

 Navigation

 	
 index

 	
 next |

 	ETD Drop 1.0 documentation

ETD Drop User Manual

ETD Drop is a simple web application for accepting online submissions of
electronic theses and dissertations (ETDs), written in Django.

This manual is divided into the following parts:

	For System Administrators / I.T.

	For ETD Program Staff

	For End Users / Students

	For Developers

For System Administrators / I.T.

	Technical Overview
	Data Storage Format

	Understanding the Project Code

	Installation
	System Requirements

	Local Testing

	Production Server Deployment

	Configuration
	Environment Variables

	Core settings

	ETD Drop settings

	User Management
	Staff status

	Superuser status

	No permissions

For ETD Program Staff

	Managing Submissions

	Suggested Workflow

For End Users / Students

	Submitting an ETD

For Developers

	Technical Overview
	Data Storage Format

	Understanding the Project Code

	Developer Overview
	Project Source Code Layout

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Technical Overview

ETD Drop is a simple web application for accepting online submissions of
electronic theses and dissertations (ETDs), written in Django.
Submissions are saved to a configurable location on disk in an easy to
navigate structure, making them easy for your staff (or custom software) to
review and move into the next stage of your ETD workflow.

A database is only required in order to facilitate user authentication,
though with a bit of Django expertise it is possible to replace the default
authentication system with a different one (e.g. using LDAP) potentially
eliminating the need for a database altogether.

	Data Storage Format
	Form Data Representation

	Understanding the Project Code

Data Storage Format

When an ETD submission is received from a user, the following steps
take place:

	The form data is validated according to which fields are marked with
'required': True in your settings.py file.

	A submission identifier is generated according to the following naming
scheme: YYYYMMDD-HHMMSS-username (e.g. 20140401-182104-stephen would be a
submission made on April 1, 2014, at 18:21:04, by a user logged in as
“stephen”)

	A directory in the ETD_STORAGE_DIRECTORY location is created with the
following structure:

	(identifier)/
	data/
	etd.pdf (the main thesis/dissertation PDF file)

	license.pdf (the license agreement PDF file, if provided)

	form.json (JSON-encoded representation of what was submitted via the form)

	form.xml (XML-encoded representation of what was submitted via the form)

	supplemental/ (contents of the supplemental data ZIP file, if provided)

	bagit.txt

	bag-info.txt

	manifest-md5.txt

You might recognize this structure as a BagIt bag. The submission package is
stored in this format to allow for easier management and the ability to verify
file checksums at a later point in time.

Form Data Representation

Along with the uploaded files, ETD Drop includes JSON and XML documents
containing the values given by the user via the submission form (along with
some basic metadata relating to the files that were uploaded). The documents
are stored as form.json and form.xml, and are found within the
data directory of a submission package. This document is small and should
be easy to parse (even for a human). The presence of individual keys will
depend on which form fields were enabled in settings.py and what was
actually provided by the user. Here is a sample of the contents of a typical
form.json:

{
 "document_file": {
 "content_type": "application/pdf",
 "original_filename": "thesis.pdf",
 "size": 2149036
 },
 "license_file": {
 "content_type": "application/pdf",
 "original_filename": "license.pdf",
 "size": 81439
 },
 "abstract": "Sample abstract.",
 "supplemental_file": {
 "content_type": "application/zip",
 "original_filename": "supplemental_data.zip",
 "size": 5181242
 },
 "title": "Sample Title",
 "author": "Sample Author"
}

And here is an equivalent example of a form.xml file:

<?xml version="1.0" ?>
<root>
 <author type="str">Sample Author</author>
 <abstract type="str">Sample abstract.</abstract>
 <title type="str">Sample Title</title>
 <document_file type="dict">
 <content_type type="str">application/pdf</content_type>
 <original_filename type="str">thesis.pdf</original_filename>
 <size type="int">2149036</size>
 </document_file>
 <license_file type="dict">
 <content_type type="str">application/pdf</content_type>
 <original_filename type="str">license.pdf</original_filename>
 <size type="int">81439</size>
 </license_file>
 <supplemental_file type="dict">
 <content_type type="str">application/zip</content_type>
 <original_filename type="str">supplemental_data.zip</original_filename>
 <size type="int">5181242</size>
 </supplemental_file>
</root>

Understanding the Project Code

For more in-depth information suited for developers, continue to the
Developer Overview.

