

96B Quad Ethernet Mezzanine

Description

The 96B Quad Ethernet Mezzanine is an add-on/expansion board for SoC based development platforms designed to
the 96Boards specification. The mezzanine card has 4x Texas Instruments DP83867 Gigabit Ethernet PHYs to provide
4 ports of gigabit Ethernet connectivity to the carrier development platform.

[image: _images/96b-quad-ethernet-mezzanine-med-3.jpg]
Fig. 1 96B Quad Ethernet Mezzanine on the Ultra96

Features

	4x TI DP83867 [http://www.ti.com/product/DP83867CS] Gigabit Ethernet PHYs

	Quad Ethernet RJ45 with magnetics

	Power and reset pushbuttons

	Low-speed expansion connector for stacking

	Supports the Avnet Ultra96 v1 and v2 [https://www.96boards.org/product/ultra96/] dev platforms

	Example designs for Vivado

	Standalone and PetaLinux example designs

Where to buy

The mezzanine card can be purchased from Opsero’s online shop at the link below:

96B Quad Ethernet Mezzanine order page [https://opsero.com/product/96b-quad-ethernet-mezzanine/]

Datasheet

	Pin Configuration
	Low-speed expansion header

	Low-speed expansion socket

	High-speed expansion connector

	Specifications
	Recommended Operating Conditions

	Power Consumption

	Reset Timing

	MDIO Timing

	DP83867 Electrical and Timing

	Certifications

	Detailed Description
	Hardware Overview

	TI DP83867 Gigabit Ethernet PHY

	Low-speed expansion connectors

	High-speed expansion connector

	Power Supplies

	Clocks

	Resets

	PHY Configuration

	Mechanical Information
	Dimensions

	3D Model

User Guide

	Getting Started
	Example Designs

	Requirements

	Build instructions

	Launch on hardware

	Echo Server Example Usage

	PetaLinux Example Usage

	Board Setup
	Mezzanine fastening hardware

	Stacking a second mezzanine

	Programming Guide
	Vivado design

	PetaLinux

	References
	96B Quad Ethernet Mezzanine Board Files

	Ultra96

	Part Datasheets

	Accessories

Pin Configuration

The 96B Quad Ethernet Mezzanine has both the low-speed and high-speed expansion
connectors as defined by the 96Boards Consumer Edition specification. The following
tables define the pinout of those connectors for this mezzanine card.

Low-speed expansion header

The low-speed expansion header connects the main power supply (SYS_DCIN) to the mezzanine
card and it also provides I/Os that are used for the MDIO bus, the PHY resets and the
“power good” signals from the mezzanine card’s switching regulators.

Only 9 I/O pins of the low-speed expansion header are used by the 96B Quad Ethernet
Mezzanine card. The others are directly passed through to the expansion socket on the top
side of the board which can be used for stacking a second mezzanine card. See the following
section for the pinout of the low-speed expansion socket.

The mezzanine card does not draw power from the +5V pin (37). This pin is directly passed
through to the expansion socket on the top side of the board.

The mezzanine card does not draw power from the 1.8V supply pin (35), but it does use this
pin to detect power-up of the carrier board. To supply +1.8V power to the Ethernet PHYs, the
mezzanine card generates it’s own +1.8VDC supply using an on-board switching regulator that is
powered by SYS_DCIN (the main supply). The +1.8VDC that is generated on the mezzanine card is
also passed through to the top-side expansion socket to provide power to a stacked
mezzanine if required.

	
96Boards

pin name

	Pin

	Description

	
96Boards

pin name

	Pin

	Description

	GND

	1

	Ground

	GND

	2

	Ground

	UART0_CTS

	3

	Passed through

	PWR_BTN_N

	4

	Passed through

	UART0_TXD

	5

	Passed through

	RST_BTN_N

	6

	Passed through

	UART0_RXD

	7

	Passed through

	SPI0_SCL

	8

	Passed through

	UART0_RTS

	9

	Passed through

	SPI0_DIN

	10

	Passed through

	UART1_TXD

	11

	Passed through

	SPI0_CS

	12

	Passed through

	UART1_RXD

	13

	Passed through

	SPI0_DOUT

	14

	Passed through

	I2C0_SCL

	15

	Passed through

	PCM_FS

	16

	Passed through

	I2C0_SDA

	17

	Passed through

	PCM_CLK

	18

	Passed through

	I2C1_SCL

	19

	Passed through

	PCM_DO

	20

	Passed through

	I2C1_SDA

	21

	Passed through

	PCM_DI

	22

	Passed through

	GPIO-A

	23

	Passed through

	GPIO-B

	24

	Passed through

	GPIO-C

	25

	Passed through

	GPIO-D

	26

	
POWER GOOD 1.0V

(1.8V logic)

	GPIO-E

	27

	
POWER GOOD 2.5V

(1.8V logic)

	GPIO-F

	28

	
POWER GOOD 1.8V

(1.8V logic)

	GPIO-G

	29

	
Port 0 PHY reset

(active low)

	GPIO-H

	30

	
Port 1 PHY reset

(active low)

	GPIO-I

	31

	
Port 2 PHY reset

(active low)

	GPIO-J

	32

	
Port 3 PHY reset

(active low)

	GPIO-K

	33

	MDIO data signal

	GPIO-L

	34

	MDC clock signal

	+1V8

	35

	
+1.8V supply

from dev platform

	SYS_DCIN

	36

	Main power supply

	+5V

	37

	
+5.0V supply

from dev platform

Passed through

	SYS_DCIN

	38

	Main power supply

	GND

	39

	Ground

	GND

	40

	Ground

Low-speed expansion socket

The low-speed expansion socket is on the top-side of the mezzanine card and can be used for stacking
a second mezzanine card. It provides access to all of the I/O that the 96B Quad Ethernet mezzanine does
not use, and all of the power supplies.

In the table below, all of the pins with the description “Passed through” can be used by the stacked
mezzanine card. The specific usage of the pins will depend on the development platform being used.

Note

The +1.8V power supply pin (35) is connected to the +1.8V that is generated by a switching
regulator on the 96B Quad Ethernet Mezzanine, it is not passed through from the development platform.
This allows the stacked mezzanine to draw 100mA or more from the supply.

	
96Boards

pin name

	Pin

	Description

	
96Boards

pin name

	Pin

	Description

	GND

	1

	Ground

	GND

	2

	Ground

	UART0_CTS

	3

	Passed through

	PWR_BTN_N

	4

	Passed through

	UART0_TXD

	5

	Passed through

	RST_BTN_N

	6

	Passed through

	UART0_RXD

	7

	Passed through

	SPI0_SCL

	8

	Passed through

	UART0_RTS

	9

	Passed through

	SPI0_DIN

	10

	Passed through

	UART1_TXD

	11

	Passed through

	SPI0_CS

	12

	Passed through

	UART1_RXD

	13

	Passed through

	SPI0_DOUT

	14

	Passed through

	I2C0_SCL

	15

	Passed through

	PCM_FS

	16

	Passed through

	I2C0_SDA

	17

	Passed through

	PCM_CLK

	18

	Passed through

	I2C1_SCL

	19

	Passed through

	PCM_DO

	20

	Passed through

	I2C1_SDA

	21

	Passed through

	PCM_DI

	22

	Passed through

	GPIO-A

	23

	Passed through

	GPIO-B

	24

	Passed through

	GPIO-C

	25

	Passed through

	GPIO-D

	26

	Not connected

	GPIO-E

	27

	Not connected

	GPIO-F

	28

	Not connected

	GPIO-G

	29

	Not connected

	GPIO-H

	30

	Not connected

	GPIO-I

	31

	Not connected

	GPIO-J

	32

	Not connected

	GPIO-K

	33

	Not connected

	GPIO-L

	34

	Not connected

	+1V8

	35

	
+1.8V supply from

96B Eth mezzanine

	SYS_DCIN

	36

	Main power supply
Passed through

	+5V

	37

	
+5.0V supply

from dev platform

Passed through

	SYS_DCIN

	38

	Main power supply
Passed through

	GND

	39

	Ground

	GND

	40

	Ground

High-speed expansion connector

The high-speed expansion connector routes the SGMII input (Soc-to-PHY) and output (PHY-to-SoC) signals to the development
platform. It also routes the SGMII 625MHz clock (input to SoC), which is generated by the PHY connected to port 3, and is
typically used by the SGMII receiver.

