoyNs
https://geteventstore.com/
https://bitbucket.org/sixty-north/d5-kanban-python/src

eventsourcing Documentation, Release 3.1.0

• Various professional projects that called for this approach, for which I didn’t want to rewrite the same things
each time

See also:

• Evaluation of using NoSQL databases in an event sourcing system by Johan Rothsberg

• Object-relational impedance mismatch page on Wikipedia

• An introduction to event storming by a Steven Lowe, principal consultant developer at ThoughtWorks.

1.2 Quick start

This section shows how to write a very simple event sourced application using classes from the library. It shows the
general story, which is elaborated over the following pages.

Please use pip to install the library with the ‘sqlalchemy’ option.

pip install eventsourcing[sqlalchemy]

1.2.1 Domain

Firstly, import the example entity class Example and its factory function create_new_example().

from eventsourcing.example.domainmodel import create_new_example, Example

These classes will be used as the domain model in this example.

1.2.2 Infrastructure

Next, setup an SQLite database in memory, using library classes SQLAlchemyDatastore, with
SQLAlchemySettings and IntegerSequencedItemRecord.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓IntegerSequencedItemRecord

datastore = SQLAlchemyDatastore(
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(IntegerSequencedItemRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

1.2.3 Application

Finally, define an application object factory, that constructs an application object from library class
ApplicationWithPersistencePolicies. The application class happens to take an active record strategy
object and a session object.

The active record strategy is an instance of class SQLAlchemyActiveRecordStrategy. The session object is
an argument of the application factory, and will be a normal SQLAlchemy session object.

4 Chapter 1. Overview

http://www.diva-portal.se/smash/get/diva2:877307/FULLTEXT01.pdf
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://techbeacon.com/introduction-event-storming-easy-way-achieve-domain-driven-design

eventsourcing Documentation, Release 3.1.0

from eventsourcing.application.base import ApplicationWithPersistencePolicies
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy
from eventsourcing.infrastructure.sequenceditem import SequencedItem
from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository

def construct_application(session):
app = ApplicationWithPersistencePolicies(

entity_active_record_strategy=SQLAlchemyActiveRecordStrategy(
active_record_class=IntegerSequencedItemRecord,
session=session

)
)
app.example_repository = EventSourcedRepository(

event_store=app.entity_event_store,
mutator=Example._mutate,

)
return app

An example repository constructed from class EventSourcedRepository , and is assigned to the application
object attribute example_repository. It is possible to subclass the library application class, and extend it by
constructing entity repositories in the __init__(), we just didn’t do that here.

1.2.4 Run the code

Now, use the application to create, read, update, and delete “example” entities.

with construct_application(datastore.session) as app:

Create.
example = create_new_example(foo='bar')

Read.
assert example.id in app.example_repository
assert app.example_repository[example.id].foo == 'bar'

Update.
example.foo = 'baz'
assert app.example_repository[example.id].foo == 'baz'

Delete.
example.discard()
assert example.id not in app.example_repository

1.3 Installation

Use pip to install the library from the Python Package Index.

pip install eventsourcing

If you want to use SQLAlchemy, then please install the library with the ‘sqlalchemy’ option.

pip install eventsourcing[sqlalchemy]

1.3. Installation 5

https://pypi.python.org/pypi/eventsourcing

eventsourcing Documentation, Release 3.1.0

Similarly, if you want to use Cassandra, please install with the ‘cassandra’ option.

pip install eventsourcing[cassandra]

If you want to use encryption, please install with the ‘crypto’ option.

pip install eventsourcing[crypto]

You can install combinations of options at the same time, for exampe the follow command will install dependencies
for Cassandra and for encryption.

pip install eventsourcing[cassandra,crypto]

Running the install command with different options will just install the extra dependencies associated with that option.
If you installed without any options, you can easily install optional dependencies later by running the install command
again with the options you want.

1.4 Features

Event store — appends and retrieves domain events. Uses a sequenced item mapper with an active record strategy to
map domain events to databases in ways that can be easily extended and replaced.

Optimistic concurrency control — can be used to ensure a distributed or horizontally scaled application doesn’t be-
come inconsistent due to concurrent method execution. Leverages any optimistic concurrency controls in the database
adapted by the active record strategy.

Application-level encryption — encrypts and decrypts stored events, using a cipher strategy passed as an option to
the sequenced item mapper. Can be used to encrypt some events, or all events, or not applied at all (the default).

Snapshotting — avoids replaying an entire event stream to obtain the state of an entity. A snapshot strategy is included
which reuses the capabilities of this library by implementing snapshots as events.

Abstract base classes — suggest how to structure an event sourced application. The library has base classes for appli-
cation objects, domain entities, entity repositories, domain events of various types, mapping strategies, snapshotting
strategies, cipher strategies, etc. They are well factored, relatively simple, and can be easily extended for your own
purposes. If you wanted to create a domain model that is entirely stand-alone (recommended by purists for maximum
longevity), you might start by replicating the library classes.

Worked examples — a simple example application, with an example entity class, example domain events, an example
factory method, an example mutator function, and an example database table.

1.5 Design

The design of the library follows the layered architecture: interfaces, application, domain, and infrastructure.

The domain layer contains a model of the supported domain, and services that depend on that model. The infrastructure
layer encapsulates the infrastructural services required by the application.

The application is responsible for binding domain and infrastructure, and has policies such as the persistence policy,
which stores domain events whenever they are published by the model.

The example application has an example respository, from which example entities can be retrieved. It also has a
factory method to register new example entities. Each repository has an event player, which all share an event store
with the persistence policy. The persistence policy uses the event store to store domain events, and the event players

6 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

use the event store to retrieve the stored events. The event players also share with the model the mutator functions that
are used to apply domain events to an initial state.

Functionality such as mapping events to a database, or snapshotting, is factored as strategy objects and injected into
dependents by constructor parameter. Application level encryption is a mapping option.

The sequenced item persistence model allows domain events to be stored in wide variety of database services, and
optionally makes use of any optimistic concurrency controls the database system may afford.

1.6 Infrastructure

The library’s infrastructure layer provides a cohesive mechanism for storing events as sequences of items. The entire
mechanism is encapsulated by the library’s EventStore class.

The event store uses a “sequenced item mapper” and an “active record strategy”. The sequenced item mapper and the
active record strategy share a common “sequenced item” type. The sequenced item mapper can convert objects such
as domain events to sequenced items, and the active record strategy can write sequenced items to a database.

1.6.1 Sequenced items

A sequenced item type provides a common persistence model across the components of the mechanism. The se-
quenced item type is normally declared as a namedtuple.

from collections import namedtuple

SequencedItem = namedtuple('SequencedItem', ['sequence_id', 'position', 'topic', 'data
→˓'])

The names of the fields are arbitrary. However, the first field of a sequenced item namedtuple represents the identity of
a sequence to which an item belongs, the second field represents the position of the item in its sequence, the third field
represents a topic to which the item pertains (dimension of concern), and the fourth field represents the data associated
with the item.

SequencedItem namedtuple

The library provides a sequenced item namedtuple called SequencedItem.

from eventsourcing.infrastructure.sequenceditem import SequencedItem

The attributes of SequencedItem are sequence_id, position, topic, and data.

The sequence_id identifies the sequence in which the item belongs.

The position identifies the position of the item in its sequence.

The topic identifies the dimension of concern to which the item pertains.

The data holds the values of the item, perhaps serialized to JSON, and optionally encrypted.

from uuid import uuid4

sequence1 = uuid4()

sequenced_item1 = SequencedItem(
sequence_id=sequence1,
position=0,

1.6. Infrastructure 7

eventsourcing Documentation, Release 3.1.0

8 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

topic='eventsourcing.domain.model.events#DomainEvent',
data='{"foo":"bar"}'

)
assert sequenced_item1.sequence_id == sequence1
assert sequenced_item1.position == 0
assert sequenced_item1.topic == 'eventsourcing.domain.model.events#DomainEvent'
assert sequenced_item1.data == '{"foo":"bar"}'

StoredEvent namedtuple

As an alternative, the library also provides a sequenced item namedtuple called StoredEvent. The attributes of the
StoredEvent namedtuple are originator_id, originator_version, event_type, and state.

The originator_id is the ID of the aggregate that published the event, and is equivalent to sequence_id above.

The originator_version is the version of the aggregate that published the event, and is equivalent to position
above.

The event_type identifies the class of the domain event that is stored, and is equivalent to topic above.

The state holds the state of the domain event, and is equivalent to data above.

from eventsourcing.infrastructure.sequenceditem import StoredEvent

aggregate1 = uuid4()

stored_event1 = StoredEvent(
originator_id=aggregate1,
originator_version=0,
event_type='eventsourcing.domain.model.events#DomainEvent',
state='{"foo":"bar"}'

)
assert stored_event1.originator_id == aggregate1
assert stored_event1.originator_version == 0
assert stored_event1.event_type == 'eventsourcing.domain.model.events#DomainEvent'
assert stored_event1.state == '{"foo":"bar"}'

1.6.2 Active record strategies

An active record strategy writes sequenced items to database records.

The library has an abstract base class AbstractActiveRecordStrategy with abstract methods append()
and get_items(), which can be used on concrete implementations to read and write sequenced items in a database.

An active record strategy is constructed with a sequenced_item_class and a matching
active_record_class. The field names of a suitable active record class will match the field names of
the sequenced item namedtuple.

SQLAlchemy

The library has a concrete active record strategy for SQLAlchemy provided by the object class
SQLAlchemyActiveRecordStrategy.

from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy

1.6. Infrastructure 9

eventsourcing Documentation, Release 3.1.0

The library also provides active record classes for SQLAlchemy, such as IntegerSequencedItemRecord and
StoredEventRecord. The IntegerSequencedItemRecord class matches the default SequencedItem
namedtuple. The StoredEventRecord class matches the alternative StoredEvent namedtuple.

The code below uses the namedtuple StoredEvent and the active record StoredEventRecord.

from eventsourcing.infrastructure.sqlalchemy.activerecords import StoredEventRecord

Database settings can be configured using SQLAlchemySettings, which is constructed with a uri connection
string. The code below uses an in-memory SQLite database.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings

settings = SQLAlchemySettings(uri='sqlite:///:memory:')

To help setup a database connection and tables, the library has object class SQLAlchemyDatastore.

The SQLAlchemyDatastore is constructed with the settings object, and a tuple of active record classes passed
using the tables arg.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemyDatastore

datastore = SQLAlchemyDatastore(
settings=settings,
tables=(StoredEventRecord,)

)

Please note, if you have declared your own SQLAlchemy model Base class, you may wish to define your own active
record classes which inherit from your Base class. If so, if may help to refer to the library active record classes to see
how SQLALchemy ORM columns and indexes can be used to persist sequenced items.

The methods setup_connection() and setup_tables() of the datastore object can be used to setup the
database connection and the tables.

datastore.setup_connection()
datastore.setup_tables()

As well as sequenced_item_class and a matching active_record_class, the
SQLAlchemyActiveRecordStrategy requires a scoped session object, passed using the constructor arg
session. For convenience, the SQLAlchemyDatabase has a thread-scoped session facade set as its a session
attribute. You may wish to use a different scoped session facade, such as a request-scoped session object provided by
a Web framework.

active_record_strategy = SQLAlchemyActiveRecordStrategy(
sequenced_item_class=StoredEvent,
active_record_class=StoredEventRecord,
session=datastore.session,

)

Sequenced items (or “stored events” in this example) can be appended to the database using the append() method
of the active record strategy.

active_record_strategy.append(stored_event1)

(Please note, since the position is given by the sequenced item itself, the word “append” means here “to add something
extra” rather than the perhaps more common but stricter meaning “to add to the end of a document”. That is, the
database is deliberately not responsible for positioning a new item at the end of a sequence. So perhaps “save” would
be a better name for this operation.)

10 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

All the previously appended items of a sequence can be retrieved by using the get_items() method.

results = active_record_strategy.get_items(aggregate1)

Since by now only one item was stored, so there is only one item in the results.

assert len(results) == 1
assert results[0] == stored_event1

Apache Cassandra

The library also has a concrete active record strategy for Apache Cassandra provided by
CassandraActiveRecordStrategy class.

Similarly, for the CassandraActiveRecordStrategy, the IntegerSequencedItemRecord from
eventsourcing.infrastructure.cassandra.activerecords matches the SequencedItem
namedtuple. The StoredEventRecord from the same module matches the StoredEvent namedtuple.

The CassandraDatastore class uses the CassandraSettings class to setup a Cassandra database.

from eventsourcing.infrastructure.cassandra.datastore import CassandraDatastore,
→˓CassandraSettings
from eventsourcing.infrastructure.cassandra.activerecords import
→˓CassandraActiveRecordStrategy, StoredEventRecord

cassandra_datastore = CassandraDatastore(
settings=CassandraSettings(),
tables=(StoredEventRecord,)

)
cassandra_datastore.setup_connection()
cassandra_datastore.setup_tables()

cassandra_active_record_strategy = CassandraActiveRecordStrategy(
active_record_class=StoredEventRecord,
sequenced_item_class=StoredEvent,

)

results = cassandra_active_record_strategy.get_items(aggregate1)
assert len(results) == 0

cassandra_active_record_strategy.append(stored_event1)

results = cassandra_active_record_strategy.get_items(aggregate1)
assert results[0] == stored_event1

cassandra_datastore.drop_tables()
cassandra_datastore.drop_connection()

Please refer to CassandraSettings class for information about configuring away from default settings.

Sequenced item conflicts

It is a feature of the active record strategy that it isn’t possible successfully to append two items at the same position
in the same sequence. If such an attempt is made, a SequencedItemConflict will be raised by the active record
strategy.

1.6. Infrastructure 11

eventsourcing Documentation, Release 3.1.0

from eventsourcing.exceptions import SequencedItemConflict

Fail to append an item at the same position in the same sequence as a previous item.
try:

active_record_strategy.append(stored_event1)
except SequencedItemConflict:

pass
else:

raise Exception("SequencedItemConflict not raised")

This feature is implemented using optimistic concurrency control features of the underlying database. With
SQLAlchemy, the primary key constraint involves both the sequence and the position columns. With Cassandra
the position is the primary key in the sequence partition, and the “IF NOT EXISTS” feature is applied.

1.6.3 Sequenced item mapper

A sequenced item mapper is used by the event store to map between sequenced item namedtuple objects and
application-level objects such as domain events.

The library provides a sequenced item mapper object class called SequencedItemMapper.

from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper

The SequencedItemMapper has a constructor arg sequenced_item_class, which defaults to the library’s
sequenced item namedtuple SequencedItem.

sequenced_item_mapper = SequencedItemMapper()

The method from_sequenced_item() can be used to convert sequenced item objects to application-level objects.

domain_event = sequenced_item_mapper.from_sequenced_item(sequenced_item1)

assert domain_event.sequence_id == sequence1
assert domain_event.position == 0
assert domain_event.foo == 'bar'

The method to_sequenced_item() can be used to convert application-level objects to sequenced item namedtu-
ples.

assert sequenced_item_mapper.to_sequenced_item(domain_event) == sequenced_item1

If the names of the first two fields of the sequenced item namedtuple (e.g. sequence_id and position) do
not match the names of the attributes of the application-level object which identify a sequence and a position (e.g.
originator_id and originator_version) then the attribute names can be given to the sequenced item map-
per using constructor args sequence_id_attr_name and position_attr_name.

sequenced_item_mapper = SequencedItemMapper(
sequence_id_attr_name='originator_id',
position_attr_name='originator_version'

)

domain_event1 = sequenced_item_mapper.from_sequenced_item(sequenced_item1)

assert domain_event1.foo == 'bar', domain_event1
assert domain_event1.originator_id == sequence1

12 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

assert domain_event1.originator_version == 0
assert sequenced_item_mapper.to_sequenced_item(domain_event1) == sequenced_item1

Alternatively, the constructor arg sequenced_item_class can be set with a sequenced item namedtuple type that
is different from the default SequencedItem namedtuple, such as the library’s StoredEvent namedtuple.

sequenced_item_mapper = SequencedItemMapper(
sequenced_item_class=StoredEvent,

)

domain_event1 = sequenced_item_mapper.from_sequenced_item(stored_event1)

assert domain_event1.foo == 'bar', domain_event1
assert domain_event1.originator_id == aggregate1
assert sequenced_item_mapper.to_sequenced_item(domain_event1) == stored_event1

Since the alternative StoredEvent namedtuple can be used instead of the default SequencedItem namedtuple,
so it is possible to use a custom namedtuple. Which alternative you use for your project depends on your preferences
for the names in the your domain events and your persistence model.

Please note, it is required of these application-level objects that the “topic” generated by get_topic() from the
object class is resolved by resolve_topic() back to the same object class.

from eventsourcing.domain.model.events import Created
from eventsourcing.infrastructure.topic import get_topic, resolve_topic

topic = get_topic(Created)
assert resolve_topic(topic) == Created
assert topic == 'eventsourcing.domain.model.events#Created'

Custom JSON transcoding

The SequencedItemMapper can be constructed with optional args json_encoder_class and
json_decoder_class. The defaults are the library’s ObjectJSONEncoder and ObjectJSONDecoder
which can be extended to support types of value objects that are not currently supported by the library.

The code below extends the JSON transcoding to support sets.

from eventsourcing.infrastructure.transcoding import ObjectJSONEncoder,
→˓ObjectJSONDecoder

class CustomObjectJSONEncoder(ObjectJSONEncoder):
def default(self, obj):

if isinstance(obj, set):
return {'__set__': list(obj)}

else:
return super(CustomObjectJSONEncoder, self).default(obj)

class CustomObjectJSONDecoder(ObjectJSONDecoder):
@classmethod
def from_jsonable(cls, d):

if '__set__' in d:
return cls._decode_set(d)

else:
return ObjectJSONDecoder.from_jsonable(d)

1.6. Infrastructure 13

eventsourcing Documentation, Release 3.1.0

@staticmethod
def _decode_set(d):

return set(d['__set__'])

customized_sequenced_item_mapper = SequencedItemMapper(
json_encoder_class=CustomObjectJSONEncoder,
json_decoder_class=CustomObjectJSONDecoder,

)

domain_event = customized_sequenced_item_mapper.from_sequenced_item(
SequencedItem(

sequence_id=sequence1,
position=0,
topic='eventsourcing.domain.model.events#DomainEvent',
data='{"foo":{"__set__":["bar","baz"]}}'

)
)
assert domain_event.foo == set(["bar", "baz"])

sequenced_item = customized_sequenced_item_mapper.to_sequenced_item(domain_event)
assert sequenced_item.data.startswith('{"foo":{"__set__":["ba')

Application-level encryption

The SequencedItemMapper can be constructed with a symmetric cipher object. The library provides an AES
cipher object class called AESCipher.

The AESCipher is given an encryption key, using constructor arg aes_key, which must be either 16, 24, or 32
random bytes (128, 192, or 256 bits). Longer keys take more time to encrypt plaintext, but produce more secure
ciphertext. Generating and storing a secure key requires functionality beyond the scope of this library.

from eventsourcing.infrastructure.cipher.aes import AESCipher

cipher = AESCipher(aes_key=b'01234567890123456789012345678901') # Key with 256 bits.

ciphertext = cipher.encrypt('plaintext')
plaintext = cipher.decrypt(ciphertext)

assert ciphertext != 'plaintext'
assert plaintext == 'plaintext'

If the SequencedItemMapper has an optional constructor arg cipher. If always_encrypt is True, then the
state field of every stored event will be encrypted with the cipher.

Construct sequenced item mapper to always encrypt domain events.
ciphered_sequenced_item_mapper = SequencedItemMapper(

sequenced_item_class=StoredEvent,
cipher=cipher,
always_encrypt=True,

)

Domain event attribute ``foo`` has value ``'bar'``.
assert domain_event1.foo == 'bar'

14 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Map the domain event to an encrypted stored event namedtuple.
stored_event = ciphered_sequenced_item_mapper.to_sequenced_item(domain_event1)

Attribute names and values of the domain event are not visible in the encrypted
→˓``state`` field.
assert 'foo' not in stored_event.state
assert 'bar' not in stored_event.state

Recover the domain event from the encrypted state.
domain_event = ciphered_sequenced_item_mapper.from_sequenced_item(stored_event)

Domain event has decrypted attributes.
assert domain_event.foo == 'bar'

Please note, the sequence ID and position values are necessarily not encrypted. However, by encrypting the state
of the event, sensitive information, such as personally identifiable information, will be encrypted at the level of the
application, before being sent to the database, and so it will be encrypted in the database (and in all backups of the
database).

1.6.4 Event store

The library’s EventStore provides an interface to the library’s cohesive mechanism for storing events as sequences
of items, and can be used directly within an event sourced application to append and retrieve its domain events.

The EventStore is constructed with a sequenced item mapper and an active record strategy, both are discussed in
detail in the sections above.

from eventsourcing.infrastructure.eventstore import EventStore

event_store = EventStore(
sequenced_item_mapper=sequenced_item_mapper,
active_record_strategy=active_record_strategy,

)

The event store’s append() method can append a domain event to its sequence. The event store uses the
sequenced_item_mapper to obtain a sequenced item namedtuple from a domain events, and it uses the
active_record_strategy to write a sequenced item to a database.

In the code below, a DomainEvent is appended to sequence aggregate1 at position 1.

from eventsourcing.domain.model.events import DomainEvent

event_store.append(
DomainEvent(

originator_id=aggregate1,
originator_version=1,
foo='baz',

)
)

The event store’s method get_domain_events() is used to retrieve events that have previously been appended.
The event store uses the active_record_strategy to read the sequenced items from a database, and it uses the
sequenced_item_mapper to obtain domain events from the sequenced items.

results = event_store.get_domain_events(aggregate1)

1.6. Infrastructure 15

eventsourcing Documentation, Release 3.1.0

Since by now two domain events have been stored, so there are two domain events in the results.

assert len(results) == 2

assert results[0].originator_id == aggregate1
assert results[0].foo == 'bar'

assert results[1].originator_id == aggregate1
assert results[1].foo == 'baz'

The optional arguments of get_domain_events() can be used to select some of the items in the sequence.

The lt arg is used to select items below the given position in the sequence.

The lte arg is used to select items below and at the given position in the sequence.

The gte arg is used to select items at and above the given position in the sequence.

The gt arg is used to select items above the given position in the sequence.

The limit arg is used to limit the number of items selected from the sequence.

The is_ascending arg is used when selecting items. It affects how any limit is applied, and determines the
order of the results. Hence, it can affect both the content of the results and the performance of the method.

Get events below and at position 0.
result = event_store.get_domain_events(aggregate1, lte=0)
assert len(result) == 1, result
assert result[0].originator_id == aggregate1
assert result[0].originator_version == 0
assert result[0].foo == 'bar'

Get events at and above position 1.
result = event_store.get_domain_events(aggregate1, gte=1)
assert len(result) == 1, result
assert result[0].originator_id == aggregate1
assert result[0].originator_version == 1
assert result[0].foo == 'baz'

Get the first event in the sequence.
result = event_store.get_domain_events(aggregate1, limit=1)
assert len(result) == 1, result
assert result[0].originator_id == aggregate1
assert result[0].originator_version == 0
assert result[0].foo == 'bar'

Get the last event in the sequence.
result = event_store.get_domain_events(aggregate1, limit=1, is_ascending=False)
assert len(result) == 1, result
assert result[0].originator_id == aggregate1
assert result[0].originator_version == 1
assert result[0].foo == 'baz'

Optimistic concurrency control

It is a feature of the event store that it isn’t possible successfully to append two events at the same position in the same
sequence. This condition is coded as a ConcurrencyError since a correct program running in a single thread
wouldn’t attempt to append an event that it had already successfully appended.

