
python-ev3dev Documentation
Release 0.4.1.post97

Ralph Hempel et al

January 17, 2016

Contents

1 Example Code 3

2 User Resources 5

3 Developer Resources 7

4 Python2.x and Python3.x Compatibility 9
4.1 API reference . 9

5 Indices and tables 23

i

ii

python-ev3dev Documentation, Release 0.4.1.post97

A Python library implementing unified interface for ev3dev devices.

Contents 1

http://ev3dev.org

python-ev3dev Documentation, Release 0.4.1.post97

2 Contents

CHAPTER 1

Example Code

To run these minimal examples, run the Python interpreter from the terminal like this:

robot@ev3dev:~$ python
Python 2.7.9 (default, Mar 1 2015, 13:52:09)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> characters are the default prompt for Python. In the examples below, we have removed these characters so
it’s easier to cut and paste the code into your session.

Load the ev3dev-lang bindings:

import ev3dev.ev3 as ev3

Now let’s try our first program. This code will turn the left LED red whenever the touch sensor is pressed, and back
to green when it’s released. Plug a touch sensor into any sensor port and then paste in this code - you’ll need to hit
Enter after pasting to complete the loop and start the program. Hit Ctrl-C to exit the loop.

ts = ev3.TouchSensor()
while True:

ev3.Leds.set_color(ev3.Leds.LEFT, (ev3.Leds.GREEN, ev3.Leds.RED)[ts.value()])

Now plug a motor into the A port and paste this code into the terminal. This little program will run the motor at 75%
power for 3 seconds.

m = ev3.LargeMotor('outA')
m.run_timed(time_sp=3000, duty_cycle_sp=75)

If you want to make your robot speak, then paste this code into the terminal:

ev3.Sound.speak('Welcome to the EV3DEV project!').wait()

To quit Python, just type exit() or Ctrl-D.

3

https://github.com/ev3dev/ev3dev-lang

python-ev3dev Documentation, Release 0.4.1.post97

4 Chapter 1. Example Code

CHAPTER 2

User Resources

Getting Started with ev3dev If you got here as the result of looking for “how to program LEGO MINDSTORMS
EV3 using Python” then you might not be aware that this is part of a much larger project called ev3dev. Make
sure you read the Getting Started page to become familiar with ev3dev first!

Connecting the EV3 to the Internet You can connect to an EV3 running ev3dev using USB, Wifi or Bluetooth. The
USB connection is a good starting point, and the ev3dev site has detailed instructions for USB connections for
Linux, Windows, and Mac computers.

Demo Robot Laurens Valk of robot-square has been kind enough to allow us to reference his excellent EXPLOR3R
robot. Consider building the EXPLOR3R and running the demo programs referenced below to get familiar with
what Python programs using this binding look like.

Demo Code There are demo programs that you can run to get acquainted with this language binding. The programs
are designed to work with the EXPLOR3R robot.

5

http://ev3dev.org
http://www.ev3dev.org/docs/getting-started/
http://ev3dev.org
http://ev3dev.org
http://ev3dev.org
http://www.ev3dev.org/docs/tutorials/connecting-to-the-internet-via-usb/
http://robotsquare.com/
http://robotsquare.com/2015/10/06/explor3r-building-instructions/
http://robotsquare.com/2015/10/06/explor3r-building-instructions/
https://github.com/rhempel/ev3dev-lang-python/tree/master/demo
http://robotsquare.com/2015/10/06/explor3r-building-instructions/

python-ev3dev Documentation, Release 0.4.1.post97

6 Chapter 2. User Resources

CHAPTER 3

Developer Resources

Python Package Index The Python language has a package repository where you can find libraries that others have
written, including the latest version of this package.

The ev3dev Binding Specification Like all of the language bindings for ev3dev supported hardware, the Python
binding follows the minimal API that must be provided per this document.

The ev3dev-lang Project on GitHub The source repository for the generic API and the scripts to automatically gen-
erate the binding. Only developers of the ev3dev-lang-python binding would normally need to access this
information.

7

https://pypi.python.org/pypi
https://pypi.python.org/pypi/python-ev3dev
http://ev3dev.org
https://github.com/ev3dev/ev3dev-lang/blob/develop/wrapper-specification.md
https://github.com/ev3dev/ev3dev-lang
https://github.com/rhempel/ev3dev-lang-python

python-ev3dev Documentation, Release 0.4.1.post97

8 Chapter 3. Developer Resources

CHAPTER 4

Python2.x and Python3.x Compatibility

The ev3dev distribution comes with both python2 and python3 installed and this library is compatible with both
versions.

Note that currently, the source is only installed in the default Python 2.x location - this will be addressed in the next
package we release.

For Python 2.x programs, you import the binding like this:

from ev3dev.auto import *

For Python 3.x the easiest way to work around the problem is to get your EV3 connected to the Internet and then:

1. Update the package lists

2. Install the python3-pil package

3. Use easy-install install python-ev3dev

sudo apt-get update
sudo apt-get install python3-pil
sudo python3 -m easy_install python-ev3dev

You will be asked for the robot user’s password to get sudo access to the system - the default password is maker.

Please be patient - a typical apt-get update will take about 10 minutes - there’s a LOT going on under the hood
to sort out package dependencies.

