
EVE SRP Documentation
Release

Will Ross

October 04, 2017

Contents

1 User Guide 3
1.1 Quick Start . 3
1.2 External API . 14

2 Developers Guide 21
2.1 Authentication . 21
2.2 Killmail Handling . 30
2.3 Views . 35
2.4 Models . 38
2.5 Javascript . 42

3 Indices and tables 45

Python Module Index 47

i

ii

EVE SRP Documentation, Release

EVE-SRP is designed to facilitate a ship replacement (SRP) or reimbursement program in the game EVE Online. It
features a pluggable authentication setup so it can integrate with existing authentication systems, and comes with built
in support for TEST Alliance’s Auth and Brave’s Core systems. It also features a configurable killmail source system,
with built in support for zKillboard based killboards and the recent ESI killmail endpoint. Again, this is an extensible
system so if you have a custom killboard, as long as there’s some sort of programmatic access, you can probably write
a custom adapter.

For the users, EVE-SRP offers quick submission and an easy way to check your SRP pending requests. On the
administrative side, EVE-SRP uses the concept of divisions, with different users and groups of users being able to
submit requests, review them (set payouts and approve or reject requests), and finally pay out approved requests. This
separation allows spreading of the labor intensive and low risk task of evaluating requests from the high privilege
of paying out requests from a central wallet. This also means different groups can have different reviewing+paying
teams. For example, you may wish for capital losses to be reviewed by a special team that is aware of your capital
group’s fitting requirements, and in lieu of payouts you may have someone hand out replacement hulls.

Contents 1

EVE SRP Documentation, Release

2 Contents

CHAPTER 1

User Guide

Quick Start

Logging in and Submitting Requests

When you first access a website running EVE-SRP, you will be asked to login. Select the appropriate login option if
you are presented with multiple choices, enter your credentials and login.

Once you have logged in, you will be able to see what reimbursement divisions you have been granted permissions in
as well as all of the requests you have submitted.

3

EVE SRP Documentation, Release

To submit a request, click the “Submit” button at the top of the screen. The button will only be present if you have
been granted the submit privilege within a division.

In the form, enter a killmail URL and any details your organization normally requires. What kind of killmail URLs
that are acceptable is up to your organization, but common choices are zKillboard based killboards or CREST killmail
URLs from an in-game killmail. Click the “Submit” button once you are done entering the information.

4 Chapter 1. User Guide

EVE SRP Documentation, Release

You will be redirected to the request detail page once you have submitted your request. Via this page you can add
comments for reviewers, or update the details to correct problems.

1.1. Quick Start 5

EVE SRP Documentation, Release

Reviewing Requests

If you have the review permission in a division and are logged in, you can click on the “Pending” link at the top of
the screen to see a list of requests that are not in a final (paid or rejected) state, and are thus able to be reviewed. The
number of requests that are in the “Evaluating” state is displayed in the number badge next to the “Pending” button.

In the list of requests, unevaluated requests have a yellow background, incomplete and rejected have a red background,
approved (pending payout) have a blue one, and paid requests have a green background. To open a request, click the
Request ID link (blue text).

In addition to the controls available to a normal user, reviewers have a few extra controls available. The base payout
can be set by entering a value (in millions of ISK) and clicking the “Set” button.

6 Chapter 1. User Guide

EVE SRP Documentation, Release

To apply bonuses and/or deduction, enter an amount in the “Add Modifier” form, enter a reason for the modifier, and
then select the type of modifier from the dropdown button labeled, “Type”. Absolute modifiers (adding or subtracting
a set amount of ISK) are applied first, followed by percentage deductions/bonuses.

1.1. Quick Start 7

EVE SRP Documentation, Release

If you make a mistake on a modifier and the request is still in the evaluating state, you can void the modifier by clicking
the small “X”.

Once you have applied all the modifiers you want/need, you can change the status of the request using the same
interface used for commenting. Enter a reason for the status change in the comment box, click the dropdown button to

8 Chapter 1. User Guide

EVE SRP Documentation, Release

the right of the “Comment” button, and finally click the new status you want applied.

If you missed something and need to add or void a modifier, or even change the base payout, you can set approved
(but not yet paid) requests back to evaluating.

1.1. Quick Start 9

EVE SRP Documentation, Release

Paying Out Requests

If you have the payer permission for a division, you can mark requests as paid. Typically this is handled by someone
with access to the wallet in-game used to hold the SRP money.

The number of requests pending payout is displayed in the number badge to the right of the “Pay Outs” button. This
butotn is only visible if you have the payer permission. Click the button to see a list of approved requests.

10 Chapter 1. User Guide

EVE SRP Documentation, Release

This list tries to make paying out requests as quick as possible. Clicking one of the white buttons (under the “Pilot”,
“Request ID (copy)”, or “Payout” columns) will copy the text within to your clipboard, making it quicker to enter the
information in-game. The clipboard functionality requires Flash, so it should be done using an out of game browser.
The work flow should be something like this:

1. Copy Pilot name from app using standard web browser.

2. Paste the name in a search box for transferring money (either frmo a corp wallet or a personal wallet). Select
the user and have the Give/Transfer ISK dialog box up.

3. Copy payout amount from app.

4. Paste payout amount into the amount box in-game.

5. Copy the request ID from the app.

6. Paste the request ID into the reason box in-game. Click the OK button to transfer the money.

7. Once the transfer has completed, click the green “Paid” button. This will mark the request as paid.

If you need to go back and fix something in a request, or to review them beforehand, you can clik the request ID text
(the blue link).

1.1. Quick Start 11

EVE SRP Documentation, Release

Administering Divisions

A fresh installation of EVE-SRP will not have any divisions configured, so one of the first actions after installation
should be to configure divisions. If you have either the site administrator or administrator in a division, you will have
an “Admin” button at the top of the screen. Clicking it will list all of the divisions you can administer.

If you are a site administrator you will also see a button for creating divisions. To add a division, click the “Add
Division” button, enter a name on the form, then click the “Create Division” button.

12 Chapter 1. User Guide

EVE SRP Documentation, Release

After creating a new division or clicking one of the links in the division listing, you will see the administration page
for that division. To grant a permission to a user or group, start typing the name of that user or group in the text box
corresponding to that permission. It will autocomplete their name if the app knows about it (i.e. if they’ve logged in
before or a user in that group has logged in before).

Either click the correct entry, or finish typing it out and click the “Add” button. To revoke privileges to a user or group,
click the “X” in the “Remove” column.

Divisions can be configured to have certain request attributes to be changed into links. This is covered in more detail
in the (TODO) transformers section.

1.1. Quick Start 13

EVE SRP Documentation, Release

External API

EVE-SRP provides read-only access to requests you can access to external applications. Responses can be formatted
as XML or JSON depending on your requirements. The URLs for the API are the same ones you access normally in
a web browser, just in a different format.

API Keys

The first step to using the external API is to create an API key. Click the “Create API Key” button, and a key will be
generated.

You can revoke API keys at any time by clicking the “X” in the “Remove” column. The key is the string of letters and
numbers and can be copied to your clipboard by clicking on its button (requires Flash).

To use the API key, provide it as a parameter in the query string along with the desired format. The parameter name
for the key is apikey and the field name for the format is fmt, and valid values are json or xml.

Lists of Requests

You can retrieve lists of up to 200 requests per page through the API. Filtering and sorting options are applied the same
way they are when viewing the lists as HTML. In addition to the personal, pending, pay and completed lists
exposed in the UI, there is an all route that will list all requests you have access to. As with the other lists that
show requests other than your own, you must have a permission greater than ‘submitter’ granted to you in a division
to access those lists.

