

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	EULcommon 0.18.0 documentation

EULcommon

EULcommon is a collection of common Python libraries in use at Emory
University Libraries [http://web.library.emory.edu/]. It’s a bit
miscellaneous: The libraries are collected together primarily to minimize
proliferating many tiny projects. In future releases individual subpackages
may be split out as they mature.

Contents

	eulcommon.djangoextras – Extensions and additions to django
	auth - Customized permission decorators
	formfields - Custom form fields & widgets

	http - Content Negotiation for Django views

	eulcommon.searchutil – Utilities for searching

	eulcore.binfile – Map binary data to Python objects
	BinaryStructure Subclasses
	Eudora index files

	Outlook Express 4.5 for Macintosh folder files

	General Usage

	BinaryStructure

	Field classes

	Change & Version Information
	0.18

	0.17.0

	0.16.2 - template hotfix redux

	0.16.1 - template hotfix

	0.16.0

	0.15.0 - Initial Release

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	EULcommon 0.18.0 documentation

eulcommon.djangoextras – Extensions and additions to django

auth - Customized permission decorators

Customized decorators that enhance the default behavior of
django.contrib.auth.decorators.permission_required().

The default behavior of django.contrib.auth.decorators.permission_required()
for any user does not meet the required permission level is to redirect them to
the login page– even if that user is already logged in. For more discussion of
this behavior and current status in Django, see:
http://code.djangoproject.com/ticket/4617

These decorators work the same way as the Django equivalents, with the added
feature that if the user is already logged in and does not have the required
permission, they will see 403 page instead of the login page.

The decorators should be used exactly the same as their django equivalents.

The code is based on the django snippet code at http://djangosnippets.org/snippets/254/

	
auth.user_passes_test_with_403(test_func, login_url=None)

	View decorator that checks to see if the user passes the specified test.
See django.contrib.auth.decorators.user_passes_test().

Anonymous users will be redirected to login_url, while logged in users that
fail the test will be given a 403 error. In the case of a 403, the function
will render the 403.html template.

	
auth.permission_required_with_403(perm, login_url=None)

	Decorator for views that checks whether a user has a particular permission
enabled, redirecting to the login page or rendering a 403 as necessary.

See django.contrib.auth.decorators.permission_required().

	
auth.user_passes_test_with_ajax(test_func, login_url=None, redirect_field_name='next')

	Decorator for views that checks that the user passes the given test,
redirecting to the log-in page if necessary. The test should be a callable
that takes the user object and returns True if the user passes.

Returns special response to ajax calls instead of blindly redirecting.

To use with class methods instead of functions, use django.utils.decorators.method_decorator(). See
http://docs.djangoproject.com/en/dev/releases/1.2/#user-passes-test-login-required-and-permission-required

Usage is the same as
django.contrib.auth.decorators.user_passes_test():

@user_passes_test_with_ajax(lambda u: u.has_perm('polls.can_vote'), login_url='/loginpage/')
def my_view(request):
 ...

	
auth.login_required_with_ajax(function=None, redirect_field_name='next')

	Decorator for views that checks that the user is logged in,
redirecting to the log-in page if necessary, but returns a special
response for ajax requests. See
eulcommon.djangoextras.auth.decorators.user_passes_test_with_ajax().

Example usage:

@login_required_with_ajax()
def my_view(request):
 ...

	
auth.permission_required_with_ajax(perm, login_url=None)

	Decorator for views that checks whether a user has a particular
permission enabled, redirecting to the log-in page if necessary,
but returns a special response for ajax requests. See
eulcore.django.auth.decorators.user_passes_test_with_ajax().