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Installation

ETD Drop is distributed as a complete Django project, making it quite
straightforward to run. It is essentially a WSGI application, needing only
minor database-related setup and some Python package dependencies. Popular
ways of running Django apps include gunicorn, nginx (with uwsgi), and Apache
(with mod_wsgi).

	System Requirements

	Local Testing
	Initial Setup

	Each Time You Begin a New Work Session

	Running a Local Server

	Production Server Deployment
	Getting Started

	Setting up ETD Drop in a Virtualenv

	Configure Nginx

	Configuring Settings

	Initializing ETD Drop

	Running the Server

System Requirements

	Python 2.7.4 (or any higher 2.7.x release)

	virtualenv (strongly recommended)

	A writable directory large enough to accommodate your needs

Local Testing

These instructions should help you to set up an instance of ETD Drop running
locally on a personal machine or VM. This is useful for small scale testing or
development, but not for serving the application to actual users.

Initial Setup

	Clone this repository on your local filesystem, probably somewhere within
your user’s home directory.

	cd into this repository’s directory.

	Create a new virtual environment here: virtualenv.py venv

	Copy etd_drop/settings.py.example to etd_drop/settings.py.

	Edit etd_drop/settings.py in a code or plain text editor and set up your
any settings you need to override (see the Configuration section below).

	Copy env_example to .env.

	Edit .env with a text editor and configure the settings
to your desired setup.

Each Time You Begin a New Work Session

	cd into this repository’s directory.

	Activate your virtual environment: source venv/bin/activate

	(Optional) Pull latest changes from git: git pull

	Install/update dependencies: pip install -Ur requirements.txt

	Ensure that the database is set up: DJANGO_DEBUG=1 python manage.py syncdb

Note: If this is your first time running the syncdb command, a new
SQLite database will be generated, and you will be prompted to create a new
administrative account. Follow the prompts and provide a username and password
for this new account. (You can leave the “email” field blank.)

Running a Local Server

	cd into this repository’s directory.

	Activate your virtual environment: source venv/bin/activate

	Start the development server: DJANGO_DEBUG=1 python manage.py runserver

	When you wish to stop the server, use CTRL+C in the terminal window.

Production Server Deployment

There are many approaches and choices to consider when deploying a Django
project on a real server. The general strategy is something like the
following:

	Incoming requests are proxied by Nginx (which also directly serves static
assets belonging to the project)

	Nginx forwards requests on to a WSGI server (like uWSGI or Gunicorn)

	The WSGI server handles the request and displays the page

If you would prefer to use Apache, you should use mod_wsgi and refer to
this page [https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/modwsgi/]
for guidance in setting things up.

Otherwise, we recommend using Nginx with Gunicorn. The following steps outline
the general process of setting up ETD Drop in this way on a Linux server.

Getting Started

This guide will assume the use of an up-to-date installation of Ubuntu Server
12.04, though the general principles should apply to any other reasonably-
equipped Linux environment.