JSON

In response to http://example.com/request/personal/?apikey=dVbP0_SCPS12LnLpIZoJvemzeUUOOUErT7nojbJW4_I,&fmt=json

14 Chapter 1. User Guide

EVE SRP Documentation, Release

{
"api_keys": [
{

"id": 6,
"key": "dVbP0_SCPS12LnLpIZoJvemzeUUOOUErT7nojbJW4_I,",
"timestamp": "Thu, 10 Jul 2014 06:48:51 GMT"

}
],
"requests": [
{

"alliance": "Test Alliance Please Ignore",
"base_payout": "40000000.00",
"base_payout_str": "40,000,000.00",
"corporation": "Dreddit",
"details": "I literally forgot how to broadcast for armor.",
"division": {

"href": "/api/division/1/",
"id": 1,
"name": "Test Alliance"

},
"href": "/request/39861569/",
"id": 39861569,
"kill_timestamp": "Wed, 02 Jul 2014 19:26:00 GMT",
"killmail_url": "https://zkillboard.com/kill/39861569/",
"payout": "40000000.00",
"payout_str": "40,000,000.00",
"pilot": "Paxswill",
"status": "paid",
"submit_timestamp": "Wed, 09 Jul 2014 19:43:58 GMT",
"submitter": {

"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

}
},
{

"alliance": "Test Alliance Please Ignore",
"base_payout": "9158708.44",
"base_payout_str": "9,158,708.44",
"corporation": "Dreddit",
"details": "crest mail?",
"division": {

"href": "/api/division/1/",
"id": 1,
"name": "Test Alliance"

},
"href": "/request/39697412/",
"id": 39697412,
"kill_timestamp": "Mon, 23 Jun 2014 16:06:00 GMT",
"killmail_url": "https://zkillboard.com/kill/39697412/",
"payout": "9158708.44",
"payout_str": "9,158,708.44",
"pilot": "Paxswill",
"status": "paid",
"submit_timestamp": "Wed, 09 Jul 2014 09:12:19 GMT",
"submitter": {

"href": "/api/user/1/",
"id": 1,

1.2. External API 15

EVE SRP Documentation, Release

"name": "paxswill"
}

}
]

}

XML

In response to http://example.com/request/personal/?apikey=dVbP0_SCPS12LnLpIZoJvemzeUUOOUErT7nojbJW4_I,&fmt=xml

<?xml version="1.0" encoding="UTF-8" ?>
<response user="paxswill">
<apikeys>
<apikey id="6">

<key>dVbP0_SCPS12LnLpIZoJvemzeUUOOUErT7nojbJW4_I,</key>
<timestamp>2014-07-10T06:48:51.167054</timestamp>

</apikey>
</apikeys>
<requests>
<request id="39861569" status="paid">
<payout>

<base pretty="40,000,000.00">40000000.00</base>
<computed pretty="40,000,000.00">40000000.00</computed>

</payout>
<details>I literally forgot how to broadcast for armor.</details>
<pilot>

<alliance>Test Alliance Please Ignore</alliance>
<corporation>Dreddit</corporation>
<name>Paxswill</name>

</pilot>
<submit-timestamp>2014-07-09T19:43:58.126158</submit-timestamp>
<kill-timestamp>2014-07-02T19:26:00</kill-timestamp>
<division id="1" name="Test Alliance" />
<submitter id="1" name="paxswill" />
<killmail-url>https://zkillboard.com/kill/39861569/</killmail-url>
<url>/request/39861569/</url>
<ship>Guardian</ship>
<location>

<system>WD-VTV</system>
<constellation>UX3-N2</constellation>
<region>Catch</region>

</location>
</request>
<request id="39697412" status="paid">

<payout>
<base pretty="9,158,708.44">9158708.44</base>
<computed pretty="9,158,708.44">9158708.44</computed>

</payout>
<details>crest mail?</details>
<pilot>

<alliance>Test Alliance Please Ignore</alliance>
<corporation>Dreddit</corporation>
<name>Paxswill</name>

</pilot>
<submit-timestamp>2014-07-09T09:12:19.250893</submit-timestamp>
<kill-timestamp>2014-06-23T16:06:00</kill-timestamp>
<division id="1" name="Test Alliance" />

16 Chapter 1. User Guide

EVE SRP Documentation, Release

<submitter id="1" name="paxswill" />
<killmail-url>https://zkillboard.com/kill/39697412/</killmail-url>
<url>/request/39697412/</url>
<ship>Tristan</ship>
<location>

<system>Hikkoken</system>
<constellation>Ishaga</constellation>
<region>Black Rise</region>

</location>
</request>

</requests>
</response>

RSS

An RSS feed for requests in a list is available by adding /rss.xml to the end
of a list URL. For example, the URL for the feed of pending requests would be
http://example.com/request/pending/rss.xml?apikey=dVbP0_SCPS12LnLpIZoJvemzeUUOOUErT7nojbJW4_I

Request Details

If you need details beyond that provided in the lists of requests, or to look up informa-
tion on a specific request you can access a request’s URL through the API. For exam-
ple, the request for killmail #39861569 in JSON format could be retrieved with the URL
http://example.com/request/39861569/?apikey=dVbP0_SCPS12LnLpIZoJvemzeUUOOUErT7nojbJW4_I,&fmt=json.
The path for an individual requests is also returned as part of the response in request listings.

JSON

{
"actions": [
{

"id": 2,
"note": "",
"timestamp": "Thu, 10 Jul 2014 06:37:09 GMT",
"type": "paid",
"user": {

"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

}
},
{

"id": 1,
"note": "Good to go.",
"timestamp": "Wed, 09 Jul 2014 19:58:56 GMT",
"type": "approved",
"user": {

"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

}
}

],

1.2. External API 17

https://zkillboard.com/kill/39861569/

EVE SRP Documentation, Release

"alliance": "Test Alliance Please Ignore",
"base_payout": "40000000.00",
"base_payout_str": "40,000,000.00",
"corporation": "Dreddit",
"current_user": {
"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

},
"details": "I literally forgot how to broadcast for armor.",
"division": {
"href": "/api/division/1/",
"id": 1,
"name": "Test Alliance"

},
"href": "/request/39861569/",
"id": 39861569,
"kill_timestamp": "Wed, 02 Jul 2014 19:26:00 GMT",
"killmail_url": "https://zkillboard.com/kill/39861569/",
"modifiers": [
{

"id": 1,
"note": "You’re awesome!",
"timestamp": "Wed, 09 Jul 2014 19:50:10 GMT",
"user": {

"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

},
"value": 0.15,
"value_str": "15.0% bonus",
"void": {

"timestamp": "Wed, 09 Jul 2014 19:58:00 GMT",
"user": {
"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

}
}

}
],
"payout": "40000000.00",
"payout_str": "40,000,000.00",
"pilot": "Paxswill",
"status": "paid",
"submit_timestamp": "Wed, 09 Jul 2014 19:43:58 GMT",
"submitter": {
"href": "/api/user/1/",
"id": 1,
"name": "paxswill"

},
"valid_actions": [
"approved",
"evaluating"

]
}

18 Chapter 1. User Guide

EVE SRP Documentation, Release

XML

<?xml version="1.0" encoding="UTF-8" ?>
<response user="paxswill">
<request id="39861569" status="paid">
<payout>

<base pretty="40,000,000.00">40000000.00</base>
<computed pretty="40,000,000.00">40000000.00</computed>

</payout>
<details>I literally forgot how to broadcast for armor.</details>
<pilot>

<alliance>Test Alliance Please Ignore</alliance>
<corporation>Dreddit</corporation>
<name>Paxswill</name>

</pilot>
<submit-timestamp>2014-07-09T19:43:58.126158</submit-timestamp>
<kill-timestamp>2014-07-02T19:26:00</kill-timestamp>
<division id="1" name="Test Alliance" />
<submitter id="1" name="paxswill" />
<killmail-url>https://zkillboard.com/kill/39861569/</killmail-url>
<url>/request/39861569/</url>
<ship>Guardian</ship>
<location>

<system>WD-VTV</system>
<constellation>UX3-N2</constellation>
<region>Catch</region>

</location>
<actions>

<action id="2" type="paid">
<note></note>
<timestamp>2014-07-10T06:37:09.242568</timestamp>
<user id="1" name="paxswill" />

</action>
<action id="1" type="approved">
<note>Good to go.</note>
<timestamp>2014-07-09T19:58:56.524278</timestamp>
<user id="1" name="paxswill" />

</action>
</actions>
<modifiers>

<modifier id="1">
<note>You're awesome!</note>
<user id="1" name="paxswill" />
<value>15.0% bonus</value>
<timestamp>2014-07-09T19:50:10.909394</timestamp>
<void id="1" name="paxswill">
<timestamp>2014-07-09T19:58:00.069323</timestamp>

</void>
</modifier>

</modifiers>
</request>

</response>

1.2. External API 19

EVE SRP Documentation, Release

20 Chapter 1. User Guide

CHAPTER 2

Developers Guide

Authentication

Authentication in EVE-SRP was designed from the start to allow for multiple different authentication systems and to
make it easy to integrate it with an existing authentication system.