Usage is the same as
django.contrib.auth.decorators.permission_required()

@permission_required_with_ajax('polls.can_vote', login_url='/loginpage/')
def my_view(request):
 ...

formfields - Custom form fields & widgets

Custom generic form fields for use with Django forms.

	
class eulcommon.djangoextras.formfields.W3CDateField(max_length=None, min_length=None, strip=True, *args, **kwargs)

	W3C date field that uses a W3CDateWidget
for presentation and uses a simple regular expression to do basic validation
on the input (but does not actually test that it is a valid date).

	
widget

	alias of W3CDateWidget

	
class eulcommon.djangoextras.formfields.W3CDateWidget(attrs=None)

	Multi-part date widget that generates three text input boxes for year,
month, and day. Expects and generates dates in any of these W3C formats,
depending on which fields are filled in: YYYY-MM-DD, YYYY-MM, or YYYY.

	
create_textinput(name, field, value, **extra_attrs)

	Generate and render a django.forms.widgets.TextInput for
a single year, month, or day input.

If size is specified in the extra attributes, it will also be used to
set the maximum length of the field.

	Parameters:	
	name – base name of the input field

	field – pattern for this field (used with name to generate input name)

	value – initial value for the field

	extra_attrs – any extra widget attributes

	Returns:	rendered HTML output for the text input

	
render(name, value, attrs=None)

	Render the widget as HTML inputs for display on a form.

	Parameters:	
	name – form field base name

	value – date value

	attrs –
	unused

	Returns:	HTML text with three inputs for year/month/day

	
value_from_datadict(data, files, name)

	Generate a single value from multi-part form data. Constructs a W3C
date based on values that are set, leaving out day and month if they are
not present.

	Parameters:	
	data – dictionary of data submitted by the form

	files –
	unused

	name – base name of the form field

	Returns:	string value

	
class eulcommon.djangoextras.formfields.DynamicChoiceField(choices=None, widget=None, *args, **kwargs)

	A django.forms.ChoiceField [http://django.readthedocs.org/en/latest/ref/forms/fields.html#django.forms.ChoiceField] whose choices are not static, but
instead generated dynamically when referenced.

	Parameters:	choices – callable; this will be called to generate choices each
time they are referenced

	
widget

	alias of DynamicSelect

	
class eulcommon.djangoextras.formfields.DynamicSelect(attrs=None, choices=None)

	A Select widget whose choices are not
static, but instead generated dynamically when referenced.

	Parameters:	choices – callable; this will be called to generate choices each
time they are referenced.

http - Content Negotiation for Django views

	
http.content_negotiation(formats, default_type='text/html')

	Provides basic content negotiation and returns a view method based on the
best match of content types as indicated in formats.

	Parameters:	
	formats – dictionary of content types and corresponding methods

	default_type – string the decorated method is the return type for.

Example usage:

def rdf_view(request, arg):
 return RDF_RESPONSE

@content_negotiation({'application/rdf+xml': rdf_view})
def html_view(request, arg):
 return HTML_RESPONSE

The above example would return the rdf_view on a request type of
application/rdf+xml and the normal view for anything else.

Any django.http.HttpResponse [http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpResponse] returned by the view method chosen
by content negotiation will have a ‘Vary: Accept’ HTTP header added.

NOTE: Some web browsers do content negotiation poorly, requesting
application/xml when what they really want is application/xhtml+xml or
text/html. When this type of Accept request is detected, the default type
will be returned rather than the best match that would be determined by parsing
the Accept string properly (since in some cases the best match is
application/xml, which could return non-html content inappropriate for
display in a web browser).

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	EULcommon 0.18.0 documentation

eulcommon.searchutil – Utilities for searching

This module contains utilities for searching.

	
eulcommon.searchutil.search_terms(q)

	Takes a search string and parses it into a list of keywords and
phrases.

	
eulcommon.searchutil.pages_to_show(paginator, page, page_labels={})

	Generate a dictionary of pages to show around the current page. Show
3 numbers on either side of the specified page, or more if close to end or
beginning of available pages.