And now you can use ev3dev-lang-python under Python 3.x.

from ev3dev.auto import *

Contents

4.1 API reference

Each class in ev3dev module inherits from the base Device class.

class ev3dev.ev3.Device(class_name, name_pattern=’*’, name_exact=False, **kwargs)
The ev3dev device base class

9

http://ev3dev.org
https://docs.python.org/2/
https://docs.python.org/3/
https://docs.python.org/2/
https://docs.python.org/2/
https://docs.python.org/3/
https://github.com/rhempel/ev3dev-lang-python
https://docs.python.org/3/

python-ev3dev Documentation, Release 0.4.1.post97

Contents:

4.1.1 Motor classes

Tacho motor

class ev3dev.ev3.Motor(address=None, name_pattern=’motor*’, name_exact=False, **kwargs)
The motor class provides a uniform interface for using motors with positional and directional feedback such as
the EV3 and NXT motors. This feedback allows for precise control of the motors. This is the most common
type of motor, so we just call it motor.

address
Returns the name of the port that this motor is connected to.

command
Sends a command to the motor controller. See commands for a list of possible values.

commands
Returns a list of commands that are supported by the motor controller. Possible values are run-forever,
run-to-abs-pos, run-to-rel-pos, run-timed, run-direct, stop and reset. Not all commands may be supported.

•run-forever will cause the motor to run until another command is sent.

•run-to-abs-pos will run to an absolute position specified by position_sp and then stop using the com-
mand specified in stop_command.

•run-to-rel-pos will run to a position relative to the current position value. The new position will
be current position + position_sp. When the new position is reached, the motor will stop using the
command specified by stop_command.

•run-timed will run the motor for the amount of time specified in time_sp and then stop the motor using
the command specified by stop_command.

•run-direct will run the motor at the duty cycle specified by duty_cycle_sp. Unlike other run com-
mands, changing duty_cycle_sp while running will take effect immediately.

•stop will stop any of the run commands before they are complete using the command specified by
stop_command.

•reset will reset all of the motor parameter attributes to their default value. This will also have the
effect of stopping the motor.

count_per_rot
Returns the number of tacho counts in one rotation of the motor. Tacho counts are used by the position
and speed attributes, so you can use this value to convert rotations or degrees to tacho counts. In the case
of linear actuators, the units here will be counts per centimeter.

driver_name
Returns the name of the driver that provides this tacho motor device.

duty_cycle
Returns the current duty cycle of the motor. Units are percent. Values are -100 to 100.

duty_cycle_sp
Writing sets the duty cycle setpoint. Reading returns the current value. Units are in percent. Valid values
are -100 to 100. A negative value causes the motor to rotate in reverse. This value is only used when
speed_regulation is off.

encoder_polarity
Sets the polarity of the rotary encoder. This is an advanced feature to all use of motors that send inversed

10 Chapter 4. Python2.x and Python3.x Compatibility

python-ev3dev Documentation, Release 0.4.1.post97

encoder signals to the EV3. This should be set correctly by the driver of a device. It You only need to
change this value if you are using a unsupported device. Valid values are normal and inversed.

polarity
Sets the polarity of the motor. With normal polarity, a positive duty cycle will cause the motor to rotate
clockwise. With inversed polarity, a positive duty cycle will cause the motor to rotate counter-clockwise.
Valid values are normal and inversed.

position
Returns the current position of the motor in pulses of the rotary encoder. When the motor rotates clockwise,
the position will increase. Likewise, rotating counter-clockwise causes the position to decrease. Writing
will set the position to that value.

position_d
The derivative constant for the position PID.

position_i
The integral constant for the position PID.

position_p
The proportional constant for the position PID.

position_sp
Writing specifies the target position for the run-to-abs-pos and run-to-rel-pos commands. Reading returns
the current value. Units are in tacho counts. You can use the value returned by counts_per_rot to convert
tacho counts to/from rotations or degrees.

ramp_down_sp
Writing sets the ramp down setpoint. Reading returns the current value. Units are in milliseconds. When
set to a value > 0, the motor will ramp the power sent to the motor from 100% duty cycle down to 0 over
the span of this setpoint when stopping the motor. If the starting duty cycle is less than 100%, the ramp
time duration will be less than the full span of the setpoint.

ramp_up_sp
Writing sets the ramp up setpoint. Reading returns the current value. Units are in milliseconds. When set
to a value > 0, the motor will ramp the power sent to the motor from 0 to 100% duty cycle over the span
of this setpoint when starting the motor. If the maximum duty cycle is limited by duty_cycle_sp or speed
regulation, the actual ramp time duration will be less than the setpoint.

reset(**kwargs)
Reset all of the motor parameter attributes to their default value. This will also have the effect of stopping
the motor.

run_direct(**kwargs)
Run the motor at the duty cycle specified by duty_cycle_sp. Unlike other run commands, changing
duty_cycle_sp while running will take effect immediately.

run_forever(**kwargs)
Run the motor until another command is sent.

run_timed(**kwargs)
Run the motor for the amount of time specified in time_sp and then stop the motor using the command
specified by stop_command.

run_to_abs_pos(**kwargs)
Run to an absolute position specified by position_sp and then stop using the command specified in
stop_command.