First, let’s make sure everything we need is installed:

sudo apt-get install -y nginx git python-virtualenv

Setting up ETD Drop in a Virtualenv

We need a place where the ETD Drop code can live. Technically the location
doesn’t matter that much, but a popular convention is /srv/django. Let’s
create this location:

sudo mkdir -p /srv/django

Now we’ll fetch the ETD Drop code repository:

cd /srv/django
sudo git clone https://github.com/metaarchive/etd-drop

ETD Drop is now fetched at /srv/django/etd-drop.
Now, let’s set up a virtualenv to contain our Python packages nicely:

sudo virtualenv /srv/venv/etd-drop

The following command “activates” the new virtualenv in your current shell so
that we are in the correct environment for the next several steps:

sudo -i
source /srv/venv/etd-drop/bin/activate

Now go to the ETD Drop source code directory and fetch its dependencies:

cd /srv/django/etd-drop
pip install -r requirements.txt

Configure Nginx

To make things simple, we’ve provided a sample Nginx configuration file along
with the ETD Drop source code. Install it as follows:

cp /srv/django/etd-drop/nginx/etd-drop.conf /etc/nginx/sites-available
ln -s ../sites-available/etd-drop.conf /etc/nginx/sites-enabled/
rm /etc/nginx/sites-enabled/default # Disables the default nginx config

Configuring Settings

Before going any further, you will need to edit
/srv/django/etd-drop/etd_drop/settings.py and configure your project’s
settings (especially the DATABASES setting if you wish to use something other
than SQLite3 to store user accounts). Refer to Configuration for details.

Initializing ETD Drop

Do the following in order to initialize ETD Drop:

source /srv/venv/etd-drop/bin/activate
cd /srv/django/etd-drop/
python manage.py collectstatic -c --noinput
python manage.py syncdb
python manage.py syncdb --noinput

At this point, you should create an initial “superuser” account (an
administrative account which will be able to log in and manage other user
accounts in ETD Drop). Run the following command and follow the prompts:

python manage.py createsuperuser

Choose these credentials wisely as this account will have full administrative
privileges inside the application.

Running the Server

Finally, the commands you will use to start up the servers:

sudo service nginx restart
cd /srv/django/etd-drop
sudo DOTENV=/srv/django/etd-drop/.env /srv/venv/etd-drop/bin/gunicorn -b unix:/tmp/gunicorn.sock etd_drop.wsgi:application

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Configuration

ETD Drop is configured using values defined in the settings.py file in the
etd_drop directory of the project.

	Environment Variables
	DJANGO_DEBUG

	DJANGO_SECRET_KEY

	ETD_STORAGE_DIRECTORY

	ENABLE_CLAMD

	DJANGO_LOGGING_LEVEL

	DJANGO_LOGGING_PATH

	Core settings
	ALLOWED_HOSTS

	DATABASES

	DEBUG

	EMAIL_BACKEND

	EMAIL_HOST

	EMAIL_HOST_PASSWORD

	EMAIL_HOST_USER

	EMAIL_PORT

	EMAIL_USE_TLS

	FILE_UPLOAD_TEMP_DIR

	FILE_UPLOAD_MAX_MEMORY_SIZE

	SECRET_KEY

	TIME_ZONE

	ETD Drop settings
	ETD_STORAGE_DIRECTORY

	CONTACT_PHONE

	CONTACT_EMAIL

	DESCRIPTION_SERVICE_URL

	SUBMISSION_EMAIL_RECIPIENTS

	SUBMISSION_EMAIL_FROM_ADDRESS

	HOMEPAGE_HEADING

	HOMEPAGE_TEXT

	FOOTER_TEXT

	LOGO_IMAGE_URL

	SUBMISSION_AGREEMENT

	SUBMISSION_FORM_FIELDS

Environment Variables

For ease of deployment or local testing, some configuration values can be set
using environment variables. Environment variables can be set up in web server
configurations (like Apache and Nginx), set in your personal .bashrc
or .profile files for easy personal use, or stated at the beginning of a
terminal command (for example: DJANGO_DEBUG=1 python manage.py runserver).

ETD-Drop supports the ‘dotenv’ configuration convention, and will look for a
.env file in the top level directory with values for runtime-configurable
settings.

DJANGO_DEBUG

Accepted values: 1 (meaning debug mode is on) or 0 (meaning debug mode is off)

Overrides the default DEBUG setting.

