

Welcome to event-tracking’s documentation!

Contents:

	Overview
	Event Tracking library

	User Guide
	Design

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Overview

Part of edX code [http://code.edx.org/].

Event Tracking library [image: build-status] [https://github.com/openedx/event-tracking/actions?query=workflow%3A%22Python+CI%22]

The event-tracking library tracks context-aware semi-structured system events.
It captures and stores events with nested data structures in order to truly
take advantage of schemaless data storage systems.

Key features:

	Multiple backends - define custom backends that can be used to persist
your event data.

	Nested contexts - allows data to be injected into events even without
having to pass around all of said data to every location where the events
are emitted.

	Django integration - provides a Django app that allows context aware events
to easily be captured by multi-threaded web applications.

	MongoDB integration - support writing events out to a mongo collection.

Example:

from eventtracking import tracker

tracker = tracker.get_tracker()
tracker.enter_context('outer', {'user_id': 10938})
tracker.emit('navigation.request', {'url': 'http://www.edx.org/some/path/1'})

with tracker.context({'user_id': 11111, 'session_id': '2987lkjdyoioey'}):
 tracker.emit('navigation.request', {'url': 'http://www.edx.org/some/path/2'})

tracker.emit(
 'address.create',
 {
 'name': 'foo',
 'address': {
 'postal_code': '90210',
 'country': 'United States'
 }
 }
)

Running the above example produces the following events:

{
 "name": "navigation.request",
 "timestamp": ...,
 "context": {
 "user_id": 10938
 },
 "data": {
 "url": "http://www.edx.org/some/path/1"
 }
},
{
 "name": "navigation.request",
 "timestamp": ...,
 "context": {
 "user_id": 11111,
 "session_id": "2987lkjdyoioey"
 },
 "data": {
 "url": "http://www.edx.org/some/path/2"
 }
},
{
 "name": "address.create",
 "timestamp": ...,
 "context": {
 "user_id": 10938
 },
 "data": {
 "name": "foo",
 "address": {
 "postal_code": "90210",
 "country": "United States"
 }
 }
}

Configuration

Configuration for event-tracking takes the form of a tree of backends. When a Tracker is instantiated, it creates a root RoutingBackend object using the top-level backends and processors that are passed to it. (Or in the case of the DjangoTracker, the backends and processors are constructed according to the appropriate Django settings.)

In this RoutingBackend, each event is first passed through the chain of processors in series, and then distributed to each backend in turn. Theoretically, these backends might be the Mongo, Segment, or logger backends, but in practice these are wrapped by another layer of RoutingBackend. This allows each one to have its own set of processors that are not shared with other backends, allowing independent filtering or event emit cancellation.

Asynchronous Routing

Considering the volume of the events being generated, we would want to avoid
processing events in the main thread that could cause delays in response
depending upon the operations and event processors.

event-tracking provides a solution for this i.e. AsyncRoutingBackend.
It extends RoutingBackend but performs its operations asynchronously.

It can:

	Process event through the configured processors.

	If the event is processed successfully, pass it to the configured backends.

Handling the operations asynchronously would avoid overburdening the main thread
and pass the intensive processing tasks to celery workers.

Limitations: Although backends for RoutingBackend can be configured
at any level of EVENT_TRACKING_BACKENDS configuration tree,
AsyncRoutingBackend only supports backends defined at the root level of
EVENT_TRACKING_BACKENDS setting. It is also only possible to use it
successfully from the default tracker.

An example configuration for AsyncRoutingBackend is provided below:

EVENT_TRACKING_BACKENDS = {
 'caliper': {
 'ENGINE': 'eventtracking.backends.async_routing.AsyncRoutingBackend',
 'OPTIONS': {
 'backend_name': 'caliper',
 'processors': [
 {
 'ENGINE': 'eventtracking.processors.regex_filter.RegexFilter',
 'OPTIONS':{
 'filter_type': 'allowlist',
 'regular_expressions': [
 'edx.course.enrollment.activated',
 'edx.course.enrollment.deactivated',
]
 }
 }
],
 'backends': {
 'caliper': {
 'ENGINE': 'dummy.backend.engine',
 'OPTIONS': {
 ...
 }
 }
 },
 },
 },
 'tracking_logs': {
 ...
 }
 ...
}

Roadmap

In the very near future the following features are planned:

	Dynamic event documentation and event metadata - allow event emitters to
document the event types, and persist this documentation along with the
events so that it can be referenced during analysis to provide context
about what the event is and when it is emitted.