run_to_rel_pos(**kwargs)
Run to a position relative to the current position value. The new position will be current position +

4.1. API reference 11

python-ev3dev Documentation, Release 0.4.1.post97

position_sp. When the new position is reached, the motor will stop using the command specified by
stop_command.

speed
Returns the current motor speed in tacho counts per second. Note, this is not necessarily degrees (although
it is for LEGO motors). Use the count_per_rot attribute to convert this value to RPM or deg/sec.

speed_regulation_d
The derivative constant for the speed regulation PID.

speed_regulation_enabled
Turns speed regulation on or off. If speed regulation is on, the motor controller will vary the power supplied
to the motor to try to maintain the speed specified in speed_sp. If speed regulation is off, the controller
will use the power specified in duty_cycle_sp. Valid values are on and off.

speed_regulation_i
The integral constant for the speed regulation PID.

speed_regulation_p
The proportional constant for the speed regulation PID.

speed_sp
Writing sets the target speed in tacho counts per second used when speed_regulation is on. Reading returns
the current value. Use the count_per_rot attribute to convert RPM or deg/sec to tacho counts per second.

state
Reading returns a list of state flags. Possible flags are running, ramping holding and stalled.

stop(**kwargs)
Stop any of the run commands before they are complete using the command specified by stop_command.

stop_command
Reading returns the current stop command. Writing sets the stop command. The value determines the mo-
tors behavior when command is set to stop. Also, it determines the motors behavior when a run command
completes. See stop_commands for a list of possible values.

stop_commands
Returns a list of stop modes supported by the motor controller. Possible values are coast, brake and hold.
coast means that power will be removed from the motor and it will freely coast to a stop. brake means that
power will be removed from the motor and a passive electrical load will be placed on the motor. This is
usually done by shorting the motor terminals together. This load will absorb the energy from the rotation
of the motors and cause the motor to stop more quickly than coasting. hold does not remove power from
the motor. Instead it actively try to hold the motor at the current position. If an external force tries to turn
the motor, the motor will ‘push back’ to maintain its position.

time_sp
Writing specifies the amount of time the motor will run when using the run-timed command. Reading
returns the current value. Units are in milliseconds.

Large EV3 Motor

class ev3dev.ev3.LargeMotor(address=None, name_pattern=’motor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Motor

EV3 large servo motor

12 Chapter 4. Python2.x and Python3.x Compatibility

python-ev3dev Documentation, Release 0.4.1.post97

Medium EV3 Motor

class ev3dev.ev3.MediumMotor(address=None, name_pattern=’motor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Motor

EV3 medium servo motor

DC Motor

class ev3dev.ev3.DcMotor(address=None, name_pattern=’motor*’, name_exact=False, **kwargs)
The DC motor class provides a uniform interface for using regular DC motors with no fancy controls or feed-
back. This includes LEGO MINDSTORMS RCX motors and LEGO Power Functions motors.

address
Returns the name of the port that this motor is connected to.

command
Sets the command for the motor. Possible values are run-forever, run-timed and stop. Not all commands
may be supported, so be sure to check the contents of the commands attribute.

commands
Returns a list of commands supported by the motor controller.

driver_name
Returns the name of the motor driver that loaded this device. See the list of [supported devices] for a list
of drivers.

duty_cycle
Shows the current duty cycle of the PWM signal sent to the motor. Values are -100 to 100 (-100% to
100%).

duty_cycle_sp
Writing sets the duty cycle setpoint of the PWM signal sent to the motor. Valid values are -100 to 100
(-100% to 100%). Reading returns the current setpoint.

polarity
Sets the polarity of the motor. Valid values are normal and inversed.

ramp_down_sp
Sets the time in milliseconds that it take the motor to ramp down from 100% to 0%. Valid values are 0 to
10000 (10 seconds). Default is 0.

ramp_up_sp
Sets the time in milliseconds that it take the motor to up ramp from 0% to 100%. Valid values are 0 to
10000 (10 seconds). Default is 0.

run_direct(**kwargs)
Run the motor at the duty cycle specified by duty_cycle_sp. Unlike other run commands, changing
duty_cycle_sp while running will take effect immediately.

run_forever(**kwargs)
Run the motor until another command is sent.

run_timed(**kwargs)
Run the motor for the amount of time specified in time_sp and then stop the motor using the command
specified by stop_command.

4.1. API reference 13

python-ev3dev Documentation, Release 0.4.1.post97

state
Gets a list of flags indicating the motor status. Possible flags are running and ramping. running indicates
that the motor is powered. ramping indicates that the motor has not yet reached the duty_cycle_sp.

stop(**kwargs)
Stop any of the run commands before they are complete using the command specified by stop_command.

stop_command
Sets the stop command that will be used when the motor stops. Read stop_commands to get the list of
valid values.

stop_commands
Gets a list of stop commands. Valid values are coast and brake.

time_sp
Writing specifies the amount of time the motor will run when using the run-timed command. Reading
returns the current value. Units are in milliseconds.