Also routed through the high-speed connector are 2 configurable outputs of the DP83867 PHYs called “GPIO0” and “GPIO1”.
These can be used for start-of-packet detection, loss of sync detection, and receive error detection among other things.
Please refer to the datasheet of the DP83867 [http://www.ti.com/product/DP83867CS] for more detailed information on
these pins and their function.

	
96Boards

pin name

	Pin

	Description

	
96Boards

pin name

	Pin

	Description

	SD_DAT0/SPI1_DOUT

	1

	Not used

	CSI0_C+

	2

	Port 0 SGMII output data+

	SD_DAT1

	3

	Not used

	CSI0_C-

	4

	Port 0 SGMII output data-

	SD_DAT2

	5

	Not used

	GND

	6

	Ground

	SD_DAT3/SPI1_CS

	7

	Not used

	CSI0_D0+

	8

	Port 1 SGMII output data+

	SD_SCLK/SPI1_SCLK

	9

	Not used

	CSI0_D0-

	10

	Port 1 SGMII output data-

	SD_CMD/SPI1_DIN

	11

	Not used

	GND

	12

	Ground

	GND

	13

	Ground

	CSI0_D1+

	14

	Port 1 GPIO1 (1.2V output)

	CLK0/CSI0_MCLK

	15

	Not used

	CSI0_D1-

	16

	Port 1 GPIO0 (1.2V output)

	CLK1/CSI1_MCLK

	17

	Not used

	GND

	18

	Ground

	GND

	19

	Ground

	CSI0_D2+

	20

	Port 0 SGMII input data+

	DSI_CLK+

	21

	Port 3 SGMII input data+

	CSI0_D2-

	22

	Port 0 SGMII input data-

	DSI_CLK-

	23

	Port 3 SGMII input data-

	GND

	24

	Ground

	GND

	25

	Ground

	CSI0_D3+

	26

	Port 1 SGMII input data+

	DSI_D0+

	27

	Port 2 SGMII output data+

	CSI0_D3-

	28

	Port 1 SGMII input data-

	DSI_D0-

	29

	Port 2 SGMII output data-

	GND

	30

	Ground

	GND

	31

	Ground

	I2C2_SCL

	32

	Not used

	DSI_D1+

	33

	Port 0 GPIO1 (1.2V output)

	I2C2_SDA

	34

	Not used

	DSI_D1-

	35

	Port 0 GPIO0 (1.2V output)

	I2C3_SCL

	36

	Not used

	GND

	37

	Ground

	I2C3_SDA

	38

	Not used

	DSI_D2+

	39

	Port 3 GPIO0 (1.2V output)

	GND

	40

	Ground

	DSI_D2-

	41

	Port 3 GPIO1 (1.2V output)

	CSI1_D0+

	42

	SGMII 625MHz clock+

	GND

	43

	Ground

	CSI1_D0-

	44

	SGMII 625MHz clock-

	DSI_D3+

	45

	Port 2 SGMII input data+

	GND

	46

	Ground

	DSI_D3-

	47

	Port 2 SGMII input data-

	CSI1_D1+

	48

	Port 2 GPIO1 (1.2V output)

	GND

	49

	Ground

	CSI1_D1-

	50

	Port 2 GPIO0 (1.2V output)

	USB_D+

	51

	Not used

	GND

	52

	Ground

	USB_D-

	53

	Not used

	CSI1_C+

	54

	Port 3 SGMII output data+

	GND

	55

	Ground

	CSI1_C-

	56

	Port 3 SGMII output data-

	HSIC_STR

	57

	Not used

	GND

	58

	Ground

	HSIC_DATA

	59

	Not used

	RESERVED

	60

	Not used

Specifications

Recommended Operating Conditions

	
	MIN

	TYP

	MAX

	UNIT

	Supply voltage

	SYS_DCIN

	+8

	+12

	+17

	V

	Output current

	
+1V8 (pin 35)

Low-speed

expansion socket

	0

	
	200

	mA

Power Consumption

The specifications below refer to the total power consumption of the mezzanine card
and the carrier board combined. It is important to note that the use of the mezzanine
will affect the power consumption of the SoC on the carrier board. This is due to the
peripherals and IP that must be enabled on the SoC to interface with the
Ethernet PHYs. Also note that the total power consumption is dependent on the ambient
temperature and channel utilization.

Ultra96-v1

	
	SYS_DCIN

	UTILIZATION

	MIN

	TYP

	MAX

	UNIT

	Current draw

	16 VDC

	100%

	
	510

	
	mA

	12 VDC

	100%

	
	645

	
	mA

	8 VDC

	100%

	
	935

	
	mA

	Tests performed at ambient temperature of 25 degrees C

	Tests performed using IP in the FPGA to generate the Ethernet packets

Ultra96-v2

	
	SYS_DCIN

	UTILIZATION

	MIN

	TYP

	MAX

	UNIT

	Current draw

	16 VDC

	100%

	
	550

	
	mA

	12 VDC

	100%

	
	710

	
	mA

	8 VDC

	100%

	
	1050

	
	mA

	Tests performed at ambient temperature of 25 degrees C

	Tests performed using IP in the FPGA to generate the Ethernet packets

Reset Timing

When hardware resetting the PHYs, we recommend using this timing:

	Hold the RESET_N signal LOW for 10ms

	Release the RESET_N signal (HIGH) and wait for 5ms

MDIO Timing

	The maximum MDC frequency supported by the DP83867 PHY is 25MHz.

DP83867 Electrical and Timing

For electrical specs and timing related to the DP83867 signals listed below, please
refer to the DP83867 datasheet [http://www.ti.com/product/DP83867CS]:

	Reset

	SGMII

	GPIO0 and GPIO1

	MDIO

	Start-of-Frame detect

Certifications

	RoHS

	CE

Detailed Description

Hardware Overview

The figure below illustrates the various hardware components that are located
on the top-side of the 96B Quad Ethernet Mezzanine card.

[image: _images/96b-quad-ethernet-top-labelled.jpg]
Fig. 2 Mezzanine card labelled top-side

The main components on the top-side of the mezzanine card are:

	4x TI DP83867 Gigabit Ethernet PHYs

	40-pin low-speed expansion socket for stacking a second mezzanine

	Power and reset pushbuttons

	25MHz crystal

	Switching regulators for +1.0V, +1.8V and +2.5V

	Quad-port RJ45 connector

The figure below illustrates the various hardware components that are located on
the bottom-side of the mezzanine card.

[image: _images/96b-quad-ethernet-bottom-labelled.jpg]
Fig. 3 Mezzanine card labelled bottom-side

The main components on the bottom-side of the mezzanine card are:

	40-pin low-speed expansion header

	Decoupling capacitors for the DP83867 Ethernet PHYs

	60-pin high-speed expansion header

TI DP83867 Gigabit Ethernet PHY

There are 4x TI DP83867 Gigabit Ethernet PHYs on the mezzanine card, one for each
of the four Gigabit Ethernet ports. For interfacing with a MAC, the DP83867 has
both RGMII and SGMII interfaces, however the mezzanine card only uses the SGMII
interface of each PHY. The DP83867 is designed for low-power, it has low-latency
and it provides IEEE 1588 Start of Frame Detection. For more specific information
on the DP83867, please refer to the datasheet [http://www.ti.com/product/DP83867CS].

In this documentation, we will refer to the PHYs as PHY0, PHY1, PHY2 and PHY3,
corresponding to their placement from left-to-right and as shown in
Fig. 2.

Low-speed expansion connectors

The 96B Quad Ethernet Mezzanine has two low-speed expansion connectors: a pin header
on the bottom-side, and a pin socket on the top-side. The pin header interfaces with
the development platform, while the pin socket is used for “stacking” a second
mezzanine card on top of the 96B Quad Ethernet Mezzanine.
The figure below illustrates the connections to the low-speed expansion pin header
(bottom side) and socket (top side).