Documentation

Latest documentation [http://event-tracking.readthedocs.org/en/latest/] (Hosted on Read the Docs)

License

The code in this repository is licensed under version 3 of the AGPL unless
otherwise noted.

Please see LICENSE.txt for details.

How to Contribute

Contributions are very welcome.

Please read How To Contribute [https://github.com/openedx/edx-platform/wiki/How-To-Contribute] for details.

Reporting Security Issues

Please do not report security issues in public. Please email security@edx.org

Mailing List and IRC Channel

You can discuss this code on the edx-code Google Group [https://groups.google.com/forum/#!forum/edx-code] or in the
edx-code IRC channel on Freenode.

User Guide

	Design
	Interface

	Event Type Metadata

	Nested Context Stack

	Best Practices

	Sample Usage

	Sample Events

	Sample Event Type Metadata

	Sample Event Schema

	API Reference
	eventtracking

Note

This is a proposed design and has not yet been fully implemented in the code.

Design

Interface

Python

	
tracker.register(name, description, field_descriptions)

	

	name

	A unique identification string for this type of event

	description

	A description of the event and the conditions under which it is emitted

	field_descriptions

	A dictionary mapping field names to a long form description

The documentation for each field is saved and used to generate navigable documentation that is shipped with the event log so that users can have some context about the various parameters in the event. Calling this method is optional, and any events emitted without first registering the event type will simply not include a reference to the event metadata.

Note

Field values can be set to any serializable object of arbitrary complexity, however, they must be documented in the documentation text for the field that will contain the object.

Any events emitted with that event type after the registration will contain a reference back to the data generated by the last call to tracking.register() for that event type.

Example:

from eventtracking import tracker

tracker.register(
 'edx.navigation.request',
 'A user visited a page',
 {
 'url': 'The url of the page visited.',
 'method': 'The HTTP method for the request, can be GET, POST, PUT, DELETE etc.',
 'user_agent': 'The user agent string provided by the user's browser.'
 'parameters': 'All GET and POST parameters. Note this excludes passwords.'
 }
)

	
tracker.emit(name, field_values)

	

	name

	A unique identification string for an event that has already been registered.

	field_values

	A dictionary mapping field names to the value to include in the event. Note that all values provided must be serializable.

Regardless of previous state or configuration, the data will always be logged, however, in the following conditions will cause a warning to be logged:

	the event type is unregistered

	the data contains a field that was not included in the registered event type

	the data is missing a field that was included in the registered event type

	the field_values are not serializable

	the estimated serialized event size is greater than the maximum supported

	
tracker.enter_context(name, context, description, field_descriptions)

	

	context

	A dictionary of key-value pairs that will be included in every event emitted after this call. Values defined in this dictionary will override any previous calls to push_context with maps that contain the same key.

	name

	A unique identification string for this type of context.

	description

	A clear description of the conditions under which this context is included.

	field_descriptions

	A dictionary mapping field names to a long form description.

Pushes a new context on to the context stack. This context will be applied to every event emitted after this call.

	
tracker.exit_context(name)

	

Removes the named context from the stack.

Javascript

	
Tracker.emit(name, field_values)

	

	name

	A unique identification string for an event that has already been registered.

	field_values

	An object mapping field names to the value to include in the event. Note that all values provided must be serializable.

See the documentation for the Python API.

Additionally, the behaviour of this function can be customized to direct events to arbitrary back-ends, and/or pre-process them before transmission to the server.

Event Type Metadata

The metadata for all registered event types is persisted along with a unique identifier. After registering metadata for an event type, all events emitted with that event type will contain a reference to the metadata that corresponds to that registration of the event type.

Note

The same event type may be registered multiple times with different metadata in the normal case due to revisions to the schema. This use case is supported and a new metadata record will be created for the new schema and linked to all future events of that type, while the old metadata will remain available for reference.

Nested Context Stack

The context stack is designed to simplify the process of including context in your events without having to have that context available at every location where the event might be emitted. It is rather cumbersome to have to pass around an HTTP request object for the sole purpose of gathering context out of it when emitting events. To aide this process you can define nested scopes which add information to the context when entered and remove information from the context when exited.