Servo Motor

class ev3dev.ev3.ServoMotor(address=None, name_pattern=’motor*’, name_exact=False,
**kwargs)

The servo motor class provides a uniform interface for using hobby type servo motors.

address
Returns the name of the port that this motor is connected to.

command
Sets the command for the servo. Valid values are run and float. Setting to run will cause the servo to be
driven to the position_sp set in the position_sp attribute. Setting to float will remove power from the motor.

driver_name
Returns the name of the motor driver that loaded this device. See the list of [supported devices] for a list
of drivers.

float(**kwargs)
Remove power from the motor.

max_pulse_sp
Used to set the pulse size in milliseconds for the signal that tells the servo to drive to the maximum
(clockwise) position_sp. Default value is 2400. Valid values are 2300 to 2700. You must write to the
position_sp attribute for changes to this attribute to take effect.

mid_pulse_sp
Used to set the pulse size in milliseconds for the signal that tells the servo to drive to the mid position_sp.
Default value is 1500. Valid values are 1300 to 1700. For example, on a 180 degree servo, this would be
90 degrees. On continuous rotation servo, this is the ‘neutral’ position_sp where the motor does not turn.
You must write to the position_sp attribute for changes to this attribute to take effect.

min_pulse_sp
Used to set the pulse size in milliseconds for the signal that tells the servo to drive to the miniumum
(counter-clockwise) position_sp. Default value is 600. Valid values are 300 to 700. You must write to the
position_sp attribute for changes to this attribute to take effect.

polarity
Sets the polarity of the servo. Valid values are normal and inversed. Setting the value to inversed will cause
the position_sp value to be inversed. i.e -100 will correspond to max_pulse_sp, and 100 will correspond
to min_pulse_sp.

14 Chapter 4. Python2.x and Python3.x Compatibility

python-ev3dev Documentation, Release 0.4.1.post97

position_sp
Reading returns the current position_sp of the servo. Writing instructs the servo to move to the specified
position_sp. Units are percent. Valid values are -100 to 100 (-100% to 100%) where -100 corresponds to
min_pulse_sp, 0 corresponds to mid_pulse_sp and 100 corresponds to max_pulse_sp.

rate_sp
Sets the rate_sp at which the servo travels from 0 to 100.0% (half of the full range of the servo). Units are
in milliseconds. Example: Setting the rate_sp to 1000 means that it will take a 180 degree servo 2 second
to move from 0 to 180 degrees. Note: Some servo controllers may not support this in which case reading
and writing will fail with -EOPNOTSUPP. In continuous rotation servos, this value will affect the rate_sp
at which the speed ramps up or down.

run(**kwargs)
Drive servo to the position set in the position_sp attribute.

state
Returns a list of flags indicating the state of the servo. Possible values are: * running: Indicates that the
motor is powered.

4.1.2 Sensor classes

Sensor

This is the base class all the other sensor classes are derived from.

class ev3dev.ev3.Sensor(address=None, name_pattern=’sensor*’, name_exact=False, **kwargs)
The sensor class provides a uniform interface for using most of the sensors available for the EV3. The various
underlying device drivers will create a lego-sensor device for interacting with the sensors.

Sensors are primarily controlled by setting the mode and monitored by reading the value<N> attributes. Values
can be converted to floating point if needed by value<N> / 10.0 ^ decimals.

Since the name of the sensor<N> device node does not correspond to the port that a sensor is plugged in to,
you must look at the address attribute if you need to know which port a sensor is plugged in to. However, if you
don’t have more than one sensor of each type, you can just look for a matching driver_name. Then it will not
matter which port a sensor is plugged in to - your program will still work.

address
Returns the name of the port that the sensor is connected to, e.g. ev3:in1. I2C sensors also include the I2C
address (decimal), e.g. ev3:in1:i2c8.

bin_data(fmt=None)
Returns the unscaled raw values in the value<N> attributes as raw byte array. Use bin_data_format,
num_values and the individual sensor documentation to determine how to interpret the data.

Use fmt to unpack the raw bytes into a struct.

Example:

>>> from ev3dev import *
>>> ir = InfraredSensor()
>>> ir.value()
28
>>> ir.bin_data('<b')
(28,)

bin_data_format
Returns the format of the values in bin_data for the current mode. Possible values are:

4.1. API reference 15

python-ev3dev Documentation, Release 0.4.1.post97

•u8: Unsigned 8-bit integer (byte)

•s8: Signed 8-bit integer (sbyte)

•u16: Unsigned 16-bit integer (ushort)

•s16: Signed 16-bit integer (short)

•s16_be: Signed 16-bit integer, big endian

•s32: Signed 32-bit integer (int)

•float: IEEE 754 32-bit floating point (float)

command
Sends a command to the sensor.

commands
Returns a list of the valid commands for the sensor. Returns -EOPNOTSUPP if no commands are sup-
ported.

decimals
Returns the number of decimal places for the values in the value<N> attributes of the current mode.

driver_name
Returns the name of the sensor device/driver. See the list of [supported sensors] for a complete list of
drivers.

mode
Returns the current mode. Writing one of the values returned by modes sets the sensor to that mode.

modes
Returns a list of the valid modes for the sensor.

num_values
Returns the number of value<N> attributes that will return a valid value for the current mode.

units
Returns the units of the measured value for the current mode. May return empty string

Special sensor classes

The classes derive from Sensor and provide helper functions specific to the corresponding sensor type. Each of the
functions makes sure the sensor is in the required mode and then returns the specified value.