As an exercise in how to write your own authentication plugin, let’s write one that doesn’t rely on an external service.
We’ll need to subclass two classes for this; AuthMethod and User

Let’s start with subclassing User. This class is mapped to an SQL table using SQLAlchemy’s declarative extension
(more specifically, the Flask-SQLAlchemy plugin for Flask). The parent class automatically sets up the table name
and inheritance mapper arguments for you, so all you need to do is provide the id attribute that links your class with
the parent class and an attribute to store the password hash. In the example below, we’re using the simple-pbkdf2
package to provide the password hashing. We also have a checking method to make life easier for us later.

import os
from hashlib import sha512
from evesrp import db
from evesrp.auth.models import User
from pbkdf2 import pbkdf2_bin

class LocalUser(User):
id = db.Column(db.Integer, db.ForeignKey(User.id), primary_key=True)
password = db.Column(db.LargeBinary(24), nullable=False)
salt = db.Column(db.LargeBinary(24), nullable=False)

def __init__(self, name, password, authmethod, **kwargs):
self.salt = os.urandom(24)
self.password = pbkdf2_bin(password.encode(’utf-8’), self.salt,

iterations=10000)
super(LocalUser, self).__init__(name, authmethod, **kwargs)

def check_password(self, password):
key = pbkdf2_bin(password.encode(’utf-8’), self.salt,

iterations=10000)
matched = 0
for a, b in zip(self.password, key):

matched |= ord(a) ^ ord(b)
return matched == 0

AuthMethod subclasses have four methods they can implement to customize thier behavior.

• AuthMethod.form() returns a Form subclass that represents the necessary fields.

21

EVE SRP Documentation, Release

• AuthMethod.login() performs the actual login process. As part of this, it is passed an instance of the class
given by AuthMethod.form() with the submitted data via the form argument.

• For those authentication methods that requires a secondary view/route, the AuthMethod.view() method
can be implemented to handle requests made to login/safe_name where safe_name is the output of
AuthMethod.safe_name.

• Finally, the initializer should be overridden to provide a default name for your AuthMethod other than Base
Authentication.

• Finally, the initializer can be overridden to handle specialized configurations.

With these in mind, let’s implement our AuthMethod subclass:

from evesrp.auth import AuthMethod
from flask import redirect, url_for, render_template, request
from flask_wtf import Form
from sqlalchemy.orm.exc import NoResultFound
from wtforms.fields import StringField, PasswordField, SubmitField
from wtforms.validators import InputRequired, EqualTo

class LocalLoginForm(Form):
username = StringField(’Username’, validators=[InputRequired()])
password = PasswordField(’Password’, validators=[InputRequired()])
submit = SubmitField(’Log In’)

class LocalCreateUserForm(Form):
username = StringField(’Username’, validators=[InputRequired()])
password = PasswordField(’Password’, validators=[InputRequired(),

EqualTo(’password_repeat’, message=’Passwords must match’)])
password_repeat = PasswordField(

’Repeat Password’, validators=[InputRequired()])
submit = SubmitField(’Log In’)

class LocalAuth(AuthMethod):

def form(self):
return LocalLoginForm

def login(self, form):
form has already been validated, we just need to process it.
try:

user = LocalUser.query.filter_by(name=form.username.data).one()
except NoResultFound:

flash("No user found with that username.", ’error’)
return redirect(url_for(’login.login’))

if user.check_password(form.password.data):
self.login_user(user)
return redirect(request.args.get(’next’) or url_for(’index’))

else:
flash("Incorrect password.", ’error’)
return redirect(url_for(’login.login’))

def view(self):
form = LocalCreateUserForm()
if form.validate_on_submit():

user = LocalUser(form.username.data, form.password.data)

22 Chapter 2. Developers Guide

EVE SRP Documentation, Release

db.session.add(user)
db.session.commit()
self.login_user(user)
return redirect(url_for(’index’))

form.html is a template included in Eve-SRP that renders all
elements of a form.
return render_template(’form.html’, form=form)

That’s all that’s necessary for a very simple AuthMethod. This example cuts some corners, and isn’t ready for
production-level use, but it serves as a quick example of what’s necessary to write a custom authentication method.
Feel free to look at the sources for the included AuthMethods below to gather ideas on how to use more complicated
mechanisms.

Included Authentication Methods

Brave Core

class evesrp.auth.bravecore.BraveCore(client_key, server_key, identifier,
url=’https://core.braveineve.com’, **kwargs)

Bases: evesrp.auth.AuthMethod

__init__(client_key, server_key, identifier, url=’https://core.braveineve.com’, **kwargs)
Authentication method using a Brave Core instance.

Uses the native Core API to authenticate users. Currently only supports a single character at a time due to
limitations in Core’s API.

Parameters

• client_key (str) – The client’s private key in hex form.

• server_key (str) – The server’s public key for this app in hex form.

• identifier (str) – The identifier for this app in Core.

• url (str) – The URL of the Core instance to authenticate against. Default:
‘https://core.braveineve.com‘

• name (str) – The user-facing name for this authentication method. Default: ‘Brave Core’

TEST Legacy

class evesrp.auth.testauth.TestAuth(api_key=None, **kwargs)
Bases: evesrp.auth.AuthMethod

__init__(api_key=None, **kwargs)
Authentication method using TEST Auth‘s legacy (a.k.a v1) API.

Parameters

• api_key (str) – (optional) An Auth API key. Without this, only primary characters are able
to be accessed/used.

• name (str) – The user-facing name for this authentication method. Default: ‘Test Auth’

2.1. Authentication 23

https://github.com/bravecollective/core
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://core.braveineve.com
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/nikdoof/test-auth
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EVE SRP Documentation, Release

OAuth

A number of external authentication services have an OAuth provider for external applications to use with their API. To
facilitate usage of thses services, an OAuthMethod class has been provided for easy integration. Subclasses will need
to implement the get_user(), get_pilots() and get_groups() methods. Additionally, implementations
for JFLP’s provider and TEST’s provider have been provided as a reference.

class evesrp.auth.oauth.OAuthMethod(**kwargs)

__init__(**kwargs)
Abstract AuthMethod for OAuth-based login methods.

Implementing classes need to implement get_user(), get_pilots(), and get_groups().

In addition to the keyword arguments from AuthMethod, this initializer accepts the following argu-
ments that will be used in the creation of the OAuthMethod.oauth object (See the documentation for
OAuthRemoteApp for more details):

•client_id

•client_secret

•scope

•access_token_url

•refresh_token_url

•authorize_url

•access_token_params

•method

As a convenience, the key and secret keyword arguments will be treated as consumer_key
and consumer_secret respectively. The name argument is used for both AuthMethod and for
OAuthRemoteApp.

Subclasses for providers that may be used by more than one entity are encouraged to provide their own
defaults for the above arguments.

The redirect URL for derived classes is based off of the safe_name of the implementing AuthMethod,
specifically the URL for view(). For example, the default redirect URL for TestOAuth is similar to
https://example.com/login/test_oauth/ (Note the trailing slash, it is significant).

Parameters default_token_expiry (int) – The default time (in seconds) access tokens are
valid for. Defaults to 5 minutes.

get_groups()
Returns a list of Groups for the given token.

Like get_user() and get_pilots(), this method is to be implemented by OAuthMethod sub-
classes to return a list of Groups associated with the account for the given access token.

Return type list of Groups.

get_pilots()
Return a list of Pilots for the given token.

Like get_user(), this method is to be implemented by OAuthMethod subclasses to return a list of
Pilots associated with the account for the given access token.

Return type list of Pilots.

24 Chapter 2. Developers Guide

https://flask-oauthlib.readthedocs.org/en/latest/api.html#flask_oauthlib.client.OAuthRemoteApp
https://flask-oauthlib.readthedocs.org/en/latest/api.html#flask_oauthlib.client.OAuthRemoteApp
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

EVE SRP Documentation, Release

get_user()
Returns the OAuthUser instance for the current token.

This method is to be implemented by subclasses of OAuthMethod to use whatever APIs they have access
to to get the user account given an access token.

Return type OAuthUser

is_admin(user)
Returns wether this user should be treated as a site-wide administrator.

The default implementation checks if the user’s name is contained within the list of administrators supplied
as an argument to OAuthMethod.

Parameters user (OAuthUser) – The user to check.

Return type bool

refresh(user)
Refreshes the current user’s information.

Attempts to refresh the pilots and groups for the given user. If the current access token has expired, the
refresh token is used to get a new access token.

view()
Handle creating and/or logging in the user and updating their Pilots and Groups.

EVE SSO

class evesrp.auth.evesso.EveSSO(singularity=False, **kwargs)
Bases: evesrp.auth.oauth.OAuthMethod

get_groups()
Set the user’s groups for their pilot.

At this time, Eve SSO only gives us character access, so they’re just set to the pilot’s corporation, and if
they have on their alliance as well. In the future, this method may also add groups for mailing lists.

J4OAuth

class evesrp.auth.j4oauth.J4OAuth(base_url=’https://j4lp.com/oauth/api/v1/’, **kwargs)
Bases: evesrp.auth.oauth.OAuthMethod

__init__(base_url=’https://j4lp.com/oauth/api/v1/’, **kwargs)
AuthMethod for using J4OAuth as an authentication source.

Parameters

• authorize_url (str) – The URL to request OAuth authorization tokens. Default:
’https://j4lp.com/oauth/authorize’.