16 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

from eventsourcing.exceptions import ConcurrencyError

Fail to append an event at the same position in the same sequence as a previous
→˓event.
try:

event_store.append(
DomainEvent(

originator_id=aggregate1,
originator_version=1,
foo='baz',

)
)

except ConcurrencyError:
pass

else:
raise Exception("ConcurrencyError not raised")

This feature depends on the behaviour of the active record strategy’s append() method: the event store will raise a
ConcurrencyError if a SequencedItemConflict is raised by its active record strategy.

If a command fails due to a concurrency error, the command can be retried with the lastest state. The @retry
decorator can help code retries on commands.

from eventsourcing.domain.model.decorators import retry

errors = []

@retry(ConcurrencyError, max_retries=5)
def set_password():

exc = ConcurrencyError()
errors.append(exc)
raise exc

try:
set_password()

except ConcurrencyError:
pass

else:
raise Exception("Shouldn't get here")

assert len(errors) == 5

Event store factory

As a convenience, the library function construct_sqlalchemy_eventstore() can be used to construct an
event store that uses the SQLAlchemy classes.

from eventsourcing.infrastructure.sqlalchemy import factory

event_store = factory.construct_sqlalchemy_eventstore(session=datastore.session)

By default, the event store is constructed with the StoredEvent sequenced item namedtuple, and the active record
class StoredEventRecord. The optional args sequenced_item_class and active_record_class can
be used to construct different kinds of event store.

1.6. Infrastructure 17

eventsourcing Documentation, Release 3.1.0

Timestamped event store

The examples so far have used an integer sequenced event store, where the items are sequenced by integer version.

The example below constructs an event store for timestamp-sequenced domain events, using the library active record
class TimestampedSequencedItemRecord.

import time
from uuid import uuid4

from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓TimestampSequencedItemRecord

Setup database table for timestamped sequenced items.
datastore.setup_table(TimestampSequencedItemRecord)

Construct event store for timestamp sequenced events.
timestamped_event_store = factory.construct_sqlalchemy_eventstore(

sequenced_item_class=SequencedItem,
active_record_class=TimestampSequencedItemRecord,
sequence_id_attr_name='originator_id',
position_attr_name='timestamp',
session=datastore.session,

)

Construct an event.
aggregate_id = uuid4()
event = DomainEvent(

originator_id=aggregate_id,
timestamp=time.time(),

)

Store the event.
timestamped_event_store.append(event)

Check the event was stored.
events = timestamped_event_store.get_domain_events(aggregate_id)
assert len(events) == 1
assert events[0].originator_id == aggregate_id
assert events[0].timestamp < time.time()

Please note, optimistic concurrent control doesn’t work to maintain entity consistency, because each event is likely to
have a unique timestamp, and so conflicts are very unlikely to arise when concurrent operations appending to the same
sequence. For this reason, although domain events can be timestamped, it is not a very good idea to store the events
of an entity or aggregate as timestamp-sequenced items. Timestamp-sequenced items are useful for storing events that
are logically independent of others, such as messages in a log, things that do not risk causing a consistency error due
to concurrent operations.

construct an event store that uses the Apache Cassandra classes.

1.7 Domain model

The library’s domain layer has base classes for domain events and entities. These classes show how to write a do-
main model that uses the library’s event sourcing infrastructure. They can also be used to develop an event-sourced
application as a domain driven design.

18 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

1.7.1 Domain events

The purpose of a domain event is to be published when something happens, normally the results from the work of a
command. The library has a base class for domain events called DomainEvent.

Domain events can be freely constructed from the DomainEvent class. Attributes are set directly from the construc-
tor keyword arguments.

from eventsourcing.domain.model.events import DomainEvent

domain_event = DomainEvent(a=1)
assert domain_event.a == 1

The attributes of domain events are read-only. New values cannot be assigned to existing objects. Domain events are
immutable in that sense.

Fail to set attribute of already-existing domain event.
try:

domain_event.a = 2
except AttributeError:

pass
else:

raise Exception("Shouldn't get here")

Domain events can be compared for equality as value objects, instances are equal if they have the same type and the
same attributes.

DomainEvent(a=1) == DomainEvent(a=1)

DomainEvent(a=1) != DomainEvent(a=2)

DomainEvent(a=1) != DomainEvent(b=1)

Publish-subscribe

Domain events can be published, using the library’s publish-subscribe mechanism.

The publish() function is used to publish events. The event arg is required.

from eventsourcing.domain.model.events import publish

publish(event=domain_event)

The subscribe() function is used to subscribe a handler that will receive events.

The optional predicate arg can be used to provide a function that will decide whether or not the subscribed handler
will actually be called when an event is published.

from eventsourcing.domain.model.events import subscribe

received_events = []

def receive_event(event):
received_events.append(event)

def is_domain_event(event):
return isinstance(event, DomainEvent)

1.7. Domain model 19

eventsourcing Documentation, Release 3.1.0

subscribe(handler=receive_event, predicate=is_domain_event)

Publish the domain event.
publish(domain_event)

assert len(received_events) == 1
assert received_events[0] == domain_event

The unsubscribe() function can be used to stop the handler receiving further events.

from eventsourcing.domain.model.events import unsubscribe

unsubscribe(handler=receive_event, predicate=is_domain_event)

Clean up.
del received_events[:] # received_events.clear()

Event library

The library has a small collection of domain event subclasses, such as EventWithOriginatorID,
EventWithOriginatorVersion, EventWithTimestamp, EventWithTimeuuid, Created,
AttributeChanged, Discarded.

Some of these classes provide useful defaults for particular attributes, such as a timestamp. Timestamps can be
used to sequence events.

from eventsourcing.domain.model.events import EventWithTimestamp
from eventsourcing.domain.model.events import EventWithTimeuuid
from uuid import UUID

Automatic timestamp.
assert isinstance(EventWithTimestamp().timestamp, float)

Automatic UUIDv1.
assert isinstance(EventWithTimeuuid().event_id, UUID)

Some classes require particular arguments when constructed. The originator_id can be used to identify a se-
quence to which an event belongs. The originator_version can be used to position the event in a sequence.

from eventsourcing.domain.model.events import EventWithOriginatorVersion
from eventsourcing.domain.model.events import EventWithOriginatorID
from uuid import uuid4

Requires originator_id.
EventWithOriginatorID(originator_id=uuid4())

Requires originator_version.
EventWithOriginatorVersion(originator_version=0)

Some are just useful for their distinct type, for example in subscription predicates.

from eventsourcing.domain.model.events import Created, Discarded

def is_created(event):
return isinstance(event, Created)

20 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

def is_discarded(event):
return isinstance(event, Discarded)

assert is_created(Created()) is True
assert is_created(Discarded()) is False
assert is_created(DomainEvent()) is False

assert is_discarded(Created()) is False
assert is_discarded(Discarded()) is True
assert is_discarded(DomainEvent()) is False

assert is_domain_event(Created()) is True
assert is_domain_event(Discarded()) is True
assert is_domain_event(DomainEvent()) is True

Custom events

Custom domain events can be coded by subclassing the library’s domain event classes.

Domain events are normally named using the past participle of a common verb, for example a regular past participle
such as “started”, “paused”, “stopped”, or an irregular past participle such as “chosen”, “done”, “found”, “paid”,
“quit”, “seen”.

class SomethingHappened(DomainEvent):
"""
Published whenever something happens.
"""

It is possible to code domain events as inner or nested classes.

class Job(object):

class Seen(EventWithTimestamp):
"""
Published when the job is seen.
"""

class Done(EventWithTimestamp):
"""
Published when the job is done.
"""

Inner or nested classes can be used, and are used in the library, to define the domain events of a domain entity on the
entity class itself.

seen = Job.Seen(job_id='#1')
done = Job.Done(job_id='#1')

assert done.timestamp > seen.timestamp

1.7.2 Domain entities

A domain entity is an object that is not defined by its attributes, but rather by a thread of continuity and its identity.
The attributes of a domain entity can change, directly by assignment, or indirectly by calling a method of the object.

1.7. Domain model 21

eventsourcing Documentation, Release 3.1.0

The library provides a domain entity class VersionedEntity, which has an id attribute, and a version attribute.

from eventsourcing.domain.model.entity import VersionedEntity

entity_id = uuid4()

entity = VersionedEntity(id=entity_id, version=0)

assert entity.id == entity_id
assert entity.version == 0

Entity library

There is a TimestampedEntity that has id and created_on attributes. It also has a last_modified at-
tribute which is normally updated as events are applied.

from eventsourcing.domain.model.entity import TimestampedEntity

entity_id = uuid4()

entity = TimestampedEntity(id=entity_id, timestamp=123456789)

assert entity.id == entity_id
assert entity.created_on == 123456789
assert entity.last_modified == 123456789

There is also a TimestampedVersionedEntity that has id, version, created_on, and
last_modified attributes.

from eventsourcing.domain.model.entity import TimestampedVersionedEntity

entity_id = uuid4()

entity = TimestampedVersionedEntity(id=entity_id, version=0, timestamp=123456789)

assert entity.id == entity_id
assert entity.version == 0
assert entity.created_on == 123456789
assert entity.last_modified == 123456789

A timestamped, versioned entity is both a timestamped entity and a versioned entity.

assert isinstance(entity, TimestampedEntity)
assert isinstance(entity, VersionedEntity)

Entity events

The library’s domain entities have domain events as inner classes: Event, Created, AttributeChanged, and
Discarded. These inner event classes are all subclasses of DomainEvent and can be freely constructed, with
suitable arguments.

created = VersionedEntity.Created(
originator_version=0,
originator_id=entity_id,

)

22 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

attribute_a_changed = VersionedEntity.AttributeChanged(
name='a',
value=1,
originator_version=1,
originator_id=entity_id

)

attribute_b_changed = VersionedEntity.AttributeChanged(
name='b',
value=2,
originator_version=2,
originator_id=entity_id

)

entity_discarded = VersionedEntity.Discarded(
originator_version=3,
originator_id=entity_id

)

The class VersionedEntity has a method _increment_version() which can be used, for example by a
mutator function, to increment the version number each time an event is applied.

entity._increment_version()

assert entity.version == 1

Mutator functions

For an application to be event sourced, the state of the application must be mutated by applying domain events.

The entity mutator function mutate_entity() can be used to apply a domain event to an entity.

from eventsourcing.domain.model.entity import mutate_entity

entity = mutate_entity(entity, attribute_a_changed)

assert entity.a == 1

When a versioned entity is updated in this way, the version number is normally incremented.

assert entity.version == 2

Apply and publish

Events are normally published after they are applied. The method _apply_and_publish() can be used to both
apply and then publish, so the event mutates the entity and is then received by subscribers.

Apply and publish a domain event.
entity._apply_and_publish(attribute_b_changed)

Check the event was applied.
assert entity.b == 2
assert entity.version == 3

1.7. Domain model 23

eventsourcing Documentation, Release 3.1.0

For example, the method change_attribute() constructs an AttributeChanged event and then calls
_apply_and_publish(). In the code below, the event is received and checked.

entity = VersionedEntity(id=entity_id, version=0)

assert len(received_events) == 0
subscribe(handler=receive_event, predicate=is_domain_event)

Apply and publish an AttributeChanged event.
entity.change_attribute(name='full_name', value='Mr Boots')

Check the event was applied.
assert entity.full_name == 'Mr Boots'

Check the event was published.
assert received_events[0].__class__ == VersionedEntity.AttributeChanged
assert received_events[0].name == 'full_name'
assert received_events[0].value == 'Mr Boots'

Clean up.
unsubscribe(handler=receive_event, predicate=is_domain_event)
del received_events[:] # received_events.clear()

Discarding entities

The entity method discard() can be used to discard the entity, by applying and publishing a Discarded event,
after which the entity is unavailable for further changes.

from eventsourcing.exceptions import EntityIsDiscarded

entity.discard()

Fail to change an attribute after entity was discarded.
try:

entity.change_attribute('full_name', 'Mr Boots')
except EntityIsDiscarded:

pass
else:

raise Exception("Shouldn't get here")

The mutator function will return None after mutating an entity with a Discarded event.

entity = VersionedEntity(id=entity_id, version=3)

entity = mutate_entity(entity, entity_discarded)

assert entity is None

That means a sequence of events that ends with a Discarded event will result in the same state as an empty sequence
of events, when the sequence is replayed by an event player for example.

Custom entities

The library entity classes can be subclassed.

24 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

from eventsourcing.domain.model.decorators import attribute

class User(VersionedEntity):
def __init__(self, full_name, *args, **kwargs):

super(User, self).__init__(*args, **kwargs)
self.full_name = full_name

An entity factory method can construct, apply, and publish the first event of an entity’s lifetime. After the event is
published, the new entity will be returned by the factory method.

def create_user(full_name):
created_event = User.Created(full_name=full_name, originator_id='1')
assert created_event.originator_id
user_entity = mutate_entity(event=created_event, initial=User)
publish(created_event)
return user_entity

user = create_user(full_name='Mrs Boots')

assert user.full_name == 'Mrs Boots'

Subclasses can extend the entity base classes, by adding event-based properties and methods.

Custom attributes

The library’s @attribute decorator provides a property getter and setter, which will apply and publish an
AttributeChanged event when the property is assigned. Simple mutable attributes can be coded as decorated
functions without a body, such as the full_name function of User below.

from eventsourcing.domain.model.decorators import attribute

class User(VersionedEntity):

def __init__(self, full_name, *args, **kwargs):
super(User, self).__init__(*args, **kwargs)
self._full_name = full_name

@attribute
def full_name(self):

pass

In the code below, after the entity has been created, assigning to the full_name attribute causes the entity to be
updated, and an AttributeChanged event to be published. Both the Created and AttributeChanged
events are received by a subscriber.

assert len(received_events) == 0
subscribe(handler=receive_event, predicate=is_domain_event)

Publish a Created event.
user = create_user('Mrs Boots')
assert user.full_name == 'Mrs Boots'

Publish an AttributeChanged event.
user.full_name = 'Mr Boots'

1.7. Domain model 25

eventsourcing Documentation, Release 3.1.0

assert user.full_name == 'Mr Boots'

assert len(received_events) == 2
assert received_events[0].__class__ == VersionedEntity.Created
assert received_events[0].full_name == 'Mrs Boots'

assert received_events[1].__class__ == VersionedEntity.AttributeChanged
assert received_events[1].value == 'Mr Boots'
assert received_events[1].name == '_full_name'

Clean up.
unsubscribe(handler=receive_event, predicate=is_domain_event)
del received_events[:] # received_events.clear()

Custom commands

The entity base classes can also be extended by adding “command” methods that publish events. In general, the
arguments of a command will be used to perform some work. Then, the result of the work will be used to construct a
domain event that represents what happened. And then, the domain event will be applied and published.

Methods like this, for example the set_password() method of the User entity below, normally have no return
value. The method creates an encoded string from a raw password, and then uses the change_attribute()
method to apply and publish an AttributeChanged event for the _password attribute with the encoded pass-
word.

from eventsourcing.domain.model.decorators import attribute

class User(VersionedEntity):

def __init__(self, *args, **kwargs):
super(User, self).__init__(*args, **kwargs)
self._password = None

def set_password(self, raw_password):
Do some work using the arguments of a command.
password = self._encode_password(raw_password)

Construct, apply, and publish an event.
self.change_attribute('_password', password)

def check_password(self, raw_password):
password = self._encode_password(raw_password)
return self._password == password

def _encode_password(self, password):
return ''.join(reversed(password))

user = User(id='1')

user.set_password('password')
assert user.check_password('password')

A custom entity can also have custom methods that publish custom events. In the example below, a method
make_it_so() publishes a domain event called SomethingHappened.

26 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Custom mutator

To be applied to an entity, custom event classes must be supported by a custom mutator function. In the code
below, the mutate_world() mutator function extends the library’s mutate_entity function to support the
event SomethingHappened. The _mutate() function of DomainEntity has been overridden so that
mutate_world() will be called when events are applied.

from eventsourcing.domain.model.decorators import mutator

class World(VersionedEntity):

def __init__(self, *args, **kwargs):
super(World, self).__init__(*args, **kwargs)
self.history = []

class SomethingHappened(VersionedEntity.Event):
"""Published when something happens in the world."""

def make_it_so(self, something):
Do some work using the arguments of a command.
what_happened = something

Construct an event with the results of the work.
event = World.SomethingHappened(

what=what_happened,
originator_id=self.id,
originator_version=self.version

)

Apply and publish the event.
self._apply_and_publish(event)

@classmethod
def _mutate(cls, initial, event):

return mutate_world(event=event, initial=initial)

@mutator
def mutate_world(initial, event):

return mutate_entity(initial, event)

@mutate_world.register(World.SomethingHappened)
def _(self, event):

self.history.append(event)
self._increment_version()
return self

world = World(id='1')
world.make_it_so('dinosaurs')
world.make_it_so('trucks')
world.make_it_so('internet')

assert world.history[0].what == 'dinosaurs'
assert world.history[1].what == 'trucks'
assert world.history[2].what == 'internet'

1.7. Domain model 27

eventsourcing Documentation, Release 3.1.0

Reflexive mutator

The WithReflexiveMutator class tries to call a function called mutate() on the event class itself. This means
each event class can define how an entity is mutated by it.

A custom base entity class, for example Entity in the code below, may help to adopt this style across all entity
classes in an application.

from eventsourcing.domain.model.entity import WithReflexiveMutator

class Entity(WithReflexiveMutator, VersionedEntity):
"""
Custom base class for domain entities in this example.
"""

class World(Entity):
"""
Example domain entity, with mutator function on domain event.
"""
def __init__(self, *args, **kwargs):

super(World, self).__init__(*args, **kwargs)
self.history = []

def make_it_so(self, something):
what_happened = something
event = World.SomethingHappened(

what=what_happened,
originator_id=self.id,
originator_version=self.version

)
self._apply_and_publish(event)

class SomethingHappened(VersionedEntity.Event):
Define mutator function for entity on the event class.
def mutate(self, entity):

entity.history.append(self)
entity._increment_version()

world = World(id='1')
world.make_it_so('dinosaurs')
world.make_it_so('trucks')
world.make_it_so('internet')

assert world.history[0].what == 'dinosaurs'
assert world.history[1].what == 'trucks'
assert world.history[2].what == 'internet'

1.7.3 Aggregate root

The library has a domain entity class called AggregateRoot that can be useful in a domain driven design, where
a command can cause many events to be published. The AggregateRoot class has a save() method, which
publishes a list of pending events, and overrides the _publish() method of the base class to append events to a
pending list.

The AggregateRoot class inherits from both TimestampedVersionedEntity and

28 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

WithReflexiveMutator, and can be subclassed to define custom aggregate root entities.

from eventsourcing.domain.model.aggregate import AggregateRoot

class World(AggregateRoot):
"""
Example domain entity, with mutator function on domain event.
"""
def __init__(self, *args, **kwargs):

super(World, self).__init__(*args, **kwargs)
self.history = []

def make_things_so(self, *somethings):
for something in somethings:

self._trigger(World.SomethingHappened, what=something)

class SomethingHappened(VersionedEntity.Event):
def mutate(self, entity):

entity.history.append(self)
entity._increment_version()

World factory.
def create_new_world():

created = World.Created(originator_id=1)
world = World._mutate(event=created)
world._publish(created)
return world

An AggregateRoot entity will postpone the publishing of all events, pending the next call to its save() method.

assert len(received_events) == 0
subscribe(handler=receive_event)

Create new entity.
world = create_new_world()
assert isinstance(world, World)

Command that publishes many events.
world.make_things_so('dinosaurs', 'trucks', 'internet')

assert world.history[0].what == 'dinosaurs'
assert world.history[1].what == 'trucks'
assert world.history[2].what == 'internet'

When the save() method is called, all such pending events are published as a single list of events to the publish-
subscribe mechanism.

Events are pending actual publishing until the save() method is called.
assert len(received_events) == 0
world.save()

Pending events were published as a single list of events.
assert len(received_events) == 1
assert len(received_events[0]) == 4

Publishing all events from a single command in a single list allows all the events to be written to a database as a single
atomic operation.

1.7. Domain model 29

eventsourcing Documentation, Release 3.1.0

That avoids the risk that some events will be stored successfully but other events from the same command will fall
into conflict and be lost, because another thread has operated on the same aggregate at the same time, causing an
inconsistent state that would also be difficult to repair.

It also avoids the risk of other threads picking up only some events caused by a command, presenting the aggregate in
an inconsistent or unusual and perhaps unworkable state.

unsubscribe(handler=receive_event)
del received_events[:] # received_events.clear()

1.8 Applications

The application layer combines objects from the domain and infrastructure layers.

1.8.1 Repositories and policies

An application object can have repositories, so that aggregates can be retrieved by ID using a dictionary-like interface.
In general, aggregates implement commands that publish events.

An application object can also have policies. In general, policies receive events and execute commands.

1.8.2 Application services

An application object can have methods (“application services”) which provide a relatively simple interface for clients
operations, hiding the complexity and usage of the application’s domain and infrastructure layers.

Application services can be developed outside-in, with a test- or behaviour-driven development approach. A test suite
can be imagined as an interface that uses the application. Interfaces are outside the scope of the application layer.

1.8.3 Event sourced application

The example code below shows an event sourced application object class. It constructs an event store that uses the
library’s infrastructure with SQLAlchemy, using library function construct_sqlalchemy_eventstore().

from uuid import uuid4

from eventsourcing.application.policies import PersistencePolicy
from eventsourcing.domain.model.aggregate import AggregateRoot
from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository
from eventsourcing.infrastructure.sqlalchemy.factory import construct_sqlalchemy_
→˓eventstore

class Application(object):
def __init__(self, session):

Construct event store.
self.event_store = construct_sqlalchemy_eventstore(

session=session
)
Construct an event sourced repository.
self.repository = EventSourcedRepository(

event_store=self.event_store,
mutator=CustomAggregate._mutate

30 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

)
Construct a persistence policy.
self.persistence_policy = PersistencePolicy(

event_store=self.event_store
)

def create_aggregate(self, a):
aggregate_id = uuid4()
domain_event = CustomAggregate.Created(a=1, originator_id=aggregate_id)
entity = CustomAggregate._mutate(event=domain_event)
entity._publish(domain_event) # Pending save().
return entity

def close(self):
self.persistence_policy.close()

The application has a domain model with one domain entity called CustomAggregate, defined below. The entity
has one attribute, called a. It is a subclass of the library’s AggregateRoot entity class.

Repository

The application has an event sourced repository for CustomAggregate instances. It uses the library class
EventSourceRepository, which uses an event store to get domain events for an aggregate, and the mutator
function from the CustomAggregate class which it uses to reconstruct an aggregate instance from the events. An
application needs one such repository for each type of aggregate in the application’s domain model.

Policy

The application object class has a persistence policy. It uses the library class PersistencePolicy. The persistence
policy appends domain events to an event store whenever they are published.

Aggregate factory

The application also has an application service called create_aggregate() which can be used to create new
CustomAggregate instances. The CustomAggregate is a very simple aggregate, which has an event sourced
attribute called a. To create such an aggregate, a value for a must be provided.

from eventsourcing.domain.model.decorators import attribute

class CustomAggregate(AggregateRoot):
def __init__(self, a, **kwargs):

super(CustomAggregate, self).__init__(**kwargs)
self._a = a

@attribute
def a(self):

"""
Event sourced attribute 'a'.
"""

1.8. Applications 31

eventsourcing Documentation, Release 3.1.0

Database

The library classes SQLAlchemyDatastore and SQLAlchemySettings can be used to setup a database.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemyDatastore,
→˓SQLAlchemySettings
from eventsourcing.infrastructure.sqlalchemy.activerecords import StoredEventRecord

Define database settings.
settings = SQLAlchemySettings(uri='sqlite:///:memory:')

Setup connection to database.
datastore = SQLAlchemyDatastore(settings=settings)
datastore.setup_connection()

Setup table in database.
- done only once
datastore.setup_table(StoredEventRecord)

Run the code

After setting up the database connection, the application can be constructed with the session object.