Touch Sensor

class ev3dev.ev3.TouchSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

Touch Sensor

is_pressed()
A boolean indicating whether the current touch sensor is being pressed.

16 Chapter 4. Python2.x and Python3.x Compatibility

python-ev3dev Documentation, Release 0.4.1.post97

Color Sensor

class ev3dev.ev3.ColorSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

LEGO EV3 color sensor.

ambient_light_intensity()
Ambient light intensity. Light on sensor is dimly lit blue.

blue()
Blue component of the detected color, in the range 0-1020.

color()

Color detected by the sensor, categorized by overall value.

• 0: No color

• 1: Black

• 2: Blue

• 3: Green

• 4: Yellow

• 5: Red

• 6: White

• 7: Brown

green()
Green component of the detected color, in the range 0-1020.

red()
Red component of the detected color, in the range 0-1020.

reflected_light_intensity()
Reflected light intensity as a percentage. Light on sensor is red.

Ultrasonic Sensor

class ev3dev.ev3.UltrasonicSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

LEGO EV3 ultrasonic sensor.

distance_centimeters()
Measurement of the distance detected by the sensor, in centimeters.

distance_inches()
Measurement of the distance detected by the sensor, in inches.

other_sensor_present()
Value indicating whether another ultrasonic sensor could be heard nearby.

4.1. API reference 17

python-ev3dev Documentation, Release 0.4.1.post97

Gyro Sensor

class ev3dev.ev3.GyroSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

LEGO EV3 gyro sensor.

angle()
The number of degrees that the sensor has been rotated since it was put into this mode.

rate()
The rate at which the sensor is rotating, in degrees/second.

Infrared Sensor

class ev3dev.ev3.InfraredSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

LEGO EV3 infrared sensor.

proximity()
A measurement of the distance between the sensor and the remote, as a percentage. 100% is approximately
70cm/27in.

Sound Sensor

class ev3dev.ev3.SoundSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

LEGO NXT Sound Sensor

sound_pressure()
A measurement of the measured sound pressure level, as a percent. Uses a flat weighting.

sound_pressure_low()
A measurement of the measured sound pressure level, as a percent. Uses A-weighting, which focuses on
levels up to 55 dB.

Light Sensor

class ev3dev.ev3.LightSensor(address=None, name_pattern=’sensor*’, name_exact=False,
**kwargs)

Bases: ev3dev.core.Sensor

LEGO NXT Light Sensor

ambient_light_intensity()
A measurement of the ambient light intensity, as a percentage.

reflected_light_intensity()
A measurement of the reflected light intensity, as a percentage.

18 Chapter 4. Python2.x and Python3.x Compatibility

python-ev3dev Documentation, Release 0.4.1.post97

4.1.3 Other classes

Leds —

class ev3dev.ev3.Led(address=None, name_pattern=’*’, name_exact=False, **kwargs)
Any device controlled by the generic LED driver. See https://www.kernel.org/doc/Documentation/leds/leds-
class.txt for more details.

brightness
Sets the brightness level. Possible values are from 0 to max_brightness.

brightness_pct
Returns led brightness as a fraction of max_brightness

delay_off
The timer trigger will periodically change the LED brightness between 0 and the current brightness setting.
The off time can be specified via delay_off attribute in milliseconds.

delay_on
The timer trigger will periodically change the LED brightness between 0 and the current brightness setting.
The on time can be specified via delay_on attribute in milliseconds.

max_brightness
Returns the maximum allowable brightness value.

trigger
Sets the led trigger. A trigger is a kernel based source of led events. Triggers can either be simple or
complex. A simple trigger isn’t configurable and is designed to slot into existing subsystems with minimal
additional code. Examples are the ide-disk and nand-disk triggers.

Complex triggers whilst available to all LEDs have LED specific parameters and work on a per LED basis.
The timer trigger is an example. The timer trigger will periodically change the LED brightness between
0 and the current brightness setting. The on and off time can be specified via delay_{on,off} attributes in
milliseconds. You can change the brightness value of a LED independently of the timer trigger. However,
if you set the brightness value to 0 it will also disable the timer trigger.

triggers
Returns a list of available triggers.

class ev3dev.ev3.Leds
The EV3 LEDs.

static all_off()
Turn all leds off

static set(group, **kwargs)
Set attributes for each led in group.

Example:

Leds.set(LEFT, brightness_pct=0.5, trigger='timer')

static set_color(group, color, pct=1)
Sets brigthness of leds in the given group to the values specified in color tuple. When percentage is
specified, brightness of each led is reduced proportionally.