[image: _images/96b-quad-ethernet-low-speed.jpg]
Fig. 4 Low-speed expansion and stacking connectors

Bottom-side low-speed expansion pin header

The 96B Quad Ethernet Mezzanine has a 40-pin low-speed expansion pin header, located on the
bottom side of the board (see Fig. 3). This pin header
connects directly to the development platform and it provides the main power supply to the
96B Quad Ethernet Mezzanine card as well as various I/O signals used by the mezzanine:

	SYS_DCIN (the main power supply)

	Power and reset pushbuttons

	MDIO and MDC signals for the Ethernet PHYs

	Reset signals for the Ethernet PHYs

	Power good signals from the switching regulators

Top-side low-speed expansion socket

Not all of the I/Os on the low-speed expansion header are used by the 96B Quad Ethernet
Mezzanine card. To make these unused I/Os accessible to another mezzanine card, the 96B Quad Ethernet
Mezzanine was designed with a 40-pin low-speed expansion socket, located on the top-side of the board
(see Fig. 2). This expansion socket connects to all of
the unused I/Os of the 96B Quad Ethernet Mezzanine, as well as the power/reset
pushbuttons and the power supplies. It is designed to allow a standard 96Boards mezzanine
card to be “stacked” on top of the 96B Quad Ethernet Mezzanine.

There are 21 unused I/Os that are passed through from the low-speed header to the low-speed
socket and can be used by a “stacked” (2nd) mezzanine:

	UART0_CTS,TXD,RXD,RTS

	UART1_TXD,RXD

	I2C0_SCL,SDA

	I2C1_SCL,SDA

	SPI0_SCL,DIN,CS,DOUT

	PCM_FS,CLK,DO,DI

	GPIO-A,B,C

All power supply pins SYS_DCIN, +5V and +1V8 are connected to the appropriate supplies
however only SYS_DCIN and +5V are directly passed through from the bottom-side low-speed
expansion header. The +1V8 power supply is instead connected to the +1.8V that is generated
by the 96B Quad Ethernet Mezzanine’s on-board switching regulator. This allows the “stacked”
mezzanine card to draw more than the standard’s 100mA limit from the +1.8V supply.

The POWER and RESET pushbuttons are directly passed through.

High-speed expansion connector

The 96B Quad Ethernet Mezzanine has a 60-pin high-speed expansion header for interfacing
with high-speed I/Os on the development platform. The mezzanine uses most of these I/Os for
interfacing the SGMII links and the GPIO0/1 outputs of the DP83867 PHYs.

[image: _images/96b-quad-ethernet-high-speed.jpg]
Fig. 5 High-speed expansion connector

Each SGMII link is composed of two differential pairs, one for the transmit signal and one
for the receive signal. These links typically operate at 1.25Gbps in each direction. These
differential pairs are routed on the 96B Quad Ethernet Mezzanine with a controlled
differential impedance of 100 ohms.

The DP83867 PHYs have two outputs, named GPIO0 and GPIO1, that can be used for Start of
Frame detection among other things (see datasheet [http://www.ti.com/product/DP83867CS]
for details). Both of these outputs are routed through the high-speed expansion header so
that they can be used by the development platform.

Power Supplies

The 96B Quad Ethernet Mezzanine has three switching regulators that generate the supply
voltages required by the TI DP83867 Gigabit Ethernet PHYs (+1.0V, +1.8V and +2.5V). The
switching regulators are all fed by the SYS_DCIN main supply voltage that is provided by
the development platform through the low-speed expansion connector. The 96B Quad Ethernet
Mezzanine can accept a SYS_DCIN input supply voltage of +8VDC to +17VDC, although it is
recommended that a +12VDC supply be used.

[image: _images/96b-quad-ethernet-power.jpg]
Fig. 6 Power supplies

Power Sequencing

The SYS_DCIN voltage is always present as long as the power supply is connected to the
development platform, and even when the development platform is turned OFF. To prevent the
switching regulators from running when the development platform is turned OFF, the 96B Quad
Ethernet Mezzanine uses the ENABLE inputs of the switching regulators. The signal used to
ENABLE the switching regulators is the +1V8 supply pin of the low-speed expansion connector.

The power sequencing of the switching regulators was designed to meet the requirements
of the DP83867 PHY and is as follows:

	The power supply is connected to the development platform and the SYS_DCIN voltage rises
to +12VDC (+12VDC expected, +8-17VDC accepted).

	The development platform is turned ON, and the +1V8 pin of the low-speed expansion
connector rises to +1.8V.

	The +1.0V and +1.8V switching regulators are enabled by the +1V8 pin, and their respective
POWER GOOD signals are asserted.

	The +2.5V regulator is enabled by the POWER GOOD signal of the +1.8V switching regulator
and it’s POWER GOOD signal is asserted.

Power good signals

To enable diagnostic checking of the 96B Quad Ethernet Mezzanine power supplies, each of the
POWER GOOD signals are connected to the low-speed expansion connector. They are connected
to the following pins:

	Power good +1.0V: Pin 26, GPIO-D

	Power good +1.8V: Pin 28, GPIO-F

	Power good +2.5V: Pin 27, GPIO-E

Stacking socket +1V8

The +1V8 supply pin of the low-speed stacking socket (intended for “stacking” a 2nd mezzanine
card on top of the 96B Quad Ethernet Mezzanine) is connected to the +1.8V supply that is
generated by the on-board switching regulator. The mezzanine was designed this way to allow
the “stacked” mezzanine card to draw more than 100mA from the +1.8V supply, the maximum current that
many 96Boards development platforms are designed to support.

Note that the SYS_DCIN and +5V supply pins of the low-speed stacking socket are connected
directly to the associated pins on the low-speed expansion header on the bottom-side of the
board.

Clocks

The figure below illustrates the clock connections on the 96B Quad Ethernet Mezzanine.

[image: _images/96b-quad-ethernet-clocks.jpg]
Fig. 7 Clocks

Each of the 4x DP83867 PHYs requires an input clock of 25MHz that can either be provided by
a crystal, by a clock generator or by the CLK_OUT pin of another DP83867 device. To provide
the 25MHz clock to all devices, the 96B Quad Ethernet Mezzanine connects a crystal to PHY3,
and the CLK_OUT output of that PHY is used to drive the clock inputs of the 3 other PHYs.
For hardware verification, the CLK_OUT output of each PHY is connected to a testpoint that
can be probed on the top-side of the mezzanine card. Note that the CLK_OUT output pin of the
DP83867 can be configured to output other signals/frequencies, however for the correct
operation of the 96B Quad Ethernet Mezzanine, the default configuration of a 25MHz output
should not be changed.

The DP83867 PHYs each have the ability to generate a 625MHz output clock that can be used
by the SGMII receiver. The 96B Quad Ethernet Mezzanine routes only one of these clock
outputs to the high-speed expansion connector, the one generated by PHY3. Note that this
clock output is not enabled by default and must be enabled via the MDIO bus if required by
the development platform.

Resets

The DP83867 Ethernet PHYs each have a hardware reset pin (RESET_N) that is routed separately to the
low-speed expansion connector (see Fig. 4 for details). The reset pin
must be driven by the development platform with an active-low signal. There are no pull-up resistors
connected to the reset signals on the 96B Quad Ethernet Mezzanine card, however the DP83867 devices
have pull-up resistors internal to the device. We recommend always driving the reset pins from the
development platform in order to ensure reliable reset behavior.

PHY Configuration

Configuration of the PHY by software is performed using the MDIO bus. The MDIO bus consists of
two signals: a bidirectional data signal (MDIO) and a clock signal (MDC). The data signal (MDIO)
is driven by the master and slaves as an open drain output, and it is connected to a pull-up
resistor located on the mezzanine card. The clock signal (MDC) is driven by the master only (the SoC
on the development platform) and it does not require a pull-up resistor. For more information on
the MDIO serial bus standard, please refer to the
Wikipedia page on MDIO [https://en.wikipedia.org/wiki/Management_Data_Input/Output].

All of the 4 Ethernet PHYs are connected in a chain configuration to a single MDIO bus. Each PHY
has it’s own unique “PHY address” which is used when targetting the PHY on the MDIO bus.
The diagram below illustrates the MDIO bus architecture and it’s connection between the
low-speed expansion connector and the Ethernet PHYs.

[image: _images/96b-quad-ethernet-mdio.jpg]
Fig. 8 MDIO bus architecture

As illustrated in the diagram, each PHY has a unique address that must be used when communicating
with the PHYs over the MDIO bus. The PHY addresses are as follows:

	PHY0 (Port 0): PHY address 0x01

	PHY1 (Port 1): PHY address 0x03

	PHY2 (Port 2): PHY address 0x0C

	PHY3 (Port 3): PHY address 0x0F

Mechanical Information

Dimensions

The mechanical dimensions of the 96B Quad Ethernet Mezzanine card are illustrated
in the figure below. All dimensions are in millimeters (mm).