Example Scopes:

	Process

	Request

	View

Conceptually this is accomplished using a stack of dictionaries to hold all of the contexts. Contexts can be pushed on to and popped off of the stack. When an event is emitted the values for each key are included in the event metadata. Note that if multiple dictionaries on the stack contain the same key, the value from the most recently pushed context is used and the remaining values are ignored.

Example:

from eventtracking import tracker

tracker.enter_context('request', {'user_id': 10938})
tracker.emit('navigation.request', {'url': 'http://www.edx.org/some/path/1'})

tracker.enter_context('session', {'user_id': 11111, 'session_id': '2987lkjdyoioey'})
tracker.emit('navigation.request', {'url': 'http://www.edx.org/some/path/2'})
tracker.exit_context('session')

tracker.emit('navigation.request', {'url': 'http://www.edx.org/some/path/3'})

The following list shows the contexts and data for the three events that are emitted
"context": { "user_id": 10938 }, "data": { "url": "http://www.edx.org/some/path/1" }
"context": { "user_id": 11111, "session_id": "2987lkjdyoioey" }, "data": { "url": "http://www.edx.org/some/path/2" }
"context": { "user_id": 10938 }, "data": { "url": "http://www.edx.org/some/path/3" }

Best Practices

	It is recommended that event types are namespaced using dot notation to avoid naming collisions, similar to DNS names. For example: edx.video.stop, mit.audio.stop

	Avoid using event type names that may cause collisions. The burden is on the analyst to decide whether your event is equivalent to another and should be grouped accordingly etc.

	Do not emit events that you don’t own. This could negatively impact the analysis of the event stream. If you suspect your event is equivalent to another, say so in your documenation, and the analyst can decide whether or not to group them.

Sample Usage

Emitting an unregistered event:

tracker.emit('edx.problem.show_answer', {'problem_id': 'i4x://MITx/6.00x/problem/L15:L15_Problem_2'})

Emitting a registered event:

tracker.register('edx.problem.show_answer', 'An answer was shown for a problem', {'problem_id': 'A unique problem identifier'})
tracker.emit('edx.problem.show_answer', {'problem_id': 'i4x://MITx/6.00x/problem/L15:L15_Problem_2'})

Emitting an event with context:

tracker.enter_context('request', {'user_id': '1234'})
try:
 tracker.emit('edx.problem.show_answer', {'problem_id': 'i4x://MITx/6.00x/problem/L15:L15_Problem_2'})
finally:
 tracker.exit_context('request')

Sample Events

Show Answer:

{
 "name": "edx.problem.show_answer",
 "timestamp": "2013-09-12T12:55:00.12345+00:00",
 "name_id": "10ac28",
 "context_type_id": "11bd88",
 "context": {
 "course_id":"",
 "user_id": "",
 "session_id": "",
 "org_id": "",
 "origin": "client"
 }
 "data": {
 "problem_id": "i4x://MITx/6.00x/problem/L15:L15_Problem_2"
 }
}

Sample Event Type Metadata

For the edx.problem.show_answer event type.

	schema_id

	name

	description

	timestamp

	stack_trace

	10ac28

	edx.problem.show_answer

	An answer was shown for a problem

	2013-09-12T12:05:00-00:00

	…

	11bd88

	edX context

	
	2013-09-12T12:05:01-00:00

	…

	schema_field_id

	schema_id

	name

	description

	25

	10ac28

	problem_id

	A unique problem identifier

	26

	11bd88

	course_id

	A unique course identifier

	…

	11bd88

	…

	…

	40

	11bd88

	origin

	client || server

Sample Event Schema

Events can be serialized into any format. Here is an example JSON serialization format that could be used to store events.

Event Schema:

{
 "type":"object",
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "http://edx.org/event",
 "required":true,
 "title": "Event",
 "description": "An event emitted from the edx platform.",

 "properties":{
 "name": {
 "type": "string",
 "id": "http://edx.org/event/name",
 "description": "A unique identifier for this type of event.",
 "required": true
 },
 "timestamp": {
 "type": "string",
 "id": "http://edx.org/event/timestamp",
 "description": "The UTC time the event was emitted in RFC-3339 format.",
 "required": true
 }
 "name_id": {
 "type": "string",
 "id": "http://edx.org/event/name_id",
 "description": "A unique reference to the metadata for this event type.",
 "required": false
 },
 "context_type_id": {
 "type": "string",
 "id": "http://edx.org/event/context_type_id",
 "description": "A unique reference to the metadata for this context.",
 "required": false
 },
 "context": {
 "type": "object",
 "id": "http://edx.org/event/context",
 "description": "Context for the event that was not explicitly provided during emission.",
 "required": false,
 "additionalProperties":true
 },
 "data": {
 "type":"object",
 "id": "http://edx.org/event/data",
 "description": "All custom fields and values provided during emission."
 "required": false,
 "additionalProperties": true
 },
 }
}