Construct application with session.
app = Application(session=datastore.session)

Finally, a new aggregate instance can be created with the application service create_aggregate().

Create aggregate using application service.
aggregate = app.create_aggregate(a=1)

Don't forget to save!
aggregate.save()

Aggregate is in the repository.
assert aggregate.id in app.repository

Remember the aggregate's ID.
aggregate_id = aggregate.id

Forget the aggregate (will still saved be in the database).
del(aggregate)

An existing aggregate can be recovered by ID using the dictionary-like interface of the aggregate repository.

Get aggregate using dictionary-like interface.
aggregate = app.repository[aggregate_id]

assert aggregate.a == 1

Changes to the aggregate’s attribute a are visible in the repository, but only after the aggregate has been saved.

aggregate.a = 2
aggregate.a = 3

Don't forget to save!
aggregate.save()

32 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

del(aggregate)

aggregate = app.repository[aggregate_id]

assert aggregate.a == 3

The aggregate can be discarded. After being saved, a discarded aggregate will not be available in the repository.

aggregate.discard()

Don't forget to save!
aggregate.save()

Discarded aggregate no longer in repository.
assert aggregate_id not in app.repository

Fail to get aggregate from dictionary-like interface.
try:

app.repository[aggregate_id]
except KeyError:

pass
else:

raise Excpetion("Shouldn't get here.")

Application events

It is always possible to get the domain events for an aggregate, using the application’s event store method
get_domain_events().

events = app.event_store.get_domain_events(originator_id=aggregate_id)
assert len(events) == 4

assert events[0].originator_id == aggregate_id
assert isinstance(events[0], CustomAggregate.Created)
assert events[0].a == 1

assert events[1].originator_id == aggregate_id
assert isinstance(events[1], CustomAggregate.AttributeChanged)
assert events[1].name == '_a'
assert events[1].value == 2

assert events[2].originator_id == aggregate_id
assert isinstance(events[2], CustomAggregate.AttributeChanged)
assert events[2].name == '_a'
assert events[2].value == 3

assert events[3].originator_id == aggregate_id
assert isinstance(events[3], CustomAggregate.Discarded)

Sequenced items

It is also possible to get the sequenced item namedtuples for an aggregate, using the application’s event store’s active
record strategy method get_items().

1.8. Applications 33

eventsourcing Documentation, Release 3.1.0

items = app.event_store.active_record_strategy.get_items(aggregate_id)
assert len(items) == 4

assert items[0].originator_id == aggregate_id
assert items[0].event_type == 'eventsourcing.domain.model.aggregate#AggregateRoot.
→˓Created'
assert items[0].state.startswith('{"a":1,"timestamp":')

assert items[1].originator_id == aggregate_id
assert items[1].event_type == 'eventsourcing.domain.model.aggregate#AggregateRoot.
→˓AttributeChanged'
assert items[1].state.startswith('{"name":"_a",')

assert items[2].originator_id == aggregate_id
assert items[2].event_type == 'eventsourcing.domain.model.aggregate#AggregateRoot.
→˓AttributeChanged'
assert items[2].state.startswith('{"name":"_a",')

assert items[3].originator_id == aggregate_id
assert items[3].event_type == 'eventsourcing.domain.model.aggregate#AggregateRoot.
→˓Discarded'
assert items[3].state.startswith('{"timestamp":')

Close

It is useful to unsubscribe any handlers subscribed by the policies (avoids dangling handlers being called inappropri-
ately, if the process isn’t going to terminate immediately).

Clean up.
app.close()

Todo: Something about the library’s application class?

Todo: Something about using uuid5 to make UUIDs from things like email addresses.

Todo: Something about using application log to get a sequence of all events.

Todo: Something about using a policy to update views from published events.

Todo: Something about using a policy to update a register of existant IDs from published events.

Todo: Something about having a worker application, that has policies that process events received by a worker.

Todo: Something about having a policy to publish events to worker applications.

Todo: Something like a message queue strategy strategy.

Todo: Something about publishing events to a message queue.

Todo: Something about receiving events in a message queue worker.

Todo: Something about publishing events to a message queue.

Todo: Something about receiving events in a message queue worker.

1.9 Examples

These examples show how to write an event sourced application, with and without classes in this library.

34 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

In the first section, a stand-alone event sourced domain model is developed which has no dependencies on the library,
along with an application object that has minimal dependencies on library infrastructure classes for storing events. In
later sections, more use is made of library classes, in order to demonstrate the other capabilities of the library.

All the examples in this guide follow the layered architecture: application, domain, infrastructure. To create working
programs, simply copy all the code snippets from a section into a Python file.

Please feel free to experiment by making variations. The code snippets in this guide are covered by a test case, so
please expect everything to work as presented - raise an issue if something goes wrong.

1.9.1 Example application

Install the library with the ‘sqlalchemy’ option.

pip install eventsourcing[sqlalchemy]

In this section, an event sourced application is developed that has minimal dependencies on the library.

A stand-alone domain model is developed without library classes, which shows how event sourcing in Python can
work. The stand-alone code examples here are simplified versions of the library classes. Infrastructure classes from the
library are used explicitly to show the different components involved, so you can understand how to make variations.

• Domain

– Domain events

– Publish-subscribe

– Domain entity

– Mutator function

– Run the code

• Infrastructure

– Database table

– Event store

– Entity repository

– Run the code

– Sequenced items

• Application

– Persistence policy

– Application object

• Run the code

Domain

Let’s start with the domain model. If the state of an event sourced application is determined by a sequence of events,
then we need to define some events.

1.9. Examples 35

eventsourcing Documentation, Release 3.1.0

Domain events

You may wish to use a technique such as “event storming” to identify or decide what happens in your domain. In
this example, for the sake of general familiarity let’s assume we have a domain in which things can be “created”,
“changed”, and “discarded”. With that in mind, we can begin to write some domain event classes.

In the example below, there are three domain event classes: Created, AttributeChanged, and Discarded.
The common aspects of the domain event classes have been pulled up to a layer supertype DomainEvent.

import time

class DomainEvent(object):
"""
Layer supertype.
"""
def __init__(self, originator_id, originator_version, **kwargs):

self.originator_id = originator_id
self.originator_version = originator_version
self.__dict__.update(kwargs)

class Created(DomainEvent):
"""
Published when an entity is created.
"""
def __init__(self, **kwargs):

super(Created, self).__init__(originator_version=0, **kwargs)

class AttributeChanged(DomainEvent):
"""
Published when an attribute value is changed.
"""
def __init__(self, name, value, **kwargs):

super(AttributeChanged, self).__init__(**kwargs)
self.name = name
self.value = value

class Discarded(DomainEvent):
"""
Published when an entity is discarded.
"""

Please note, the domain event classes above do not depend on the library. The library does however contain a
collection of different kinds of domain event classes that you can use in your models, for example see Created,
AttributeChanged, and Discarded.

Publish-subscribe

Since we are dealing with events, let’s define a simple publish-subscribe mechanism for them.

subscribers = []

def publish(event):
for subscriber in subscribers:

36 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

subscriber(event)

def subscribe(subscriber):
subscribers.append(subscriber)

def unsubscribe(subscriber):
subscribers.remove(subscriber)

Domain entity

Now, let’s define a domain entity that publishes the event classes defined above.

The entity class Example below has an ID and a version number. It also has a property foo with a “setter” method,
and a method discard() to use when the entity is no longer needed.

The entity methods follow a similar pattern. At some point, each constructs an event that represents the result of the
operation. Then each uses a “mutator function” mutate() (see below) to apply the event to the entity. Finally, each
publishes the event for the benefit of any subscribers, by using the function publish().

import uuid

class Example(object):
"""
Example domain entity.
"""
def __init__(self, originator_id, originator_version=0, foo=''):

self._id = originator_id
self._version = originator_version
self._is_discarded = False
self._foo = foo

@property
def id(self):

return self._id

@property
def version(self):

return self._version

@property
def foo(self):

return self._foo

@foo.setter
def foo(self, value):

assert not self._is_discarded

Construct an 'AttributeChanged' event object.
event = AttributeChanged(

originator_id=self.id,
originator_version=self.version,
name='foo',
value=value,

)

1.9. Examples 37

eventsourcing Documentation, Release 3.1.0

Apply the event to self.
mutate(self, event)

Publish the event for others.
publish(event)

def discard(self):
assert not self._is_discarded

Construct a 'Discarded' event object.
event = Discarded(

originator_id=self.id,
originator_version=self.version

)

Apply the event to self.
mutate(self, event)

Publish the event for others.
publish(event)

A factory can be used to create new “example” entities. The function create_new_example() below works
in a similar way to the entity methods, creating new entities by firstly constructing a Created event, then using
the function mutate() (see below) to construct the entity object, and finally publishing the event for others before
returning the new entity object to the caller.

def create_new_example(foo):
"""
Factory for Example entities.
"""
Construct an entity ID.
entity_id = uuid.uuid4()

Construct a 'Created' event object.
event = Created(

originator_id=entity_id,
foo=foo

)

Use the mutator function to construct the entity object.
entity = mutate(None, event)

Publish the event for others.
publish(event=event)

Return the new entity.
return entity

The example entity class does not depend on the library. In particular, it doesn’t inherit from a “magical” entity base
class that makes everything work. The example here just publishes events that it has applied to itself. The library
does however contain domain entity classes that you can use to build your domain model, for example the class
AggregateRoot. The library classes are more developed than the examples here.

38 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Mutator function

The mutator function mutate() below handles Created events by constructing an object. It handles
AttributeChanged events by setting an attribute value, and it handles Discarded events by marking the entity
as discarded. Each handler increases the version of the entity, so that the version of the entity is always one plus the
the originator version of the last event that was applied.

When replaying a sequence of events, for example when reconstructing an entity from its domain events, the mutator
function is called many times in order to apply each event in the sequence to an evolving initial state.

def mutate(entity, event):
"""
Mutator function for Example entities.
"""
Handle "created" events by constructing the entity object.
if isinstance(event, Created):

entity = Example(**event.__dict__)
entity._version += 1
return entity

Handle "value changed" events by setting the named value.
elif isinstance(event, AttributeChanged):

assert not entity._is_discarded
setattr(entity, '_' + event.name, event.value)
entity._version += 1
return entity

Handle "discarded" events by returning 'None'.
elif isinstance(event, Discarded):

assert not entity._is_discarded
entity._version += 1
entity._is_discarded = True
return None

else:
raise NotImplementedError(type(event))

For the sake of simplicity in this example, we’ll use an if-else block to structure the mutator function. The library
has a function decorator mutator() that allows handlers for different types of event to be registered with a default
mutator function, just like singledispatch.

Run the code

Let’s firstly subscribe to receive the events that will be published, so we can see what happened.

A list of received events.
received_events = []

Subscribe to receive published events.
subscribe(lambda e: received_events.append(e))

With this stand-alone code, we can create a new example entity object. We can update its property foo, and we can
discard the entity using the discard() method.

Create a new entity using the factory.
entity = create_new_example(foo='bar')

1.9. Examples 39

eventsourcing Documentation, Release 3.1.0

Check the entity has an ID.
assert entity.id

Check the entity has a version number.
assert entity.version == 1

Check the received events.
assert len(received_events) == 1, received_events
assert isinstance(received_events[0], Created)
assert received_events[0].originator_id == entity.id
assert received_events[0].originator_version == 0
assert received_events[0].foo == 'bar'

Check the value of property 'foo'.
assert entity.foo == 'bar'

Update property 'foo'.
entity.foo = 'baz'

Check the new value of 'foo'.
assert entity.foo == 'baz'

Check the version number has increased.
assert entity.version == 2

Check the received events.
assert len(received_events) == 2, received_events
assert isinstance(received_events[1], AttributeChanged)
assert received_events[1].originator_version == 1
assert received_events[1].name == 'foo'
assert received_events[1].value == 'baz'

Infrastructure

Since the application state is determined by a sequence of events, the application must somehow be able both to persist
the events, and then recover the entities.

Please note, storing and replaying events to persist and to reconstruct the state of an application is the primary capa-
bility of this library. The domain and application and interface capabilities are offered as a supplement to the infras-
tructural capabilities, and have been added to the library partly as a way of shaping and validating the infrastructure,
partly to demonstrate how the core capabilities may be applied, but also as a convenient way of reusing foundational
code so that attention can remain on the problem domain (framework).

Database table

Let’s start by setting up a simple database table that can store sequences of items. We can use SQLAlchemy directly
to define a database table that stores items in sequences, with a single identity for each sequence, and with each item
positioned in its sequence by an integer index number.

from sqlalchemy.ext.declarative.api import declarative_base
from sqlalchemy.sql.schema import Column, Sequence, Index
from sqlalchemy.sql.sqltypes import BigInteger, Integer, String, Text
from sqlalchemy_utils import UUIDType

ActiveRecord = declarative_base()

40 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

class SequencedItemRecord(ActiveRecord):
__tablename__ = 'sequenced_items'

Sequence ID (e.g. an entity or aggregate ID).
sequence_id = Column(UUIDType(), primary_key=True)

Position (index) of item in sequence.
position = Column(BigInteger(), primary_key=True)

Topic of the item (e.g. path to domain event class).
topic = Column(String(255))

State of the item (serialized dict, possibly encrypted).
data = Column(Text())

__table_args__ = Index('index', 'sequence_id', 'position'),

The library has a class IntegerSequencedItemRecord which is very similar to the above.

Next, create the database table. For convenience, the SQLAlchemy objects can be adapted with the
class SQLAlchemyDatastore, which provides a simple interface for the two operations we require:
setup_connection() and setup_tables().

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore

datastore = SQLAlchemyDatastore(
base=ActiveRecord,
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(SequencedItemRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

As you can see from the uri argument above, this example is using SQLite to manage an in memory relational
database. You can change uri to any valid connection string. Here are some example connection strings: for an
SQLite file; for a PostgreSQL database; and for a MySQL database. See SQLAlchemy’s create_engine() documenta-
tion for details. You may need to install drivers for your database management system.

sqlite:////tmp/mydatabase

postgresql://scott:tiger@localhost:5432/mydatabase

mysql://scott:tiger@hostname/dbname

Similar to the support for storing events in SQLAlchemy, there are classes in the library for Cassandra. The project
djangoevents has support for storing events with this library using the Django ORM. Support for other databases such
as DynamoDB is forthcoming.

Event store

To support different kinds of sequences in the domain model, and to allow for different database schemas, the library
has an event store class EventStore that uses a “sequenced item mapper” for mapping domain events to “sequenced

1.9. Examples 41

https://github.com/ApplauseOSS/djangoevents

eventsourcing Documentation, Release 3.1.0

items” - this library’s archetype persistence model for storing events. The sequenced item mapper derives the values
of sequenced item fields from the attributes of domain events.

The event store then uses an “active record strategy” to persist the sequenced items into a particular database man-
agement system. The active record strategy uses an active record class to manipulate records in a particular database
table.

Hence you can use a different database table by substituting an alternative active record class. You can use a different
database management system by substituting an alternative active record strategy.

from eventsourcing.infrastructure.eventstore import EventStore
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy
from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper

active_record_strategy = SQLAlchemyActiveRecordStrategy(
session=datastore.session,
active_record_class=SequencedItemRecord,

)

sequenced_item_mapper = SequencedItemMapper(
sequence_id_attr_name='originator_id',
position_attr_name='originator_version'

)

event_store = EventStore(
active_record_strategy=active_record_strategy,
sequenced_item_mapper=sequenced_item_mapper

)

In the code above, the sequence_id_attr_name value given to the sequenced item mapper is the name of the
domain events attribute that will be used as the ID of the mapped sequenced item, The position_attr_name
argument informs the sequenced item mapper which event attribute should be used to position the item in the sequence.
The values originator_id and originator_version correspond to attributes of the domain event classes we
defined in the domain model section above.

Entity repository

It is common to retrieve entities from a repository. An event sourced repository for the example entity class can be
constructed directly using library class EventSourcedRepository . The repository is given the mutator function
mutate() and the event store.

from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository

example_repository = EventSourcedRepository(
event_store=event_store,
mutator=mutate

)

Run the code

Now, let’s firstly write the events we received earlier into the event store.

Put each received event into the event store.
for event in received_events:

42 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

event_store.append(event)

Check the events exist in the event store.
stored_events = event_store.get_domain_events(entity.id)
assert len(stored_events) == 2, (received_events, stored_events)

The entity can now be retrieved from the repository, using its dictionary-like interface.

retrieved_entity = example_repository[entity.id]
assert retrieved_entity.foo == 'baz'

Sequenced items

Remember that we can always get the sequenced items directly from the active record strategy. A sequenced item
is tuple containing a serialised representation of the domain event. The library class SequencedItem is a Python
namedtuple with four fields: sequence_id, position, topic, and data.

In this example, an event’s originator_id attribute is mapped to the sequence_id field, and the event’s
originator_version attribute is mapped to the position field. The topic field of a sequenced item is
used to identify the event class, and the data field represents the state of the event (normally a JSON string).

sequenced_items = event_store.active_record_strategy.get_items(entity.id)

assert len(sequenced_items) == 2

assert sequenced_items[0].sequence_id == entity.id
assert sequenced_items[0].position == 0
assert 'Created' in sequenced_items[0].topic
assert 'bar' in sequenced_items[0].data

assert sequenced_items[1].sequence_id == entity.id
assert sequenced_items[1].position == 1
assert 'AttributeChanged' in sequenced_items[1].topic
assert 'baz' in sequenced_items[1].data

These are just default names. If it matters in your context that the persistence model uses other names, then you can
use a different sequenced item type which either extends or replaces the fields above.

Application

Although we can do everything at the module level, an application object brings it all together. In the example below,
the class ExampleApplication has an event store, and an entity repository. The application also has a persistence
policy.

Persistence policy

The persistence policy below subscribes to receive events whenever they are published. It uses an event store to store
events whenever they are received.

class PersistencePolicy(object):
def __init__(self, event_store):

self.event_store = event_store
subscribe(self.store_event)

1.9. Examples 43

eventsourcing Documentation, Release 3.1.0

def close(self):
unsubscribe(self.store_event)

def store_event(self, event):
self.event_store.append(event)

A slightly more developed class PersistencePolicy is included in the library.

Application object

As a convenience, it is useful to make the application function as a Python context manager, so that the application
can close the persistence policy, and unsubscribe from receiving further domain events.

class ExampleApplication(object):
def __init__(self, session):

Construct event store.
self.event_store = EventStore(

active_record_strategy=SQLAlchemyActiveRecordStrategy(
active_record_class=SequencedItemRecord,
session=session,

),
sequenced_item_mapper=SequencedItemMapper(

sequence_id_attr_name='originator_id',
position_attr_name='originator_version'

)
)
Construct persistence policy.
self.persistence_policy = PersistencePolicy(

event_store=self.event_store
)
Construct example repository.
self.example_repository = EventSourcedRepository(

event_store=self.event_store,
mutator=mutate

)

def __enter__(self):
return self

def __exit__(self, exc_type, exc_val, exc_tb):
self.persistence_policy.close()

A more developed class ExampleApplication can be found in the library. It is used in later sections of this guide.

Run the code

With the application object, we can create more example entities and expect they will be available immediately in the
repository.

Please note, an entity that has been discarded by using its discard() method cannot subsequently be retrieved
from the repository using its ID. In particular, the repository’s dictionary-like interface will raise a Python KeyError
exception instead of returning an entity.

44 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

with ExampleApplication(datastore.session) as app:

Create a new entity.
example = create_new_example(foo='bar')

Read.
assert example.id in app.example_repository
assert app.example_repository[example.id].foo == 'bar'

Update.
example.foo = 'baz'
assert app.example_repository[example.id].foo == 'baz'

Delete.
example.discard()
assert example.id not in app.example_repository

Congratulations. You have created yourself an event sourced application.

1.9.2 Snapshotting

To enable snapshots to be used when recovering an entity from a repository, construct an entity repository that has a
snapshot strategy object (see below). It is recommended to store snapshots in a dedicated table.

To automatically generate snapshots, you could perhaps define a snapshotting policy, to take snapshots whenever a
particular condition occurs.

Domain

To avoid duplicating code from the previous section, let’s use the example entity class Example and its factory
function create_new_example() from the library.

from eventsourcing.example.domainmodel import Example, create_new_example

Infrastructure

It is recommended not to store snapshots within the entity’s sequence of events, but in a dedicated table for snapshots.
So let’s setup a dedicated table for snapshots using the library class SnapshotRecord, as well as a table for the
events of the entity.

from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓IntegerSequencedItemRecord, SnapshotRecord
from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemyDatastore,
→˓SQLAlchemySettings

datastore = SQLAlchemyDatastore(
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(IntegerSequencedItemRecord, SnapshotRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

1.9. Examples 45

eventsourcing Documentation, Release 3.1.0

Application

Policy

Now let’s define a snapshotting policy object, so that snapshots of example entities are taken every so many events.

The class ExampleSnapshottingPolicy below will take a snapshot of the example entities every period
number of events, so that there will never be more than period number of events to replay when recovering the
entity. The default value of 2 is effective in the example below.

from eventsourcing.domain.model.events import subscribe, unsubscribe

class ExampleSnapshottingPolicy(object):
def __init__(self, example_repository, period=2):

self.example_repository = example_repository
self.period = period
subscribe(predicate=self.trigger, handler=self.take_snapshot)

def close(self):
unsubscribe(predicate=self.trigger, handler=self.take_snapshot)

def trigger(self, event):
return isinstance(event, Example.Event) and not (event.originator_version +

→˓1) % self.period

def take_snapshot(self, event):
self.example_repository.take_snapshot(event.originator_id, lte=event.

→˓originator_version)

Because the event’s originator_version is passed to the method take_snapshot(), with the argument
lte, the snapshot will reflect the entity as it existed just after the event was applied. Even if a different thread operates
on the same entity before the snapshot is taken, the resulting snapshot is the same as it would have been otherwise.

Application object

The application class below extends the library class ApplicationWithPersistencePolicies, which con-
structs the event stores and persistence policies we need. The supertype has a policy to persist snapshots whenever
they are taken. It also has as a policy to persist the events of entities whenever they are published.

The example entity repository is constructed from library class EventSourcedRepository with a snapshot strat-
egy, the integer sequenced event store, and a mutator function. The snapshot strategy is constructed from library class
EventSourcedSnapshotStrategy with an event store for snapshots that is provided by the supertype.

The application’s snapshotting policy is constructed with the example repository, which it needs in order to take
snapshots.

from eventsourcing.application.base import ApplicationWithPersistencePolicies
from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository
from eventsourcing.infrastructure.snapshotting import EventSourcedSnapshotStrategy
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy

class SnapshottedApplication(ApplicationWithPersistencePolicies):

def __init__(self, session):

46 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Construct event stores and persistence policies.
entity_active_record_strategy = SQLAlchemyActiveRecordStrategy(

active_record_class=IntegerSequencedItemRecord,
session=session,

)
snapshot_active_record_strategy = SQLAlchemyActiveRecordStrategy(

active_record_class=SnapshotRecord,
session=session,

)
super(SnapshottedApplication, self).__init__(

entity_active_record_strategy=entity_active_record_strategy,
snapshot_active_record_strategy=snapshot_active_record_strategy,

)

Construct snapshot strategy.
self.snapshot_strategy = EventSourcedSnapshotStrategy(

event_store=self.snapshot_event_store
)

Construct the entity repository, this time with the snapshot strategy.
self.example_repository = EventSourcedRepository(

event_store=self.entity_event_store,
mutator=Example._mutate,
snapshot_strategy=self.snapshot_strategy

)

Construct the snapshotting policy.
self.snapshotting_policy = ExampleSnapshottingPolicy(

example_repository=self.example_repository,
)

def create_new_example(self, foo):
return create_new_example(foo=foo)

def close(self):
super(SnapshottedApplication, self).close()
self.snapshotting_policy.close()

Run the code

The application object can be used in the same way as before. Now snapshots of an example entity will be taken every
second event.

with SnapshottedApplication(datastore.session) as app:

Create an entity.
entity = app.create_new_example(foo='bar1')

Check there's no snapshot, only one event so far.
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot is None

Change an attribute, generates a second event.
entity.foo = 'bar2'

Check the snapshot.