[image: _images/96b-quad-ethernet-mec-top.jpg]
Fig. 9 96B Quad Ethernet Mezzanine mechanical drawing

The assembly drawing above is also available as a PDF at the link below:

96B Quad Ethernet Mezzanine Rev-A Assembly Drawing [https://download.opsero.com/ethernet96/96BQuadEth_ASSM_RevA.PDF]

3D Model

The 3D model of the board is available as a STEP file at the link below:

96B Quad Ethernet Mezzanine Rev-A 3D STEP model [https://download.opsero.com/ethernet96/96BQuadEthernetRevA-3D.zip]

Getting Started

Example Designs

The example designs for the 96B Quad Ethernet Mezzanine are hosted on Github and
are designed for the Avnet Ultra96 development platform. There are currently two
examples and they are differentiated by the type of Ethernet MACs used and their
location in the system.

AXI Ethernet based example

This example design is based on Xilinx’s soft (ie. FPGA implemented) MAC,
the AXI Ethernet Subsystem IP, that can be found in the Vivado IP Catalog.
As the MAC is implemented in the FPGA fabric, this example is ideal for
applications that require some packet processing to be performed in the FPGA.

PS GEM based example

This example design utilizes the 4x Gigabit Ethernet MACs (GEMs) that are embedded
into the Processing System (PS) of the Zynq Ultrascale+™ device of the Ultra96.
The MACs in this example design do not use up any of the FPGA fabric, which
makes it ideal for applications that need to use the FPGA for other purposes.

Requirements

In order to use the example designs, you will need the following:

	Windows or Linux PC

	Xilinx Vivado

	Xilinx Vitis

	1x Ultra96 development platform

	1x 96B Quad Ethernet Mezzanine

If you want to build PetaLinux for the example designs, you will also need:

	Linux PC or a virtual Linux machine

	PetaLinux Tools

You will also need a CAT-5e Ethernet cable and a link partner, such as a PC with an Ethernet port
or a network router.

Additionally, you may need to install the Ultra96 board definition files to your Vivado
installation, and obtain an AXI Ethernet evaluation license if you intend to use that design.

Install Ultra96 board definition files

To use the example projects, you must first install the board definition files for the Ultra96 into your Vivado
and Vitis installation. The Ultra96 board definition files are hosted on
Avnet’s Github repo [https://github.com/Avnet/bdf].

Clone or download that repo, then copy the ultra96v1 and ultra96v2 directories from it to the
following directories on your machine:
* <path-to-xilinx-vivado>/data/boards/board_files
* <path-to-xilinx-vitis>/data/boards/board_files

AXI Ethernet evaluation license

If you intend to build the AXI Ethernet based design, you will need to get an evaluation (or full)
license for the Tri-mode Ethernet MAC from Xilinx. You can find instructions for that here:
Xilinx Soft TEMAC license [http://ethernetfmc.com/getting-a-license-for-the-xilinx-tri-mode-ethernet-mac/]

Build instructions

Download the source code

The source code for both example designs can be found on our Github page:

96B Quad Ethernet Mezzanine Github page [https://github.com/fpgadeveloper/ethernet96]

The repository contains the following directories:

	Vivado: Contains the scripts to build the Vivado projects

	Vitis: Contains a script to generate and build the standalone software applications

	PetaLinux: Contains a script and configuration files to build the PetaLinux projects

	EmbeddedSw: Contains modifications to the lwIP software library

Build the Vivado and Vitis projects

Once you have installed the board definition files, and you have installed the required licenses, then
you can use the sources in this repository to build the Vivado, Vitis and PetaLinux projects. Start by cloning the repo
or download it as a zip file and extract the files to your hard drive, then follow these steps depending on your OS:

Windows users

	Open Windows Explorer, browse to the repo files on your hard drive.

	In the Vivado directory, you will find multiple batch files (*.bat).
Double click on the batch file of the example project that you would
like to generate - this will generate a Vivado project.

	You will be asked to select between Ultra96 v1 and v2. It is important to select the
correct version of the Ultra96 that you are using. Type 1 or 2 (for v1 or v2)
and press ENTER. The script will now generate the Vivado project for your board.

	Run Vivado and open the project that was just created.

	Click Generate bitstream.

	When the bitstream is successfully generated, select “File->Export->Export Hardware”.
In the window that opens, tick “Include bitstream” and “Local to project”.

	Return to Windows Explorer and browse to the Vitis directory in the repo.

	Double click the build-vitis.bat batch file. The batch file will run the
build-vitis.tcl script and build the Vitis workspace containing the hardware
design and the software application. Please refer to the “README.md” file in the Vitis
subdirectory for instructions on running the software application on hardware.

	If you are interested in building PetaLinux, you will need to use a Linux machine and
follow the steps for Linux users below.

Linux users

	Launch the Vivado GUI.

	On the welcome page, there is a Tcl console. In the Tcl console, cd to the repo files on your hard drive
and into the Vivado subdirectory. For example: cd /media/projects/ethernet96/Vivado.

	Specify the version of Ultra96 you want to build the project for (v1 or v2) by
using one of the following commands: set argv {1} for v1, or set argv {2} for v2.

	In the Vivado subdirectory, you will find multiple Tcl files. To list them, type exec ls {*}[glob *.tcl].
Determine the Tcl script for the example project that you would
like to generate (for example: build-ps-gem.tcl), then source the script in the Tcl console:
For example: source build-ps-gem.tcl

	Vivado will run the script and generate the project. When it’s finished, click Generate bitstream.

	When the bitstream is successfully generated, select “File->Export->Export Hardware”.
In the window that opens, tick “Include bitstream” and “Local to project”.

	To build the Vitis workspace, open a Linux command terminal and cd to the Vitis directory in the repo.

	The Vitis directory contains the build-vitis.tcl script that will build the Vitis workspace containing the hardware
design and the software application. Run the build script by typing the following command:
<path-of-xilinx-vitis>/bin/xsct build-vitis.tcl
Note that you must replace <path-of-xilinx-vitis> with the actual path to your Vitis installation.

	Please refer to the “README.md” file in the Vitis subdirectory for instructions on running the software
application on hardware.

	To build the PetaLinux project, follow the steps in the following section.

Build the PetaLinux projects

Once the Vivado project(s) have been built and exported, you can now build the PetaLinux project(s).

Note

The PetaLinux projects can only be built on a Linux machine (or virtual Linux machine).

Linux users

	To build the PetaLinux project, first launch PetaLinux by sourcing the “settings.sh” bash script,
eg: source <path-to-installed-petalinux>/settings.sh.

	Now cd to the PetaLinux directory in the repo and run the build-petalinux
script. You may have to add execute permission to the script first using chmod +x build-petalinux,
then run it by typing ./build-petalinux.

Warning

UNIX line endings: The scripts and files in the PetaLinux directory of this repository must
have UNIX line endings when they are executed or used under Linux. The best way to ensure UNIX
line endings, is to clone the repo directly onto your Linux machine. If instead you have copied
the repo from a Windows machine, the files will have DOS line endings and
you must use the dos2unix tool to convert the line endings for UNIX.

Launch on hardware

Echo server via JTAG

	Open Vitis.

	Power up your hardware platform and ensure that the JTAG is connected properly.

	Select “Xilinx Tools->Program FPGA”. In the “Program FPGA” dialog box that appears, select the
“Hardware Platform” that you want to run, this will correspond to name of the Vivado project that
you built earlier.

	Click on the software application that you want to run, it should be the one with the postfix “_echo_system”.

	Open the drop-down menu of the “Run” button (play) on the toolbar. Select “Run Configurations”, then in the
dialog box that appears, double-click on the option
“Single Application Debug”. This will create a new run configuration for the application.

	Select the new run configuration and click “Run”.

PetaLinux via JTAG

To launch the PetaLinux project on hardware via JTAG, connect and power up your hardware and then
use the following commands in a Linux command terminal:

	Change current directory to the PetaLinux project directory: cd <petalinux-project-dir>

	Download bitstream to the FPGA: petalinux-boot --jtag --fpga
Note that you don’t have to specify the bitstream because this command will use the one that it finds
in the ./images/linux directory.