API Reference

eventtracking

A simple event tracking library

	eventtracking.backends
	eventtracking.backends.mongodb

	eventtracking.backends.logger

	eventtracking.backends.routing

	eventtracking.backends.segment

	eventtracking.django

	eventtracking.processors
	eventtracking.processors.whitelist

	eventtracking.processors.exceptions

eventtracking.tracker

Track application events. Supports persisting events to multiple backends.

Best Practices:

	It is recommended that event types are namespaced using dot notation to
avoid naming collisions, similar to DNS names. For example:
org.edx.video.stop, edu.mit.audio.stop

	Avoid using event type names that may cause collisions. The burden is
on the analyst to decide whether your event is equivalent to another
and should be grouped accordingly etc.

	Do not emit events that you don’t own. This could negatively impact
the analysis of the event stream. If you suspect your event is
equivalent to another, say so in your documenation, and the analyst
can decide whether or not to group them.

	
class eventtracking.tracker.Tracker(backends=None, context_locator=None, processors=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Track application events. Holds references to a set of backends that will
be used to persist any events that are emitted.

	
backends

	The dictionary of registered backends

	
context(name, ctx)

	Execute the block with the given context applied. This manager
ensures that the context is removed even if an exception is raised
within the context.

	
emit(name=None, data=None)

	Emit an event annotated with the UTC time when this function was called.

	name is a unique identification string for an event that has

	already been registered.

	data is a dictionary mapping field names to the value to include in the event.

	Note that all values provided must be serializable.

	
enter_context(name, ctx)

	Enter a named context. Any events emitted after calling this
method will contain all of the key-value pairs included in ctx
unless overridden by a context that is entered after this call.

	
exit_context(name)

	Exit a named context. This will remove all key-value pairs
associated with this context from any events emitted after it
is removed.

	
get_backend(name)

	Gets the backend that was configured with name

	
located_context

	The thread local context for this tracker.

	
processors

	The list of registered processors

	
resolve_context()

	Create a new dictionary that corresponds to the union of all of the
contexts that have been entered but not exited at this point.

	
eventtracking.tracker.emit(name=None, data=None)

	Calls Tracker.emit on the default global tracker

	
eventtracking.tracker.get_tracker(name='default')

	Gets a named tracker. Defaults to the default global tracker. Raises
a KeyError if no such tracker has been registered by previously calling
register_tracker.

	
eventtracking.tracker.register_tracker(tracker, name='default')

	Makes a tracker globally accessible. Providing no name parameter
allows you to register the global default tracker that will be used
by subsequent calls to tracker.emit.

eventtracking.locator

Strategies for locating contexts. Allows for arbitrarily complex caching
and context differentiation strategies.

All context locators must implement a get method that returns an
OrderedDict-like object.

	
class eventtracking.locator.DefaultContextLocator

	Bases: object [https://docs.python.org/3/library/functions.html#object]

One-to-one mapping between contexts and trackers. Every tracker will
get a new context instance and it will always be returned by this
locator.

	
get()

	Get a reference to the context.

	
class eventtracking.locator.ThreadLocalContextLocator

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Returns a different context depending on the thread that the locator
was called from. Thus, contexts can be isolated from one another
on thread boundaries.

Note that this makes use of threading.local(), which is typically
monkey-patched by alternative python concurrency frameworks (like gevent).

Calls to threading.local() are delayed until first usage in order to
give the third-party concurrency libraries an opportunity to monkey monkey
patch it.

	
get()

	Return a reference to a thread-specific context

eventtracking.backends

Event tracking backend module.

eventtracking.backends.mongodb

MongoDB event tracker backend.

	
class eventtracking.backends.mongodb.MongoBackend(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for a MongoDB event tracker Backend

	
send(event)

	Insert the event in to the Mongo collection

eventtracking.backends.logger

Event tracker backend that saves events to a python logger.

	
class eventtracking.backends.logger.DateTimeJSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, default=None)

	Bases: json.encoder.JSONEncoder

JSON encoder aware of datetime.datetime and datetime.date objects

	
default(obj)

	Serialize datetime and date objects of iso format.

datatime objects are converted to UTC.

	
class eventtracking.backends.logger.LoggerBackend(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Event tracker backend that uses a python logger.