1.9. Examples 47

eventsourcing Documentation, Release 3.1.0

snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state['_foo'] == 'bar2'

Check can recover entity using snapshot.
assert entity.id in app.example_repository
assert app.example_repository[entity.id].foo == 'bar2'

Check snapshot after five events.
entity.foo = 'bar3'
entity.foo = 'bar4'
entity.foo = 'bar5'
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state['_foo'] == 'bar4'

Check snapshot after seven events.
entity.foo = 'bar6'
entity.foo = 'bar7'
assert app.example_repository[entity.id].foo == 'bar7'
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state['_foo'] == 'bar6'

Check snapshot state is None after discarding the entity on the eighth event.
entity.discard()
assert entity.id not in app.example_repository
snapshot = app.snapshot_strategy.get_snapshot(entity.id)
assert snapshot.state is None

try:
app.example_repository[entity.id]

except KeyError:
pass

else:
raise Exception('KeyError was not raised')

Get historical snapshots.
snapshot = app.snapshot_strategy.get_snapshot(entity.id, lte=2)
assert snapshot.state['_version'] == 2 # one behind
assert snapshot.state['_foo'] == 'bar2'

snapshot = app.snapshot_strategy.get_snapshot(entity.id, lte=3)
assert snapshot.state['_version'] == 4
assert snapshot.state['_foo'] == 'bar4'

Get historical entities.
entity = app.example_repository.get_entity(entity.id, lte=0)
assert entity.version == 1
assert entity.foo == 'bar1', entity.foo

entity = app.example_repository.get_entity(entity.id, lte=1)
assert entity.version == 2
assert entity.foo == 'bar2', entity.foo

entity = app.example_repository.get_entity(entity.id, lte=2)
assert entity.version == 3
assert entity.foo == 'bar3', entity.foo

entity = app.example_repository.get_entity(entity.id, lte=3)
assert entity.version == 4

48 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

assert entity.foo == 'bar4', entity.foo

1.9.3 Aggregates in DDD

Eric Evans’ book Domain Driven Design describes an abstraction called “aggregate”:

“An aggregate is a cluster of associated objects that we treat as a unit for the purpose of data changes.
Each aggregate has a root and a boundary.”

Therefore,

“Cluster the entities and value objects into aggregates and define boundaries around each. Choose one
entity to be the root of each aggregate, and control all access to the objects inside the boundary through
the root. Allow external objects to hold references to the root only.”

Which seems to suggest an event sourced aggregate must have a set of events and a mutator function that pertain to a
cluster of objects within a boundary. Also an entity that can function as the root of the cluster of objects, with identity
distinguishable across the application, and methods that exclusively operate on the objects of the aggregate.

Since one command may result in several events, it is also important never to persist only some events that result from
executing a command. And so events must be appended to the event store in a single atomic transaction, so that if
some of the events resulting from executing a command cannot be stored then none of them will be stored.

Aggregate root

Let’s define an aggregate root using class TimestampedVersionedEntity from the library. The Example
class used in the previous section on snapshotting also derives from TimestampedVersionedEntity.

The example aggregate root class below defines (as as inner class) the domain event class ExampleCreated which
will be published by the aggregate when creating “example” objects, and a method count_examples() that can
operate on all the “example” objects of the aggregate.

from eventsourcing.domain.model.entity import TimestampedVersionedEntity

class ExampleAggregateRoot(TimestampedVersionedEntity):
"""
Root entity of example aggregate.
"""
class Event(TimestampedVersionedEntity.Event):

"""Layer supertype."""

class Created(Event, TimestampedVersionedEntity.Created):
"""Published when aggregate is created."""

class Discarded(Event, TimestampedVersionedEntity.Discarded):
"""Published when aggregate is discarded."""

class ExampleCreated(Event):
"""Published when an "example" object in the aggregate is created."""

def __init__(self, **kwargs):
super(ExampleAggregateRoot, self).__init__(**kwargs)
self._pending_events = []
self._examples = {}

1.9. Examples 49

eventsourcing Documentation, Release 3.1.0

def count_examples(self):
return len(self._examples)

def create_new_example(self):
assert not self._is_discarded
event = ExampleAggregateRoot.ExampleCreated(

example_id=uuid.uuid4(),
originator_id=self.id,
originator_version=self.version,

)
mutate_aggregate(self, event)
self._publish(event)

def _publish(self, event):
self._pending_events.append(event)

def save(self):
publish(self._pending_events[:])
self._pending_events = []

class Example(object):
"""
Example entity, exists only within the example aggregate boundary.
"""
def __init__(self, example_id):

self._id = example_id

@property
def id(self):

return self._id

The methods of the aggregate, and the factory below, are similar to previous examples. But instead of immediately
publishing events using the publish() function, the events are appended to an internal list of pending events using
the aggregate’s method _publish(). The aggregate then has a save() method which is used to publish all the
pending events in a single list using the function publish().

As before, we’ll also need a factory and a mutator function. The factory function here works in the same way as
before.

def create_example_aggregate():
"""
Factory function for example aggregate.
"""
Construct event.
event = ExampleAggregateRoot.Created(originator_id=uuid.uuid4())

Mutate aggregate.
aggregate = mutate_aggregate(aggregate=None, event=event)

Publish event to internal list only.
aggregate._publish(event)

Return the new aggregate object.
return aggregate

The mutator function mutate_aggregate() below handles events Created and Discarded similarly to the
previous examples. It also handles ExampleCreated, by constructing an object class Example that it adds to the

50 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

aggregate’s internal collection of examples.

def mutate_aggregate(aggregate, event):
"""
Mutator function for example aggregate.
"""
Handle "created" events by constructing the aggregate object.
if isinstance(event, ExampleAggregateRoot.Created):

kwargs = event.__dict__.copy()
kwargs['version'] = kwargs.pop('originator_version')
kwargs['id'] = kwargs.pop('originator_id')
aggregate = ExampleAggregateRoot(**kwargs)
aggregate._version += 1
return aggregate

Handle "example entity created" events by adding a new entity
to the aggregate's dict of entities.
elif isinstance(event, ExampleAggregateRoot.ExampleCreated):

aggregate._assert_not_discarded()
entity = Example(example_id=event.example_id)
aggregate._examples[str(entity.id)] = entity
aggregate._version += 1
aggregate._last_modified = event.timestamp
return aggregate

Handle "discarded" events by returning 'None'.
elif isinstance(event, ExampleAggregateRoot.Discarded):

aggregate._assert_not_discarded()
aggregate._version += 1
aggregate._is_discarded = True
return None

else:
raise NotImplementedError(type(event))

Application and infrastructure

Set up a database table using library classes.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓IntegerSequencedItemRecord

datastore = SQLAlchemyDatastore(
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(IntegerSequencedItemRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

Define an application class that uses the domain model code above, and infrastructure and policy classes from the
library.

import uuid
import time

1.9. Examples 51

eventsourcing Documentation, Release 3.1.0

from eventsourcing.application.policies import PersistencePolicy
from eventsourcing.domain.model.events import publish
from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository
from eventsourcing.infrastructure.eventstore import EventStore
from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy

class ExampleDDDApplication(object):
def __init__(self, session):

self.event_store = EventStore(
active_record_strategy=SQLAlchemyActiveRecordStrategy(

session=session,
active_record_class=IntegerSequencedItemRecord,

),
sequenced_item_mapper=SequencedItemMapper(

sequence_id_attr_name='originator_id',
position_attr_name='originator_version',

)
)
self.aggregate_repository = EventSourcedRepository(

event_store=self.event_store,
mutator=mutate_aggregate,

)
self.persistence_policy = PersistencePolicy(

event_store=self.event_store,
event_type=ExampleAggregateRoot.Event

)

def __enter__(self):
return self

def __exit__(self, exc_type, exc_val, exc_tb):
self.persistence_policy.close()

Run the code

The application can be used to create new aggregates, and aggregates can be used to create new entities. Events are
published in batches when the aggregate’s save() method is called.

with ExampleDDDApplication(datastore.session) as app:

Create a new aggregate.
aggregate = create_example_aggregate()
aggregate.save()

Check it exists in the repository.
assert aggregate.id in app.aggregate_repository, aggregate.id

Check the aggregate has zero entities.
assert aggregate.count_examples() == 0

Check the aggregate has zero entities.
assert aggregate.count_examples() == 0

52 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Ask the aggregate to create an entity within itself.
aggregate.create_new_example()

Check the aggregate has one entity.
assert aggregate.count_examples() == 1

Check the aggregate in the repo still has zero entities.
assert app.aggregate_repository[aggregate.id].count_examples() == 0

Call save().
aggregate.save()

Check the aggregate in the repo now has one entity.
assert app.aggregate_repository[aggregate.id].count_examples() == 1

Create two more entities within the aggregate.
aggregate.create_new_example()
aggregate.create_new_example()

Save both "entity created" events in one atomic transaction.
aggregate.save()

Check the aggregate in the repo now has three entities.
assert app.aggregate_repository[aggregate.id].count_examples() == 3

Discard the aggregate, but don't call save() yet.
aggregate.discard()

Check the aggregate still exists in the repo.
assert aggregate.id in app.aggregate_repository

Call save().
aggregate.save()

Check the aggregate no longer exists in the repo.
assert aggregate.id not in app.aggregate_repository

The library has an AggregateRoot class that is slightly more developed than the code in this example.

1.9.4 Application-level encryption

Install the library with the ‘crypto’ option.

pip install eventsourcing[crypto]

To enable encryption, pass in a cipher strategy object when constructing the sequenced item mapper, and set
always_encrypt to a True value.

Cipher strategy

Let’s firstly construct a cipher strategy object. This example uses the library AES cipher strategy AESCipher.

The library AES cipher strategy uses the AES cipher from the Python Cryptography Toolkit, by default in CBC
mode with 128 bit blocksize and a 16 byte encryption key. It generates a unique 16 byte initialization vector for
each encryption. In this cipher strategy, serialized event data is compressed before it is encrypted, which can mean
application performance is improved when encryption is enabled.

1.9. Examples 53

https://pypi.python.org/pypi/pycrypto

eventsourcing Documentation, Release 3.1.0

With encryption enabled, event attribute values are encrypted inside the application before they are mapped to the
database. The values are decrypted before domain events are replayed.

from eventsourcing.infrastructure.cipher.aes import AESCipher

Construct the cipher strategy.
aes_key = b'0123456789abcdef'
cipher = AESCipher(aes_key)

Application and infrastructure

Set up infrastructure using library classes.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓IntegerSequencedItemRecord

datastore = SQLAlchemyDatastore(
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(IntegerSequencedItemRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

Define a factory that uses library classes to construct an application object.

from eventsourcing.example.application import ExampleApplication
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy
from eventsourcing.infrastructure.sequenceditem import SequencedItem

def construct_example_application(session, always_encrypt=False, cipher=None):
active_record_strategy = SQLAlchemyActiveRecordStrategy(

active_record_class=IntegerSequencedItemRecord,
session=session

)
app = ExampleApplication(

entity_active_record_strategy=active_record_strategy,
always_encrypt=always_encrypt,
cipher=cipher,

)
return app

Run the code

Now construct an encrypted application with the cipher. Create an “example” with some “secret information”. Check
the information is not visible in the database, as it is when the application is not encrypted.

Create a new example entity using an encrypted application.
encrypted_app = construct_example_application(datastore.session, always_encrypt=True,
→˓cipher=cipher)

with encrypted_app as app:

54 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

secret_entity = app.create_new_example(foo='secret info')

With encryption enabled, application state is not visible in the database.
event_store = app.entity_event_store
item2 = event_store.active_record_strategy.get_item(secret_entity.id, eq=0)
assert 'secret info' not in item2.data

Events are decrypted inside the application.
retrieved_entity = app.example_repository[secret_entity.id]
assert 'secret info' in retrieved_entity.foo

Create a new example entity using an unencrypted application object.
unencrypted_app = construct_example_application(datastore.session)
with unencrypted_app as app:

entity = app.create_new_example(foo='bar')

Without encryption, application state is visible in the database.
event_store = app.entity_event_store
item1 = event_store.active_record_strategy.get_item(entity.id, 0)
assert 'bar' in item1.data

1.9.5 Optimistic concurrency control

Because of the unique constraint on the sequenced item table, it isn’t possible to branch the evolution of an entity and
store two events at the same version. Hence, if the entity you are working on has been updated elsewhere, an attempt
to update your object will raise a concurrency exception.

Application and infrastructure

Set up infrastructure using library classes.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓IntegerSequencedItemRecord

datastore = SQLAlchemyDatastore(
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(IntegerSequencedItemRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

Define a factory that uses library classes to construct an application object.

from eventsourcing.example.application import ExampleApplication
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy
from eventsourcing.infrastructure.sequenceditem import SequencedItem

def construct_example_application(session):
active_record_strategy = SQLAlchemyActiveRecordStrategy(

active_record_class=IntegerSequencedItemRecord,
sequenced_item_class=SequencedItem,

1.9. Examples 55

eventsourcing Documentation, Release 3.1.0

session=session
)
app = ExampleApplication(

entity_active_record_strategy=active_record_strategy
)
return app

Run the code

Use the application to get two instances of the same entity, and try to change them independently.

from eventsourcing.exceptions import ConcurrencyError

with construct_example_application(datastore.session) as app:

entity = app.create_new_example(foo='bar1')

a = app.example_repository[entity.id]
b = app.example_repository[entity.id]

Change the entity using instance 'a'.
a.foo = 'bar2'

Because 'a' has been changed since 'b' was obtained,
'b' cannot be updated unless it is firstly refreshed.
try:

b.foo = 'bar3'
except ConcurrencyError:

pass
else:

raise Exception("Failed to control concurrency of 'b'.")

Refresh object 'b', so that 'b' has the current state of the entity.
b = app.example_repository[entity.id]
assert b.foo == 'bar2'

Changing the entity using instance 'b' now works because 'b' is up to date.
b.foo = 'bar3'
assert app.example_repository[entity.id].foo == 'bar3'

Now 'a' does not have the current state of the entity, and cannot be changed.
try:

a.foo = 'bar4'
except ConcurrencyError:

pass
else:

raise Exception("Failed to control concurrency of 'a'.")

Cassandra

The Cassandra database management system, which implements the Paxos protocol, can (allegedly) accomplish
linearly-scalable distributed optimistic concurrency control, guaranteeing sequential consistency of the events of an
entity. It is also possible to serialize calls to the methods of an entity, but that is out of the scope of this package — if
you wish to do that, perhaps something like Zookeeper might help.

56 Chapter 1. Overview

https://zookeeper.apache.org/

eventsourcing Documentation, Release 3.1.0

1.9.6 Alternative schema

Stored event model

The database schema we have been using so far stores events in a sequence of “sequenced items”, and the names in
the database schema reflect that design.

Let’s say we want instead our database records to called “stored events”.

It’s easy to do. Just define a new sequenced item class, e.g. StoredEvent below, and then supply a suitable active
record class. As before, create the table using the new active record class, and pass both to the active record strategy
when constructing the application object.

from collections import namedtuple

StoredEvent = namedtuple('StoredEvent', ['aggregate_id', 'aggregate_version', 'event_
→˓type', 'state'])

Then define a suitable active record class.

from sqlalchemy.ext.declarative.api import declarative_base
from sqlalchemy.sql.schema import Column, Sequence, Index
from sqlalchemy.sql.sqltypes import BigInteger, Integer, String, Text
from sqlalchemy_utils import UUIDType

Base = declarative_base()

class StoredEventRecord(Base):
__tablename__ = 'stored_events'

Sequence ID (e.g. an entity or aggregate ID).
aggregate_id = Column(UUIDType(), primary_key=True)

Position (timestamp) of item in sequence.
aggregate_version = Column(BigInteger(), primary_key=True)

Type of the event (class name).
event_type = Column(String(100))

State of the item (serialized dict, possibly encrypted).
state = Column(Text())

__table_args__ = Index('index', 'aggregate_id', 'aggregate_version'),

Application and infrastructure

Then redefine the application class to use the new sequenced item and active record classes.

from eventsourcing.application.policies import PersistencePolicy
from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository
from eventsourcing.infrastructure.eventstore import EventStore
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy
from eventsourcing.infrastructure.sequenceditem import SequencedItem
from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper
from eventsourcing.example.domainmodel import Example, create_new_example

1.9. Examples 57

eventsourcing Documentation, Release 3.1.0

class Application(object):
def __init__(self, session):

self.event_store = EventStore(
active_record_strategy=SQLAlchemyActiveRecordStrategy(

session=session,
active_record_class=StoredEventRecord,
sequenced_item_class=StoredEvent,

),
sequenced_item_mapper=SequencedItemMapper(

sequenced_item_class=StoredEvent,
sequence_id_attr_name='originator_id',
position_attr_name='originator_version',

)
)
self.example_repository = EventSourcedRepository(

event_store=self.event_store,
mutator=Example._mutate,

)
self.persistence_policy = PersistencePolicy(self.event_store, event_

→˓type=Example.Event)

def create_example(self, foo):
return create_new_example(foo=foo)

def close(self):
self.persistence_policy.close()

def __enter__(self):
return self

def __exit__(self, exc_type, exc_val, exc_tb):
self.close()

Set up the database.

from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemySettings,
→˓SQLAlchemyDatastore

datastore = SQLAlchemyDatastore(
base=Base,
settings=SQLAlchemySettings(uri='sqlite:///:memory:'),
tables=(StoredEventRecord,),

)

datastore.setup_connection()
datastore.setup_tables()

Run the code

Then you can use the application to create, read, update, and discard. And your events will be stored as “stored events”
rather than “sequenced items”.

with Application(datastore.session) as app:

Create.

58 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

example = create_new_example(foo='bar')

Read.
assert example.id in app.example_repository
assert app.example_repository[example.id].foo == 'bar'

Update.
example.foo = 'baz'
assert app.example_repository[example.id].foo == 'baz'

Delete.
example.discard()
assert example.id not in app.example_repository

Applause djangoevents project

It is possible to replace more aspects of the library, to make a more customized application. The excellent project
djangoevents by Applause is a Django app that provides a neat way of taking an event sourcing approach in a Django
project. It allows this library to be used seamlessly with Django, by using the Django ORM to store events. Using
djangoevents is well documented in the README file. It adds some nice enhancements to the capabilities of this li-
brary, and shows how various components can be extended or replaced. Please note, the djangoevents project currently
works with a previous version of this library.

1.9.7 Using Cassandra

Install the library with the ‘cassandra’ option.

pip install eventsourcing[cassandra]

Infrastructure

Set up the connection and the database tables, using the library classes for Cassandra.

If you are using default settings, make sure you have a Cassandra server available at port 9042. Please investigate the
library class CassandraSettings for information about configuring away from default settings.

from eventsourcing.infrastructure.cassandra.datastore import CassandraSettings,
→˓CassandraDatastore
from eventsourcing.infrastructure.cassandra.activerecords import
→˓IntegerSequencedItemRecord

cassandra_datastore = CassandraDatastore(
settings=CassandraSettings(),
tables=(IntegerSequencedItemRecord,),

)

cassandra_datastore.setup_connection()
cassandra_datastore.setup_tables()

Application object

Define a factory that uses library classes for Cassandra to construct an application object.

1.9. Examples 59

https://github.com/ApplauseOSS/djangoevents
https://www.applause.com/

eventsourcing Documentation, Release 3.1.0

from eventsourcing.example.application import ExampleApplication
from eventsourcing.infrastructure.cassandra.activerecords import
→˓CassandraActiveRecordStrategy

def construct_application():
active_record_strategy = CassandraActiveRecordStrategy(

active_record_class=IntegerSequencedItemRecord,
)
app = ExampleApplication(

entity_active_record_strategy=active_record_strategy,
)
return app

Run the code

The application can be used to create, read, update, and delete entities in Cassandra.

with construct_application() as app:

Create.
example = app.create_new_example(foo='bar')

Read.
assert example.id in app.example_repository
assert app.example_repository[example.id].foo == 'bar'

Update.
example.foo = 'baz'
assert app.example_repository[example.id].foo == 'baz'

Delete.
example.discard()
assert example.id not in app.example_repository

1.9.8 Everything in one app

In this example, an application is developed that includes all of the aspects introduced in previous sections. The appli-
cation has aggregates with a root entity that controls a cluster of entities and value objects, and which publishes events
in batches. Aggregate events are stored using Cassandra, with application level encryption, and with snapshotting at
regular intervals. The tests at the bottom demonstrate that it works.

Domain

Aggregate model

from eventsourcing.domain.model.decorators import attribute
from eventsourcing.domain.model.entity import TimestampedVersionedEntity
from eventsourcing.domain.model.events import publish, subscribe, unsubscribe

class ExampleAggregateRoot(TimestampedVersionedEntity):
"""

60 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Root entity of example aggregate.
"""
class Event(TimestampedVersionedEntity.Event):

"""Layer supertype."""

class Created(Event, TimestampedVersionedEntity.Created):
"""Published when aggregate is created."""

class AttributeChanged(Event, TimestampedVersionedEntity.AttributeChanged):
"""Published when aggregate is changed."""

class Discarded(Event, TimestampedVersionedEntity.Discarded):
"""Published when aggregate is discarded."""

class ExampleCreated(Event):
"""Published when an "example" object in the aggregate is created."""

def __init__(self, foo, **kwargs):
super(ExampleAggregateRoot, self).__init__(**kwargs)
self._foo = foo
self._pending_events = []
self._examples = {}

@attribute
def foo(self):

pass

def count_examples(self):
return len(self._examples)

def create_new_example(self):
assert not self._is_discarded
event = ExampleAggregateRoot.ExampleCreated(

example_id=uuid.uuid4(),
originator_id=self.id,
originator_version=self.version,

)
self._apply_and_publish(event)
self._publish(event)

def _publish(self, event):
self._pending_events.append(event)

def save(self):
publish(self._pending_events[:])
self._pending_events = []

@classmethod
def _mutate(cls, initial, event):

return mutate_aggregate(initial or cls, event)

class Example(object):
"""
Example entity. Controlled by aggregate root.