DJANGO_SECRET_KEY

Accepted values: Any string

Overrides the SECRET_KEY setting, which should be set to a long, randomized
string of characters used for security purposes (see the SECRET_KEY section
later in this page).

ETD_STORAGE_DIRECTORY

Accepted values: Any valid pathname

Overrides the ETD_STORAGE_DIRECTORY setting, which is where the stored
ETDs that are uploaded will be kept. Make sure that this directory exists
and is writable by the ETD-Drop process.

ENABLE_CLAMD

Accepted values: 1 (on) or 0 (off) (default)

Set to 1 if you want ETD-Drop to use Clam Antivirus to scan uploaded ETDs.
This requires that the Clam-AV Daemon be installed and running.

DJANGO_LOGGING_LEVEL

Accepted values: ‘DEBUG’, ‘INFO’, ‘WARNING’, ‘ERROR’ or ‘CRITICAL’

Overrides the LOGGING_LEVEL setting, which controls the severity of events
that will be reported by the logger.

DJANGO_LOGGING_PATH

Accepted values: Any valid pathname

Overrides the LOGGING_PATH setting, which controls where ETD-Drop will
keep its logs. Make sure that the file is writable by the ETD-Drop
process.

Core settings

These are standard Django settings you will want to pay special attention to:

ALLOWED_HOSTS

See: https://docs.djangoproject.com/en/1.6/ref/settings/#allowed-hosts

DATABASES

Specifies the connection information Django should use for all of its
database operations (in the case of ETD Drop, this is for users/sessions).

By default, this is configured to use a SQLite3 file located in the project
directory (which will be created automatically if it doesn’t exist).
SQLite3 should be sufficient for the needs of this application, but you may
still prefer to change these settings to use an external database (e.g. MySQL)
instead.

See: https://docs.djangoproject.com/en/1.6/ref/settings/#databases

DEBUG

Default: bool(int(get_env_setting(‘DJANGO_DEBUG’, default=False)))

A boolean (True or False) value that decides if Django should run in “debug”
mode. In debug mode, Django runs with fewer security restrictions and allows
detailed error messages to be displayed in the browser. It is very
important not to use debug mode in production environments.

The default value of DEBUG attempts to load the setting from an environment
variable named DJANGO_DEBUG (which should be set to 1 if True or 0 if False).
If this environment variable is not set, False will be used by default.

EMAIL_BACKEND

Default: ‘django.core.mail.backends.smtp.EmailBackend’

The Django email backend to use for sending email. SMTP is the default, which
is the most commonly-used server type for sending email.

For a full list of possible backends, see:
https://docs.djangoproject.com/en/1.6/topics/email/#smtp-backend

See general information about this setting, see:
https://docs.djangoproject.com/en/1.6/ref/settings/#email-backend

EMAIL_HOST

Default: ‘localhost’

Hostname of SMTP server (or other selected backend type).

EMAIL_HOST_PASSWORD

Default: ‘’

Password for authenticating with SMTP server (or other selected backend type).

EMAIL_HOST_USER

Default: ‘’

Username for authenticating with SMTP server (or other selected backend type).

EMAIL_PORT

Default: 25

EMAIL_USE_TLS

Default: False

See: https://docs.djangoproject.com/en/1.6/ref/settings/#email-use-tls

FILE_UPLOAD_TEMP_DIR

Default: None

The location where user-submitted files are temporarily kept before the
submission package is built. If not defined (or set to None), the system’s
default temporary directory (e.g. /tmp) will be used.

To account for large uploads, you may wish to change this setting to a path
on a volume where storage is plentiful.

FILE_UPLOAD_MAX_MEMORY_SIZE

Default: 2621440

Uploaded files smaller than this size (in bytes) will be temporarily stored
in memory (RAM) instead of being stored as a file in FILE_UPLOAD_TEMP_DIR.
This results in faster uploads, but will consume more system memory during
uploads depending on how high this limit is set.