Events are logged to the INFO level as JSON strings.

	
send(event)

	Send the event to the standard python logger

eventtracking.backends.routing

Route events to processors and backends

	
class eventtracking.backends.routing.RoutingBackend(backends=None, processors=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Route events to the appropriate backends.

A routing backend has two types of components:

	Processors - These are run sequentially, processing the output of the previous processor. If you had three
processors [a, b, c], the output of the processing step would be c(b(a(event))). Note that for performance
reasons, the processor is able to actually mutate the event dictionary in-place. Event dictionaries may be large
and highly nested, so creating multiple copies could be problematic. A processor can also choose to prevent the
event from being emitted by raising EventEmissionExit. Doing so will prevent any subsequent processors from
running and prevent the event from being sent to the backends. Any other exception raised by a processor will be
logged and swallowed, subsequent processors will execute and the event will be emitted.

	Backends - Backends are intended to not mutate the event and each receive the same event data. They are not
chained like processors. Once an event has been processed by the processor chain, it is passed to each backend in
the order that they were registered. Backends typically persist the event in some way, either by sending it
to an external system or saving it to disk. They are called synchronously and in sequence, so a long running
backend will block other backends until it is done persisting the event. Note that you can register another
RoutingBackend as a backend of a RoutingBackend, allowing for arbitrary processing trees.

	backends is a collection that supports iteration over its items using iteritems(). The keys are expected to be

	sortable and the values are expected to expose a send(event) method that will be called for each event. Each
backend in this collection is registered in order sorted alphanumeric ascending by key.

processors is an iterable of callables.

	Raises a ValueError if any of the provided backends do not have a callable “send” attribute or any of the

	processors are not callable.

	
process_event(event)

	Executes all event processors on the event in order.

event is a nested dictionary that represents the event.

Logs and swallows all Exception except EventEmissionExit which is re-raised if it is raised by a processor.

Returns the modified event.

	
register_backend(name, backend)

	Register a new backend that will be called for each processed event.

Note that backends are called in the order that they are registered.

	
register_processor(processor)

	Register a new processor.

Note that processors are called in the order that they are registered.

	
send(event)

	Process the event using all registered processors and send it to all registered backends.

Logs and swallows all Exception.

	
send_to_backends(event)

	Sends the event to all registered backends.

Logs and swallows all Exception.

eventtracking.backends.segment

Event tracking backend that sends events to segment.com

	
class eventtracking.backends.segment.SegmentBackend

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Send events to segment.com

It is assumed that other code elsewhere initializes the segment.com API and makes calls to analytics.identify.

Requires all emitted events to have the following structure (at a minimum):

{
 'name': 'something',
 'context': {
 'user_id': 10,
 }
}

Additionally, the following fields can optionally be defined:

{
 'context': {
 'agent': "your user-agent string",
 'client_id': "your google analytics client id",
 'host': "your hostname",
 'ip': "your IP address",
 'page': "your page",
 'path': "your path",
 'referer': "your referrer",
 }
}

The ‘page’, ‘path’ and ‘referer’ are sent to Segment as “page” information. If the ‘page’ is absent but the ‘host’
and ‘path’ are present, these are used to create a URL value to substitute for the ‘page’ value.

Note that although some parts of the event are lifted out to pass explicitly into the Segment.com API, the entire
event is sent as the payload to segment.com, which includes all context, data and other fields in the event.

	
send(event)

	Use the segment.com python API to send the event to segment.com

eventtracking.django

eventtracking.processors

eventtracking.processors.whitelist

Filter out events whose names aren’t on a pre-configured whitelist

	
class eventtracking.processors.whitelist.NameWhitelistProcessor(whitelist=None, **_kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Filter out events whose names aren’t on a pre-configured whitelist.

whitelist is an iterable collection containing event names that should be allowed to pass.

eventtracking.processors.exceptions

Custom exceptions that are raised by this package

	
exception eventtracking.processors.exceptions.EventEmissionExit

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raising this exception indicates that no further processing of the event should occur and it should be dropped.