Example:

Leds.set_color(LEFT, AMBER)

4.1. API reference 19

https://www.kernel.org/doc/Documentation/leds/leds-class.txt
https://www.kernel.org/doc/Documentation/leds/leds-class.txt

python-ev3dev Documentation, Release 0.4.1.post97

Power Supply

class ev3dev.ev3.PowerSupply(address=None, name_pattern=’*’, name_exact=False, **kwargs)
A generic interface to read data from the system’s power_supply class. Uses the built-in legoev3-battery if none
is specified.

max_voltage

measured_amps
The measured current that the battery is supplying (in amps)

measured_current
The measured current that the battery is supplying (in microamps)

measured_voltage
The measured voltage that the battery is supplying (in microvolts)

measured_volts
The measured voltage that the battery is supplying (in volts)

min_voltage

technology

type

Button

class ev3dev.ev3.Button
EV3 Buttons

any()
Checks if any button is pressed.

backspace
Check if ‘backspace’ button is pressed.

buttons_pressed
Returns list of names of pressed buttons.

check_buttons(buttons=[])
Check if currently pressed buttons exactly match the given list.

down
Check if ‘down’ button is pressed.

enter
Check if ‘enter’ button is pressed.

left
Check if ‘left’ button is pressed.

static on_backspace(state)
This handler is called by process() whenever state of ‘backspace’ button has changed since last process()
call. state parameter is the new state of the button.

on_change(changed_buttons)
This handler is called by process() whenever state of any button has changed since last process() call.
changed_buttons is a list of tuples of changed button names and their states.

20 Chapter 4. Python2.x and Python3.x Compatibility

python-ev3dev Documentation, Release 0.4.1.post97

static on_down(state)
This handler is called by process() whenever state of ‘down’ button has changed since last process() call.
state parameter is the new state of the button.

static on_enter(state)
This handler is called by process() whenever state of ‘enter’ button has changed since last process() call.
state parameter is the new state of the button.

static on_left(state)
This handler is called by process() whenever state of ‘left’ button has changed since last process() call.
state parameter is the new state of the button.

static on_right(state)
This handler is called by process() whenever state of ‘right’ button has changed since last process() call.
state parameter is the new state of the button.

static on_up(state)
This handler is called by process() whenever state of ‘up’ button has changed since last process() call. state
parameter is the new state of the button.

process()
Check for currenly pressed buttons. If the new state differs from the old state, call the appropriate button
event handlers.

right
Check if ‘right’ button is pressed.

up
Check if ‘up’ button is pressed.

Sound

class ev3dev.ev3.Sound
Sound-related functions. The class has only static methods and is not intended for instantiation. It can beep,
play wav files, or convert text to speech.

Note that all methods of the class spawn system processes and return subprocess.Popen objects. The methods
are asynchronous (they return immediately after child process was spawned, without waiting for its completion),
but you can call wait() on the returned result.

Examples:

Play ‘bark.wav’, return immediately: Sound.play(‘bark.wav’)

Introduce yourself, wait for completion: Sound.speak(‘Hello, I am Robot’).wait()

static beep(args=’‘)
Call beep command with the provided arguments (if any). See beep man page and google ‘linux beep
music’ for inspiration.

static play(wav_file)
Play wav file.

static speak(text)
Speak the given text aloud.

static tone(*args)
tone(tone_sequence):

4.1. API reference 21

http://manpages.debian.org/cgi-bin/man.cgi?query=beep

python-ev3dev Documentation, Release 0.4.1.post97

Play tone sequence. The tone_sequence parameter is a list of tuples, where each tuple contains up to three
numbers. The first number is frequency in Hz, the second is duration in milliseconds, and the third is delay
in milliseconds between this and the next tone in the sequence.

Here is a cheerful example:

Sound.tone([
(392, 350, 100), (392, 350, 100), (392, 350, 100), (311.1, 250, 100),
(466.2, 25, 100), (392, 350, 100), (311.1, 250, 100), (466.2, 25, 100),
(392, 700, 100), (587.32, 350, 100), (587.32, 350, 100),
(587.32, 350, 100), (622.26, 250, 100), (466.2, 25, 100),
(369.99, 350, 100), (311.1, 250, 100), (466.2, 25, 100), (392, 700, 100),
(784, 350, 100), (392, 250, 100), (392, 25, 100), (784, 350, 100),
(739.98, 250, 100), (698.46, 25, 100), (659.26, 25, 100),
(622.26, 25, 100), (659.26, 50, 400), (415.3, 25, 200), (554.36, 350, 100),
(523.25, 250, 100), (493.88, 25, 100), (466.16, 25, 100), (440, 25, 100),
(466.16, 50, 400), (311.13, 25, 200), (369.99, 350, 100),
(311.13, 250, 100), (392, 25, 100), (466.16, 350, 100), (392, 250, 100),
(466.16, 25, 100), (587.32, 700, 100), (784, 350, 100), (392, 250, 100),
(392, 25, 100), (784, 350, 100), (739.98, 250, 100), (698.46, 25, 100),
(659.26, 25, 100), (622.26, 25, 100), (659.26, 50, 400), (415.3, 25, 200),
(554.36, 350, 100), (523.25, 250, 100), (493.88, 25, 100),
(466.16, 25, 100), (440, 25, 100), (466.16, 50, 400), (311.13, 25, 200),
(392, 350, 100), (311.13, 250, 100), (466.16, 25, 100),
(392.00, 300, 150), (311.13, 250, 100), (466.16, 25, 100), (392, 700)
]).wait()

tone(frequency, duration):

Play single tone of given frequency (Hz) and duration (milliseconds).

Screen

class ev3dev.ev3.Screen
Bases: ev3dev.core.FbMem

A convenience wrapper for the FbMem class. Provides drawing functions from the python imaging library
(PIL).

clear()
Clears the screen

draw
Returns a handle to PIL.ImageDraw.Draw class associated with the screen.