	Download the PetaLinux kernel to the FPGA: petalinux-boot --jtag --kernel

PetaLinux via SD card

To boot PetaLinux on hardware via SD card:

	The SD card must first be prepared with two partitions: one for the boot files and another
for the root file system.

	Plug the SD card into your computer and find it’s device name using the dmesg command.
The SD card should be found at the end of the log, and it’s device name should be something
like /dev/sdX, where X is a letter such as a,b,c,d, etc. Note that you should replace
the X in the following instructions.

	Run fdisk by typing the command sudo fdisk /dev/sdX

	Make the boot partition: typing n to create a new partition, then type p to make
it primary, then use the default partition number and first sector. For the last sector, type
+1G to allocate 1GB to this partition.

	Make the boot partition bootable by typing a

	Make the root partition: typing n to create a new partition, then type p to make
it primary, then use the default partition number, first sector and last sector.

	Save the partition table by typing w

	Format the boot partition (FAT32) by typing sudo mkfs.vfat -F 32 -n boot /dev/sdX1

	Format the root partition (ext4) by typing sudo mkfs.ext4 -L root /dev/sdX2

	Copy the following files to the boot partition of the SD card:
Assuming the boot partition was mounted to /media/user/boot, follow these instructions:

$ cd /media/user/boot/
$ sudo cp /<petalinux-project>/images/linux/BOOT.BIN .
$ sudo cp /<petalinux-project>/images/linux/boot.scr .
$ sudo cp /<petalinux-project>/images/linux/image.ub .

	Create the root file system by extracting the rootfs.tar.gz file to the root partition.
Assuming the root partition was mounted to /media/user/root, follow these instructions:

$ cd /media/user/root/
$ sudo cp /<petalinux-project>/images/linux/rootfs.tar.gz .
$ sudo tar xvf rootfs.tar.gz -C .
$ sync

Once the sync command returns, you will be able to eject the SD card from the machine.

	Connect and power your hardware.

Echo Server Example Usage

Default IP address

The echo server is designed to attempt to obtain an IP address from a DHCP server. This is useful
if the echo server is connected to a network. Once the IP address is obtained, it is printed out
in the UART console output.

If instead the echo server is connected directly to a PC, the DHCP attempt will fail and the echo
server will default to the IP address 192.168.1.10. To be able to communicate with the echo server
from the PC, the PC should be configured with a fixed IP address on the same subnet, for example:
192.168.1.20.

Ping the port

The echo server can be “pinged” from a connected PC, or if connected to a network, from
another device on the network. The UART console output will tell you what the IP address of the
echo server is. To ping the echo server, use the ping command from a command console.

For example: ping 192.168.1.10

Change the targetted port

The echo server example design currently can only target one Ethernet port at a time.
Selection of the Ethernet port can be changed by modifying the defines contained in the
platform_config.h file in the application sources. Set PLATFORM_EMAC_BASEADDR
to one of the following values:

For designs using the GEMs:

	Port 0: XPAR_XEMACPS_0_BASEADDR

	Port 1: XPAR_XEMACPS_1_BASEADDR

	Port 2: XPAR_XEMACPS_2_BASEADDR

	Port 3: XPAR_XEMACPS_3_BASEADDR

For designs using AXI Ethernet:

	Port 0: XPAR_AXIETHERNET_0_BASEADDR

	Port 1: XPAR_AXIETHERNET_1_BASEADDR

	Port 2: XPAR_AXIETHERNET_2_BASEADDR

	Port 3: XPAR_AXIETHERNET_2_BASEADDR

PetaLinux Example Usage

In the PetaLinux projects, the Ethernet ports are assigned to the network interfaces eth0-eth3 as follows:

	eth0: Port 0

	eth1: Port 1

	eth2: Port 2

	eth3: Port 3

The following examples demonstrate how to use these network interfaces to configure the Ethernet ports for
use in PetaLinux.

Enable port

In this example we enable port 0 (eth0).

root@ps_gem:~# ifconfig eth0 up
[209.778955] TI DP83867 ff0b0000.mdio-mii:03: attached PHY driver [TI DP83867] (mii_bus:phy_addr=ff0b0000.mdio-mii:03, irq=POLL)
[209.793249] pps pps1: new PPS source ptp1
[209.797193] macb ff0b0000.ethernet: gem-ptp-timer ptp clock registered.
[209.803995] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready
[213.868935] macb ff0b0000.ethernet eth0: link up (1000/Full)
[213.874547] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

Enable port with fixed IP address

In this example we enable port 1 (eth1) with a fixed IP address.

root@ps_gem:~# ifconfig eth1 192.168.2.19 up
[209.778955] TI DP83867 ff0b0000.mdio-mii:03: attached PHY driver [TI DP83867] (mii_bus:phy_addr=ff0b0000.mdio-mii:03, irq=POLL)
[209.793249] pps pps1: new PPS source ptp1
[209.797193] macb ff0c0000.ethernet: gem-ptp-timer ptp clock registered.
[209.803995] IPv6: ADDRCONF(NETDEV_UP): eth1: link is not ready
[213.868935] macb ff0c0000.ethernet eth1: link up (1000/Full)
[213.874547] IPv6: ADDRCONF(NETDEV_CHANGE): eth1: link becomes ready

Check status of a port with ethtool

In this example we check the status of port 2 (eth2) with “ethtool”.

root@ps_gem:~# ethtool eth2
Settings for eth2:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Half 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Half 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Link partner advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Link partner advertised pause frame use: No
 Link partner advertised auto-negotiation: Yes
 Speed: 1000Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 1
 Transceiver: internal
 Auto-negotiation: on
 Link detected: yes

Ping link partner using specific port

In this example we ping the link partner from port 1 (eth1).

root@ps_gem:~# ping -I eth1 192.168.1.10
PING 192.168.1.10 (192.168.1.10): 56 data bytes
64 bytes from 192.168.1.10: seq=0 ttl=128 time=0.939 ms
64 bytes from 192.168.1.10: seq=1 ttl=128 time=0.496 ms
64 bytes from 192.168.1.10: seq=2 ttl=128 time=0.486 ms
64 bytes from 192.168.1.10: seq=3 ttl=128 time=0.485 ms
64 bytes from 192.168.1.10: seq=4 ttl=128 time=0.501 ms
^C
--- 192.168.1.10 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.485/0.581/0.939 ms

Check port configuration

In this example we check the configuration of port 1 (eth1).

root@ps_gem:~# ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:0A:35:00:01:23
 inet addr:192.168.1.11 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::20a:35ff:fe00:123%4294741717/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:148 errors:0 dropped:0 overruns:0 frame:0
 TX packets:74 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:17567 (17.1 KiB) TX bytes:12943 (12.6 KiB)
 Interrupt:31

Board Setup

Mezzanine fastening hardware

For typical development use, in a lab or on a desk, the mating force of the expansion connectors alone is
enough to securly fix the mezzanine card to the carrier board. However, for applications requiring higher
mechanical robustness, the mezzanine can be fixed to the carrier board using 7mm standoffs and M2.5 machine
screws. We suggest the following part numbers, however equivalent parts can also be used:

	
Hex standoff, Thread M2.5 x 0.45, Aluminium, Board-to-board length 7mm

Part number: M2102-2545-AL

Manufacturer: RAF Electronic Hardware

	
Machine screw, Thread M2.5 x 0.45, Length (below head) 4mm, Stainless steel, Phillips head

Part number: 425-035

Supplier: Spaenaur

Stacking a second mezzanine

A second mezzanine card can be stacked on top of the 96B Quad Ethernet Mezzanine as shown in the image below.