• access_token_url (str) – The URL for OAuth token exchange. Default:
’https://j4lp.com/oauth/token’.

• base_str (str) – The base URL for API requests. Default:
’https://j4lp.com/oauth/api/v1/’.

• request_token_params (dict) – Additional parameters to include with the authoriza-
tion token request. Default: {’scope’: [’auth_info’, ’auth_groups’,
’characters’]}.

2.1. Authentication 25

https://github.com/J4LP/J4OAuth
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

EVE SRP Documentation, Release

• access_token_method (str) – HTTP Method to use for exchanging authorization tokens
for access tokens. Default: ’GET’.

• name (str) – The name for this authentication method. Default: ’J4OAuth’.

TestOAuth

class evesrp.auth.testoauth.TestOAuth(devtest=False, **kwargs)
Bases: evesrp.auth.oauth.OAuthMethod

__init__(devtest=False, **kwargs)
AuthMethod using TEST Auth’s OAuth-based API for authentication and authorization.

Parameters

• admins (list) – Two types of values are accepted as values in this list, either a string
specifying a user’s primary character’s name, or their Auth ID as an integer.

• devtest (bool) – Testing parameter that changes the default domain for URLs
from ‘https://auth.pleaseignore.com‘ to ‘https://auth.devtest.pleaseignore.com‘. Default:
False.

• authorize_url (str) – The URL to request OAuth authorization tokens. Default:
’https://auth.pleaseignore.com/oauth2/authorize’.

• access_token_url (str) – The URL for OAuth token exchange. Default:
’https://auth.pleaseignore.com/oauth2/access_token’.

• base_str (str) – The base URL for API requests. Default:
’https://auth.pleaseignore.com/api/v3/’.

• request_token_params (dict) – Additional parameters to include with the authorization
token request. Default: {’scope’: ’private-read’}.

• access_token_method (str) – HTTP Method to use for exchanging authorization tokens
for access tokens. Default: ’POST’.

• name (str) – The name for this authentication method. Default: ’Test OAuth’.

Low-Level API

class evesrp.auth.PermissionType
Enumerated type for the types of permissions available.

elevated
Returns a frozenset of the permissions above submit.

all
Returns a frozenset of all possible permission values.

admin = <admin>
Division-level administrator permission

audit = <audit>
A special permission for allowing read-only elevated access

pay = <pay>
Permission for payers in a Division.

review = <review>
Permission for reviewers of requests in a Division.

26 Chapter 2. Developers Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://auth.pleaseignore.com
https://auth.devtest.pleaseignore
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset

EVE SRP Documentation, Release

submit = <submit>
Permission allowing submission of Requests to a Division.

class evesrp.auth.AuthMethod(admins=None, name=’Base Authentication’, **kwargs)
Represents an authentication mechanism for users.

__init__(admins=None, name=’Base Authentication’, **kwargs)

Parameters

• admins (list) – A list of usernames to treat as site-wide administrators. Useful for initial
setup.

• name (str) – The user-facing name for this authentication method.

form()
Return a flask_wtf.Form subclass to login with.

login(form)
Process a validated login form.

You must return a valid response object.

static login_user(user)
Signal to the authentication systems that a new user has logged in.

Handles calling flask_login.login_user() and any other related housekeeping functions for you.

Parameters user (User) – The user that has been authenticated and is logging in.

refresh(user)
Refresh a user’s information (if possible).

The AuthMethod should attmept to refresh the given user’s information as if they were logging in for
the first time.

Parameters user (User) – The user to refresh.

Returns Wether or not the refresh attempt succeeded.

Return type bool

safe_name
Normalizes a string to be a valid Python identifier (along with a few other things).

Specifically, all letters are lower cased and non-ASCII and whitespace are replaced by underscores.

Returns The normalized string.

Rtype str

view()
Optional method for providing secondary views.

evesrp.views.login.auth_method_login() is configured to allow both GET and POST
requests, and will call this method as soon as it is known which auth method is meant to be
called. The path for this view is /login/self.safe_name/, and can be generated with
url_for(’login.auth_method_login’, auth_method=self.safe_name).

The default implementation redirects to the main login view.

class evesrp.auth.models.Entity(name, authmethod, **kwargs)
Private class for shared functionality between User and Group.

This class defines a number of helper methods used indirectly by User and Group subclasses such as automati-
cally defining the table name and mapper arguments.

2.1. Authentication 27

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://flask-login.readthedocs.org/en/latest/index.html#flask_login.login_user
https://docs.python.org/3/library/functions.html#bool

EVE SRP Documentation, Release

This class should not be inherited from directly, instead either User or Group should be used.

authmethod
The name of the AuthMethod for this entity.

entity_permissions
Permissions associated specifically with this entity.

has_permission(permissions, division_or_request=None)
Returns if this entity has been granted a permission in a division.

If division_or_request is None, this method checks if this group has the given permission in any
division.

Parameters

• permissions (iterable) – The series of permissions to check

• division_or_request – The division to check. May also be None or an SRP request.

Return type bool

name
The name of the entity. Usually a nickname.

class evesrp.auth.models.User(name, authmethod, **kwargs)
Bases: evesrp.auth.models.Entity

User base class.

Represents users who can submit, review and/or pay out requests. It also supplies a number of convenience
methods for subclasses.

actions
Actions this user has performed on requests.

admin
If the user is an administrator. This allows the user to create and administer divisions.

get_id()
Part of the interface for Flask-Login.

groups
Groups this user is a member of

is_active
Part of the interface for Flask-Login.

is_anonymous
Part of the interface for Flask-Login.

is_authenticated
Part of the interface for Flask-Login.

pilots
Pilots associated with this user.

requests
Requests this user has submitted.

submit_divisions()
Get a list of the divisions this user is able to submit requests to.

Returns A list of tuples. The tuples are in the form (division.id, division.name)

Return type list

28 Chapter 2. Developers Guide

EVE SRP Documentation, Release

class evesrp.auth.models.Pilot(user, name, id_)
Represents an in-game character.

__init__(user, name, id_)
Create a new Pilot instance.

Parameters

• user (User) – The user this character belpongs to.

• name (str) – The name of this character.

• id (int) – The CCP-given characterID number.

name
The name of the character

requests
The Requests filed with lossmails from this character.

user
The User this character belongs to.

class evesrp.auth.models.APIKey(user)
Represents an API key for use with the External API.

hex_key
The key data in a modified base-64 format safe for use in URLs.

key
The raw key data.

user
The User this key belongs to.

class evesrp.auth.models.Note(user, noter, note)
A note about a particular User.

content
The actual contents of this note.

noter
The author of this note.

user
The User this note refers to.

class evesrp.auth.models.Group(name, authmethod, **kwargs)
Bases: evesrp.auth.models.Entity

Base class for a group of users.

Represents a group of users. Usable for granting permissions to submit, evaluate and pay.

permissions
Synonym for entity_permissions

users
User s that belong to this group.

class evesrp.auth.models.Permission(division, permission, entity)

__init__(division, permission, entity)
Create a Permission object granting an entity access to a division.

2.1. Authentication 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

EVE SRP Documentation, Release

division
The division this permission is granting access to

entity
The Entity being granted access

permission
The permission being granted.

class evesrp.auth.models.Division(name)
A reimbursement division.

A division has (possibly non-intersecting) groups of people that can submit requests, review requests, and pay
out requests.

division_permissions
All Permissions associated with this division.

name
The name of this division.

permissions
The permissions objects for this division, mapped via their permission names.

requests
Request s filed under this division.

transformers
A mapping of attribute names to Transformer instances.

class evesrp.auth.models.TransformerRef(**kwargs)
Stores associations between Transformers and Divisions.

attribute_name
The attribute this transformer is applied to.

division
The division the transformer is associated with

transformer
The transformer instance.

Killmail Handling

EVE-SRP relies on outside sources for its killmail information. Whether that source is ESI, zKillboard, or some
private killboard does not matter, there just has to be some sort of access to the information.

The interface for Killmail is fairly simple. It provides a number of attributes, and for those that correspond to
in-game entities, it also provides their ID number. The default implementation has all values set to None. If a killmail
is invalid in some way, it can be signaled either by raising a ValueError or LookupError in the killmail’s
__init__() method or by defining a Killmail.verified property and returning False from it when the
killmail is invalid.

Two implementations for creating a Killmail from a URL are included: ESIMail is created from a ESI external
killmail link, and ZKillmail is created from a zKillboard details link.

30 Chapter 2. Developers Guide

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#LookupError
https://zkillboard.com

EVE SRP Documentation, Release

Extension Examples

The reasoning behind having killmails handled in a separate class was for administrators to be able to customize
behavior. Here’re a few useful snippets that may be useful for your situation.