	Parameters:	
	paginator – django Paginator [http://django.readthedocs.org/en/latest/topics/pagination.html#django.core.paginator.Paginator],
populated with objects

	page – number of the current page

	page_labels – optional dictionary of page labels, keyed on page number

	Return type:	dictionary; keys are page numbers, values are page labels

	
eulcommon.searchutil.parse_search_terms(q)

	Parse a string of search terms into keywords, phrases, and
field/value pairs. Use quotes (” “) to designate phrases and
field:value or field:”term term” to designated field value
pairs. Returns a list of tuples where the first value is the
field, or None for a word or phrase, second value is the keyword
or phrase. Incomplete field value pairs will return a tuple with
None for the value. For example:

parse_search_terms('grahame "frog and toad" title:willows')

Would result in:

[(None,'grahame'), (None, 'frog and toad'), ('title', 'willows')]

	
eulcommon.searchutil.templatetags.search_utils.pagination_links(paginator_page, show_pages, url_params=None, first_page_label=None, last_page_label=None, page_url='')

	Django template tag to display pagination links for a paginated
list of items.

	Expects the following variables:

	
	the current Page [http://django.readthedocs.org/en/latest/topics/pagination.html#django.core.paginator.Page] of a
Paginator [http://django.readthedocs.org/en/latest/topics/pagination.html#django.core.paginator.Paginator] object

	a dictionary of the pages to be displayed, in the format
generated by eulcommon.searchutil.pages_to_show()

	optional url params to include in pagination link (e.g., search
terms when paginating search results)

	optional first page label (only used when first page is not in
list of pages to be shown)

	optional last page label (only used when last page is not in
list of pages to be shown)

	optional url to use for page links (only needed when the url is
different from the current one)

Example use:

{% load search_utils %}

{% pagination_links paged_items show_pages %}

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	EULcommon 0.18.0 documentation

eulcore.binfile – Map binary data to Python objects

Map binary data on-disk to read-only Python objects.

This module facilitates exposing stored binary data using common Pythonic
idioms. Fields in relocatable binary objects map to Python attributes using
a priori knowledge about how the binary structure is organized. This is akin
to the standard struct [http://docs.python.org/library/struct.html#module-struct] module, but with some slightly different use
cases. struct [http://docs.python.org/library/struct.html#module-struct], for instance, offers a more terse syntax, which is
handy for certain simple structures. struct [http://docs.python.org/library/struct.html#module-struct] is also a bit faster
since it’s implemented in C. This module’s more verbose
BinaryStructure definitions give it a few
advantages over struct [http://docs.python.org/library/struct.html#module-struct], though:

	This module allows users to define their own field types, where
struct [http://docs.python.org/library/struct.html#module-struct] field types are basically inextensible.

	The object-based nature of BinaryStructure
makes it easy to add non-structural properties and methods to subclasses,
which would require a bit of reimplementing and wrapping from a
struct [http://docs.python.org/library/struct.html#module-struct] tuple.

	BinaryStructure instances access fields through
named properties instead of indexed tuples. struct [http://docs.python.org/library/struct.html#module-struct] tuples are fine
for structures a few fields long, but when a packed binary structure
grows to dozens of fields, navigating its struct [http://docs.python.org/library/struct.html#module-struct] tuple grows
perilous.

	BinaryStructure unpacks fields only when
they’re accessed, allowing us to define libraries of structures scores of
fields long, understanding that any particular application might access
only one or two of them.

	Fields in a BinaryStructure can overlap
eachother, greatly simplifying both C unions [http://en.wikipedia.org/wiki/Union_(computer_science)] and fields with
multiple interpretations (integer/string, signed/unsigned).

	This module makes sparse structures easy. If you’re reverse-engineering a
large binary structure and discover a 4-byte integer in the middle of 68
bytes of unidentified mess, this module makes it easy to add an
IntegerField at a known structure offset.
struct [http://docs.python.org/library/struct.html#module-struct] requires you to split your '68x' into a '32xI32x'
(or was that a '30xi34x'? Better recount.)

	This package exports the following names:

	
	BinaryStructure – a base class for binary data
structures

	ByteField – a field that maps fixed-length
binary data to Python strings

	LengthPrependedStringField – a field that maps
variable-length binary strings to Python strings

	IntegerField – a field that maps fixed-length
binary data to Python numbers

BinaryStructure Subclasses

	Eudora index files

	Outlook Express 4.5 for Macintosh folder files

General Usage

Suppose we have an 8-byte file whose binary data consists of the bytes 0, 1,
2, 3, etc.:

>>> with open('numbers.bin') as f:
... f.read()
...
'\x00\x01\x02\x03\x04\x05\x06\x07'

Suppose further that these contents represent sensible binary data, laid out
such that the first two bytes are a literal string value. Except that
sometimes, in the binary format we’re parsing, it might sometimes be
necessary to interpret those first two bytes not as a literal string, but
instead as a number, encoded as a big-endian [http://en.wikipedia.org/wiki/Endianness] unsigned integer. Following that
is a variable-length string, encoded with the total string length in the
third byte.