Example:

screen.draw.rectangle((10,10,60,20), fill='black')

shape
Dimensions of the screen.

update()
Applies pending changes to the screen. Nothing will be drawn on the screen until this function is called.

xres
Horizontal screen resolution

yres
Vertical screen resolution

22 Chapter 4. Python2.x and Python3.x Compatibility

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

python-ev3dev Documentation, Release 0.4.1.post97

24 Chapter 5. Indices and tables

Index

A
address (ev3dev.ev3.DcMotor attribute), 13
address (ev3dev.ev3.Motor attribute), 10
address (ev3dev.ev3.Sensor attribute), 15
address (ev3dev.ev3.ServoMotor attribute), 14
all_off() (ev3dev.ev3.Leds static method), 19
ambient_light_intensity() (ev3dev.ev3.ColorSensor

method), 17
ambient_light_intensity() (ev3dev.ev3.LightSensor

method), 18
angle() (ev3dev.ev3.GyroSensor method), 18
any() (ev3dev.ev3.Button method), 20

B
backspace (ev3dev.ev3.Button attribute), 20
beep() (ev3dev.ev3.Sound static method), 21
bin_data() (ev3dev.ev3.Sensor method), 15
bin_data_format (ev3dev.ev3.Sensor attribute), 15
blue() (ev3dev.ev3.ColorSensor method), 17
brightness (ev3dev.ev3.Led attribute), 19
brightness_pct (ev3dev.ev3.Led attribute), 19
Button (class in ev3dev.ev3), 20
buttons_pressed (ev3dev.ev3.Button attribute), 20

C
check_buttons() (ev3dev.ev3.Button method), 20
clear() (ev3dev.ev3.Screen method), 22
color() (ev3dev.ev3.ColorSensor method), 17
ColorSensor (class in ev3dev.ev3), 17
command (ev3dev.ev3.DcMotor attribute), 13
command (ev3dev.ev3.Motor attribute), 10
command (ev3dev.ev3.Sensor attribute), 16
command (ev3dev.ev3.ServoMotor attribute), 14
commands (ev3dev.ev3.DcMotor attribute), 13
commands (ev3dev.ev3.Motor attribute), 10
commands (ev3dev.ev3.Sensor attribute), 16
count_per_rot (ev3dev.ev3.Motor attribute), 10

D
DcMotor (class in ev3dev.ev3), 13

decimals (ev3dev.ev3.Sensor attribute), 16
delay_off (ev3dev.ev3.Led attribute), 19
delay_on (ev3dev.ev3.Led attribute), 19
Device (class in ev3dev.ev3), 9
distance_centimeters() (ev3dev.ev3.UltrasonicSensor

method), 17
distance_inches() (ev3dev.ev3.UltrasonicSensor method),

17
down (ev3dev.ev3.Button attribute), 20
draw (ev3dev.ev3.Screen attribute), 22
driver_name (ev3dev.ev3.DcMotor attribute), 13
driver_name (ev3dev.ev3.Motor attribute), 10
driver_name (ev3dev.ev3.Sensor attribute), 16
driver_name (ev3dev.ev3.ServoMotor attribute), 14
duty_cycle (ev3dev.ev3.DcMotor attribute), 13
duty_cycle (ev3dev.ev3.Motor attribute), 10
duty_cycle_sp (ev3dev.ev3.DcMotor attribute), 13
duty_cycle_sp (ev3dev.ev3.Motor attribute), 10

E
encoder_polarity (ev3dev.ev3.Motor attribute), 10
enter (ev3dev.ev3.Button attribute), 20

F
float() (ev3dev.ev3.ServoMotor method), 14

G
green() (ev3dev.ev3.ColorSensor method), 17
GyroSensor (class in ev3dev.ev3), 18

I
InfraredSensor (class in ev3dev.ev3), 18
is_pressed() (ev3dev.ev3.TouchSensor method), 16

L
LargeMotor (class in ev3dev.ev3), 12
Led (class in ev3dev.ev3), 19
Leds (class in ev3dev.ev3), 19
left (ev3dev.ev3.Button attribute), 20
LightSensor (class in ev3dev.ev3), 18

25

python-ev3dev Documentation, Release 0.4.1.post97

M
max_brightness (ev3dev.ev3.Led attribute), 19
max_pulse_sp (ev3dev.ev3.ServoMotor attribute), 14
max_voltage (ev3dev.ev3.PowerSupply attribute), 20
measured_amps (ev3dev.ev3.PowerSupply attribute), 20
measured_current (ev3dev.ev3.PowerSupply attribute),

20
measured_voltage (ev3dev.ev3.PowerSupply attribute),

20
measured_volts (ev3dev.ev3.PowerSupply attribute), 20
MediumMotor (class in ev3dev.ev3), 13
mid_pulse_sp (ev3dev.ev3.ServoMotor attribute), 14
min_pulse_sp (ev3dev.ev3.ServoMotor attribute), 14
min_voltage (ev3dev.ev3.PowerSupply attribute), 20
mode (ev3dev.ev3.Sensor attribute), 16
modes (ev3dev.ev3.Sensor attribute), 16
Motor (class in ev3dev.ev3), 10