Restricting Valid zKillboards

ZKillmail by default will accept any link that looks and acts like a zKillboard instance. It does not restrict itself to
any particular domain name, but it makes allowances for this common requirement.

from evesrp.killmail import ZKillmail

class OnlyZKillboard(ZKillmail):
def __init__(self, *args, **kwargs):

super(TestZKillmail, self).__init__(*args, **kwargs)
if self.domain != ’zkillboard.com’:

raise ValueError(u"This killmail is from the wrong killboard.")

Submitting ESI Links to zKillboard

To streamline the process for users, you can accept ESI killmail links and then submits them to zKillboard.com and
uses the new zKillboard.com link as the canonical URL for the request.

from decimal import Decimal
from flask import Markup
from evesrp.killmail import ESIMail

class SubmittedESIZKillmail(ESIMail):
"""Accepts and validates ESI killmail links, but submits them to
ZKillboard and substitutes the zKB link in as the canonical link
"""

def __init__(self, url, **kwargs):
Let ESIMail validate the ESI link
super(self.__class__, self).__init__(url, **kwargs)
Submit the ESI URL to ZKillboard
resp = self.requests_session.post(’https://zkillboard.com/post/’,

data={’killmailurl’: url})
Use the URL we get from ZKillboard as the new URL (if it’s successful).
if self.kill_id in resp.url:

self.url = resp.url
else:

Leave the ESI URL as-is and finish
return

Grab zkb’s data from their API
api_url = (’https://zkillboard.com/api/no-attackers/’

’no-items/killID/{}’).format(self.kill_id)
zkb_api = self.requests_session.get(api_url)
retrieval_error = LookupError(u"Error retrieving killmail data (zKB): {}"

.format(zkb_api.status_code))
if zkb_api.status_code != 200:

raise retrieval_error
try:

json = zkb_api.json()

2.2. Killmail Handling 31

EVE SRP Documentation, Release

except ValueError as e:
raise retrieval_error

try:
json = json[0]

except IndexError as e:
raise LookupError(u"Invalid killmail: {}".format(url))

Recent versions of zKillboard calculate a loss’ value.
try:

self.value = Decimal(json[u’zkb’][u’totalValue’])
except KeyError:

self.value = Decimal(0)

description = Markup(u’An ESI external killmail link that will be ’
u’automatically submitted to <a href="https://’
u’zkillboard.com">zKillboard.com.’)

Setting Base Payouts from a Spreadsheet

If you have standardized payout values in a Google spreadsheet, you can set Request.base_payout to the values
in this spreadsheet. This is assuming your spreadsheet is set up with ship hull names in one column and payouts in
another column. Both Columns need to have a header (‘Hull’ and ‘Payout’ in the example below). This uses the
Google Data Python Client which only supports Python 2, and can be installed with pip install gdata.

import gdata.spreadsheets.client
from decimal import Decimal

patch the spreadsheet’s client to use the public feeds
gdata.spreadsheets.client.PRIVATE_WORKSHEETS_URL = \

gdata.spreadsheets.client.WORKSHEETS_URL
gdata.spreadsheets.client.WORKSHEETS_URL = (’https://spreadsheets.google.com/’

’feeds/worksheets/%s/public/full’)
gdata.spreadsheets.client.PRIVATE_LISTS_URL = \

gdata.spreadsheets.client.LISTS_URL
gdata.spreadsheets.client.LISTS_URL = (’https://spreadsheets.google.com/feeds/’

’list/%s/%s/public/full’)

class SpreadsheetPayout(ZKillmail):

The spreadsheet’s key
(https://docs.google.com/spreadsheets/d/THE_PART_HERE/edit).
Make sure the spreadsheet has been published (File->Publish to web...)
spreadsheet_key = ’THE_PART_HERE’

The name of the worksheet with the payouts
worksheet_name = ’Payouts’

The header for the hull column (always lowercase, the Google API
lowercases it).
hull_key = ’hull’

And the same for the payout column
payout_key = ’payout’

client = gdata.spreadsheets.client.SpreadsheetsClient()

32 Chapter 2. Developers Guide

https://code.google.com/p/gdata-python-client/

EVE SRP Documentation, Release

@property
def value(self):

Find the worksheet
sheets = self.client.get_worksheets(self.spreadsheet_key)
for sheet in sheets.entry:

if sheet.title.text == self.worksheet_name:
worksheet_id = sheet.get_worksheet_id()
break

else:
return Decimal(’0’)

Read the worksheet’s data
lists = self.client.get_list_feed(self.spreadsheet_key, worksheet_id,

query=gdata.spreadsheets.client.ListQuery(sq=’{}={}’.format(
self.hull_key, self.ship)))

for entry in lists.entry:
return Decimal(entry.get_value(self.payout_key))

return Decimal(’0’)

Developer API

class evesrp.killmail.Killmail(**kwargs)
Base killmail representation.

kill_id
The ID integer of this killmail. Used by most killboards and by CCP to refer to killmails.

ship_id
The typeID integer of for the ship lost for this killmail.

ship
The human readable name of the ship lost for this killmail.

pilot_id
The ID number of the pilot who lost the ship. Referred to by CCP as characterID.

pilot
The name of the pilot who lost the ship.

corp_id
The ID number of the corporation pilot belonged to at the time this kill happened.

corp
The name of the corporation referred to by corp_id.

alliance_id
The ID number of the alliance corp belonged to at the time of this kill, or None if the corporation wasn’t
in an alliance at the time.

alliance
The name of the alliance referred to by alliance_id.

url
A URL for viewing this killmail’s information later. Typically an online killboard such as zKillboard, but
other kinds of links may be used.

value
The extimated ISK loss for the ship destroyed in this killmail. This is an optional attribute, and is None if
unsupported. If this attribute is set, it should be a Decimal or at least a type that can be used as the value
for the Decimal constructor.

2.2. Killmail Handling 33

https://zkillboard.com

EVE SRP Documentation, Release

timestamp
The date and time that this kill occured as a datetime.datetime object (with a UTC timezone).

verified
Whether or not this killmail has been API verified (or more accurately, if it is to be trusted when making a
Request.

system
The name of the system where the kill occured.

system_id
The ID of the system where the kill occured.

constellation
The name of the constellation where the kill occured.

region
The name of the region where the kill occured.

__init__(**kwargs)
Initialize a Killmail with None for all attributes.

All subclasses of this class, (and all mixins designed to be used with it) must call
super().__init__(**kwargs) to ensure all initialization is done.

Param keyword arguments corresponding to attributes.

__iter__()
Iterate over the attributes of this killmail.

Yields tuples in the form (’<name>’, <value>). This is used by Request.__init__ to initialize
its data quickly. <name> in the returned tuples is the name of the attribute on the Request.

description = l’A generic Killmail. If you see this text, you need to configure your application.’
A user-facing description of what kind of killmails this Killmail validates/handles. This text is dis-
played below the text field for a killmail URL to let users know what kinds of links are acceptable.

class evesrp.killmail.ZKillmail(url, **kwargs)
Bases: evesrp.killmail.ESIMail

domain
The domain name of this killboard.

class evesrp.killmail.ESIMail(url, **kwargs)
Bases: evesrp.killmail.Killmail, evesrp.killmail.RequestsSessionMixin,
evesrp.killmail.LocationMixin

A killmail with data sourced from a ESI killmail link.

__init__(url, **kwargs)
Create a killmail from a ESI killmail link.

Parameters url (str) – the ESI killmail URL.

Raises

• ValueError – if url is not a ESI URL.

• LookupError – if the ESI API response is in an unexpected format.

class evesrp.killmail.RequestsSessionMixin(requests_session=None, **kwargs)
Mixin for providing a requests.Session.

The shared session allows HTTP user agents to be set properly, and for possible connection pooling.

34 Chapter 2. Developers Guide

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#LookupError
http://docs.python-requests.org/en/latest/api/#requests.Session

EVE SRP Documentation, Release

requests_session
A Session for making HTTP requests.

__init__(requests_session=None, **kwargs)
Set up a Session for making HTTP requests.

If an existing session is not provided, one will be created.

Parameters requests_session – an existing session to use.

class evesrp.killmail.ShipNameMixin
Killmail mixin providing Killmail.ship from Killmail.ship_id.

ship
Looks up the ship name using Killmail.ship_id.

class evesrp.killmail.LocationMixin
Killmail mixin for providing solar system, constellation and region names from Killmail.system_id.

constellation
Provides the constellation name using Killmail.system_id.

region
Provides the region name using Killmail.system_id.

system
Provides the solar system name using Killmail.system_id.

Views

evesrp.views.index()
The index page for EVE-SRP.