This structure might be represented as:

from eulcommon.binfile import *
class MyObject(BinaryStructure):
 mybytes = ByteField(0, 2)
 myint = IntegerField(0, 2)
 mystring = LengthPrepededStringField(2)

Client code might then read data from that file:

>>> f = open('numbers.bin')
>>> obj = MyObject(f)
>>> obj.mybytes
'\x00\x01'
>>> obj.myint
1
>>> obj.mystring
'\x03\x04'

It’s not uncommon for such binary structures to be repeated at different
points within a file. Consider if we overlay the same structure on the same
file, but starting at byte 1 instead of byte 0:

>>> f = open('numbers.bin')
>>> obj = MyObject(f, offset=1)
>>> obj.mybytes
'\x01\x02'
>>> obj.myint
258
>>> obj.mystring
'\x04\x05\x06'

BinaryStructure

	
class eulcommon.binfile.BinaryStructure(fobj=None, mm=None, offset=0)

	A superclass for binary data structures superimposed over files.

Typical users will create a subclass containing field objects (e.g.,
ByteField, IntegerField). Each subclass instance is
created with a file and with an optional offset into that file. When
code accesses fields on the instance, they are calculated from the
underlying binary file data.

Instead of a file, it is occasionally appropriate to overlay an
mmap [http://docs.python.org/library/mmap.html#mmap.mmap] structure (from the mmap [http://docs.python.org/library/mmap.html#module-mmap] standard library).
This happens most often when one BinaryStructure instance creates
another, passing self.mmap to the secondary object’s constructor. In
this case, the caller may specify the mm argument instead of an
fobj.

	Parameters:	
	fobj – a file object or filename to overlay

	mm – a mmap [http://docs.python.org/library/mmap.html#mmap.mmap] object to overlay

	offset – the offset into the file where the structured data begins

Field classes

	
class eulcommon.binfile.ByteField(start, end)

	A field mapping fixed-length binary data to Python strings.

	Parameters:	
	start – The offset into the structure of the beginning of the
byte data.

	end – The offset into the structure of the end of the byte data.
This is actually one past the last byte of data, so a four-byte
ByteField starting at index 4 would be defined as
ByteField(4, 8) and would include bytes 4, 5, 6, and 7 of the
binary structure.

Typical users will create a ByteField inside a BinaryStructure
subclass definition:

class MyObject(BinaryStructure):
 myfield = ByteField(0, 4) # the first 4 bytes of the file

When you instantiate the subclass and access the field, its value will
be the literal bytes at that location in the structure:

>>> o = MyObject('file.bin')
>>> o.myfield
'ABCD'

	
class eulcommon.binfile.LengthPrependedStringField(offset)

	A field mapping variable-length binary strings to Python strings.

This field accesses strings encoded with their length in their first
byte and string data following that byte.

	Parameters:	offset – The offset of the single-byte string length.

Typical users will create a LengthPrependedStringField inside a
BinaryStructure subclass definition:

class MyObject(BinaryStructure):
 myfield = LengthPrependedStringField(0)

When you instantiate the subclass and access the field, its length will
be read from that location in the structure, and its data will be the
bytes immediately following it. So with a file whose first bytes are
'\x04ABCD':

>>> o = MyObject('file.bin')
>>> o.myfield
'ABCD'

	
class eulcommon.binfile.IntegerField(start, end)

	A field mapping fixed-length binary data to Python numbers.

This field accessses arbitrary-length integers encoded as binary data.
Currently only big-endian [http://en.wikipedia.org/wiki/Endianness],
unsigned integers are supported.