[image: _images/96b-quad-ethernet-mezzanine-sensors-front.jpg]
Fig. 10 96B Quad Ethernet Mezzanine with stacked Sensors mezzanine (front)

The RJ45 connector (0826-1X4T-23-F [https://belfuse.com/resources/StewartConnector/0826-1X4T-23-F.pdf])
has a height of 13.59mm, while the expansion socket has a height of 4.5mm as defined by the 96Boards spec.
For this reason, an extender (see image below) is required for stacking most mezzanine cards onto the 96B Quad
Ethernet Mezzanine. The extender is a 40-pin pin socket with 8mm long pins that is inserted into the 96B
Quad Ethernet Mezzanine’s low-speed expansion socket, effectively increasing it’s height above that of the RJ45
connector. The stacked mezzanine card is then plugged into the extender socket and sits comfortably above the
RJ45 connector. We recommend that the following connector be used as the extender socket, however equivalent
parts can also be used:

	
40-pin Pin socket with 8mm long pins

Part number: F263-1220A0BSYE1

Manufacturer: Yxcon

[image: _images/96b-quad-ethernet-mezzanine-extender.jpg]
Fig. 11 Extender for stacking second mezzanine card

When using the extender socket recommended above, the stacked mezzanine sits at a height of 16mm above the
96B Quad Ethernet Mezzanine, and it can be fixed to the mezzanine by using 16mm standoffs and M2.5 machine
screws. We suggest the following part numbers, however equivalent parts can also be used:

	
Hex standoff, Thread M2.5 x 0.45, Aluminium, Board-to-board length 16mm

Part number: M2111-2545-AL

Manufacturer: RAF Electronic Hardware

	
Machine screw, Thread M2.5 x 0.45, Length (below head) 4mm, Stainless steel, Phillips head

Part number: 425-035

Supplier: Spaenaur

The image below illustrates the use of the extender socket and 16mm standoffs.

[image: _images/96b-quad-ethernet-mezzanine-sensors.jpg]
Fig. 12 96B Quad Ethernet Mezzanine with stacked Sensors mezzanine (back)

Programming Guide

This programming guide is specific to users of the Avnet Ultra96 board. The purpose
of the guide is to provide the user with the details of the programming requirements
to enable them to operate the hardware and customise functionality.

Vivado design

We recommend that all users start with our example Vivado designs [https://github.com/fpgadeveloper/ethernet96] when using the mezzanine
card with the Ultra96. For those who wish to better understand the example designs, or
develop their own Vivado designs, this section provides more detail on the critical
elements.

SGMII Implementation

The 96B Quad Ethernet Mezzanine card was designed to conform with the 96Boards
specification for mezzanine cards [https://github.com/96boards/documentation/raw/master/mezzanine/files/mezzanine-design-guidelines.pdf],
however the pinout of the high-speed expansion connector was chosen to maximize its
usability when paired with the Ultra96. This section provides an explanation of the pin
selection of the SGMII lanes and how to implement the SGMII interfaces in the Vivado design.

The Ultra96 high-speed expansion connector does not provide access to any gigabit
transceivers of the Zynq Ultrascale+ device. For this reason, the SGMII interfaces
must be implemented using SGMII over LVDS. To implement SGMII over LVDS on the Zynq
Ultrascale+, the appropriate IP core is the PCS/PMA or SGMII IP. This IP core has several
requirements on the I/O pins with which it can be used. Two of the critical requirements are:

	The I/O pair used for TX, and that used for RX must be in the same BYTE_GROUP

	The I/O pair used for TX must be in the opposite nibble to that used for RX

For example, the TX and RX pairs of a single SGMII interface could be located in BYTE_GROUP
1, with the TX pair in the lower nibble and the RX pair in the upper nibble.

Given these requirements, the possible pin selections can be determined by looking at the
I/O pins that are available to us, and their respective BYTE_GROUPs and nibbles.
The high-speed expansion connector of the Ultra96 makes these I/O pins from bank 65
available for use:

	BYTE_GROUP

	Nibble

	Available bits (pairs)

	0

	Lower

	0,1,2

	Upper

	Not connected

	1

	Lower

	0,1,2

	Upper

	0,1

	2

	Lower

	Not connected

	Upper

	0

	3

	Lower

	0,1,2

	Upper

	0

Considering the requirements of the SGMII IP and the choice of I/O pins on the high-speed
expansion connector of the Ultra96, it is only possible to connect 3 SGMII interfaces:

	Interface 0: BYTE_GROUP 1, lower pair 0, upper pair 0

	Interface 1: BYTE_GROUP 1, lower pair 1, upper pair 1

	Interface 2: BYTE_GROUP 3, lower pair 0, upper pair 0

The 96B Quad Ethernet Mezzanine card has 4 SGMII interfaces. To connect the 4th interface
to the Ultra96, we in fact use two SGMII interfaces, where only one direction (TX/RX) of each
interface is actually used. This allows us to satisfy the requirements of the SGMII IP with
the remaining pins that are available to us. Here is how the 4th interface is connected:

	Interface 3 RX: BYTE_GROUP 0, lower pair 0 (RX), upper pair 0 (N/C pins)

	Interface 3 TX: BYTE_GROUP 2, upper pair 0 (TX), lower pair 0 (N/C pins)

With this pin selection, the 4th interface requires two SGMII IPs to function - one
that handles the RX interface and another that handles the TX interface. The unused
TX and RX pins of the SGMII IP cores are assigned to pins that are not
externally connected. To connect the GMII interface between the MAC IP and the two
SGMII IP cores, we open the interfaces and connect only the RX GMII pins to the RX
SGMII core, and the TX GMII pins to the TX SGMII core.

A single SGMII IP core implements all of the SGMII interfaces connected to a single
BYTE_GROUP. As interfaces 0 and 1 are connected to BYTE_GROUP 1, they are implemented
by a single SGMII IP core. Interface 2 has its own SGMII IP core, as does interface 3’s
RX lane and interface 3’s TX lane.

Note

It is possible to implement SGMII over LVDS using the AXI Ethernet Subsystem IP.
However, at the time of this writing, the AXI Ethernet Subsystem IP can only implement a single
SGMII over LVDS interface. For this reason, the IP cannot be used to implement both interface 0
and interface 1. Instead, to use both interfaces 0 and 1 with AXI Ethernet Subsystem IP,
the SGMII over LVDS interface must be implemented with the PCS/PMA or SGMII IP core, and then
connected to the AXI Ethernet Subsystem IP cores through internal GMII interfaces. See the
AXI Ethernet example design for the required connections.

MDIO bus

The 96B Quad Ethernet Mezzanine card uses a single MDIO bus to connect the development
platform to the Ethernet PHYs. The Vivado design should only contain one MDIO interface
that connects to the external MDIO bus. Communication with all Ethernet PHYs must be
performed through this single bus.

The mezzanine card Ethernet PHYs for ports 0,1,2 and 3 have addresses 0x1, 0x2, 0xC and
0xF respectively. If your Vivado design uses IP cores that themselves have PHY addresses
(such as the PCS/PMA or SGMII IP), and connect to the same MDIO bus as that of the
external PHYs, ensure that these IP cores have unique addresses with respect to the
external PHYs.

If using the PCS/PMA or SGMII IP core, the MDIO interfaces of these cores can be chained
together such that the output of one connects to the input of another. Be sure to also
connect the tri-state signal (MDIO_T) from one core to the next, this is essential for
correct operation of the MDIO bus.

EMIO GPIOs

In both the PS GEM and AXI Ethernet designs, the EMIO GPIOs are connected to the PHY resets
and the PHY GPIOs as shown in the table below:

	
EMIO

GPIO

	
PHY

Connection

	
GPIO

bank

	
GPIO

bit

	
Pin

mapping

	0

	PHY0 RESET_N

	3

	0

	416

	1

	PHY1 RESET_N

	3

	1

	417

	2

	PHY2 RESET_N

	3

	2

	418

	3

	PHY3 RESET_N

	3

	3

	419

	4

	PHY0 GPIO_0

	3

	4

	420

	5

	PHY0 GPIO_1

	3

	5

	421

	6

	PHY1 GPIO_0

	3

	6

	422

	7

	PHY1 GPIO_1

	3

	7

	423

	8

	PHY2 GPIO_0

	3

	8

	424

	9

	PHY2 GPIO_1

	3

	9

	425

	10

	PHY3 GPIO_0

	3

	10

	426

	11

	PHY3 GPIO_1

	3

	11

	427

The first four EMIO GPIOs are connected to the external PHY RESET_N pins.
These can be driven LOW to place the respective PHY in hardware reset.
The remaining EMIO GPIOs are connected to the external PHY GPIO_x pins.
Although named “GPIO_x”, these PHY pins are in fact output-only
and their purpose can be configured by setting the GPIO Mux Control Register
of the PHYs via the MDIO bus. Please refer to the
DP83867 datasheet [http://www.ti.com/product/DP83867CS] for more information.

Constraints

For more information on the required constraints, please refer to the XDC files used by the
example designs, located in the
constraints directory of the Github repository [https://github.com/fpgadeveloper/ethernet96/tree/master/Vivado/src/constraints].