Login

evesrp.views.login.auth_method_login(auth_method)
Trampoline for AuthMethod-specific views.

See Authmethod.view for more details.

evesrp.views.login.login()
Presents the login form and processes responses from that form.

When a POST request is recieved, this function passes control to the appropriate login method.

evesrp.views.login.login_loader(userid)
Pull a user object from the database.

This is used for loading users from existing sessions.

evesrp.views.login.logout()
Logs the current user out.

Redirects to index().

2.3. Views 35

http://docs.python-requests.org/en/latest/api/#requests.Session
http://docs.python-requests.org/en/latest/api/#requests.Session

EVE SRP Documentation, Release

Divisions

evesrp.views.divisions.add_division()
Present a form for adding a division and also process that form.

Only accesible to adminstrators.

evesrp.views.divisions.get_division_details(division_id=None, division=None)
Generate a page showing the details of a division.

Shows which groups and individuals have been granted permissions to each division.

Only accesible to administrators.

Parameters division_id (int) – The ID number of the division

evesrp.views.divisions.list_transformers(division_id, attribute=None)
API method to get a list of transformers for a division.

Parameters

• int (division_id) – the ID of the division to look up

• str (attribute) – a specific attribute to look up. Optional.

Returns JSON

evesrp.views.divisions.modify_division(division_id)
Dispatches modification requests to the specialized view function for that operation.

evesrp.views.divisions.permissions()
Show a page listing all divisions.

evesrp.views.divisions.transformer_choices(attr)
List of tuples enumerating attributes that can be transformed/linked. Mainly used as the choices argument to
SelectField

Requests

class evesrp.views.requests.PayoutListing
A special view made for quickly processing payouts for requests.

class evesrp.views.requests.PermissionRequestListing(permissions, statuses, title=None)
Show all requests that the current user has permissions to access.

This is used for the various permission-specific views.

__init__(permissions, statuses, title=None)
Create a PermissionRequestListing for the given permissions and statuses.

Parameters

• permissions (tuple) – The permissions to filter by

• statuses (tuple) – A tuple of valid statuses for requests to be in

class evesrp.views.requests.PersonalRequests
Shows a list of all personally submitted requests and divisions the user has permissions in.

It will show all requests the current user has submitted.

class evesrp.views.requests.RequestListing
Abstract class for lists of Requests.

Subclasses will be able to respond to both normal HTML requests as well as to API requests with JSON.

36 Chapter 2. Developers Guide

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

EVE SRP Documentation, Release

decorators = [<function login_required at 0x7f796028b7b8>, <function varies.<locals>.vary_decorator at 0x7f795f3d5510>]
Decorators to apply to the view functions

dispatch_request(filters=’‘, **kwargs)
Returns the response to requests.

Part of the flask.views.View interface.

requests(filters)
Returns a list Requests belonging to the specified Division, or all divisions if None.

Returns Requests

Return type iterable

template = ‘requests_list.html’
The template to use for listing requests

class evesrp.views.requests.ValidKillmail(mail_class, **kwargs)
Custom :py:class:’~.Field’ validator that checks if any Killmail accepts the given URL.

evesrp.views.requests.get_killmail_validators()
Get a list of ValidKillmails for each killmail source.

This method is used to delay accessing current_app until we’re in a request context. :returns: a list of
ValidKillmails :rtype list:

evesrp.views.requests.get_request_details(request_id=None, srp_request=None)
Handles responding to all of the Request detail functions.

The various modifier functions all depend on this function to create the actual response content. Only one of the
arguments is required. The srp_request argument is a conveniece to other functions calling this function
that have already retrieved the request.

Parameters

• request_id (int) – the ID of the request.

• srp_request (Request) – the request.

evesrp.views.requests.modify_request(request_id)
Handles POST requests that modify Requests.

Because of the numerous possible forms, this function bounces execution to a more specific function based on
the form’s “id_” field.

Parameters request_id (int) – the ID of the request.

evesrp.views.requests.register_perm_request_listing(app, endpoint, path, permissions,
statuses, title=None)

Utility function for creating PermissionRequestListing views.

Parameters

• app (flask.Flask) – The application to add the view to

• endpoint (str) – The name of the view

• path (str) – The URL path for the view

• permissions (tuple) – Passed to PermissionRequestListing.__init__()

• statuses (iterable) – Passed to PermissionRequestListing.__init__()

evesrp.views.requests.submit_request()
Submit a Request.

2.3. Views 37

http://flask.pocoo.org/docs/0.10/api/#flask.views.View
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://flask.pocoo.org/docs/0.10/api/#flask.Flask
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

EVE SRP Documentation, Release

Displays a form for submitting a request and then processes the submitted information. Verifies that the user
has the appropriate permissions to submit a request for the chosen division and that the killmail URL given is
valid. Also enforces that the user submitting this requests controls the character from the killmail and prevents
duplicate requests.

evesrp.views.requests.url_for_page(pager, page_num)
Utility method used in Jinja templates.

Models

class evesrp.models.ActionType
An Enum for representing the types of Actions performed on a Request in addition to the status of a
Request.

statuses
A frozenset of all of the single ActionType members that also double as statuses for Requests.

finalized
A frozenset of the ActionTypes that are terminal states for a Request (paid and rejected).

pending
A frozenset of ActionTypes for Requests that require further action to be put in a finalized
state.

approved = <approved>
Status for a request that has been evaluated and is awaitng payment.

comment = <comment>
A special type of Action representing a comment made on the request.

evaluating = <evaluating>
Status for a request being evaluated.

incomplete = <incomplete>
Status for a request that is missing details and needs further action.

paid = <paid>
Status for a request that has been paid. This is a terminatint state.

rejected = <rejected>
Status for a requests that has been rejected. This is a terminating state.

exception evesrp.models.ActionError
Error raised for invalid state changes for a Request.

class evesrp.models.Action(request, user, note=None, type_=None)
Bases: flask_sqlalchemy.Model, evesrp.util.models.AutoID,
evesrp.util.models.Timestamped, evesrp.util.models.AutoName

Actions change the state of a Request.

Requests enforce permissions when actions are added to them. If the user adding the action does not have the
appropriate Permissions in the request’s Division, an ActionError will be raised.

With the exception of the comment action (which just adds text to a request), actions change the status of a
Request.

note
Any additional notes for this action.

38 Chapter 2. Developers Guide

https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#frozenset
http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.Model

EVE SRP Documentation, Release

request
The Request this action applies to.

type_
The action be taken. See ActionType for possible values.

user
The User who made this action.

class evesrp.models.ModifierError
Error raised when a modification is attempted to a Request when it’s in an invalid state.

class evesrp.models.Modifier(request, user, note, value)
Bases: flask_sqlalchemy.Model, evesrp.util.models.AutoID,
evesrp.util.models.Timestamped, evesrp.util.models.AutoName

Modifiers apply bonuses or penalties to Requests.

This is an abstract base class for the pair of concrete implementations. Modifiers can be voided at a later date.
The user who voided a modifier and when it was voided are recorded.

Requests enforce permissions when modifiers are added. If the user adding a modifier does not have the
appropriate Permissions in the request’s Division, a ModifierError will be raised.

voided
Boolean of whether this modifier has been voided or not.

This property is available as a hybrid_property, so it can be used natively in SQLAlchemy queries.

note
Any notes explaining this modification.

request
The Request this modifier applies to.

user
The User who added this modifier.

void(user)
Mark this modifier as void.

Parameters user (User) – The user voiding this modifier

voided_timestamp
If this modifier has been voided, this will be the timestamp of when it was voided.

voided_user
The User who voided this modifier if it has been voided.

class evesrp.models.AbsoluteModifier(request, user, note, value)
Subclass of Modifier for representing absolute modifications.

Absolute modifications are those that are not dependent on the value of Request.base_payout.

value
How much ISK to add or remove from the payout

class evesrp.models.RelativeModifier(request, user, note, value)
Subclass of Modifier for representing relative modifiers.

Relative modifiers depend on the value of Modifier.base_payout to calculate their effect.

value
What percentage of the payout to add or remove

2.4. Models 39

http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.Model
http://docs.sqlalchemy.org/en/rel_0_9/orm/extensions/hybrid.html#sqlalchemy.ext.hybrid.hybrid_property

EVE SRP Documentation, Release

class evesrp.models.Request(submitter, details, division, killmail, **kwargs)
Bases: flask_sqlalchemy.Model, evesrp.util.models.AutoID,
evesrp.util.models.Timestamped, evesrp.util.models.AutoName

Requests represent SRP requests.

payout

The total payout of this request taking all active modifiers into account.