	Parameters:	
	start – The offset into the structure of the beginning of the
byte data.

	end – The offset into the structure of the end of the byte data.
This is actually one past the last byte of data, so a four-byte
IntegerField starting at index 4 would be defined as
IntegerField(4, 8) and would include bytes 4, 5, 6, and 7 of the
binary structure.

Typical users will create an IntegerField inside a
BinaryStructure subclass definition:

class MyObject(BinaryStructure):
 myfield = IntegerField(3, 6) # integer encoded in bytes 3, 4, 5

When you instantiate the subclass and access the field, its value will
be big-endian unsigned integer encoded at that location in the
structure. So with a file whose bytes 3, 4, and 5 are
'\x00\x01\x04':

>>> o = MyObject('file.bin')
>>> o.myfield
260

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	EULcommon 0.18.0 documentation

 	eulcore.binfile – Map binary data to Python objects

eulcommon.binfile.eudora – Eudora email index files

Map binary email table of contents files for the Eudora mail client to
Python objects.

The Eudora [http://en.wikipedia.org/wiki/Eudora_(e-mail_client)] email
client has a long history through the early years of email. It supported
versions for early Mac systems as well as early Windows OSes. Unfortunately,
most of them use binary file formats that are entirely incompatible with one
another. This module is aimed at one day reading all of them, but for now
practicality and immediate needs demand that it focus on the files saved by
a particular version on mid-90s Mac System 7.

That Eudora version stores email in flat (non-hierarchical) folders. It
stores each folder’s email data in a single file akin to a Unix mbox [http://en.wikipedia.org/wiki/Mbox] file, but with some key differences,
described below. In addition to this folder data file, each folder also
stores a binary “table of contents” index. In this version, a folder called
In stores its index in a file called In.toc. This file consists of a
fixed-size binary header with folder metadata, followed by fixed-size binary
email records containing cached email header metadata as well as the
location of the full email in the mbox-like data file. As the contents of
the folder are updated, these fixed-size binary email records are added,
removed, and reordered, apparently compacting the file as necessary so that
it matches the folder contents displayed to the application end user.

With the index serving to dictate the order of the emails and their
contents, their locations and sizes inside the data storage file become less
important. When emails are deleted from a folder, the index is updated, but
they are not removed immediately from the data file. Instead that data space
is marked as inactive and might be reused later when a new email is added to
the folder. As a result, the folder data file may contain stale and
out-of-order data and thus cannot be read directly as a standard mbox
file.

This module, then, provides classes for parsing the binary structures of the
index file and mapping them to Python objects. This binary file has gone
through many formats. Only one is represented in this module, though it
could certainly be expanded to support more. Parsers and information about
other versions of the index file are available at
http://eudora2unix.sourceforge.net/ and
http://users.starpower.net/ksimler/eudora/toc.html; these were immensely
helpful in reverse-engineering the version represented by this module.

	This module exports the following names:

	
	Toc – a BinaryStructure for the index
file header

	Message – a BinaryStructure for the
fixed-length email metadata entries in the index files

	
class eulcommon.binfile.eudora.Message(fobj=None, mm=None, offset=0)

	A BinaryStructure for a single email’s
metadata cached in the index file.

Only a few fields are currently represented; other fields contain
interesting data but have not yet been reverse-engineered.

	
class eulcommon.binfile.eudora.Toc(fobj=None, mm=None, offset=0)

	A BinaryStructure for an email folder index
header.

Only a few fields are currently represented; other fields contain
interesting data but have not yet been reverse-engineered.

	
messages

	a generator yielding the Message structures in the index

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	EULcommon 0.18.0 documentation

 	eulcore.binfile – Map binary data to Python objects

eulcommon.binfile.outlookexpress – Outlook Express 4.5 for Mac

Map binary email folder index and content files for Outlook Express
4.5 for Macintosh to Python objects.

What documentation is available suggests that Outlook Express stored
email in either .mbx or .dbx format, but in Outlook Express 4.5 for
Macintosh, each mail folder consists of a directory with an Index
file and an optional Mail file (no Mail file is present when a
mail folder is empty).

	
class eulcommon.binfile.outlookexpress.MacFolder(folder_path)

	Wrapper object for an Outlook Express 4.5 for Mac folder, with
a MacIndex and an optional MacMail.