PetaLinux

This section provides the information required to build PetaLinux or other Linux distributions
for use with the 96B Quad Ethernet Mezzanine card.

Device tree for GEM design

The required additions to the device tree include:

	Define the phy0 to phy3 nodes within the gem0 node

	Within each phy node:

	Define the PHY address (reg)

	Set the TX and RX internal delay

	Set the FIFO depth

	Enable SGMII clock for PHY3 (ti,sgmii-ref-clock-output-enable)

	Disable SGMII auto-negotiation in PHY3 (ti,dp83867-sgmii-autoneg-dis see DP83867 patch below)

	Add these properties to each of the gem0 to gem3 nodes:

	Set PHY handle (use labels defined in the gem0 node)

	Set PHY mode set to GMII

	Set PHY reset to connected GPIO

	Set PHY reset to active-low

For more detail, refer to the device tree for the GEM design [https://github.com/fpgadeveloper/ethernet96/blob/master/PetaLinux/src/ports-0123/project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi]
in the Github repository.

Device tree for AXI Ethernet design

	Define the phy0 to phy3 nodes within the mdio node of the axi_ethernet_0 node

	Within each phy node:

	Define the PHY address (reg)

	Specify PHY type to SGMII (xlnx,phy-type = <0x4>;)

	Set the TX and RX internal delay

	Set the FIFO depth

	Enable SGMII clock for PHY3 (ti,sgmii-ref-clock-output-enable)

	Disable SGMII auto-negotiation in PHY3 (ti,dp83867-sgmii-autoneg-dis see DP83867 patch below)

	Add these properties to each of the axi_ethernet_0 to axi_ethernet_3 nodes:

	Set PHY handle (use labels defined in the axi_ethernet_0 node)

	Set PHY mode set to GMII

For more detail, refer to the device tree for the AXI Ethernet design [https://github.com/fpgadeveloper/ethernet96/blob/master/PetaLinux/src/ports-0123-axieth/project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi]
in the Github repository.

Rootfs configuration

In the rootfs configuration, we add the following packages:

	ethtool

	ethtool-dev

	ethtool-dbg

	git

	iperf3

In PetaLinux SDK, the rootfs is configured using this command: petalinux-config -c rootfs

Kernel configuration

The following options must be set in the Kernel configuration:

	CONFIG_XILINX_DMA_ENGINES=y

	CONFIG_XILINX_DPDMA=y

	CONFIG_XILINX_ZYNQMP_DMA=y

	CONFIG_ETHERNET=y

	CONFIG_NET_VENDOR_XILINX=y

	CONFIG_XILINX_AXI_EMAC=y

	CONFIG_XILINX_PHY=y

	CONFIG_NET_CADENCE=y

	CONFIG_MACB=y

	CONFIG_NETDEVICES=y

	CONFIG_HAS_DMA=y

	CONFIG_CPU_IDLE=n

In PetaLinux SDK, the kernel is configured using this command: petalinux-config -c kernel

DP83867 Ethernet PHY driver patch

SGMII autonegotiation is disabled in the PCS/PMA or SGMII core for port
3, therefore we need to modify the driver so that it can also disable SGMII autonegotiation
in the PHY.

To allow for this, we patch the DP83867 driver to accept an extra property
in the device tree:

	ti,dp83867-sgmii-autoneg-dis: When added to the GEM node, this will disable the SGMII
autonegotiation feature when the PHY is configured (eg. ipconfig eth0 up)

This property should be included in the gem3 node or the axi_ethernet_3 node of
the device tree (depending on the Vivado design being used).

Since PetaLinux release 2020.1, the DP83867 driver will only configure the PHY for SGMII
if the phy-mode property (PHY interface) in the device tree is set to sgmii. In
earlier releases, it would assume SGMII if phy-mode was not set to rgmii. In our
case, we cannot set phy-mode="sgmii" because that would cause the MACB driver to
set the SGMIIEN and PCSSEL bits in the GEM. Instead, we use phy-mode="gmii" and we
patch the DP83867 driver such that it doesn’t require phy-mode="sgmii" to configure
for SGMII.

The source code for this patch can be found in this path of the Github repo:
PetaLinux/src/common/project-spec/meta-user/recipes-kernel/linux/linux-xlnx

ZynqMP FSBL hooks patch

This patch modifies the ZynqMP FSBL to add code to the XFsbl_HookBeforeHandoff which is
executed before the FSBL hands over control to U-Boot. This code is necessary for
initialization of the 96B Quad Ethernet Mezzanine and the PCS/PMA or SGMII IP cores,
so that U-Boot and Linux can make use of the Ethernet ports. The added code does the
following:

	Initializes GEM0 so that it’s MDIO interface can be used (we need it to communicate
with the external PHYs and the PCS/PMA or SGMII IP cores)

	Assert reset of PCS/PMA or SGMII IP core

	Hardware reset the 4x Ethernet PHYs and release from reset

	Enable the 625MHz SGMII output clock of the PHY of port 3 of the 96B Quad Ethernet
Mezzanine card (PHY address 0xF). This clock is required by the PCS/PMA or SGMII IP core

	Release the PCS/PMA or SGMII IP core from reset

	Disable ISOLATE bit on all PCS/PMA or SGMII IP cores, and enable autonegotiation
on those cores for ports 0-2. Note that port 3 cannot support SGMII autonegotiation.

The source code for this patch can be found in this path of the Github repo:
PetaLinux/src/common/project-spec/meta-user/recipes-bsp/fsbl/files

xilinx_uartps: Really fix id assignment patch for 2020.1

This patch comes originated here: https://www.spinics.net/lists/linux-serial/msg39343.html
Without this patch PetaLinux boot hangs after these lines:

console [tty0] enabled
 bootconsole [cdns0] disabled

This problem occurs with PetaLinux 2020.1 on Ultra96 when using UART1 as the console output (serial0).
Xilinx produced a patch for this problem but it does not properly fix the problem:
https://www.xilinx.com/support/answers/75417.html

The complete solution is described in this Xilinx forum post:
https://forums.xilinx.com/t5/Embedded-Linux/Freeze-in-Xilinx-Linux-2020-1-Serial-UART-Driver/td-p/1130457

References

96B Quad Ethernet Mezzanine Board Files

	96B Quad Ethernet Mezzanine Rev-A Schematics PDF [https://download.opsero.com/ethernet96/96BQuadEth_SCH_RevA-2.PDF]

	96B Quad Ethernet Mezzanine Rev-A Assembly Drawing PDF [https://download.opsero.com/ethernet96/96BQuadEth_ASSM_RevA.PDF]

	96B Quad Ethernet Mezzanine Rev-A 3D STEP model [https://download.opsero.com/ethernet96/96BQuadEthernetRevA-3D.zip]

Ultra96

	Ultra96 product page [https://www.96boards.org/product/ultra96/]

	Ultra96 documentation page [https://www.96boards.org/documentation/consumer/ultra96/]

Part Datasheets

Use the links below to access the datasheets of the significant parts on the mezzanine card:

	Gigabit Ethernet PHY, DP83867, Texas Instruments [http://www.ti.com/product/DP83867CS]

	Quad RJ45 connector, 0826-1X4T-23-F, Bel Fuse Inc. [https://belfuse.com/resources/StewartConnector/0826-1X4T-23-F.pdf]

	Switching regulator, TPS82150SILT, Texas Instruments [http://www.ti.com/lit/ds/symlink/tps82150.pdf]

	Non-inverting buffer, NC7WV16P6X, ON Semiconductor [https://www.onsemi.com/pub/Collateral/NC7WV16-D.pdf]

	Crystal 25MHz, 8Z-25.000MAAJ-T, TXC [http://www.txccorp.com/download/products/quartz_crystals/2015TXC_8Z_16.pdf]

	Tactile switch, B3U-1000P, Omron [https://omronfs.omron.com/en_US/ecb/products/pdf/en-b3u.pdf]

	40-pin Pin Socket 2mm, 55510-140LF, Amphenol FCI [https://cdn.amphenol-icc.com/media/wysiwyg/files/drawing/55510.pdf]

	40-pin Pin Header 2mm, 57202-G52-20LF, Amphenol FCI [http://portal.fciconnect.com/Comergent//fci/drawing/57202.pdf]

	60-pin Header 0.8mm, 61083-063402LF, Amphenol FCI [https://cdn.amphenol-icc.com/media/wysiwyg/files/drawing/61083.pdf]

Accessories

Extender for stacking a second mezzanine card:

	40-pin Pin socket with extended pins, F263-1220A0BSYE1, Yxcon [https://download.opsero.com/ethernet96/F263-1220A0BSYE1.pdf]

Index

Revision History

This is the first version of the documentation.