Note: 2621440 bytes = 2.5 MB

SECRET_KEY

Default: SECRET_KEY = get_env_setting('DJANGO_SECRET_KEY', default=None)

A string containing a unique, unpredictable set of characters known only to
the server.

The default value attempts to do two things:

	If an environment variable called DJANGO_SECRET_KEY is set, it will use
that value for this setting.

	Otherwise, the setting will be set to None and the application will
not be able to start.

One way of generating a good random key is using the following command:

python -c 'import random; import string; print "".join([random.SystemRandom().choice(string.digits + string.letters + string.punctuation) for i in range(100)])'

See: https://docs.djangoproject.com/en/1.6/ref/settings/#std:setting-SECRET_KEY

TIME_ZONE

Default: ‘UTC’

See: https://docs.djangoproject.com/en/1.6/topics/i18n/

ETD Drop settings

These settings apply specifically to the functionality of ETD Drop, and will
allow you to customize some of the functionality and presentation of the ETD
Drop web application itself:

ETD_STORAGE_DIRECTORY

Default: get_env_setting('ETD_STORAGE_DIRECTORY', default=mkdtemp(prefix="etd-drop"))

A string representing the absolute path of the directory where ETD submissions
should be stored. In practice, you will want to use a directory on a volume
that is

	large enough to accommodate the submissions you anticipate receiving

	able to be accessed by the people in your organization whose staff will be
responsible for receiving and processing the submission packages (via SFTP,
SCP, Windows shared directory (SMB), etc.).

The default value attempts to do two things:

	If an environment variable called ETD_STORAGE_DIRECTORY is set, it will use
that value for this setting.

	Otherwise, it will try to create a directory in your system’s temporary
directory (e.g. /tmp) prefixed with the name “etd-drop” and use that
location instead. (This is useful for local testing, but obviously should
not be used in production since anything stored there will not be
permanently saved!)

If you would rather not use an environment variable to specify the directory,
you can replace this line with something as simple as:

ETD_STORAGE_DIRECTORY = “/mnt/data”

(replacing /mnt/data with the actual path you wish to use).

CONTACT_PHONE

A string containing a phone number that will be displayed on the homepage for
users to call if they need help. If this setting is blank or undefined, the
phone number will be hidden.

CONTACT_EMAIL

A string containing an email address that will be displayed on the homepage
for users to email if they need help. If this setting is blank or undefined,
the email address will be hidden.

DESCRIPTION_SERVICE_URL

Default: Not set

A string containing a URL to a running instance of the DAITSS Format
Description service (https://github.com/daitss/describe).

If set, the description service will be used to generate PREMIS-formatted
identification/validation/characterization data (powered by DROID, JHOVE) for
each of the files in the submission package when submissions are created.

For more information about this process and how to run your own instance of
the Format Description Service in your environment, see:
https://github.com/MetaArchive/bag-describe

Example: DESCRIPTION_SERVICE_URL = "http://localhost:3000"

SUBMISSION_EMAIL_RECIPIENTS

Default: []

A list of strings representing email addresses to notify when a new submission
is received. If this list is empty, no email will be sent.

SUBMISSION_EMAIL_FROM_ADDRESS

Default: “noreply@domain.edu“

A string containing the email address that will appear in the “From” header
for notification emails sent by ETD Drop.

HOMEPAGE_HEADING

A string containing the title you wish to be shown on the homepage.
By default, this is set to "Submit Your Thesis".

HOMEPAGE_TEXT

A string containing the text you wish to appear on the homepage underneath the
page title.
Any line breaks you use in this string will be converted to line breaks in the
HTML, and a blank line between two lines of text will convert to a paragraph
break.

By default, this is set to:

"""
ETD Drop allows our graduate students to easily submit a copy of their thesis or dissertation electronically.

After logging in you will be asked to upload your document as a PDF. If you have any supplemental files you will also have the option to submit this content as a ZIP file.