	Parameters:	folder_path – path to the Outlook Express 4.5 folder
directory, which must contain at least an Index file (and
probably a Mail file, for non-empty folders)

	
all_messages

	Same as messages except deleted messages are included.

	
count

	Number of email messages in this folder

	
messages

	A generator yielding an email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message] for
each message in this folder, based on message index
information in MacIndex and content in
MacMail. Does not include deleted messages.

	
raw_messages

	A generator yielding a MacMailMessage binary
object for each message in this folder, based on message index
information in MacIndex and content in
MacMail.

	
class eulcommon.binfile.outlookexpress.MacIndex(fobj=None, mm=None, offset=0)

	A BinaryStructure for the Index
file of an Outlook Express 4.5 for Mac email folder.

	
messages

	A generator yielding the MacIndexMessage
structures in this index file.

	
class eulcommon.binfile.outlookexpress.MacIndexMessage(fobj=None, mm=None, offset=0)

	Information about a single email message within the
MacIndex.

	
class eulcommon.binfile.outlookexpress.MacMail(fobj=None, mm=None, offset=0)

	A BinaryStructure for the Mail file
of an Outlook Express 4.5 for Mac email folder. The Mail file
includes the actual contents of any email files in the folder,
which must be accessed based on the message offset and size from
the Index file.

	
get_message(offset, size)

	Get an individual MacMailMessage within a Mail
data file, based on size and offset information from the
corresponding MacIndexMessage.

	Parameters:	
	offset – offset within the Mail file where the desired
message begins, i.e. MacMailMessage.offset

	size – size of the message,
i.e. MacMailMessage.size

	
class eulcommon.binfile.outlookexpress.MacMailMessage(size, *args, **kwargs)

	A single email message within the Mail data file, as indexed by
a MacIndexMessage. Consists of a variable length header
or message summary followed by the content of the email (also
variable length).

The size of a single MacMailMessage is stored in the
MacIndexMessage but not (as far as we have determined) in
the Mail data file, an individual message must be initialized with
the a size parameter, so that the correct content can be returned.

	Parameters:	size – size of this message (as determined by
MacIndexMessage.size); required to return
data correctly.

	
as_email()

	Return message data as a email.message.Message [http://docs.python.org/library/email.message.html#email.message.Message]
object.

	
data

	email content for this message

	
deleted

	boolean flag indicating if this is a deleted message

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	EULcommon 0.18.0 documentation

Change & Version Information

The following is a summary of changes and improvements to
eulcommon. New features in each version should be listed, with
any necessary information about installation or upgrade notes.

0.18

	Custom auth decorators in eulcommon.djangoextras.auth.decorators
now have the capacity to take additional view parameters, with fallback
to old behavior for compatibility

0.17.0

	searchutil can now parse field:value pairs in
search term strings. See
parse_search_terms(). The existing
search term parsing method,
search_terms(), should continue to work
as before.

	eulcommon.binfile has been moved into the new
bodatools; it will remain in eulcommon for the
upcoming release as deprecated, and then be removed at a later date.

0.16.2 - template hotfix redux

	Add missing pagination template to setup.py install

0.16.1 - template hotfix

	Add missing pagination template to sdist

0.16.0

	Parsing for quotable search strings

	Utility to limit pagination display to nearby pages

0.15.0 - Initial Release

	Split out and re-organized common, useful components
(binfile, djangoextras) from
eulcore into eulcommon for easier re-use.