Exists only within the aggregate boundary.
"""

1.9. Examples 61

eventsourcing Documentation, Release 3.1.0

def __init__(self, example_id):
self._id = example_id

@property
def id(self):

return self._id

Aggregate factory

def create_example_aggregate(foo):
"""
Factory function for example aggregate.
"""
Construct event.
event = ExampleAggregateRoot.Created(originator_id=uuid.uuid4(), foo=foo)

Mutate aggregate.
aggregate = mutate_aggregate(ExampleAggregateRoot, event)

Publish event to internal list only.
aggregate._publish(event)

Return the new aggregate object.
return aggregate

Mutator function

from eventsourcing.domain.model.decorators import mutator
from eventsourcing.domain.model.entity import mutate_entity

@mutator
def mutate_aggregate(aggregate, event):

"""
Mutator function for example aggregate.
"""
return mutate_entity(aggregate, event)

@mutate_aggregate.register(ExampleAggregateRoot.ExampleCreated)
def _(aggregate, event):

Handle "ExampleCreated" events by adding a new entity to the aggregate's dict
→˓of entities.

try:
aggregate._assert_not_discarded()

except TypeError:
raise Exception(aggregate)

entity = Example(example_id=event.example_id)
aggregate._examples[str(entity.id)] = entity
aggregate._version += 1
aggregate._last_modified = event.timestamp
return aggregate

62 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Infrastructure

from eventsourcing.infrastructure.cassandra.datastore import CassandraSettings,
→˓CassandraDatastore
from eventsourcing.infrastructure.cassandra.activerecords import
→˓IntegerSequencedItemRecord, SnapshotRecord
import uuid

cassandra_datastore = CassandraDatastore(
settings=CassandraSettings(),
tables=(IntegerSequencedItemRecord, SnapshotRecord),

)

cassandra_datastore.setup_connection()
cassandra_datastore.setup_tables()

Application

Cipher strategy

from eventsourcing.infrastructure.cipher.aes import AESCipher

Construct the cipher strategy.
aes_key = b'0123456789abcdef'
cipher = AESCipher(aes_key)

Snapshotting policy

class ExampleSnapshottingPolicy(object):
def __init__(self, example_repository, period=2):

self.example_repository = example_repository
self.period = period
subscribe(predicate=self.trigger, handler=self.take_snapshot)

def close(self):
unsubscribe(predicate=self.trigger, handler=self.take_snapshot)

def trigger(self, event):
if isinstance(event, (list)):

return True
is_period = not (event.originator_version + 1) % self.period
is_type = isinstance(event, ExampleAggregateRoot.Event)
is_trigger = is_type and is_period
return is_trigger

def take_snapshot(self, event):
if isinstance(event, list):

for e in event:
if self.trigger(e):

self.take_snapshot(e)
else:

self.example_repository.take_snapshot(event.originator_id, lte=event.
→˓originator_version)

1.9. Examples 63

eventsourcing Documentation, Release 3.1.0

Application object

from eventsourcing.application.base import ApplicationWithPersistencePolicies
from eventsourcing.infrastructure.eventsourcedrepository import EventSourcedRepository
from eventsourcing.infrastructure.snapshotting import EventSourcedSnapshotStrategy
from eventsourcing.infrastructure.cassandra.activerecords import
→˓CassandraActiveRecordStrategy

class EverythingApplication(ApplicationWithPersistencePolicies):

def __init__(self, **kwargs):
Construct event stores and persistence policies.
entity_active_record_strategy = CassandraActiveRecordStrategy(

active_record_class=IntegerSequencedItemRecord,
)
snapshot_active_record_strategy = CassandraActiveRecordStrategy(

active_record_class=SnapshotRecord,
)
super(EverythingApplication, self).__init__(

entity_active_record_strategy=entity_active_record_strategy,
snapshot_active_record_strategy=snapshot_active_record_strategy,

**kwargs
)

Construct snapshot strategy.
self.snapshot_strategy = EventSourcedSnapshotStrategy(

event_store=self.snapshot_event_store
)

Construct the entity repository, this time with the snapshot strategy.
self.example_repository = EventSourcedRepository(

event_store=self.entity_event_store,
mutator=ExampleAggregateRoot._mutate,
snapshot_strategy=self.snapshot_strategy

)

Construct the snapshotting policy.
self.snapshotting_policy = ExampleSnapshottingPolicy(

example_repository=self.example_repository,
)

def close(self):
super(EverythingApplication, self).close()
self.snapshotting_policy.close()

Run the code

from eventsourcing.exceptions import ConcurrencyError

with EverythingApplication(cipher=cipher, always_encrypt=True) as app:

Check encryption.

secret_aggregate = create_example_aggregate(foo='secret info')

64 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

secret_aggregate.save()

With encryption enabled, application state is not visible in the database.
event_store = app.entity_event_store

item2 = event_store.active_record_strategy.get_item(secret_aggregate.id, eq=0)
assert 'secret info' not in item2.data

Events are decrypted inside the application.
retrieved_entity = app.example_repository[secret_aggregate.id]
assert 'secret info' in retrieved_entity.foo

Check concurrency control.

aggregate = create_example_aggregate(foo='bar1')
aggregate.create_new_example()

aggregate.save()
assert app.example_repository[aggregate.id].foo == 'bar1'

a = app.example_repository[aggregate.id]
b = app.example_repository[aggregate.id]

Change the aggregate using instance 'a'.
a.foo = 'bar2'
a.save()
assert app.example_repository[aggregate.id].foo == 'bar2'

Because 'a' has been changed since 'b' was obtained,
'b' cannot be updated unless it is firstly refreshed.
try:

b.foo = 'bar3'
b.save()
assert app.example_repository[aggregate.id].foo == 'bar3'

except ConcurrencyError:
pass

else:
raise Exception("Failed to control concurrency of 'b':".format(app.example_

→˓repository[aggregate.id]))

Refresh object 'b', so that 'b' has the current state of the aggregate.
b = app.example_repository[aggregate.id]
assert b.foo == 'bar2'

Changing the aggregate using instance 'b' now works because 'b' is up to date.
b.foo = 'bar3'
b.save()
assert app.example_repository[aggregate.id].foo == 'bar3'

Now 'a' does not have the current state of the aggregate, and cannot be changed.
try:

a.foo = 'bar4'
a.save()

except ConcurrencyError:
pass

else:

1.9. Examples 65

eventsourcing Documentation, Release 3.1.0

raise Exception("Failed to control concurrency of 'a'.")

Check snapshotting.

Create an aggregate.
aggregate = create_example_aggregate(foo='bar1')
aggregate.save()

Check there's no snapshot, only one event so far.
snapshot = app.snapshot_strategy.get_snapshot(aggregate.id)
assert snapshot is None

Change an attribute, generates a second event.
aggregate.foo = 'bar2'
aggregate.save()

Check the snapshot.
snapshot = app.snapshot_strategy.get_snapshot(aggregate.id)
assert snapshot.state['_foo'] == 'bar2'

Check can recover aggregate using snapshot.
assert aggregate.id in app.example_repository
assert app.example_repository[aggregate.id].foo == 'bar2'

Check snapshot after five events.
aggregate.foo = 'bar3'
aggregate.foo = 'bar4'
aggregate.foo = 'bar5'
aggregate.save()
snapshot = app.snapshot_strategy.get_snapshot(aggregate.id)
assert snapshot.state['_foo'] == 'bar4', snapshot.state['_foo']

Check snapshot after seven events.
aggregate.foo = 'bar6'
aggregate.foo = 'bar7'
aggregate.save()
assert app.example_repository[aggregate.id].foo == 'bar7'
snapshot = app.snapshot_strategy.get_snapshot(aggregate.id)
assert snapshot.state['_foo'] == 'bar6'

Check snapshot state is None after discarding the aggregate on the eighth event.
aggregate.discard()
aggregate.save()
assert aggregate.id not in app.example_repository
snapshot = app.snapshot_strategy.get_snapshot(aggregate.id)
assert snapshot.state is None

try:
app.example_repository[aggregate.id]

except KeyError:
pass

else:
raise Exception('KeyError was not raised')

Get historical snapshots.
snapshot = app.snapshot_strategy.get_snapshot(aggregate.id, lte=2)
assert snapshot.state['_version'] == 2 # one behind

66 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

assert snapshot.state['_foo'] == 'bar2'

snapshot = app.snapshot_strategy.get_snapshot(aggregate.id, lte=3)
assert snapshot.state['_version'] == 4
assert snapshot.state['_foo'] == 'bar4'

Get historical entities.
aggregate = app.example_repository.get_entity(aggregate.id, lte=0)
assert aggregate.version == 1
assert aggregate.foo == 'bar1', aggregate.foo

aggregate = app.example_repository.get_entity(aggregate.id, lte=1)
assert aggregate.version == 2
assert aggregate.foo == 'bar2', aggregate.foo

aggregate = app.example_repository.get_entity(aggregate.id, lte=2)
assert aggregate.version == 3
assert aggregate.foo == 'bar3', aggregate.foo

aggregate = app.example_repository.get_entity(aggregate.id, lte=3)
assert aggregate.version == 4
assert aggregate.foo == 'bar4', aggregate.foo

1.9.9 Projections and notifications

If a projection is just another mutator function that operates on a sequence of events, and a persistent projection is
a snapshot of the resulting state, then the new thing we need for projections of the application state is a sequence
of all the events of the application. This section introduces the notification log, and assumes your projections and
your persistent projections can be coded using techniques for coding mutator functions and snapshots introduced in
previous sections.

Synchronous update

In a simple situation, you may wish to update a view of an aggregate synchronously whenever there are changes. If
each view model depends only on one aggregate, you may wish simply to subscribe to the events of the aggregate.
Then, whenever an event occurs, the projection can be updated.

The library has a decorator function subscribe_to() that can be used for this purpose.

@subscribe_to(Todo.Created)
def new_todo_projection(event):

todo = TodoProjection(id=event.originator_id, title=event.title)
todo.save()

The view model could be saved as a normal record, or stored in a sequence that follows the event originator version
numbers, perhaps as snapshots, so that concurrent handling of events will not lead to a later state being overwritten by
an earlier state. Older versions of the view could be deleted later.

If the view fails to update after the domain event has been stored, then the view will become inconsistent. Since it is
not desirable to delete the event once it has been stored, the command must return normally despite the view update
failing, so that the command is not retried. The failure to update will need to be logged, or otherwise handled, in a
similar way to failures of asynchronous updates.

The big issue with this approach is that if the first event of an aggregate is not processed, there is no way of knowing
the aggregate exists, and so there is nothing that can be used to check for updates to that aggregate.

1.9. Examples 67

eventsourcing Documentation, Release 3.1.0

Asynchronous update

The fundamental concern is to accomplish high fidelity when propagating a stream of events, so that events are neither
missed nor are they duplicated. Once the stream of events has been propagated faithfully, it can be republished and
subscribers can execute commands as above.

As Vaughn Vernon suggests in his book Implementing Domain Driven Design:

“at least two mechanisms in a messaging solution must always be consistent with each other: the persis-
tence store used by the domain model, and the persistence store backing the messaging infrastructure used
to forward the Events published by the model. This is required to ensure that when the model’s changes
are persisted, Event delivery is also guaranteed, and that if an Event is delivered through messaging, it
indicates a true situation reflected by the model that published it. If either of these is out of lockstep with
the other, it will lead to incorrect states in one or more interdependent models.”

There are three options, he continues. The first option is to have the messaging infrastructure and the domain model
share the same persistence store, so changes to the model and insertion of new messages commit in the same local
transaction. The second option is to have separate datastores for domain model and messaging but have a two phase
commit, or global transaction, across the two.

The third option is to have the bounded context control notifications. Vaughn Vernon is his book Implementing Domain
Driven Design relies on the simple logic of an ascending sequence of integers to allow others to progress along the
event stream. That is the approach taken here.

A pull mechanism that allows others to pull events they don’t yet have can be used to allow remote components to
catch up. The same mechanism can be used if a component is developed after the application has been deployed and
so requires initialising from an established application stream, or otherwise needs to be reconstructed from scratch.

As we will see below, updates can be triggered by pushing the notifications to messaging infrastructure, and having
the remote components subscribe. If anything goes wrong with messaging infrastructure, such that a notification is not
received, remote components can detect they have missed a notification and pull the notifications they have missed.

Application log

In order to update a projection of more than one aggregate, or the application state as a whole, we need a single
sequence to log all the events of the application.

We want an application log that follows an increasing sequence of integers. The application log must also be capable
of storing a very large sequence of events, neither swamping an individual database partition nor distributing things
across partitions without any particular order so that iterating through the sequence is slow and expensive. We also
want the application log effectively to have constant time read and write operations.

The library class BigArray satisfies these requirements quite well. It is a tree of arrays, with a root array that stores
references to the current apex, with an apex that contains references to arrays, which either contain references to lower
arrays or contain the items assigned to the big array. Each array uses one database partition, and is limited is size (the
array size) to ensure the partition is never too large. The identity of each array can be calculated directly from the index
number, so it is possible to identify arrays directly without traversing the tree to discover entity IDs. The capacity of
base arrays is the array size to the power of the array size. For a reasonable size of array, it isn’t really possible to fill
up the base of such an array tree, but the slow growing properties of this tree mean that for all imaginable scenarios,
the performance will be approximately constant as items are appended to the big array.

Items can be appended to a big array using the append() method. The append() method identifies the next available
index in the array, and then assigns the item to that index in the array. A ConcurrencyError will be raised if the
position is already taken.

The performance of the append() method is proportional to the log of the index in the array, to the base of the array
size used in the big array, rounded up to the nearest integer, plus one (because of the root sequence that tracks the
apex). For example, if the sub-array size is 10,000, then it will take only 50% longer to append the 100,000,000th item

68 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

to the big array than the 1st one. By the time the 1,000,000,000,000th index position is assigned to a big array, the
append() method will take only twice as long as the 1st.

That’s because the performance of the append() method is dominated by the need to walk down the big array’s tree
of arrays to find the highest assigned index. Once the index of the next position is known, the item can be assigned
directly to an array.

from uuid import uuid4
from eventsourcing.domain.model.array import BigArray, ItemAssigned
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy
from eventsourcing.infrastructure.sqlalchemy.activerecords import StoredEventRecord
from eventsourcing.infrastructure.sqlalchemy.datastore import SQLAlchemyDatastore,
→˓SQLAlchemySettings
from eventsourcing.infrastructure.eventstore import EventStore
from eventsourcing.infrastructure.repositories.array import BigArrayRepository
from eventsourcing.application.policies import PersistencePolicy
from eventsourcing.infrastructure.sequenceditem import StoredEvent
from eventsourcing.infrastructure.sequenceditemmapper import SequencedItemMapper

datastore = SQLAlchemyDatastore(
settings=SQLAlchemySettings(),
tables=[StoredEventRecord],

)
datastore.setup_connection()
datastore.setup_tables()

event_store = EventStore(
active_record_strategy=SQLAlchemyActiveRecordStrategy(

session=datastore.session,
active_record_class=StoredEventRecord,
sequenced_item_class=StoredEvent,

),
sequenced_item_mapper=SequencedItemMapper(

sequenced_item_class=StoredEvent,
)

)
persistence_policy = PersistencePolicy(

event_store=event_store,
event_type=ItemAssigned,

)

array_id = uuid4()

repo = BigArrayRepository(
event_store=event_store,
array_size=10000

)

application_log = repo[array_id]
application_log.append('event0')
application_log.append('event1')
application_log.append('event2')
application_log.append('event3')

Because there is a small duration of time between checking for the next position and using it, another thread could
jump in and use the position first. If that happens, a ConcurrencyError will be raised by the BigArray object.
In such a case, another attempt can be made to append the item.

1.9. Examples 69

eventsourcing Documentation, Release 3.1.0

Items can be assigned directly to a big array using an index number. If an item has already been assigned to the same
position, a concurrency error will be raised, and the original item will remain in place. Items cannot be unassigned
from an array, hence each position in the array can be assigned once only.

The average performance of assigning an item is a constant time. The worst case is the log of the index with base
equal to the array size, which occurs when containing arrays are added, so that the last highest assigned index can be
discovered. The probability of departing from average performance is inversely proportional to the array size, since
the the larger the array size, the less often the base arrays fill up. For a decent array size, the probability of needing
to build the tree is very low. And when the tree does need building, it doesn’t take very long (and most of it probably
already exists).

from eventsourcing.exceptions import ConcurrencyError

assert application_log.get_next_position() == 4

application_log[4] = 'event4'
try:

application_log[4] = 'event4a'
except ConcurrencyError:

pass
else:

raise

If the next available position in the array must be identified each time an item is assigned, the amount of contention
will increase as the number of threads increases. Using the append() method alone will work if the time period
of appending events is greater than the time it takes to identify the next available index and assign to it. At that rate,
any contention will not lead to congestion. Different nodes can take their chances assigning to what they believe is an
unassigned index, and if another has already taken that position, the operation can be retried.

However, there will be an upper limit to the rate at which events can be appended, and contention will eventually lead
to congestion that will cause requests to backup or be spilled.

The rate of assigning items to the big array can be greatly increased by centralizing the generation of the sequence of
integers. Instead of discovering the next position from the array each time an item is assigned, an integer sequence
generator can be used to generate a contiguous sequence of integers. This technique eliminates contention around
assigning items to the big array entirely. In consequence, the bandwidth of assigning to a big array using an integer
sequence generator is much greater than using the append() method.

If the application is executed in only one process, the number generator can be a simple Python object. The library
class SimpleIntegerSequenceGenerator generates a contiguous sequence of integers that can be shared
across multiple threads in the same process.

from eventsourcing.infrastructure.integersequencegenerators.base import
→˓SimpleIntegerSequenceGenerator

integers = SimpleIntegerSequenceGenerator()
generated = []
for i in integers:

if i >= 5:
break

generated.append(i)

expected = list(range(5))
assert generated == expected, (generated, expected)

If the application is deployed across many nodes, an external integer sequence generator can be used. There are many
possible solutions. The library class RedisIncr uses Redis’ INCR command to generate a contiguous sequence of
integers that can be shared be processes running on different nodes.

70 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Using Redis doesn’t necessarily create a single point of failure. Redundancy can be obtained using clustered Redis.
Although there aren’t synchronous updates between nodes, so that the INCR command may issue the same numbers
more than once, these numbers can only ever be used once. As failures are retried, the position will eventually reach an
unassigned index position. Arrangements can be made to set the value from the highest assigned index. With care, the
worst case will be an occasional slight delay in storing events, caused by switching to a new Redis node and catching
up with the current index number. Please note, there is currently no code in the library to update or resync the Redis
key used in the Redis INCR integer sequence generator.

from eventsourcing.infrastructure.integersequencegenerators.redisincr import RedisIncr

integers = RedisIncr()
generated = []
for i in integers:

generated.append(i)
if i >= 4:

break

expected = list(range(5))
assert generated == expected, (generated, expected)

The integer sequence generator can be used when assigning items to the application log.

application_log[next(integers)] = 'event5'
application_log[next(integers)] = 'event6'

assert application_log.get_next_position() == 7

Items can be read from the application log using an index or a slice.

The performance of reading an item at a given index is always constant time with respect to the number of the index.
The base array ID, and the index of the item in the base array, can be calculated from the number of the index.

The performance of reading a slice of items is proportional to the size of the slice. Consecutive items in a base array
are stored consecutively in the same database partition, and if the slice overlaps more than base array, the iteration
proceeds to the next partition.

assert application_log[0] == 'event0'
assert list(application_log[5:7]) == ['event5', 'event6']

The application log can be written to by a persistence policy. References to events can be assigned to the application
log before the domain event is written to the aggregate’s own sequence, so that it isn’t possible to store an event in the
aggregate’s sequence that is not already in the application log.

Commands that fail to write to the aggregate’s sequence (due to an operation error or concurrency error) after the
event has been logged in the application log should probably raise an exception, so that the command is seen to have
failed and so may be retried. This leaves an item in the notification log, but not a domain event in the aggregate stream
(a dangling reference, that may be satisfied later). If the command failed due to an operational error, the same event
maybe published again, and so it would appear twice in the application log. And so whilst events in the application
log that aren’t in the aggregate sequence can perhaps be ignored by consumers of the application log, care should be
taken to deduplicate events.

If writing the event to its aggregate sequence is successful, then it is possible to push a notification about the event to
a message queue. Failing to push the notification perhaps should not prevent the command returning normally. Push
notifications could also be generated by another process, something that pulls from the application log, and pushes
notifications for events that have not already been sent.

1.9. Examples 71

eventsourcing Documentation, Release 3.1.0

Notification log

As described in Implementing Domain Driven Design, a notification log is presented in linked sections. The “current
section” is returned by default, and contains the very latest notification and some of the preceding notifications. There
are also archived sections that contain all the earlier notifications. When the current section is full, it is considered to
be an archived section that links to the new current section.

Readers can navigate the linked sections from the current section backwards until the archived section is reached that
contains the last notification seen by the client. If the client has not yet seen any notifications, it will navigate back to
the first section. Readers can then navigate forwards, revealing all existing notifications that have not yet been seen.

The library class NotificationLog encapsulates the application log and presents linked sections. The library
class NotificationLogReader is an iterator that yields notifications. It navigates the sections of the notification
log, and maintains position so that it can continue when there are further notifications. The position can be set directly
with the seek() method. The position is set indirectly when a slice is taken with a start index. The position is set to
zero when the reader is constructed.

The notification log uses a big array object. In this example, the big array object is directly the application log above.
It is possible to project the application log into a custom notification log, perhaps to deduplicate domain events, or to
anonymise data, or to send messages to messaging infrastructure with more stateful control.

from eventsourcing.interface.notificationlog import NotificationLog,
→˓NotificationLogReader

Construct notification log.
notification_log = NotificationLog(application_log, section_size=10)

Get the "current "section from the notification log (numbering follows Vaughn Vernon
→˓'s book)
section = notification_log['current']
assert section.section_id == '1,10'
assert len(section.items) == 7, section.items
assert section.previous_id == None
assert section.next_id == None

Construct log reader.
reader = NotificationLogReader(notification_log)

The position is zero by default.
assert reader.position == 0

The position can be set directly.
reader.seek(10)
assert reader.position == 10

Reset the position.
reader.seek(0)

Read all existing notifications.
all_notifications = list(reader)
assert all_notifications == ['event0', 'event1', 'event2', 'event3', 'event4', 'event5
→˓', 'event6']

Check the position has advanced.
assert reader.position == 7

Read all subsequent notifications (should be none).
subsequent_notifications = list(reader)
assert subsequent_notifications == []

72 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Assign more events to the application log.
application_log[next(integers)] = 'event7'
application_log[next(integers)] = 'event8'

Read all subsequent notifications (should be two).
subsequent_notifications = list(reader)
assert subsequent_notifications == ['event7', 'event8']

Check the position has advanced.
assert reader.position == 9

Read all subsequent notifications (should be none).
subsequent_notifications = list(reader)
assert subsequent_notifications == []

Assign more events to the application log.
application_log[next(integers)] = 'event9'
application_log[next(integers)] = 'event10'
application_log[next(integers)] = 'event11'

Read all subsequent notifications (should be two).
subsequent_notifications = list(reader)
assert subsequent_notifications == ['event9', 'event10', 'event11']

Check the position has advanced.
assert reader.position == 12

Read all subsequent notifications (should be none).
subsequent_notifications = list(reader)
assert subsequent_notifications == []

Get the "current "section from the notification log (numbering follows Vaughn Vernon
→˓'s book)
section = notification_log['current']
assert section.section_id == '11,20'
assert section.previous_id == '1,10'
assert section.next_id == None
assert len(section.items) == 2, len(section.items)

Get the first section from the notification log (numbering follows Vaughn Vernon's
→˓book)
section = notification_log['1,10']
assert section.section_id == '1,10'
assert section.previous_id == None
assert section.next_id == '11,20'
assert len(section.items) == 10, section.items

The RESTful API design in Implementing Domain Driven Design suggests a good way to present the notification log,
a way that is simple and can scale using established HTTP technology.

The library function present_section() serializes sections from the notification log for use in a view.

import json

from eventsourcing.interface.notificationlog import present_section

content = present_section(application_log, '1,10', 10)

1.9. Examples 73

eventsourcing Documentation, Release 3.1.0

expected = {
"items": [

"event0",
"event1",
"event2",
"event3",
"event4",
"event5",
"event6",
"event7",
"event8",
"event9"

],
"next_id": "11,20",
"previous_id": None,
"section_id": "1,10"

}

assert json.loads(content) == expected

A Web application view can pick out from the request path the notification log ID and the section ID, and return an
HTTP response with the JSON content that results from calling present_section().

The library class RemoteNotificationLog issues HTTP requests to a RESTful API that presents sec-
tions from the notification log. It has the same interface as NotificationLog and so can be used by
NotificationLogReader progressively to obtain unseen notifications.

Todo: Pulling from remote notification log.

Todo: Publishing and subscribing to remote notification log.