In calculating the total payout, all absolute modifiers along with the base_payout are summed.
This is then multipled by the sum of all of the relative modifiers plus 1. This property is a read-only
hybrid_property, so it can be used natively in SQLAlchemy queries.

finalized

Boolean of if this request is in a finalized state. Also a read-only hybrid_property so it can be used
natively in SQLAlchemy queries.

__init__(submitter, details, division, killmail, **kwargs)
Create a Request.

Parameters

• submitter (User) – The user submitting this request

• details (str) – Supporting details for this request

• division (Division) – The division this request is being submitted to

• killmail (Killmail) – The killmail this request pertains to

actions
A list of Actions that have been applied to this request, sorted in the order they were applied.

alliance
The alliance of the pilot at the time of the killmail.

base_payout
The base payout for this request.

This value is clamped to a lower limit of 0. It can only be changed when this request is in an evaluating
state, or else a ModifierError will be raised.

constellation
The constellation this loss occured in.

corporation
The corporation of the pilot at the time of the killmail.

details
Supporting information for the request.

division
The Division this request was submitted to.

kill_timestamp
The date and time of when the ship was destroyed.

killmail_url
The URL of the source killmail.

modifiers
A list of all Modifiers that have been applied to this request, regardless of wether they have been voided
or not. They’re sorted in the order they were added.

40 Chapter 2. Developers Guide

http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.Model
http://docs.sqlalchemy.org/en/rel_0_9/orm/extensions/hybrid.html#sqlalchemy.ext.hybrid.hybrid_property
http://docs.sqlalchemy.org/en/rel_0_9/orm/extensions/hybrid.html#sqlalchemy.ext.hybrid.hybrid_property
https://docs.python.org/3/library/stdtypes.html#str

EVE SRP Documentation, Release

payout
The payout for this requests taking into account all active modifiers.

pilot
The Pilot who was the victim in the killmail.

region
The region this loss occured in.

ship_type
The type of ship that was destroyed.

status
This attribute is automatically kept in sync as Actions are added to the request. It should not be set
otherwise.

At the time an Action is added to this request, the type of action is checked and the state diagram below
is enforced. If the action is invalid, an ActionError is raised.

submitted evaluating

rejected

R

approvedR

incomplete
R

R

R
paidP

R, S R

P

P

R means a reviewer can make that change, S means the submitter can make that change, and P means
payers can make that change. Solid borders are terminal states.

submitter
The User who submitted this request.

system
The solar system this loss occured in.

transformed
Get a special HTML representation of an attribute.

Divisions can have a transformer defined on various attributes that output a URL associated with that
attribute. This property provides easy access to the output of any transformed attributes on this request.

valid_actions(user)
Get valid actions (besides comment) the given user can perform.

2.4. Models 41

EVE SRP Documentation, Release

Javascript

The following documentation is directed towards people developing the front-end for EVE-SRP. These functions
should not be used by end-users, and are purely an implementation detail.

Utilities

month(month_int)
Convert an integer representing a month to the three letter abbreviation.

Arguments

• month_int (int) – An integer (0-11) representing a month.

Returns The three letter abbreviation for that month.

Return type string

padNum(num, width)
Pad a number with leading 0s to the given width.

Arguments

• num (int) – The number to pad.

• width (int) – The width to pad num to.

Returns num padded to width with 0s.

Return type string

pageNumbers(num_pages, current_page[, options])
Return an array of page numbers, skipping some of them as configured by the options argument. This function
should be functionally identical to Flask-SQLAlchemy’s Pagination.iter_pages (including in default
arguments). One deviation is that this function uses 0-indexed page numbers instead of 1-indexed, to ease
compatibility with PourOver. Skipped numbers are represented by null.

Arguments

• num_pages (int) – The total number of pages.

• current_page (int) – The index of the current page.

• options – An object with vonfiguration values for where to sjip numbers. Keys are
left_edge, left_current, right_current, and right_edge. The default val-
ues are 2, 2, 5 and 2 respectively.

Returns The page numbers to be show, in order.

Return type An array on integers (and null).

pager_a_click(ev)
Event callback for pager links. It intercepts the event and changes the current PourOver view to reflect the new
page.

Arguments

• ev (event) – The event object.

42 Chapter 2. Developers Guide

http://flask-sqlalchemy.pocoo.org/api/#flask_sqlalchemy.Pagination.iter_pages

EVE SRP Documentation, Release

PourOver

class RequestsView(name, collection)
An extension of PourOver.View with a custom render function recreating a table of Requests with the
associated pager.

addRequestSorts(collection)
Add sorts for Request attributes to the given PourOver.Collection.

Arguments

• collection (PourOver.Collection) – A collection of requests.

addRequestFilters(collection)
Add filters for Request attributes to the given PourOver.Collection.

Arguments

• collection (PourOver.Collection) – A collection of requests.

2.5. Javascript 43

EVE SRP Documentation, Release

44 Chapter 2. Developers Guide

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

45

EVE SRP Documentation, Release

46 Chapter 3. Indices and tables

Python Module Index

e
evesrp.auth, 26
evesrp.auth.bravecore, 23
evesrp.auth.evesso, 25
evesrp.auth.j4oauth, 25
evesrp.auth.models, 27
evesrp.auth.oauth, 23
evesrp.auth.testauth, 23
evesrp.auth.testoauth, 26
evesrp.killmail, 33
evesrp.models, 38
evesrp.views, 35
evesrp.views.divisions, 36
evesrp.views.login, 35
evesrp.views.requests, 36

47

EVE SRP Documentation, Release

48 Python Module Index

Index

Symbols
__init__() (evesrp.auth.AuthMethod method), 27
__init__() (evesrp.auth.bravecore.BraveCore method), 23
__init__() (evesrp.auth.j4oauth.J4OAuth method), 25
__init__() (evesrp.auth.models.Permission method), 29
__init__() (evesrp.auth.models.Pilot method), 29
__init__() (evesrp.auth.oauth.OAuthMethod method), 24
__init__() (evesrp.auth.testauth.TestAuth method), 23
__init__() (evesrp.auth.testoauth.TestOAuth method), 26
__init__() (evesrp.killmail.ESIMail method), 34
__init__() (evesrp.killmail.Killmail method), 34
__init__() (evesrp.killmail.RequestsSessionMixin

method), 35
__init__() (evesrp.models.Request method), 40
__init__() (evesrp.views.requests.PermissionRequestListing

method), 36
__iter__() (evesrp.killmail.Killmail method), 34

A
AbsoluteModifier (class in evesrp.models), 39
Action (class in evesrp.models), 38
ActionError, 38
actions (evesrp.auth.models.User attribute), 28
actions (evesrp.models.Request attribute), 40
ActionType (class in evesrp.models), 38
add_division() (in module evesrp.views.divisions), 36
addRequestFilters() (built-in function), 43
addRequestSorts() (built-in function), 43
admin (evesrp.auth.models.User attribute), 28
admin (evesrp.auth.PermissionType attribute), 26
all (evesrp.auth.PermissionType attribute), 26
alliance (evesrp.killmail.Killmail attribute), 33
alliance (evesrp.models.Request attribute), 40
alliance_id (evesrp.killmail.Killmail attribute), 33
APIKey (class in evesrp.auth.models), 29
approved (evesrp.models.ActionType attribute), 38
attribute_name (evesrp.auth.models.TransformerRef at-

tribute), 30
audit (evesrp.auth.PermissionType attribute), 26
auth_method_login() (in module evesrp.views.login), 35

AuthMethod (class in evesrp.auth), 27
authmethod (evesrp.auth.models.Entity attribute), 28

B
base_payout (evesrp.models.Request attribute), 40
BraveCore (class in evesrp.auth.bravecore), 23

C
comment (evesrp.models.ActionType attribute), 38
constellation (evesrp.killmail.Killmail attribute), 34
constellation (evesrp.killmail.LocationMixin attribute),

35
constellation (evesrp.models.Request attribute), 40
content (evesrp.auth.models.Note attribute), 29
corp (evesrp.killmail.Killmail attribute), 33
corp_id (evesrp.killmail.Killmail attribute), 33
corporation (evesrp.models.Request attribute), 40

D
decorators (evesrp.views.requests.RequestListing at-

tribute), 36
description (evesrp.killmail.Killmail attribute), 34
details (evesrp.models.Request attribute), 40
dispatch_request() (evesrp.views.requests.RequestListing

method), 37
Division (class in evesrp.auth.models), 30
division (evesrp.auth.models.Permission attribute), 29
division (evesrp.auth.models.TransformerRef attribute),

30
division (evesrp.models.Request attribute), 40
division_permissions (evesrp.auth.models.Division at-

tribute), 30
domain (evesrp.killmail.ZKillmail attribute), 34

E
elevated (evesrp.auth.PermissionType attribute), 26
Entity (class in evesrp.auth.models), 27
entity (evesrp.auth.models.Permission attribute), 30
entity_permissions (evesrp.auth.models.Entity attribute),