 _images/96b-quad-ethernet-clocks.jpg
60-pin High-speed expansion header

(connects to development platform) Pin 42/44
CSI1_DO+/-
SGMII CLK
625MHz
NC NC NC
625MHz 625MHz 625MHz 625MHz
ouT ouT ouT ouT

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

PHYO PHY1 PHY2 PHY3
ouT IN ouT IN ouT IN ouT IN
Testpoint Testpoint Testpoint Testpoint
PHY3 CLK_OUT (25MHz)
25MHz

Crystal

_images/96b-quad-ethernet-high-speed.jpg
60-pin High-speed expansion header
(connects to development platform)

P
»
>

PHYO SGMII TX/RX
PHYO GPIOO
PHYO GPIO1

Y

I

PHY1 SGMII TX/RX
PHY1 GPIOO
PHY1 GPIO1

y

)

PHY2 SGMII TX/RX
PHY2 GPIOO
PHY2 GPIO1

y

A 114

PHY3 SGMII TX/RX
PHY3 GPIOO
PHY3 GPIO1
625MHz clock

y

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

U

U

U

U

Quad-port RJ45 connector

_images/96b-quad-ethernet-bottom-labelled.jpg
llll'llllz

il dripteistibd . 40-pin Low-speed

expansion header

4 Decoupling

RS R < : ; : capacitors for 4x Tl
wﬁ:@ ey { g DP83867

60-pin High-speed
expansion header

PORT1 PORTO

_images/96b-quad-ethernet-mec-top.jpg
4.00

4.00

[4ea74

c0'vS
20y 058l
05'Le >|
[]
o
<
e}
0
~
= @
3 = EEWommm_n_w
k= N
£ e
o B0 m! M
- en
o =
IS = o)
0 = &
«® Be g =
Bo]
= zn
2
M o)
o S
3| ga =
. in
. }
I ~ [2] [2] o -
B O—== 18 9
] <y
098l
¥G'€C ;
00°c ¥5'¢

_images/96b-quad-ethernet-mezzanine-extender.jpg

_images/96b-quad-ethernet-low-speed.jpg
Top-side 40-pin Low-speed expansion socket
(connects to a stacked 2nd mezzanine)

Not connected I/Os available for stacked mezzanine Pushbuttons Power
=z
o =
2 w| 5 of=>
o ; A afin
Il w Iy +
~ 8 . (&

Bottom-side 40-pin Low-speed expansion pin header
(connects to development platform)

1/0s used by 96B Ethernet Mezzanine | Unused I/Os passed through | Pushbuttons | Power
PG_1V0 +1.0V [|
Swit(ihing Power Reset
PG_1v8 L8V | a o pushbutton pushbutton
Switching
PG 2V5 +2.5V ulator
MDIO and MDC = Switching +1.8VDC
regulator
4x PHY resets

Yy *v *v +

TI DP83867 Gigabit TI DP83867 Gigabit TI DP83867 Gigabit TI DP83867 Gigabit
Ethernet PHY Ethernet PHY Ethernet PHY Ethernet PHY

U U U U

Quad-port RJ45 connector

_images/96b-quad-ethernet-mdio.jpg
Bottom-side 40-pin Low-speed expansion pin header

(connects to development platform)

+1.8VDC

i3

Pin33 | Pin34
GPIO-K | GPIO-L Pull-up
resistor
MDC
[
MDIO T I
y
Y Y
MDIO | | MDC MDIO | | MDC MDIO | | MDC MDIO | | MDC

TI DP83867 Gigabit
Ethernet PHY

PHYO

PHY Address

0x01

TI DP83867 Gigabit
Ethernet PHY

PHY1

PHY Address

0x03

TI DP83867 Gigabit
Ethernet PHY

PHY2

PHY Address

0x0C

TI DP83867 Gigabit
Ethernet PHY

PHY3

PHY Address

OxOF

_images/96b-quad-ethernet-mezzanine-med-3.jpg

_images/96b-quad-ethernet-mezzanine-sensors-front.jpg

_images/96b-quad-ethernet-mezzanine-sensors.jpg
‘:_ TUTTITTTTTTEFFITITRg,

s
laaaaa aaaazaaanaa

l23a333a3zaazaiasssaaal

nav.xhtml

 Table of Contents

 		
 96B Quad Ethernet Mezzanine

 		
 Pin Configuration

 		
 Low-speed expansion header

 		
 Low-speed expansion socket

 		
 High-speed expansion connector

 		
 Specifications

 		
 Recommended Operating Conditions

 		
 Power Consumption

 		
 Ultra96-v1

 		
 Ultra96-v2

 		
 Reset Timing

 		
 MDIO Timing

 		
 DP83867 Electrical and Timing

 		
 Certifications

 		
 Detailed Description

 		
 Hardware Overview

 		
 TI DP83867 Gigabit Ethernet PHY

 		
 Low-speed expansion connectors

 		
 Bottom-side low-speed expansion pin header

 		
 Top-side low-speed expansion socket

 		
 High-speed expansion connector

 		
 Power Supplies

 		
 Power Sequencing

 		
 Power good signals

 		
 Stacking socket +1V8

 		
 Clocks

 		
 Resets

 		
 PHY Configuration

 		
 Mechanical Information

 		
 Dimensions

 		
 3D Model

 		
 Getting Started

 		
 Example Designs

 		
 AXI Ethernet based example

 		
 PS GEM based example

 		
 Requirements

 		
 Install Ultra96 board definition files

 		
 AXI Ethernet evaluation license

 		
 Build instructions

 		
 Download the source code

 		
 Build the Vivado and Vitis projects

 		
 Build the PetaLinux projects

 		
 Launch on hardware

 		
 Echo server via JTAG

 		
 PetaLinux via JTAG

 		
 PetaLinux via SD card

 		
 Echo Server Example Usage

 		
 Default IP address

 		
 Ping the port

 		
 Change the targetted port

 		
 PetaLinux Example Usage

 		
 Enable port

 		
 Enable port with fixed IP address

 		
 Check status of a port with ethtool

 		
 Ping link partner using specific port

 		
 Check port configuration

 		
 Board Setup

 		
 Mezzanine fastening hardware

 		
 Stacking a second mezzanine

 		
 Programming Guide

 		
 Vivado design

 		
 SGMII Implementation

 		
 MDIO bus

 		
 EMIO GPIOs

 		
 Constraints

 		
 PetaLinux

 		
 Device tree for GEM design

 		
 Device tree for AXI Ethernet design

 		
 Rootfs configuration

 		
 Kernel configuration

 		
 DP83867 Ethernet PHY driver patch

 		
 ZynqMP FSBL hooks patch

 		
 xilinx_uartps: Really fix id assignment patch for 2020.1

 		
 References

 		
 96B Quad Ethernet Mezzanine Board Files

 		
 Ultra96

 		
 Part Datasheets

 		
 Accessories

_images/96b-quad-ethernet-power.jpg
SYS_DCIN
+5V
+1v8

Top-side 40-pin Low-speed expansion socket
(connects to a stacked 2nd mezzanine)

=z

O >

o n
| +

[%2]

>

[%2]
Z
= 2 2 Bottom-side 40-pin Low-speed expansion pin header
ﬁl + 5 (connects to development platform)
(%]

!

!

v

Y

v

+1.0V +1.8V +2.5V
EN |Switching | PG EN |Switching| PG EN |Switching| PG
regulator regulator regulator

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

TI DP83867 Gigabit
Ethernet PHY

_images/96b-quad-ethernet-top-labelled.jpg
4x TI DP83867
Gigabit Ethernet
PHY

40-pin Low-speed
expansion socket

Power
pushbutton

Reset
pushbutton

25MHz
Crystal

+1.0V Switching
regulator

+1.8V Switching
regulator

+2.5V Switching
regulator

Quad-port RJ45
connector

_static/plus.png

_static/file.png

_static/minus.png