Todo: Deduplicating domain events in receiving context. Events may appear twice in the notification log if there is
contention over the command that generates the logged event, or if the event cannot be appended to the aggregate
stream for whatever reason and then the command is retried successfully. So events need to be deduplicated. One
approach is to have a UUID5 namespace for received events, and use concurrency control to make sure each event is
acted on only once. That leads to the question of when to insert the event, before or after it is successfully applied to
the context? If before, and the event is not successfully applied, then the event maybe lost. Does the context need to
apply the events in order? It may help to to construct a sequenced command log, also using a big array, so that the
command sequence can be constructed in a distributed manner. The command sequence can then be executed in a
distributed manner. This approach would support creating another application log that is entirely correct.

Todo: Race conditions around reading events being assigned using central integer sequence generator, could poten-
tially read when a later index has been assigned but a previous one has not yet been assigned. Reading the previous as
None, when it just being assigned is an error. So perhaps something can wait until previous has been assigned, or until
it can safely be assumed the integer was lost. If an item is None, perhaps the notification log could stall for a moment
before yielding the item, to allow time for the race condition to pass. Perhaps it should only do it when the item has
been assigned recently (timestamp of the ItemAdded event could be checked) or when there have been lots of event
since (the highest assigned index could be checked). A permanent None value should be something that occurs very
rarely, when an issued integer is not followed by a successful assignment to the big array. A permanent “None” will
exist in the sequence if an integer is lost perhaps due to a database operation error that somehow still failed after many
retries, or because the client process crashed before the database operation could be executed but after the integer had
been issued, so the integer became lost. This needs code.

Todo: Automatic initialisation of the integer sequence generator RedisIncr from getting highest assigned index. Or
perhaps automatic update with the current highest assigned index if there continues to be contention after a number of
increments, indicating the issued values are far behind. If processes all reset the value whilst they are also incrementing
it, then there will be a few concurrency errors, but it should level out quickly. This also needs code.

74 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

Todo: Use actual domain event objects, and log references to them. Have an iterator that returns actual domain events,
rather than the logged references. Could log the domain events, but their variable size makes the application log less
stable (predictable) in its usage of database partitions. Perhaps deferencing to real domain events could be an option
of the notification log? Perhaps something could encapsulate the notification log and generate domain events?

Todo: Configuration of remote reader, to allow URL to be completely configurable.

1.9.10 Deployment

This section gives an overview of the concerns that arise when using an eventsourcing application in Web applications
and task queue workers. There are many combinations of frameworks, databases, and process models. The compli-
cated aspect is setting up the database configuration to work well with the framework. Your event sourcing application
can be constructed just after the database is configured, and before requests are handled.

Please note, unlike the code snippets in the other examples, the snippets of code in this section are merely suggestive,
and do not form a complete working program. For a working example using Flask and SQLAlchemy, please refer to
the library module eventsourcing.example.interface.flaskapp, which is tested both stand-alone and
with uWSGI.

Application object

In general you need one, and only one, instance of your application object in each process. If your eventsourcing
application object has any policies, for example if is has a persistence policy that will persist events whenever they
are published, then constructing more than one instance of the application causes the policy event handlers to be
subscribed more than once, so for example more than one attempt will be made to save each event, which won’t work.

To make sure there is only one instance of your application object in each process, one possible arrangement (see
below) is to have a module with two functions and a variable. The first function constructs an application object and
assigns it to the variable, and can perhaps be called when a module is imported, or from a suitable hook or signal
designed for setting things up before any requests are handled. A second function returns the application object
assigned to the variable, and can be called by any views, or request or task handlers, that depend on the application’s
services.

Although the first function below must be called only once, the second function can be called many times. The example
functions below have been written relatively strictly so that, when it is called, the function init_application()
will raise an exception if it has already been called, and get_application() will raise an exeception if
init_application() has not already been called.

Your eventsourcing application.
class ExampleApplication(object):

def __init__(*args, **kwargs):
pass

def construct_application(**kwargs):
return ExampleApplication(**kwargs)

_application = None

def init_application(**kwargs):
global _application
if _application is not None:

raise AssertionError("init_application() has already been called")
_application = construct_application(**kwargs)

1.9. Examples 75

eventsourcing Documentation, Release 3.1.0

def get_application():
if application is None:

raise AssertionError("init_application() must be called first")
return application

As an aside, if you will use these function also in your test suite, and your test suite needs to set up the application more
than once, you will also need a close_application() function that closes the application object, unsubscribing
any handlers, and resetting the module level variable so that init_application() can be called again. If doesn’t
really matter if you don’t close your application at the end of the process lifetime, however you may wish to close any
database or other connections to network services.

def close_application():
global application
if application is not None:

application.close()
application = None

Lazy initialization

An alternative to having separate “init” and “get” functions is having one “get” function that does lazy initialization of
the application object when first requested. With lazy initialization, the getter will first check if the object it needs to
return has been constructed, and will then return the object. If the object hasn’t been constructed, before returning the
object it will construct the object. So you could use a lock around the construction of the object, to make sure it only
happens once. After the lock is obtained and before the object is constructed, it is recommended to check again that
the object wasn’t constructed by another thread before the lock was acquired.

import threading

application = None

lock = threading.Lock()

def get_application():
global application
if application is None:

lock.acquire()
try:

Check again to avoid a TOCTOU bug.
if application is None:

application = construct_application()
finally:

lock.release()
return application

Database connection

Typically, your eventsourcing application object will be constructed after its database connection has been configured,
and before any requests are handled. Views or tasks can then safely use the already constructed application object.

If your eventsourcing application depends on receiving a database session object when it is constructed, for example
if you are using the SQLAlchemy classes in this library, then you will need to create a correctly scoped session object
first and use it to construct the application object.

76 Chapter 1. Overview

eventsourcing Documentation, Release 3.1.0

On the other hand, if your eventsourcing application does not depend on receiving a database session object when it is
constructed, for example if you are using the Cassandra classes in this library, then you may construct the application
object before configuring the database connection - just be careful not to use the application object before the database
connection is configured otherwise your queries just won’t work.

Setting up connections to databases is out of scope of the eventsourcing application classes, and should be set up
in a “normal” way. The documentation for your Web or worker framework may describe when to set up database
connections, and your database documentation may also have some suggestions. It is recommended to make use of
any hooks or decorators or signals intended for the purpose of setting up the database connection also to construct the
application once for the process. See below for some suggestions.

SQLAlchemy

SQLAlchemy has very good documentation about constructing sessions. If you are an SQLAlchemy user, it is well
worth reading the documentation about sessions in full. Here’s a small quote:

Some web frameworks include infrastructure to assist in the task of aligning the lifespan of a Session with
that of a web request. This includes products such as Flask-SQLAlchemy for usage in conjunction with the
Flask web framework, and Zope-SQLAlchemy, typically used with the Pyramid framework. SQLAlchemy
recommends that these products be used as available.

In those situations where the integration libraries are not provided or are insufficient, SQLAlchemy in-
cludes its own “helper” class known as scoped_session. A tutorial on the usage of this object is at
Contextual/Thread-local Sessions. It provides both a quick way to associate a Session with the current
thread, as well as patterns to associate Session objects with other kinds of scopes.

The important thing is to use a scoped session, and it is better to have the session scoped to the request or task, rather
than the thread, but scoping to the thread is ok.

As soon as you have a scoped session object, you can construct your eventsourcing application.

Cassandra

Cassandra connections can be set up entirely independently of the application object. See the section about using
Cassandra for more information.

Web interfaces

uWSGI

If you are running uWSGI in prefork mode, and not using a Web application framework, please note that uWSGI has
a postfork decorator which may help.

Your “wsgi.py” file can have a module-level function decorated with the @postfork decorator that initialises your
eventsourcing application for the Web application process after child workers have been forked.

from uwsgidecorators import postfork

@postfork
def init_process():

Set up database connection.
database = {}
Construct eventsourcing application.
init_application()

1.9. Examples 77

http://docs.sqlalchemy.org/en/latest/orm/session_basics.html
http://uwsgi-docs.readthedocs.io/en/latest/PythonDecorators.html#uwsgidecorators.postfork

eventsourcing Documentation, Release 3.1.0

Other decorators are available.

Flask with Cassandra

The Cassandra Driver FAQ has a code snippet about establishing the connection with the uWSGI postfork decorator,
when running in a forked mode.

from flask import Flask
from uwsgidecorators import postfork
from cassandra.cluster import Cluster

session = None
prepared = None

@postfork
def connect():

global session, prepared
session = Cluster().connect()
prepared = session.prepare("SELECT release_version FROM system.local WHERE key=?")

app = Flask(__name__)

@app.route('/')
def server_version():

row = session.execute(prepared, ('local',))[0]
return row.release_version

Flask-Cassandra

The Flask-Cassandra project serves a similar function to Flask-SQLAlchemy.

Flask-SQLAlchemy

If you wish to use eventsourcing with Flask and SQLAlchemy, then you may wish to use Flask-SQLAlchemy. You
just need to define your active record class using the model classes from that library, and then use it instead of the
library classes in your eventsourcing application object, along with the session object it provides.

The docs snippet below shows that it can work simply to construct the eventsourcing application in the same place as
the Flask application object.

The Flask-SQLAlchemy class SQLAlchemy is used to set up a session object that is scoped to the request.

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy_utils.types.uuid import UUIDType
from eventsourcing.infrastructure.sqlalchemy.activerecords import
→˓SQLAlchemyActiveRecordStrategy

Construct Flask application.
application = Flask(__name__)

Construct Flask-SQLAlchemy object.
db = SQLAlchemy(application)

78 Chapter 1. Overview

https://datastax.github.io/python-driver/faq.html
https://github.com/TerbiumLabs/flask-cassandra
http://flask-sqlalchemy.pocoo.org/

eventsourcing Documentation, Release 3.1.0

Define database table using Flask-SQLAlchemy library.
class IntegerSequencedItem(db.Model):

__tablename__ = 'integer_sequenced_items'

Sequence ID (e.g. an entity or aggregate ID).
sequence_id = db.Column(UUIDType(), primary_key=True)

Position (index) of item in sequence.
position = db.Column(db.BigInteger(), primary_key=True)

Topic of the item (e.g. path to domain event class).
topic = db.Column(db.String(255))

State of the item (serialized dict, possibly encrypted).
data = db.Column(db.Text())

Index.
__table_args__ = db.Index('index', 'sequence_id', 'position'),

Construct eventsourcing application with db table and session.
init_application(

entity_active_record_strategy=SQLAlchemyActiveRecordStrategy(
active_record_class=IntegerSequencedItem,
session=db.session,

)
)

For a working example using Flask and SQLAlchemy, please refer to the library module eventsourcing.
example.interface.flaskapp, which is tested both stand-alone and with uWSGI. The Flask application
method “before_first_request” is used to decorate an application object constructor, just before a request is made,
so that the module can be imported by the test suite, without immediately constructing the application.

Django-Cassandra

If you wish to use eventsourcing with Django and Cassandra, you may wish to use Django-Cassandra.

It’s also possible to use this library directly with Django and Cassandra. You just need to configure the connection and
initialise the application before handling requests in a way that is correct for your configuration.

Django ORM

The excellent project djangoevents by Applause is a Django app that provides a neat way of taking an event sourcing
approach in a Django project. It allows this library to be used seamlessly with Django, by using the Django ORM
to store events. Using djangoevents is well documented in the README file. It adds some nice enhancements to
the capabilities of this library, and shows how various components can be extended or replaced. Please note, the
djangoevents project currently works with a previous version of this library.

Zope-SQLAlchemy

The Zope-SQLAlchemy project serves a similar function to Flask-SQLAlchemy.

1.9. Examples 79

https://pypi.python.org/pypi/django-cassandra-engine/
https://github.com/ApplauseOSS/djangoevents
https://www.applause.com/
https://pypi.python.org/pypi/zope.sqlalchemy

eventsourcing Documentation, Release 3.1.0

Task queues

This section contains suggestions about using an eventsourcing application in task queue workers.

Celery

Celery has a worker_process_init signal decorator, which may be appropriate if you are running Celery workers in
prefork mode. Other decorators are available.

Your Celery tasks or config module can have a module-level function decorated with the @worker-process-init
decorator that initialises your eventsourcing application for the Celery worker process.

from celery.signals import worker_process_init

@worker_process_init.connect
def init_process(sender=None, conf=None, **kwargs):

Set up database connection.
database = {}
Construct eventsourcing application.
init_application()

As an alternative, it may work to use decorator @task_prerun with a getter that supports lazy initialization.

from celery.signals import task_prerun
@task_prerun.connect
def init_process(*args, **kwargs):

get_appliation(lazy_init=True)

Once the application has been safely initialized once in the process, your Celery tasks can use function
get_application() to complete their work. Of course, you could just call a getter with lazy initialization from
the tasks.

from celery import Celery

app = Celery()

Use Celery app to route the task to the worker.
@app.task
def hello_world():

Use eventsourcing app to complete the task.
app = get_application()
return "Hello World, {}".format(id(app))

Again, the most important thing is configuring the database, and making things work across all modes of execution,
including your test suite.

Redis Queue

Redis queue workers are quite similar to Celery workers. You can call get_application() from within a job
function. To fit with the style in the RQ documentation, you could perhaps use your eventsourcing application as a
context manager, just like the Redis connection example.

80 Chapter 1. Overview

http://docs.celeryproject.org/en/latest/userguide/signals.html#worker-process-init
http://python-rq.org/docs/workers/

eventsourcing Documentation, Release 3.1.0

1.10 Release notes

It is the aim of the project that releases with the same major version number are backwards compatible.

Version 2.x series was a major rewrite that implemented two distinct kinds of sequences: events sequenced by integer
version numbers and events sequenced in time, with an archetypal “sequenced item” persistence model for storing
events.

Version 1.x series was an extension of the version 0.x series, and attempted to bridge between sequencing events with
both timestamps and version numbers.

Version 0.x series was the initial cut of the code, all events were sequenced by timestamps, or TimeUUIDs in Cassan-
dra, because the project originally emerged whilst working with Cassandra.

1.10. Release notes 81

eventsourcing Documentation, Release 3.1.0

82 Chapter 1. Overview

CHAPTER 2

Reference

• search

• genindex

• modindex

83

eventsourcing Documentation, Release 3.1.0

84 Chapter 2. Reference

CHAPTER 3

Modules

3.1 eventsourcing

3.1.1 Interface layer

eventsourcing.interface.notificationlog

class eventsourcing.interface.notificationlog.AbstractNotificationLog
Bases: object

Presents a sequence of sections from a sequence of notifications.

class eventsourcing.interface.notificationlog.NotificationLog(big_array, sec-
tion_size)

Bases: eventsourcing.interface.notificationlog.AbstractNotificationLog

static format_section_id(first_item_number, last_item_number)

class eventsourcing.interface.notificationlog.NotificationLogReader(notification_log)
Bases: object

get_items(stop_index=None)

seek(position)

class eventsourcing.interface.notificationlog.RemoteNotificationLog(base_url,
notifica-
tion_log_id)

Bases: eventsourcing.interface.notificationlog.AbstractNotificationLog

get_json(section_id)

get_resource(doc_url)

make_notification_log_url(notification_log_id)

85

eventsourcing Documentation, Release 3.1.0

class eventsourcing.interface.notificationlog.Section(section_id, items,
previous_id=None,
next_id=None)

Bases: object

Section of a notification log.

Contains items, and has an ID.

May also have either IDs of previous and next sections of the notification log.

eventsourcing.interface.notificationlog.deserialize_section(section_json)

eventsourcing.interface.notificationlog.present_section(big_array, section_id, sec-
tion_size)

eventsourcing.interface.notificationlog.serialize_section(section)

3.1.2 Application layer

eventsourcing.application.base

class eventsourcing.application.base.ApplicationWithEventStores(entity_active_record_strategy=None,
log_active_record_strategy=None,
snap-
shot_active_record_strategy=None,
al-
ways_encrypt=False,
cipher=None)

Bases: object

close()

construct_event_store(event_sequence_id_attr, event_position_attr, active_record_strategy, al-
ways_encrypt=False, cipher=None)

construct_sequenced_item_mapper(sequenced_item_class, event_sequence_id_attr,
event_position_attr, json_encoder_class=<class
’eventsourcing.infrastructure.transcoding.ObjectJSONEncoder’>,
json_decoder_class=<class ’eventsourc-
ing.infrastructure.transcoding.ObjectJSONDecoder’>,
always_encrypt=False, cipher=None)

class eventsourcing.application.base.ApplicationWithPersistencePolicies(**kwargs)
Bases: eventsourcing.application.base.ApplicationWithEventStores

close()

construct_entity_persistence_policy()

construct_log_persistence_policy()

construct_snapshot_persistence_policy()

eventsourcing.application.policies

class eventsourcing.application.policies.PersistencePolicy(event_store,
event_type=None)

Bases: object

Stores events of given type to given event store, whenever they are published.

86 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

close()

is_event(event)

store_event(event)

3.1.3 Domain layer

eventsourcing.domain.model.aggregate

class eventsourcing.domain.model.aggregate.AggregateRoot(**kwargs)
Bases: eventsourcing.domain.model.entity.WithReflexiveMutator, eventsourcing.
domain.model.entity.TimestampedVersionedEntity

Root entity for an aggregate in a domain driven design.

class AttributeChanged(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when an AggregateRoot is changed.

class Created(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.Created

Published when an AggregateRoot is created.

class Discarded(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.aggregate.Event, eventsourcing.domain.
model.entity.Discarded

Published when an AggregateRoot is discarded.

class Event(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Layer supertype.

save()
Publishes pending events for others in application.

eventsourcing.domain.model.array

class eventsourcing.domain.model.array.AbstractArrayRepository(array_size=10000,
*args,
**kwargs)

Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

Repository for sequence objects.

class eventsourcing.domain.model.array.AbstractBigArrayRepository(*args,
**kwargs)

Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

Repository for compound sequence objects.

subrepo
Sub-sequence repository.

3.1. eventsourcing 87

eventsourcing Documentation, Release 3.1.0

class eventsourcing.domain.model.array.Array(array_id, repo)
Bases: object

append(item)
Sets item in next position after the last item.

get_item_assigned(index)

get_items_assigned(start_index=None, stop_index=None, limit=None, is_ascending=True)

get_last_item_and_next_position()

get_next_position()

class eventsourcing.domain.model.array.BigArray(array_id, repo)
Bases: eventsourcing.domain.model.array.Array

A virtual array holding items in indexed positions, across a number of Array instances.

Getting and setting items at index position is supported. Slices are supported, and operate across the underlying
arrays. Appending is also supported.

BigArray is designed to overcome the concern of needing a single large sequence that may not be suitably stored
in any single partiton. In simple terms, if events of an aggregate can fit in a partition, we can use the same size
partition to make a tree of arrays that will certainly be capable of sequencing all the events of the application in
a single stream.

With normal size base arrays, enterprise applications can expect read and write time to be approximately constant
with respect to the number of items in the array.

The array is composed of a tree of arrays, which gives the capacity equal to the size of each array to the power
of the size of each array. If the arrays are limited to be about the maximum size of an aggregate event stream (a
large number but not too many that would cause there to be too much data in any one partition, let’s say 1000s
to be safe) then it would be possible to fit such a large number of aggregates in the corresponding BigArray, that
we can be confident it would be full.

Write access time in the worst case, and the time to identify the index of the last item in the big array, is
proportional to the log of the highest assigned index to the base of the underlying array size. Write time on
average, and read time given an index, is contant with respect to the number of items in a BigArray.

Items can be appended in log time in a single thread. However, the time between reading the current last index
and claiming the next position leads to contention and retries when there are lots of threads of execution all
attempting to append items, which inherently limits throughput.

Todo: Not possible in Cassandra, but maybe do it in a transaction in SQLAlchemy?

An alternative to reading the last item before writing the next is to use an integer sequence generator to generate
a stream of integers. Items can be assigned to index positions in a big array, according to the integers that are
issued. Throughput will then be much better, and will be limited only by the rate at which the database can have
events written to it (unless the number generator is quite slow).

An external integer sequence generator, such as Redis’ INCR command, or an auto-incrementing database
column, may constitute a single point of failure.

calc_parent(i, j, h)
Returns get_big_array and end of span of parent sequence that contains given child.

calc_required_height(n, size)

create_array_id(i, j)

get_item(position)

88 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

get_last_array()
Returns last array in compound.

Return type CompoundSequenceReader

get_last_item_and_next_position()

get_slice(start, stop)

class eventsourcing.domain.model.array.ItemAssigned(item, index, *args, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Occurs when an item is set at a position in an array.

index

item

eventsourcing.domain.model.decorators

eventsourcing.domain.model.decorators.attribute(getter)
When used as a method decorator, returns a property object with the method as the getter and a setter defined to
call instance method change_attribute(), which publishes an AttributeChanged event.

eventsourcing.domain.model.decorators.mutator(arg=None)
Structures mutator functions by allowing handlers to be registered for different types of event. When the deco-
rated function is called with an initial value and an event, it will call the handler that has been registered for that
type of event.

It works like singledispatch, which it uses. The difference is that when the decorated function is called, this
decorator dispatches according to the type of last call arg, which fits better with reduce(). The builtin Python
function reduce() is used by the library to replay a sequence of events against an initial state. If a mutator
function is given to reduce(), along with a list of events and an initializer, reduce() will call the mutator function
once for each event in the list, but the initializer will be the first value, and the event will be the last argument, and
we want to dispatch according to the type of the event. It happens that singledispatch is coded to switch on the
type of the first argument, which makes it unsuitable for structuring a mutator function without the modifications
introduced here.

The other aspect introduced by this decorator function is the option to set the type of the handled entity in
the decorator. When an entity is replayed from scratch, in other words when all its events are replayed, the
initial state is None. The handler which handles the first event in the sequence will probably construct an object
instance. It is possible to write the type into the handler, but that makes the entity more difficult to subclass
because you will also need to write a handler for it. If the decorator is invoked with the type, when the initial
value passed as a call arg to the mutator function is None, the handler will instead receive the type of the entity,
which it can use to construct the entity object.

class Entity(object):
class Created(object):

pass

@mutator(Entity)
def mutate(initial, event):

raise NotImplementedError(type(event))

@mutate.register(Entity.Created)
def _(initial, event):

return initial(**event.__dict__)

entity = mutate(None, Entity.Created())

3.1. eventsourcing 89

eventsourcing Documentation, Release 3.1.0

eventsourcing.domain.model.decorators.random()→ x in the interval [0, 1).

eventsourcing.domain.model.decorators.retry(exc=<class ’Exception’>, max_retries=1,
wait=0)

eventsourcing.domain.model.decorators.subscribe_to(event_class)
Decorator for making a custom event handler function subscribe to a certain event type

event_class: DomainEvent class or its child classes that the handler function should subscribe to

The following example shows a custom handler that reacts to Todo.Created event and saves a projection of a
Todo model object.