28

49

EVE SRP Documentation, Release

ESIMail (class in evesrp.killmail), 34
evaluating (evesrp.models.ActionType attribute), 38
evesrp.auth (module), 26
evesrp.auth.bravecore (module), 23
evesrp.auth.evesso (module), 25
evesrp.auth.j4oauth (module), 25
evesrp.auth.models (module), 27
evesrp.auth.oauth (module), 23
evesrp.auth.testauth (module), 23
evesrp.auth.testoauth (module), 26
evesrp.killmail (module), 33
evesrp.models (module), 38
evesrp.views (module), 35
evesrp.views.divisions (module), 36
evesrp.views.login (module), 35
evesrp.views.requests (module), 36
EveSSO (class in evesrp.auth.evesso), 25

F
finalized (evesrp.models.ActionType attribute), 38
finalized (evesrp.models.Request attribute), 40
form() (evesrp.auth.AuthMethod method), 27

G
get_division_details() (in module evesrp.views.divisions),

36
get_groups() (evesrp.auth.evesso.EveSSO method), 25
get_groups() (evesrp.auth.oauth.OAuthMethod method),

24
get_id() (evesrp.auth.models.User method), 28
get_killmail_validators() (in module

evesrp.views.requests), 37
get_pilots() (evesrp.auth.oauth.OAuthMethod method),

24
get_request_details() (in module evesrp.views.requests),

37
get_user() (evesrp.auth.oauth.OAuthMethod method), 24
Group (class in evesrp.auth.models), 29
groups (evesrp.auth.models.User attribute), 28

H
has_permission() (evesrp.auth.models.Entity method), 28
hex_key (evesrp.auth.models.APIKey attribute), 29

I
incomplete (evesrp.models.ActionType attribute), 38
index() (in module evesrp.views), 35
is_active (evesrp.auth.models.User attribute), 28
is_admin() (evesrp.auth.oauth.OAuthMethod method), 25
is_anonymous (evesrp.auth.models.User attribute), 28
is_authenticated (evesrp.auth.models.User attribute), 28

J
J4OAuth (class in evesrp.auth.j4oauth), 25

K
key (evesrp.auth.models.APIKey attribute), 29
kill_id (evesrp.killmail.Killmail attribute), 33
kill_timestamp (evesrp.models.Request attribute), 40
Killmail (class in evesrp.killmail), 33
killmail_url (evesrp.models.Request attribute), 40

L
list_transformers() (in module evesrp.views.divisions), 36
LocationMixin (class in evesrp.killmail), 35
login() (evesrp.auth.AuthMethod method), 27
login() (in module evesrp.views.login), 35
login_loader() (in module evesrp.views.login), 35
login_user() (evesrp.auth.AuthMethod static method), 27
logout() (in module evesrp.views.login), 35

M
Modifier (class in evesrp.models), 39
ModifierError (class in evesrp.models), 39
modifiers (evesrp.models.Request attribute), 40
modify_division() (in module evesrp.views.divisions), 36
modify_request() (in module evesrp.views.requests), 37
month() (built-in function), 42

N
name (evesrp.auth.models.Division attribute), 30
name (evesrp.auth.models.Entity attribute), 28
name (evesrp.auth.models.Pilot attribute), 29
Note (class in evesrp.auth.models), 29
note (evesrp.models.Action attribute), 38
note (evesrp.models.Modifier attribute), 39
noter (evesrp.auth.models.Note attribute), 29

O
OAuthMethod (class in evesrp.auth.oauth), 24

P
padNum() (built-in function), 42
pageNumbers() (built-in function), 42
pager_a_click() (built-in function), 42
paid (evesrp.models.ActionType attribute), 38
pay (evesrp.auth.PermissionType attribute), 26
payout (evesrp.models.Request attribute), 40
PayoutListing (class in evesrp.views.requests), 36
pending (evesrp.models.ActionType attribute), 38
Permission (class in evesrp.auth.models), 29
permission (evesrp.auth.models.Permission attribute), 30
PermissionRequestListing (class in

evesrp.views.requests), 36
permissions (evesrp.auth.models.Division attribute), 30
permissions (evesrp.auth.models.Group attribute), 29
permissions() (in module evesrp.views.divisions), 36
PermissionType (class in evesrp.auth), 26

50 Index

EVE SRP Documentation, Release

PersonalRequests (class in evesrp.views.requests), 36
Pilot (class in evesrp.auth.models), 28
pilot (evesrp.killmail.Killmail attribute), 33
pilot (evesrp.models.Request attribute), 41
pilot_id (evesrp.killmail.Killmail attribute), 33
pilots (evesrp.auth.models.User attribute), 28

R
refresh() (evesrp.auth.AuthMethod method), 27
refresh() (evesrp.auth.oauth.OAuthMethod method), 25
region (evesrp.killmail.Killmail attribute), 34
region (evesrp.killmail.LocationMixin attribute), 35
region (evesrp.models.Request attribute), 41
register_perm_request_listing() (in module

evesrp.views.requests), 37
rejected (evesrp.models.ActionType attribute), 38
RelativeModifier (class in evesrp.models), 39
Request (class in evesrp.models), 39
request (evesrp.models.Action attribute), 38
request (evesrp.models.Modifier attribute), 39
RequestListing (class in evesrp.views.requests), 36
requests (evesrp.auth.models.Division attribute), 30
requests (evesrp.auth.models.Pilot attribute), 29
requests (evesrp.auth.models.User attribute), 28
requests() (evesrp.views.requests.RequestListing

method), 37
requests_session (evesrp.killmail.RequestsSessionMixin

attribute), 34
RequestsSessionMixin (class in evesrp.killmail), 34
RequestsView() (class), 43
review (evesrp.auth.PermissionType attribute), 26

S
safe_name (evesrp.auth.AuthMethod attribute), 27
ship (evesrp.killmail.Killmail attribute), 33
ship (evesrp.killmail.ShipNameMixin attribute), 35
ship_id (evesrp.killmail.Killmail attribute), 33
ship_type (evesrp.models.Request attribute), 41
ShipNameMixin (class in evesrp.killmail), 35
status (evesrp.models.Request attribute), 41
statuses (evesrp.models.ActionType attribute), 38
submit (evesrp.auth.PermissionType attribute), 27
submit_divisions() (evesrp.auth.models.User method), 28
submit_request() (in module evesrp.views.requests), 37
submitter (evesrp.models.Request attribute), 41
system (evesrp.killmail.Killmail attribute), 34
system (evesrp.killmail.LocationMixin attribute), 35
system (evesrp.models.Request attribute), 41
system_id (evesrp.killmail.Killmail attribute), 34

T
template (evesrp.views.requests.RequestListing at-

tribute), 37
TestAuth (class in evesrp.auth.testauth), 23

TestOAuth (class in evesrp.auth.testoauth), 26
timestamp (evesrp.killmail.Killmail attribute), 33
transformed (evesrp.models.Request attribute), 41
transformer (evesrp.auth.models.TransformerRef at-

tribute), 30
transformer_choices() (in module

evesrp.views.divisions), 36
TransformerRef (class in evesrp.auth.models), 30
transformers (evesrp.auth.models.Division attribute), 30
type_ (evesrp.models.Action attribute), 39

U
url (evesrp.killmail.Killmail attribute), 33
url_for_page() (in module evesrp.views.requests), 38
User (class in evesrp.auth.models), 28
user (evesrp.auth.models.APIKey attribute), 29
user (evesrp.auth.models.Note attribute), 29
user (evesrp.auth.models.Pilot attribute), 29
user (evesrp.models.Action attribute), 39
user (evesrp.models.Modifier attribute), 39
users (evesrp.auth.models.Group attribute), 29

V
valid_actions() (evesrp.models.Request method), 41
ValidKillmail (class in evesrp.views.requests), 37
value (evesrp.killmail.Killmail attribute), 33
value (evesrp.models.AbsoluteModifier attribute), 39
value (evesrp.models.RelativeModifier attribute), 39
verified (evesrp.killmail.Killmail attribute), 34
view() (evesrp.auth.AuthMethod method), 27
view() (evesrp.auth.oauth.OAuthMethod method), 25
void() (evesrp.models.Modifier method), 39
voided (evesrp.models.Modifier attribute), 39
voided_timestamp (evesrp.models.Modifier attribute), 39
voided_user (evesrp.models.Modifier attribute), 39

Z
ZKillmail (class in evesrp.killmail), 34

Index 51

	User Guide
	Quick Start
	External API

	Developers Guide
	Authentication
	Killmail Handling
	Views
	Models
	Javascript

	Indices and tables
	Python Module Index