This should only be raised by processors.

	
exception eventtracking.processors.exceptions.NoBackendEnabled

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raise this exception when there is no backend enabled
for an event.

	
exception eventtracking.processors.exceptions.NoTransformerImplemented

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raise this exception when there is no transformer implemented
for an event.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 eventtracking	

 	
 	
 eventtracking.backends	

 	
 	
 eventtracking.backends.logger	

 	
 	
 eventtracking.backends.mongodb	

 	
 	
 eventtracking.backends.routing	

 	
 	
 eventtracking.backends.segment	

 	
 	
 eventtracking.locator	

 	
 	
 eventtracking.processors	

 	
 	
 eventtracking.processors.exceptions	

 	
 	
 eventtracking.processors.whitelist	

 	
 	
 eventtracking.tracker	

Index

 B
 | C
 | D
 | E
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T

B

 	
 	backends (eventtracking.tracker.Tracker attribute)

C

 	
 	context() (eventtracking.tracker.Tracker method)

D

 	
 	DateTimeJSONEncoder (class in eventtracking.backends.logger)

 	
 	default() (eventtracking.backends.logger.DateTimeJSONEncoder method)

 	DefaultContextLocator (class in eventtracking.locator)

E

 	
 	emit() (eventtracking.tracker.Tracker method)

 	(in module eventtracking.tracker)

 	enter_context() (eventtracking.tracker.Tracker method)

 	EventEmissionExit

 	eventtracking (module)

 	eventtracking.backends (module)

 	eventtracking.backends.logger (module)

 	eventtracking.backends.mongodb (module)

 	
 	eventtracking.backends.routing (module)

 	eventtracking.backends.segment (module)

 	eventtracking.locator (module)

 	eventtracking.processors (module)

 	eventtracking.processors.exceptions (module)

 	eventtracking.processors.whitelist (module)

 	eventtracking.tracker (module)

 	exit_context() (eventtracking.tracker.Tracker method)

G

 	
 	get() (eventtracking.locator.DefaultContextLocator method)

 	(eventtracking.locator.ThreadLocalContextLocator method)

 	
 	get_backend() (eventtracking.tracker.Tracker method)

 	get_tracker() (in module eventtracking.tracker)

L

 	
 	located_context (eventtracking.tracker.Tracker attribute)

 	
 	LoggerBackend (class in eventtracking.backends.logger)

M

 	
 	MongoBackend (class in eventtracking.backends.mongodb)

N

 	
 	NameWhitelistProcessor (class in eventtracking.processors.whitelist)

 	
 	NoBackendEnabled

 	NoTransformerImplemented

P

 	
 	process_event() (eventtracking.backends.routing.RoutingBackend method)

 	
 	processors (eventtracking.tracker.Tracker attribute)

R

 	
 	register_backend() (eventtracking.backends.routing.RoutingBackend method)

 	register_processor() (eventtracking.backends.routing.RoutingBackend method)

 	
 	register_tracker() (in module eventtracking.tracker)

 	resolve_context() (eventtracking.tracker.Tracker method)

 	RoutingBackend (class in eventtracking.backends.routing)

S

 	
 	SegmentBackend (class in eventtracking.backends.segment)

 	send() (eventtracking.backends.logger.LoggerBackend method)

 	(eventtracking.backends.mongodb.MongoBackend method)

 	(eventtracking.backends.routing.RoutingBackend method)

 	(eventtracking.backends.segment.SegmentBackend method)

 	
 	send_to_backends() (eventtracking.backends.routing.RoutingBackend method)

T

 	
 	ThreadLocalContextLocator (class in eventtracking.locator)

 	Tracker (class in eventtracking.tracker)

 	Tracker.emit() (built-in function)

 	
 	tracker.emit() (built-in function)

 	tracker.enter_context() (built-in function)

 	tracker.exit_context() (built-in function)

 	tracker.register() (built-in function)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to event-tracking’s documentation!

 		
 Overview

 		
 Event Tracking library

 		
 Configuration

 		
 Asynchronous Routing

 		
 Roadmap

 		
 Documentation

 		
 License

 		
 How to Contribute

 		
 Reporting Security Issues

 		
 Mailing List and IRC Channel

 		
 User Guide

 		
 Design

 		
 Interface

 		
 Event Type Metadata

 		
 Nested Context Stack

 		
 Best Practices

 		
 Sample Usage

 		
 Sample Events

 		
 Sample Event Type Metadata

 		
 Sample Event Schema

 		
 API Reference

 		
 eventtracking