@subscribe_to(Todo.Created)
def new_todo_projection(event):

todo = TodoProjection(id=event.originator_id, title=event.title)
todo.save()

eventsourcing.domain.model.entity

class eventsourcing.domain.model.entity.AbstractEntityRepository(*args,
**kwargs)

Bases: object

event_store
Returns event store object used by this repository.

get_entity(entity_id)
Returns entity for given ID.

class eventsourcing.domain.model.entity.DomainEntity(id)
Bases: eventsourcing.domain.model.events.QualnameABC

class AttributeChanged(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.events.AttributeChanged

Published when a DomainEntity is discarded.

class Created(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.events.Created

Published when a DomainEntity is created.

class Discarded(originator_id, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.events.Discarded

Published when a DomainEntity is discarded.

class Event(originator_id, **kwargs)
Bases: eventsourcing.domain.model.events.EventWithOriginatorID,
eventsourcing.domain.model.events.DomainEvent

Layer supertype.

change_attribute(name, value, **kwargs)
Changes given attribute of the entity, by constructing and applying an AttributeChanged event.

discard(**kwargs)

id

90 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

class eventsourcing.domain.model.entity.TimestampedEntity(timestamp, **kwargs)
Bases: eventsourcing.domain.model.entity.DomainEntity

class AttributeChanged(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when a TimestampedEntity is changed.

class Created(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Created

Published when a TimestampedEntity is created.

class Discarded(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded

Published when a TimestampedEntity is discarded.

class Event(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.events.EventWithTimestamp,
eventsourcing.domain.model.entity.Event

Layer supertype.

created_on

last_modified

class eventsourcing.domain.model.entity.TimestampedVersionedEntity(timestamp,
**kwargs)

Bases: eventsourcing.domain.model.entity.TimestampedEntity , eventsourcing.
domain.model.entity.VersionedEntity

class AttributeChanged(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.AttributeChanged, eventsourcing.domain.model.entity.
AttributeChanged

Published when a TimestampedVersionedEntity is created.

class Created(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Created, eventsourcing.domain.model.entity.Created

Published when a TimestampedVersionedEntity is created.

class Discarded(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded, eventsourcing.domain.model.entity.Discarded

Published when a TimestampedVersionedEntity is discarded.

class Event(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Event

Layer supertype.

class eventsourcing.domain.model.entity.TimeuuidedEntity(event_id, **kwargs)
Bases: eventsourcing.domain.model.entity.DomainEntity

created_on

3.1. eventsourcing 91

eventsourcing Documentation, Release 3.1.0

last_modified

class eventsourcing.domain.model.entity.TimeuuidedVersionedEntity(event_id,
**kwargs)

Bases: eventsourcing.domain.model.entity.TimeuuidedEntity , eventsourcing.
domain.model.entity.VersionedEntity

class eventsourcing.domain.model.entity.VersionedEntity(version=0, **kwargs)
Bases: eventsourcing.domain.model.entity.DomainEntity

class AttributeChanged(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when a VersionedEntity is changed.

class Created(originator_version=0, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Created

Published when a VersionedEntity is created.

class Discarded(originator_version, **kwargs)
Bases: eventsourcing.domain.model.entity.Event, eventsourcing.domain.
model.entity.Discarded

Published when a VersionedEntity is discarded.

class Event(originator_version, **kwargs)
Bases: eventsourcing.domain.model.events.EventWithOriginatorVersion,
eventsourcing.domain.model.entity.Event

Layer supertype.

change_attribute(name, value, **kwargs)

discard(**kwargs)

version

class eventsourcing.domain.model.entity.WithReflexiveMutator(id)
Bases: eventsourcing.domain.model.entity.DomainEntity

Implements an entity mutator function by dispatching to the event itself all calls to mutate an entity with an
event.

This is an alternative to using an independent mutator function implemented with the @mutator decorator, or an
if-else block.

eventsourcing.domain.model.entity.mutate_entity(initial, event)
Entity mutator function. Mutates initial state by the event.

Different handlers are registered for different types of event.

eventsourcing.domain.model.events

class eventsourcing.domain.model.events.AttributeChanged(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Can be published when an attribute of an entity is created.

name

value

92 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

class eventsourcing.domain.model.events.Created(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Can be published when an entity is created.

class eventsourcing.domain.model.events.Discarded(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Published when something is discarded.

class eventsourcing.domain.model.events.DomainEvent(**kwargs)
Bases: eventsourcing.domain.model.events.QualnameABC

Base class for domain events.

Implements methods to make instances read-only, comparable for equality, have recognisable representations,
and hashable.

exception eventsourcing.domain.model.events.EventHandlersNotEmptyError
Bases: Exception

class eventsourcing.domain.model.events.EventWithOriginatorID(originator_id,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

originator_id

class eventsourcing.domain.model.events.EventWithOriginatorVersion(originator_version,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

For events that have an originator version number.

originator_version

class eventsourcing.domain.model.events.EventWithTimestamp(timestamp=None,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

For events that have a timestamp value.

timestamp

class eventsourcing.domain.model.events.EventWithTimeuuid(event_id=None,
**kwargs)

Bases: eventsourcing.domain.model.events.DomainEvent

For events that have an UUIDv1 event ID.

event_id

class eventsourcing.domain.model.events.Logged(**kwargs)
Bases: eventsourcing.domain.model.events.DomainEvent

Published when something is logged.

class eventsourcing.domain.model.events.QualnameABC
Bases: object

Base class that introduces __qualname__ for objects in Python 2.7.

class eventsourcing.domain.model.events.QualnameABCMeta
Bases: abc.ABCMeta

Supplies __qualname__ to object classes with this metaclass.

eventsourcing.domain.model.events.assert_event_handlers_empty()

3.1. eventsourcing 93

eventsourcing Documentation, Release 3.1.0

eventsourcing.domain.model.events.create_timesequenced_event_id()

eventsourcing.domain.model.events.publish(event)

eventsourcing.domain.model.events.subscribe(handler, predicate=None)

eventsourcing.domain.model.events.unsubscribe(handler, predicate=None)

eventsourcing.domain.model.snapshot

class eventsourcing.domain.model.snapshot.AbstractSnapshop
Bases: object

originator_id
ID of the snapshotted entity.

originator_version
Version of the last event applied to the entity.

state
State of the snapshotted entity.

topic
Path to the class of the snapshotted entity.

class eventsourcing.domain.model.snapshot.Snapshot(originator_id, originator_version,
topic, state)

Bases: eventsourcing.domain.model.events.EventWithTimestamp, eventsourcing.
domain.model.events.EventWithOriginatorVersion, eventsourcing.domain.
model.events.EventWithOriginatorID, eventsourcing.domain.model.snapshot.
AbstractSnapshop

state
State of the snapshotted entity.

topic
Path to the class of the snapshotted entity.

eventsourcing.infrastructure.cipher.aes

eventsourcing.infrastructure.cipher.base

class eventsourcing.infrastructure.cipher.base.AbstractCipher
Bases: object

decrypt(ciphertext)
Return plaintext for given ciphertext.

encrypt(plaintext)
Return ciphertext for given plaintext.

94 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

3.1.4 Infrastructure layer

eventsourcing.infrastructure.eventsourcedrepository

class eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository(event_store,
mu-
ta-
tor=None,
snap-
shot_strategy=None,
use_cache=False,
*args,
**kwargs)

Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

event_store

get_domain_events(entity_id, gt=None, gte=None, lt=None, lte=None, limit=None,
is_ascending=True)

Returns domain events for given entity ID.

get_entity(entity_id, lt=None, lte=None)
Returns entity with given ID, optionally until position.

get_most_recent_event(entity_id, lt=None, lte=None)
Returns the most recent event for the given entity ID.

get_snapshot(entity_id, lt=None, lte=None)
Returns a snapshot for given entity ID, according to the snapshot strategy.

mutator(initial, event)
Entity mutator function. Mutates initial state by the event.

Different handlers are registered for different types of event.

replay_entity(entity_id, gt=None, gte=None, lt=None, lte=None, limit=None, initial_state=None,
query_descending=False)

Reconstitutes requested domain entity from domain events found in event store.

replay_events(initial_state, domain_events)
Mutates initial state using the sequence of domain events.

take_snapshot(entity_id, lt=None, lte=None)
Takes a snapshot of the entity as it existed after the most recent event, optionally less than, or less than or
equal to, a particular position.

eventsourcing.infrastructure.eventplayer

class eventsourcing.infrastructure.eventplayer.EventPlayer(event_store, mutator,
page_size=None,
is_short=False, snap-
shot_strategy=None)

Bases: object

Reconstitutes domain entities from domain events retrieved from the event store, optionally with snapshots.

get_domain_events(entity_id, gt=None, gte=None, lt=None, lte=None, limit=None,
is_ascending=True)

Returns domain events for given entity ID.

3.1. eventsourcing 95

eventsourcing Documentation, Release 3.1.0

get_most_recent_event(entity_id, lt=None, lte=None)
Returns the most recent event for the given entity ID.

get_snapshot(entity_id, lt=None, lte=None)
Returns a snapshot for given entity ID, according to the snapshot strategy.

replay_entity(entity_id, gt=None, gte=None, lt=None, lte=None, limit=None, initial_state=None,
query_descending=False)

Reconstitutes requested domain entity from domain events found in event store.

replay_events(initial_state, domain_events)
Mutates initial state using the sequence of domain events.

take_snapshot(entity_id, lt=None, lte=None)
Takes a snapshot of the entity as it existed after the most recent event, optionally less than, or less than or
equal to, a particular position.

eventsourcing.infrastructure.snapshotting

class eventsourcing.infrastructure.snapshotting.AbstractSnapshotStrategy
Bases: object

get_snapshot(entity_id, lt=None, lte=None)
Gets the last snapshot for entity, optionally until a particular version number.

Return type Snapshot

take_snapshot(entity_id, entity, last_event_version)
Takes a snapshot of entity, using given ID, state and version number.

Return type AbstractSnapshop

class eventsourcing.infrastructure.snapshotting.EventSourcedSnapshotStrategy(event_store)
Bases: eventsourcing.infrastructure.snapshotting.AbstractSnapshotStrategy

Snapshot strategy that uses an event sourced snapshot.

get_snapshot(entity_id, lt=None, lte=None)
Gets the last snapshot for entity, optionally until a particular version number.

Return type Snapshot

take_snapshot(entity_id, entity, last_event_version)
Takes a snapshot by instantiating and publishing a Snapshot domain event.

Return type Snapshot

eventsourcing.infrastructure.snapshotting.entity_from_snapshot(snapshot)
Reconstructs domain entity from given snapshot.

eventsourcing.infrastructure.eventstore

class eventsourcing.infrastructure.eventstore.AbstractEventStore
Bases: object

all_domain_events()
Returns all domain events in the event store.

append(domain_event_or_events)
Put domain event in event store for later retrieval.

96 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

get_domain_event(originator_id, eq)
Returns a single domain event.

get_domain_events(originator_id, gt=None, gte=None, lt=None, lte=None, limit=None,
is_ascending=True, page_size=None)

Returns domain events for given entity ID.

get_most_recent_event(originator_id, lt=None, lte=None)
Returns most recent domain event for given entity ID.

class eventsourcing.infrastructure.eventstore.EventStore(active_record_strategy,
se-
quenced_item_mapper)

Bases: eventsourcing.infrastructure.eventstore.AbstractEventStore

all_domain_events()

append(domain_event_or_events)

get_domain_event(originator_id, eq)

get_domain_events(originator_id, gt=None, gte=None, lt=None, lte=None, limit=None,
is_ascending=True, page_size=None)

get_most_recent_event(originator_id, lt=None, lte=None)

iterator_class
alias of SequencedItemIterator

to_sequenced_item(domain_event)

eventsourcing.infrastructure.sequenceditem

class eventsourcing.infrastructure.sequenceditem.SequencedItem(sequence_id,
position, topic,
data)

Bases: tuple

data
Alias for field number 3

position
Alias for field number 1

sequence_id
Alias for field number 0

topic
Alias for field number 2

class eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames(sequenced_item_class)
Bases: object

data

position

sequence_id

topic

3.1. eventsourcing 97

eventsourcing Documentation, Release 3.1.0

class eventsourcing.infrastructure.sequenceditem.StoredEvent(originator_id,
originator_version,
event_type, state)

Bases: tuple

event_type
Alias for field number 2

originator_id
Alias for field number 0

originator_version
Alias for field number 1

state
Alias for field number 3

eventsourcing.infrastructure.sequenceditemmapper

class eventsourcing.infrastructure.sequenceditemmapper.AbstractSequencedItemMapper
Bases: object

from_sequenced_item(sequenced_item)
Return domain event from given sequenced item.

to_sequenced_item(domain_event)
Returns sequenced item for given domain event.

class eventsourcing.infrastructure.sequenceditemmapper.SequencedItemMapper(sequenced_item_class=<class
’eventsourc-
ing.infrastructure.sequenceditem.SequencedItem’>,
se-
quence_id_attr_name=None,
po-
si-
tion_attr_name=None,
json_encoder_class=<class
’eventsourc-
ing.infrastructure.transcoding.ObjectJSONEncoder’>,
json_decoder_class=<class
’eventsourc-
ing.infrastructure.transcoding.ObjectJSONDecoder’>,
al-
ways_encrypt=False,
ci-
pher=None,
other_attr_names=())

Bases: eventsourcing.infrastructure.sequenceditemmapper.
AbstractSequencedItemMapper

Uses JSON to transcode domain events.

construct_item_args(domain_event)
Constructs attributes of a sequenced item from the given domain event.

construct_sequenced_item(item_args)

deserialize_event_attrs(event_attrs, is_encrypted)
Deserialize event attributes from JSON, optionally with decryption.

98 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

from_sequenced_item(sequenced_item)
Reconstructs domain event from stored event topic and event attrs. Used in the event store when getting
domain events.

is_encrypted(domain_event_class)

serialize_event_attrs(event_attrs, is_encrypted=False)

to_sequenced_item(domain_event)
Constructs a sequenced item from a domain event.

eventsourcing.infrastructure.sequenceditemmapper.reconstruct_object(obj_class,
obj_state)

eventsourcing.infrastructure.transcoding

class eventsourcing.infrastructure.transcoding.ObjectJSONDecoder(object_hook=None,
**kwargs)

Bases: json.decoder.JSONDecoder

classmethod from_jsonable(d)

class eventsourcing.infrastructure.transcoding.ObjectJSONEncoder(sort_keys=True,
*args,
**kwargs)

Bases: json.encoder.JSONEncoder

default(obj)

eventsourcing.infrastructure.activerecord

class eventsourcing.infrastructure.activerecord.AbstractActiveRecordStrategy(active_record_class,
se-
quenced_item_class=<class
’eventsourc-
ing.infrastructure.sequenceditem.SequencedItem’>)

Bases: object

all_items()
Returns all stored items from all sequences (possibly in chronological order, depending on database).

all_records(resume=None, *arg, **kwargs)
Returns all records in the table (possibly in chronological order, depending on database).

append(sequenced_item_or_items)
Writes sequenced item into the datastore.

delete_record(record)
Removes permanently given record from the table.

get_field_kwargs(item)

get_item(sequence_id, eq)
Reads sequenced item from the datastore.

get_items(sequence_id, gt=None, gte=None, lt=None, lte=None, limit=None,
query_ascending=True, results_ascending=True)

Reads sequenced items from the datastore.

raise_index_error(eq)

3.1. eventsourcing 99

eventsourcing Documentation, Release 3.1.0

raise_sequenced_item_error(sequenced_item, e)

eventsourcing.infrastructure.datastore

class eventsourcing.infrastructure.datastore.Datastore(settings)
Bases: object

drop_connection()
Drops connection to a datastore.

drop_tables()
Drops tables used to store events.

setup_connection()
Sets up a connection to a datastore.

setup_tables()
Sets up tables used to store events.

truncate_tables()
Truncates tables used to store events.

exception eventsourcing.infrastructure.datastore.DatastoreConnectionError
Bases: eventsourcing.infrastructure.datastore.DatastoreError

exception eventsourcing.infrastructure.datastore.DatastoreError
Bases: Exception

class eventsourcing.infrastructure.datastore.DatastoreSettings
Bases: object

Base class for settings for database connection used by a stored event repository.

exception eventsourcing.infrastructure.datastore.DatastoreTableError
Bases: eventsourcing.infrastructure.datastore.DatastoreError

eventsourcing.infrastructure.cassandra.activerecords

eventsourcing.infrastructure.cassandra.datastore

eventsourcing.infrastructure.sqlalchemy.activerecords

eventsourcing.infrastructure.sqlalchemy.datastore

eventsourcing.infrastructure.iterators

class eventsourcing.infrastructure.iterators.AbstractSequencedItemIterator(active_record_strategy,
se-
quence_id,
page_size=None,
gt=None,
gte=None,
lt=None,
lte=None,
limit=None,
is_ascending=True)

Bases: object

100 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

DEFAULT_PAGE_SIZE = 1000

class eventsourcing.infrastructure.iterators.GetEntityEventsThread(active_record_strategy,
se-
quence_id,
gt=None,
gte=None,
lt=None,
lte=None,
page_size=None,
is_ascending=True,
*args,
**kwargs)

Bases: threading.Thread

run()

class eventsourcing.infrastructure.iterators.SequencedItemIterator(active_record_strategy,
se-
quence_id,
page_size=None,
gt=None,
gte=None,
lt=None,
lte=None,
limit=None,
is_ascending=True)

Bases: eventsourcing.infrastructure.iterators.AbstractSequencedItemIterator

class eventsourcing.infrastructure.iterators.ThreadedSequencedItemIterator(active_record_strategy,
se-
quence_id,
page_size=None,
gt=None,
gte=None,
lt=None,
lte=None,
limit=None,
is_ascending=True)

Bases: eventsourcing.infrastructure.iterators.AbstractSequencedItemIterator

start_thread()

eventsourcing.infrastructure.repositories.array

class eventsourcing.infrastructure.repositories.array.ArrayRepository(array_size=10000,
*args,
**kwargs)

Bases: eventsourcing.domain.model.array.AbstractArrayRepository ,
eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository

class eventsourcing.infrastructure.repositories.array.BigArrayRepository(base_size=10000,
*args,
**kwargs)

Bases: eventsourcing.domain.model.array.AbstractBigArrayRepository ,
eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository

3.1. eventsourcing 101

eventsourcing Documentation, Release 3.1.0

subrepo

subrepo_class
alias of ArrayRepository

eventsourcing.infrastructure.integersequencegenerators.base

class eventsourcing.infrastructure.integersequencegenerators.base.AbstractIntegerSequenceGenerator
Bases: object

next()
Python 2.7 version of the iterator protocol.

class eventsourcing.infrastructure.integersequencegenerators.base.SimpleIntegerSequenceGenerator(i=0)
Bases: eventsourcing.infrastructure.integersequencegenerators.base.
AbstractIntegerSequenceGenerator

eventsourcing.infrastructure.integersequencegenerators.redisincr

3.1.5 Exception classes

exception eventsourcing.exceptions.ArrayIndexError
Bases: IndexError, eventsourcing.exceptions.EventSourcingError

Raised when appending item to an array that is full.

exception eventsourcing.exceptions.ConcurrencyError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when appending events at the wrong version to a versioned stream.

exception eventsourcing.exceptions.ConsistencyError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when applying an event stream to a versioned entity.

exception eventsourcing.exceptions.DatasourceSettingsError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when an error is detected in settings for a datasource.

exception eventsourcing.exceptions.EntityIsDiscarded
Bases: AssertionError

Raised when access to a recently discarded entity object is attempted.

exception eventsourcing.exceptions.EntityVersionNotFound
Bases: eventsourcing.exceptions.EventSourcingError

Raise when accessing an entity version that does not exist.

exception eventsourcing.exceptions.EventSourcingError
Bases: Exception

Base eventsourcing exception.

exception eventsourcing.exceptions.MismatchedOriginatorError
Bases: eventsourcing.exceptions.ConsistencyError

Raised when applying an event to an inappropriate object.

102 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

exception eventsourcing.exceptions.MismatchedOriginatorIDError
Bases: eventsourcing.exceptions.MismatchedOriginatorError

Raised when applying an event to the wrong entity or aggregate.

exception eventsourcing.exceptions.MismatchedOriginatorVersionError
Bases: eventsourcing.exceptions.MismatchedOriginatorError

Raised when applying an event to the wrong version of an entity or aggregate.

exception eventsourcing.exceptions.MutatorRequiresTypeNotInstance
Bases: eventsourcing.exceptions.ConsistencyError

Raised when mutator function received a class rather than an entity.

exception eventsourcing.exceptions.ProgrammingError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when programming errors are encountered.

exception eventsourcing.exceptions.RepositoryKeyError
Bases: KeyError, eventsourcing.exceptions.EventSourcingError

Raised when using entity repository’s dictionary like interface to get an entity that does not exist.

exception eventsourcing.exceptions.SequencedItemConflict
Bases: eventsourcing.exceptions.EventSourcingError

Raised when an integer sequence error occurs e.g. trying to save a version that already exists.

exception eventsourcing.exceptions.TimeSequenceError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when a time sequence error occurs e.g. trying to save a timestamp that already exists.

exception eventsourcing.exceptions.TopicResolutionError
Bases: eventsourcing.exceptions.EventSourcingError

Raised when unable to resolve a topic to a Python class.

3.1.6 Example application

eventsourcing.example.interface.flaskapp

eventsourcing.example.application

class eventsourcing.example.application.ExampleApplication(**kwargs)
Bases: eventsourcing.application.base.ApplicationWithPersistencePolicies

Example event sourced application with entity factory and repository.

create_new_example(foo=”, a=”, b=”)
Entity object factory.

eventsourcing.example.application.close_example_application()
Shuts down single global instance of application.

To be called when tearing down, perhaps between tests, in order to allow a subsequent call to
init_example_application().

eventsourcing.example.application.construct_example_application(**kwargs)
Application object factory.

3.1. eventsourcing 103

eventsourcing Documentation, Release 3.1.0

eventsourcing.example.application.get_example_application()
Returns single global instance of application.

To be called when handling a worker request, if required.

eventsourcing.example.application.init_example_application(**kwargs)
Constructs single global instance of application.

To be called when initialising a worker process.

eventsourcing.example.domainmodel

class eventsourcing.example.domainmodel.AbstractExampleRepository(*args,
**kwargs)

Bases: eventsourcing.domain.model.entity.AbstractEntityRepository

class eventsourcing.example.domainmodel.Example(foo=”, a=”, b=”, **kwargs)
Bases: eventsourcing.domain.model.entity.TimestampedVersionedEntity

An example event sourced domain model entity.

class AttributeChanged(timestamp=None, **kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.AttributeChanged

Published when an Example is created.

class Created(timestamp=None, **kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.Created

Published when an Example is created.

class Discarded(timestamp=None, **kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.Discarded

Published when an Example is discarded.

class Event(timestamp=None, **kwargs)
Bases: eventsourcing.domain.model.entity.Event

Layer supertype.

class Heartbeat(timestamp=None, **kwargs)
Bases: eventsourcing.example.domainmodel.Event, eventsourcing.domain.
model.entity.Event

Published when a heartbeat in the entity occurs (see below).

a
An example attribute.

b
Another example attribute.

beat_heart(number_of_beats=1)

count_heartbeats()

foo
An example attribute.

104 Chapter 3. Modules

eventsourcing Documentation, Release 3.1.0

eventsourcing.example.domainmodel.create_new_example(foo=”, a=”, b=”)
Factory method for example entities.