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	EULcommon 0.18.0 documentation

 Python Module Index

 b |
 d |
 s

 			

 		
 b	

 	[image: -]
 	
 eulcommon.binfile	

 	
 	
 eulcommon.binfile.core	

 	
 	
 eulcommon.binfile.eudora	

 	
 	
 eulcommon.binfile.outlookexpress	

 			

 		
 d	

 	[image: -]
 	
 eulcommon.djangoextras	

 	
 	
 eulcommon.djangoextras.auth	

 	
 	
 eulcommon.djangoextras.formfields	

 	
 	
 eulcommon.djangoextras.http	

 			

 		
 s	

 	[image: -]
 	
 eulcommon.searchutil	

 	
 	
 eulcommon.searchutil.templatetags.search_utils	

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	EULcommon 0.18.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	all_messages (eulcommon.binfile.outlookexpress.MacFolder attribute)

 	

 	as_email() (eulcommon.binfile.outlookexpress.MacMailMessage method)

B

 	

 	BinaryStructure (class in eulcommon.binfile)

 	

 	ByteField (class in eulcommon.binfile)

C

 	

 	content_negotiation() (eulcommon.djangoextras.http method)

 	count (eulcommon.binfile.outlookexpress.MacFolder attribute)

 	

 	create_textinput() (eulcommon.djangoextras.formfields.W3CDateWidget method)

D

 	

 	data (eulcommon.binfile.outlookexpress.MacMailMessage attribute)

 	deleted (eulcommon.binfile.outlookexpress.MacMailMessage attribute)

 	

 	DynamicChoiceField (class in eulcommon.djangoextras.formfields)

 	DynamicSelect (class in eulcommon.djangoextras.formfields)

E

 	

 	eulcommon.binfile (module)

 	eulcommon.binfile.core (module)

 	eulcommon.binfile.eudora (module)

 	eulcommon.binfile.outlookexpress (module)

 	eulcommon.djangoextras (module)

 	

 	eulcommon.djangoextras.auth (module)

 	eulcommon.djangoextras.formfields (module)

 	eulcommon.djangoextras.http (module)

 	eulcommon.searchutil (module)

 	eulcommon.searchutil.templatetags.search_utils (module)

G

 	

 	get_message() (eulcommon.binfile.outlookexpress.MacMail method)

I

 	

 	IntegerField (class in eulcommon.binfile)

L

 	

 	LengthPrependedStringField (class in eulcommon.binfile)

 	

 	login_required_with_ajax() (eulcommon.djangoextras.auth method)

M

 	

 	MacFolder (class in eulcommon.binfile.outlookexpress)

 	MacIndex (class in eulcommon.binfile.outlookexpress)

 	MacIndexMessage (class in eulcommon.binfile.outlookexpress)

 	MacMail (class in eulcommon.binfile.outlookexpress)

 	

 	MacMailMessage (class in eulcommon.binfile.outlookexpress)

 	Message (class in eulcommon.binfile.eudora)

 	messages (eulcommon.binfile.eudora.Toc attribute)

 	

 	(eulcommon.binfile.outlookexpress.MacFolder attribute)

 	(eulcommon.binfile.outlookexpress.MacIndex attribute)

P

 	

 	pages_to_show() (in module eulcommon.searchutil)

 	pagination_links() (in module eulcommon.searchutil.templatetags.search_utils)

 	parse_search_terms() (in module eulcommon.searchutil)

 	

 	permission_required_with_403() (eulcommon.djangoextras.auth method)

 	permission_required_with_ajax() (eulcommon.djangoextras.auth method)

R

 	

 	raw_messages (eulcommon.binfile.outlookexpress.MacFolder attribute)

 	

 	render() (eulcommon.djangoextras.formfields.W3CDateWidget method)

S

 	

 	search_terms() (in module eulcommon.searchutil)

T

 	

 	Toc (class in eulcommon.binfile.eudora)

U

 	

 	user_passes_test_with_403() (eulcommon.djangoextras.auth method)

 	

 	user_passes_test_with_ajax() (eulcommon.djangoextras.auth method)

V

 	

 	value_from_datadict() (eulcommon.djangoextras.formfields.W3CDateWidget method)

W

 	

 	W3CDateField (class in eulcommon.djangoextras.formfields)

 	W3CDateWidget (class in eulcommon.djangoextras.formfields)

 	

 	widget (eulcommon.djangoextras.formfields.DynamicChoiceField attribute)

 	

 	(eulcommon.djangoextras.formfields.W3CDateField attribute)

 Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		EULcommon 0.18.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Emory University Libraries.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