N
num_values (ev3dev.ev3.Sensor attribute), 16

O
on_backspace() (ev3dev.ev3.Button static method), 20
on_change() (ev3dev.ev3.Button method), 20
on_down() (ev3dev.ev3.Button static method), 20
on_enter() (ev3dev.ev3.Button static method), 21
on_left() (ev3dev.ev3.Button static method), 21
on_right() (ev3dev.ev3.Button static method), 21
on_up() (ev3dev.ev3.Button static method), 21
other_sensor_present() (ev3dev.ev3.UltrasonicSensor

method), 17

P
play() (ev3dev.ev3.Sound static method), 21
polarity (ev3dev.ev3.DcMotor attribute), 13
polarity (ev3dev.ev3.Motor attribute), 11
polarity (ev3dev.ev3.ServoMotor attribute), 14
position (ev3dev.ev3.Motor attribute), 11
position_d (ev3dev.ev3.Motor attribute), 11
position_i (ev3dev.ev3.Motor attribute), 11
position_p (ev3dev.ev3.Motor attribute), 11
position_sp (ev3dev.ev3.Motor attribute), 11
position_sp (ev3dev.ev3.ServoMotor attribute), 14
PowerSupply (class in ev3dev.ev3), 20
process() (ev3dev.ev3.Button method), 21
proximity() (ev3dev.ev3.InfraredSensor method), 18

R
ramp_down_sp (ev3dev.ev3.DcMotor attribute), 13
ramp_down_sp (ev3dev.ev3.Motor attribute), 11
ramp_up_sp (ev3dev.ev3.DcMotor attribute), 13
ramp_up_sp (ev3dev.ev3.Motor attribute), 11
rate() (ev3dev.ev3.GyroSensor method), 18

rate_sp (ev3dev.ev3.ServoMotor attribute), 15
red() (ev3dev.ev3.ColorSensor method), 17
reflected_light_intensity() (ev3dev.ev3.ColorSensor

method), 17
reflected_light_intensity() (ev3dev.ev3.LightSensor

method), 18
reset() (ev3dev.ev3.Motor method), 11
right (ev3dev.ev3.Button attribute), 21
run() (ev3dev.ev3.ServoMotor method), 15
run_direct() (ev3dev.ev3.DcMotor method), 13
run_direct() (ev3dev.ev3.Motor method), 11
run_forever() (ev3dev.ev3.DcMotor method), 13
run_forever() (ev3dev.ev3.Motor method), 11
run_timed() (ev3dev.ev3.DcMotor method), 13
run_timed() (ev3dev.ev3.Motor method), 11
run_to_abs_pos() (ev3dev.ev3.Motor method), 11
run_to_rel_pos() (ev3dev.ev3.Motor method), 11

S
Screen (class in ev3dev.ev3), 22
Sensor (class in ev3dev.ev3), 15
ServoMotor (class in ev3dev.ev3), 14
set() (ev3dev.ev3.Leds static method), 19
set_color() (ev3dev.ev3.Leds static method), 19
shape (ev3dev.ev3.Screen attribute), 22
Sound (class in ev3dev.ev3), 21
sound_pressure() (ev3dev.ev3.SoundSensor method), 18
sound_pressure_low() (ev3dev.ev3.SoundSensor

method), 18
SoundSensor (class in ev3dev.ev3), 18
speak() (ev3dev.ev3.Sound static method), 21
speed (ev3dev.ev3.Motor attribute), 12
speed_regulation_d (ev3dev.ev3.Motor attribute), 12
speed_regulation_enabled (ev3dev.ev3.Motor attribute),

12
speed_regulation_i (ev3dev.ev3.Motor attribute), 12
speed_regulation_p (ev3dev.ev3.Motor attribute), 12
speed_sp (ev3dev.ev3.Motor attribute), 12
state (ev3dev.ev3.DcMotor attribute), 13
state (ev3dev.ev3.Motor attribute), 12
state (ev3dev.ev3.ServoMotor attribute), 15
stop() (ev3dev.ev3.DcMotor method), 14
stop() (ev3dev.ev3.Motor method), 12
stop_command (ev3dev.ev3.DcMotor attribute), 14
stop_command (ev3dev.ev3.Motor attribute), 12
stop_commands (ev3dev.ev3.DcMotor attribute), 14
stop_commands (ev3dev.ev3.Motor attribute), 12

T
technology (ev3dev.ev3.PowerSupply attribute), 20
time_sp (ev3dev.ev3.DcMotor attribute), 14
time_sp (ev3dev.ev3.Motor attribute), 12
tone() (ev3dev.ev3.Sound static method), 21
TouchSensor (class in ev3dev.ev3), 16

26 Index

python-ev3dev Documentation, Release 0.4.1.post97

trigger (ev3dev.ev3.Led attribute), 19
triggers (ev3dev.ev3.Led attribute), 19
type (ev3dev.ev3.PowerSupply attribute), 20

U
UltrasonicSensor (class in ev3dev.ev3), 17
units (ev3dev.ev3.Sensor attribute), 16
up (ev3dev.ev3.Button attribute), 21
update() (ev3dev.ev3.Screen method), 22

X
xres (ev3dev.ev3.Screen attribute), 22

Y
yres (ev3dev.ev3.Screen attribute), 22

Index 27

	Example Code
	User Resources
	Developer Resources
	Python2.x and Python3.x Compatibility
	API reference

	Indices and tables