Return type Example

eventsourcing.example.domainmodel.example_mutator(initial, event)

eventsourcing.example.domainmodel.heartbeat_mutator(self, event)

eventsourcing.example.infrastructure

class eventsourcing.example.infrastructure.ExampleRepository(event_store, muta-
tor=None, snap-
shot_strategy=None,
use_cache=False,
*args, **kwargs)

Bases: eventsourcing.infrastructure.eventsourcedrepository.
EventSourcedRepository , eventsourcing.example.domainmodel.
AbstractExampleRepository

Event sourced repository for the Example domain model entity.

mutator(initial=None, event=None)

3.1. eventsourcing 105

eventsourcing Documentation, Release 3.1.0

106 Chapter 3. Modules

Python Module Index

e
eventsourcing, 85
eventsourcing.application.base, 86
eventsourcing.application.policies, 86
eventsourcing.domain.model.aggregate,

87
eventsourcing.domain.model.array, 87
eventsourcing.domain.model.decorators,

89
eventsourcing.domain.model.entity, 90
eventsourcing.domain.model.events, 92
eventsourcing.domain.model.snapshot, 94
eventsourcing.example.application, 103
eventsourcing.example.domainmodel, 104
eventsourcing.example.infrastructure,

105
eventsourcing.exceptions, 102
eventsourcing.infrastructure.activerecord,

99
eventsourcing.infrastructure.cipher.base,

94
eventsourcing.infrastructure.datastore,

100
eventsourcing.infrastructure.eventplayer,

95
eventsourcing.infrastructure.eventsourcedrepository,

95
eventsourcing.infrastructure.eventstore,

96
eventsourcing.infrastructure.integersequencegenerators.base,

102
eventsourcing.infrastructure.iterators,

100
eventsourcing.infrastructure.repositories.array,

101
eventsourcing.infrastructure.sequenceditem,

97
eventsourcing.infrastructure.sequenceditemmapper,

98

eventsourcing.infrastructure.snapshotting,
96

eventsourcing.infrastructure.transcoding,
99

eventsourcing.interface.notificationlog,
85

107

eventsourcing Documentation, Release 3.1.0

108 Python Module Index

Index

A
a (eventsourcing.example.domainmodel.Example at-

tribute), 104
AbstractActiveRecordStrategy (class in eventsourc-

ing.infrastructure.activerecord), 99
AbstractArrayRepository (class in eventsourc-

ing.domain.model.array), 87
AbstractBigArrayRepository (class in eventsourc-

ing.domain.model.array), 87
AbstractCipher (class in eventsourc-

ing.infrastructure.cipher.base), 94
AbstractEntityRepository (class in eventsourc-

ing.domain.model.entity), 90
AbstractEventStore (class in eventsourc-

ing.infrastructure.eventstore), 96
AbstractExampleRepository (class in eventsourc-

ing.example.domainmodel), 104
AbstractIntegerSequenceGenerator (class in eventsourc-

ing.infrastructure.integersequencegenerators.base),
102

AbstractNotificationLog (class in eventsourc-
ing.interface.notificationlog), 85

AbstractSequencedItemIterator (class in eventsourc-
ing.infrastructure.iterators), 100

AbstractSequencedItemMapper (class in eventsourc-
ing.infrastructure.sequenceditemmapper), 98

AbstractSnapshop (class in eventsourc-
ing.domain.model.snapshot), 94

AbstractSnapshotStrategy (class in eventsourc-
ing.infrastructure.snapshotting), 96

AggregateRoot (class in eventsourc-
ing.domain.model.aggregate), 87

AggregateRoot.AttributeChanged (class in eventsourc-
ing.domain.model.aggregate), 87

AggregateRoot.Created (class in eventsourc-
ing.domain.model.aggregate), 87

AggregateRoot.Discarded (class in eventsourc-
ing.domain.model.aggregate), 87

AggregateRoot.Event (class in eventsourc-

ing.domain.model.aggregate), 87
all_domain_events() (eventsourc-

ing.infrastructure.eventstore.AbstractEventStore
method), 96

all_domain_events() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 97

all_items() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

all_records() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

append() (eventsourcing.domain.model.array.Array
method), 88

append() (eventsourcing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

append() (eventsourcing.infrastructure.eventstore.AbstractEventStore
method), 96

append() (eventsourcing.infrastructure.eventstore.EventStore
method), 97

ApplicationWithEventStores (class in eventsourc-
ing.application.base), 86

ApplicationWithPersistencePolicies (class in eventsourc-
ing.application.base), 86

Array (class in eventsourcing.domain.model.array), 87
ArrayIndexError, 102
ArrayRepository (class in eventsourc-

ing.infrastructure.repositories.array), 101
assert_event_handlers_empty() (in module eventsourc-

ing.domain.model.events), 93
attribute() (in module eventsourc-

ing.domain.model.decorators), 89
AttributeChanged (class in eventsourc-

ing.domain.model.events), 92

B
b (eventsourcing.example.domainmodel.Example at-

tribute), 104

109

eventsourcing Documentation, Release 3.1.0

beat_heart() (eventsourc-
ing.example.domainmodel.Example method),
104

BigArray (class in eventsourcing.domain.model.array),
88

BigArrayRepository (class in eventsourc-
ing.infrastructure.repositories.array), 101

C
calc_parent() (eventsourc-

ing.domain.model.array.BigArray method),
88

calc_required_height() (eventsourc-
ing.domain.model.array.BigArray method),
88

change_attribute() (eventsourc-
ing.domain.model.entity.DomainEntity
method), 90

change_attribute() (eventsourc-
ing.domain.model.entity.VersionedEntity
method), 92

close() (eventsourcing.application.base.ApplicationWithEventStores
method), 86

close() (eventsourcing.application.base.ApplicationWithPersistencePolicies
method), 86

close() (eventsourcing.application.policies.PersistencePolicy
method), 86

close_example_application() (in module eventsourc-
ing.example.application), 103

ConcurrencyError, 102
ConsistencyError, 102
construct_entity_persistence_policy() (eventsourc-

ing.application.base.ApplicationWithPersistencePolicies
method), 86

construct_event_store() (eventsourc-
ing.application.base.ApplicationWithEventStores
method), 86

construct_example_application() (in module eventsourc-
ing.example.application), 103

construct_item_args() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 98

construct_log_persistence_policy() (eventsourc-
ing.application.base.ApplicationWithPersistencePolicies
method), 86

construct_sequenced_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 98

construct_sequenced_item_mapper() (eventsourc-
ing.application.base.ApplicationWithEventStores
method), 86

construct_snapshot_persistence_policy() (eventsourc-
ing.application.base.ApplicationWithPersistencePolicies
method), 86

count_heartbeats() (eventsourc-
ing.example.domainmodel.Example method),
104

create_array_id() (eventsourc-
ing.domain.model.array.BigArray method),
88

create_new_example() (eventsourc-
ing.example.application.ExampleApplication
method), 103

create_new_example() (in module eventsourc-
ing.example.domainmodel), 104

create_timesequenced_event_id() (in module eventsourc-
ing.domain.model.events), 93

Created (class in eventsourcing.domain.model.events), 92
created_on (eventsourc-

ing.domain.model.entity.TimestampedEntity
attribute), 91

created_on (eventsourc-
ing.domain.model.entity.TimeuuidedEntity
attribute), 91

D
data (eventsourcing.infrastructure.sequenceditem.SequencedItem

attribute), 97
data (eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames

attribute), 97
DatasourceSettingsError, 102
Datastore (class in eventsourc-

ing.infrastructure.datastore), 100
DatastoreConnectionError, 100
DatastoreError, 100
DatastoreSettings (class in eventsourc-

ing.infrastructure.datastore), 100
DatastoreTableError, 100
decrypt() (eventsourcing.infrastructure.cipher.base.AbstractCipher

method), 94
default() (eventsourcing.infrastructure.transcoding.ObjectJSONEncoder

method), 99
DEFAULT_PAGE_SIZE (eventsourc-

ing.infrastructure.iterators.AbstractSequencedItemIterator
attribute), 100

delete_record() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

deserialize_event_attrs() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 98

deserialize_section() (in module eventsourc-
ing.interface.notificationlog), 86

discard() (eventsourcing.domain.model.entity.DomainEntity
method), 90

discard() (eventsourcing.domain.model.entity.VersionedEntity
method), 92

110 Index

eventsourcing Documentation, Release 3.1.0

Discarded (class in eventsourcing.domain.model.events),
93

DomainEntity (class in eventsourc-
ing.domain.model.entity), 90

DomainEntity.AttributeChanged (class in eventsourc-
ing.domain.model.entity), 90

DomainEntity.Created (class in eventsourc-
ing.domain.model.entity), 90

DomainEntity.Discarded (class in eventsourc-
ing.domain.model.entity), 90

DomainEntity.Event (class in eventsourc-
ing.domain.model.entity), 90

DomainEvent (class in eventsourc-
ing.domain.model.events), 93

drop_connection() (eventsourc-
ing.infrastructure.datastore.Datastore method),
100

drop_tables() (eventsourc-
ing.infrastructure.datastore.Datastore method),
100

E
encrypt() (eventsourcing.infrastructure.cipher.base.AbstractCipher

method), 94
entity_from_snapshot() (in module eventsourc-

ing.infrastructure.snapshotting), 96
EntityIsDiscarded, 102
EntityVersionNotFound, 102
event_id (eventsourcing.domain.model.events.EventWithTimeuuid

attribute), 93
event_store (eventsourc-

ing.domain.model.entity.AbstractEntityRepository
attribute), 90

event_store (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
attribute), 95

event_type (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
attribute), 98

EventHandlersNotEmptyError, 93
EventPlayer (class in eventsourc-

ing.infrastructure.eventplayer), 95
EventSourcedRepository (class in eventsourc-

ing.infrastructure.eventsourcedrepository),
95

EventSourcedSnapshotStrategy (class in eventsourc-
ing.infrastructure.snapshotting), 96

eventsourcing (module), 85
eventsourcing.application.base (module), 86
eventsourcing.application.policies (module), 86
eventsourcing.domain.model.aggregate (module), 87
eventsourcing.domain.model.array (module), 87
eventsourcing.domain.model.decorators (module), 89
eventsourcing.domain.model.entity (module), 90

eventsourcing.domain.model.events (module), 92
eventsourcing.domain.model.snapshot (module), 94
eventsourcing.example.application (module), 103
eventsourcing.example.domainmodel (module), 104
eventsourcing.example.infrastructure (module), 105
eventsourcing.exceptions (module), 102
eventsourcing.infrastructure.activerecord (module), 99
eventsourcing.infrastructure.cipher.base (module), 94
eventsourcing.infrastructure.datastore (module), 100
eventsourcing.infrastructure.eventplayer (module), 95
eventsourcing.infrastructure.eventsourcedrepository

(module), 95
eventsourcing.infrastructure.eventstore (module), 96
eventsourcing.infrastructure.integersequencegenerators.base

(module), 102
eventsourcing.infrastructure.iterators (module), 100
eventsourcing.infrastructure.repositories.array (module),

101
eventsourcing.infrastructure.sequenceditem (module), 97
eventsourcing.infrastructure.sequenceditemmapper

(module), 98
eventsourcing.infrastructure.snapshotting (module), 96
eventsourcing.infrastructure.transcoding (module), 99
eventsourcing.interface.notificationlog (module), 85
EventSourcingError, 102
EventStore (class in eventsourc-

ing.infrastructure.eventstore), 97
EventWithOriginatorID (class in eventsourc-

ing.domain.model.events), 93
EventWithOriginatorVersion (class in eventsourc-

ing.domain.model.events), 93
EventWithTimestamp (class in eventsourc-

ing.domain.model.events), 93
EventWithTimeuuid (class in eventsourc-

ing.domain.model.events), 93
Example (class in eventsourcing.example.domainmodel),

104
Example.AttributeChanged (class in eventsourc-

ing.example.domainmodel), 104
Example.Created (class in eventsourc-

ing.example.domainmodel), 104
Example.Discarded (class in eventsourc-

ing.example.domainmodel), 104
Example.Event (class in eventsourc-

ing.example.domainmodel), 104
Example.Heartbeat (class in eventsourc-

ing.example.domainmodel), 104
example_mutator() (in module eventsourc-

ing.example.domainmodel), 105
ExampleApplication (class in eventsourc-

ing.example.application), 103
ExampleRepository (class in eventsourc-

ing.example.infrastructure), 105

Index 111

eventsourcing Documentation, Release 3.1.0

F
foo (eventsourcing.example.domainmodel.Example at-

tribute), 104
format_section_id() (eventsourc-

ing.interface.notificationlog.NotificationLog
static method), 85

from_jsonable() (eventsourc-
ing.infrastructure.transcoding.ObjectJSONDecoder
class method), 99

from_sequenced_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.AbstractSequencedItemMapper
method), 98

from_sequenced_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 98

G
get_domain_event() (eventsourc-

ing.infrastructure.eventstore.AbstractEventStore
method), 96

get_domain_event() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 97

get_domain_events() (eventsourc-
ing.infrastructure.eventplayer.EventPlayer
method), 95

get_domain_events() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

get_domain_events() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 97

get_domain_events() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 97

get_entity() (eventsourc-
ing.domain.model.entity.AbstractEntityRepository
method), 90

get_entity() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

get_example_application() (in module eventsourc-
ing.example.application), 103

get_field_kwargs() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

get_item() (eventsourcing.domain.model.array.BigArray
method), 88

get_item() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

get_item_assigned() (eventsourc-
ing.domain.model.array.Array method),
88

get_items() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

get_items() (eventsourc-
ing.interface.notificationlog.NotificationLogReader
method), 85

get_items_assigned() (eventsourc-
ing.domain.model.array.Array method),
88

get_json() (eventsourcing.interface.notificationlog.RemoteNotificationLog
method), 85

get_last_array() (eventsourc-
ing.domain.model.array.BigArray method),
88

get_last_item_and_next_position() (eventsourc-
ing.domain.model.array.Array method),
88

get_last_item_and_next_position() (eventsourc-
ing.domain.model.array.BigArray method),
89

get_most_recent_event() (eventsourc-
ing.infrastructure.eventplayer.EventPlayer
method), 95

get_most_recent_event() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

get_most_recent_event() (eventsourc-
ing.infrastructure.eventstore.AbstractEventStore
method), 97

get_most_recent_event() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 97

get_next_position() (eventsourc-
ing.domain.model.array.Array method),
88

get_resource() (eventsourc-
ing.interface.notificationlog.RemoteNotificationLog
method), 85

get_slice() (eventsourcing.domain.model.array.BigArray
method), 89

get_snapshot() (eventsourc-
ing.infrastructure.eventplayer.EventPlayer
method), 96

get_snapshot() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

get_snapshot() (eventsourc-
ing.infrastructure.snapshotting.AbstractSnapshotStrategy
method), 96

get_snapshot() (eventsourc-
ing.infrastructure.snapshotting.EventSourcedSnapshotStrategy
method), 96

GetEntityEventsThread (class in eventsourc-
ing.infrastructure.iterators), 101

112 Index

eventsourcing Documentation, Release 3.1.0

H
heartbeat_mutator() (in module eventsourc-

ing.example.domainmodel), 105

I
id (eventsourcing.domain.model.entity.DomainEntity at-

tribute), 90
index (eventsourcing.domain.model.array.ItemAssigned

attribute), 89
init_example_application() (in module eventsourc-

ing.example.application), 104
is_encrypted() (eventsourc-

ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 99

is_event() (eventsourcing.application.policies.PersistencePolicy
method), 87

item (eventsourcing.domain.model.array.ItemAssigned
attribute), 89

ItemAssigned (class in eventsourc-
ing.domain.model.array), 89

iterator_class (eventsourc-
ing.infrastructure.eventstore.EventStore at-
tribute), 97

L
last_modified (eventsourc-

ing.domain.model.entity.TimestampedEntity
attribute), 91

last_modified (eventsourc-
ing.domain.model.entity.TimeuuidedEntity
attribute), 92

Logged (class in eventsourcing.domain.model.events), 93

M
make_notification_log_url() (eventsourc-

ing.interface.notificationlog.RemoteNotificationLog
method), 85

MismatchedOriginatorError, 102
MismatchedOriginatorIDError, 102
MismatchedOriginatorVersionError, 103
mutate_entity() (in module eventsourc-

ing.domain.model.entity), 92
mutator() (eventsourcing.example.infrastructure.ExampleRepository

method), 105
mutator() (eventsourcing.infrastructure.eventsourcedrepository.EventSourcedRepository

method), 95
mutator() (in module eventsourc-

ing.domain.model.decorators), 89
MutatorRequiresTypeNotInstance, 103

N
name (eventsourcing.domain.model.events.AttributeChanged

attribute), 92

next() (eventsourcing.infrastructure.integersequencegenerators.base.AbstractIntegerSequenceGenerator
method), 102

NotificationLog (class in eventsourc-
ing.interface.notificationlog), 85

NotificationLogReader (class in eventsourc-
ing.interface.notificationlog), 85

O
ObjectJSONDecoder (class in eventsourc-

ing.infrastructure.transcoding), 99
ObjectJSONEncoder (class in eventsourc-

ing.infrastructure.transcoding), 99
originator_id (eventsourc-

ing.domain.model.events.EventWithOriginatorID
attribute), 93

originator_id (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 94

originator_id (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
attribute), 98

originator_version (eventsourc-
ing.domain.model.events.EventWithOriginatorVersion
attribute), 93

originator_version (eventsourc-
ing.domain.model.snapshot.AbstractSnapshop
attribute), 94

originator_version (eventsourc-
ing.infrastructure.sequenceditem.StoredEvent
attribute), 98

P
PersistencePolicy (class in eventsourc-

ing.application.policies), 86
position (eventsourcing.infrastructure.sequenceditem.SequencedItem

attribute), 97
position (eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames

attribute), 97
present_section() (in module eventsourc-

ing.interface.notificationlog), 86
ProgrammingError, 103
publish() (in module eventsourc-

ing.domain.model.events), 94

Q
QualnameABC (class in eventsourc-

ing.domain.model.events), 93
QualnameABCMeta (class in eventsourc-

ing.domain.model.events), 93

R
raise_index_error() (eventsourc-

ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

Index 113

eventsourcing Documentation, Release 3.1.0

raise_sequenced_item_error() (eventsourc-
ing.infrastructure.activerecord.AbstractActiveRecordStrategy
method), 99

random() (in module eventsourc-
ing.domain.model.decorators), 89

reconstruct_object() (in module eventsourc-
ing.infrastructure.sequenceditemmapper),
99

RemoteNotificationLog (class in eventsourc-
ing.interface.notificationlog), 85

replay_entity() (eventsourc-
ing.infrastructure.eventplayer.EventPlayer
method), 96

replay_entity() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

replay_events() (eventsourc-
ing.infrastructure.eventplayer.EventPlayer
method), 96

replay_events() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

RepositoryKeyError, 103
retry() (in module eventsourc-

ing.domain.model.decorators), 90
run() (eventsourcing.infrastructure.iterators.GetEntityEventsThread

method), 101

S
save() (eventsourcing.domain.model.aggregate.AggregateRoot

method), 87
Section (class in eventsourcing.interface.notificationlog),

85
seek() (eventsourcing.interface.notificationlog.NotificationLogReader

method), 85
sequence_id (eventsourc-

ing.infrastructure.sequenceditem.SequencedItem
attribute), 97

sequence_id (eventsourc-
ing.infrastructure.sequenceditem.SequencedItemFieldNames
attribute), 97

SequencedItem (class in eventsourc-
ing.infrastructure.sequenceditem), 97

SequencedItemConflict, 103
SequencedItemFieldNames (class in eventsourc-

ing.infrastructure.sequenceditem), 97
SequencedItemIterator (class in eventsourc-

ing.infrastructure.iterators), 101
SequencedItemMapper (class in eventsourc-

ing.infrastructure.sequenceditemmapper),
98

serialize_event_attrs() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 99

serialize_section() (in module eventsourc-
ing.interface.notificationlog), 86

setup_connection() (eventsourc-
ing.infrastructure.datastore.Datastore method),
100

setup_tables() (eventsourc-
ing.infrastructure.datastore.Datastore method),
100

SimpleIntegerSequenceGenerator (class in eventsourc-
ing.infrastructure.integersequencegenerators.base),
102

Snapshot (class in eventsourc-
ing.domain.model.snapshot), 94

start_thread() (eventsourc-
ing.infrastructure.iterators.ThreadedSequencedItemIterator
method), 101

state (eventsourcing.domain.model.snapshot.AbstractSnapshop
attribute), 94

state (eventsourcing.domain.model.snapshot.Snapshot at-
tribute), 94

state (eventsourcing.infrastructure.sequenceditem.StoredEvent
attribute), 98

store_event() (eventsourc-
ing.application.policies.PersistencePolicy
method), 87

StoredEvent (class in eventsourc-
ing.infrastructure.sequenceditem), 97

subrepo (eventsourcing.domain.model.array.AbstractBigArrayRepository
attribute), 87

subrepo (eventsourcing.infrastructure.repositories.array.BigArrayRepository
attribute), 101

subrepo_class (eventsourc-
ing.infrastructure.repositories.array.BigArrayRepository
attribute), 102

subscribe() (in module eventsourc-
ing.domain.model.events), 94

subscribe_to() (in module eventsourc-
ing.domain.model.decorators), 90

T
take_snapshot() (eventsourc-

ing.infrastructure.eventplayer.EventPlayer
method), 96

take_snapshot() (eventsourc-
ing.infrastructure.eventsourcedrepository.EventSourcedRepository
method), 95

take_snapshot() (eventsourc-
ing.infrastructure.snapshotting.AbstractSnapshotStrategy
method), 96

take_snapshot() (eventsourc-
ing.infrastructure.snapshotting.EventSourcedSnapshotStrategy
method), 96

ThreadedSequencedItemIterator (class in eventsourc-
ing.infrastructure.iterators), 101

114 Index

eventsourcing Documentation, Release 3.1.0

TimeSequenceError, 103
timestamp (eventsourc-

ing.domain.model.events.EventWithTimestamp
attribute), 93

TimestampedEntity (class in eventsourc-
ing.domain.model.entity), 90

TimestampedEntity.AttributeChanged (class in
eventsourcing.domain.model.entity), 91

TimestampedEntity.Created (class in eventsourc-
ing.domain.model.entity), 91

TimestampedEntity.Discarded (class in eventsourc-
ing.domain.model.entity), 91

TimestampedEntity.Event (class in eventsourc-
ing.domain.model.entity), 91

TimestampedVersionedEntity (class in eventsourc-
ing.domain.model.entity), 91

TimestampedVersionedEntity.AttributeChanged (class in
eventsourcing.domain.model.entity), 91

TimestampedVersionedEntity.Created (class in
eventsourcing.domain.model.entity), 91

TimestampedVersionedEntity.Discarded (class in
eventsourcing.domain.model.entity), 91

TimestampedVersionedEntity.Event (class in eventsourc-
ing.domain.model.entity), 91

TimeuuidedEntity (class in eventsourc-
ing.domain.model.entity), 91

TimeuuidedVersionedEntity (class in eventsourc-
ing.domain.model.entity), 92

to_sequenced_item() (eventsourc-
ing.infrastructure.eventstore.EventStore
method), 97

to_sequenced_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.AbstractSequencedItemMapper
method), 98

to_sequenced_item() (eventsourc-
ing.infrastructure.sequenceditemmapper.SequencedItemMapper
method), 99

topic (eventsourcing.domain.model.snapshot.AbstractSnapshop
attribute), 94

topic (eventsourcing.domain.model.snapshot.Snapshot
attribute), 94

topic (eventsourcing.infrastructure.sequenceditem.SequencedItem
attribute), 97

topic (eventsourcing.infrastructure.sequenceditem.SequencedItemFieldNames
attribute), 97

TopicResolutionError, 103
truncate_tables() (eventsourc-

ing.infrastructure.datastore.Datastore method),
100

U
unsubscribe() (in module eventsourc-

ing.domain.model.events), 94

V
value (eventsourcing.domain.model.events.AttributeChanged

attribute), 92
version (eventsourcing.domain.model.entity.VersionedEntity

attribute), 92
VersionedEntity (class in eventsourc-

ing.domain.model.entity), 92
VersionedEntity.AttributeChanged (class in eventsourc-

ing.domain.model.entity), 92
VersionedEntity.Created (class in eventsourc-

ing.domain.model.entity), 92
VersionedEntity.Discarded (class in eventsourc-

ing.domain.model.entity), 92
VersionedEntity.Event (class in eventsourc-

ing.domain.model.entity), 92

W
WithReflexiveMutator (class in eventsourc-

ing.domain.model.entity), 92

Index 115

	Overview
	Background
	Quick start
	Installation
	Features
	Design
	Infrastructure
	Domain model
	Applications
	Examples
	Release notes

	Reference
	Modules
	eventsourcing

	Python Module Index