If required, please make sure you have a signed and scanned Copyright License in PDF form available to include with your submission.

Lastly, the submission form will ask for your document's title and abstract. You can copy and paste these from your document into the corresponding form inputs.

It's that easy.
"""

FOOTER_TEXT

A string containing the text you wish to appear in the footer.
Any line breaks you use in this string will be converted to line breaks in the
HTML, and a blank line between two lines of text will convert to a paragraph
break.

By default, this is set to:

"""
Footer text
"""

LOGO_IMAGE_URL

A string containing a URL to a logo image you wish to appear in the footer.

SUBMISSION_AGREEMENT

A string containing the text you wish to appear above the “agreement” checkbox
at the bottom of the submission form. Typically this represents the terms that
the user will be agreeing to when submitting their ETD.
Any line breaks you use in this string will be converted to line breaks in the
HTML, and a blank line between two lines of text will convert to a paragraph
break.

By default, this is set to:

"""
By clicking the box below I agree that this submission is complete. Any errors in this submission will require a complete re-submission. Please be sure.
"""

SUBMISSION_FORM_FIELDS

This setting allows you to hide or make mandatory the various submission form
fields that make up a submission. For instance, if you want to completely hide
the “Subject” field from the form, you would change the following lines:

'subject': {
 'visible': True,
 'required': False,
},

to this:

'subject': {
 'visible': False,
 'required': False,
},

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

User Management

Authenticated users with the “super user” role will see a link in the page
header labelled “Admin”. This link will take you to the Django administrative
interface where you can manage user accounts.

[image: _images/admin_edit_user.png]
When editing a user account, note the checkboxes granting the following
permissions:

Staff status

Users with the “staff” role have access to the submissions page (see
Managing Submissions) and can view the contents of submissions using
the web interface.

Superuser status

Users with the “superuser” role have full access to all features of the web
application, including the Django administrative interface (as described on
this page).

No permissions

Users with neither of the “staff” or “superuser” roles described above are
treated as normal users, with access only to the “submit” page and the home
page.

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Managing Submissions

When you are logged in as a user with the “staff” role, you will see a link in
the page header labelled “Submissions”. This link will take you to a page
where you can see a listing of all current submissions awaiting review on the
server.

[image: _images/submissions.png]
From this table, you can click one of the links in any row to access more
information about a submission. Clicking the identifier name in the left
column will take you to a page with extensive details about that submission,
including the user-submitted form data and a list of files and checksums.

[image: _images/submission_detail.png]

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Suggested Workflow

ETD Drop is intentionally very simple, allowing for a multitude of options for
how to implement your ETD program’s workflow. For a basic use case, we might
recommend the following ETD ingest workflow:

	The student logs in to ETD Drop and submits their ETD and accompanying data.

	An employee (or team of employees) takes the submission package from the
server and moves it to a location where they can work on creating a final
submission package suitable for the institutional repository. (This should
typically include verifying that the submitted files adhere to
institutional standards, creating cleaned metadata based on the information
submitted by the student, virus-checking, etc.)

	At this point, the submission package should be deleted from the location
where ETD Drop created it.

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Submitting an ETD

	Log in on the homepage.

	Fill out the form to submit your thesis or dissertation.
All fields are required unless marked as “(Optional)”.

	Agree to the terms at the bottom of the page.

	Click the Upload and Submit button.

Note: If there are any errors with your submission, correct them and
try again. You will need to re-select any uploaded files you attached
during the previous submission attempt.

	Make a note of the submission ID number on the next page, after your
submission has been received. This serves as a record that your submission
was sent successfully.

	Click the “Log out” button at the top of the page.

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ETD Drop 1.0 documentation

Technical Overview

ETD Drop is a simple web application for accepting online submissions of
electronic theses and dissertations (ETDs), written in Django.
Submissions are saved to a configurable location on disk in an easy to
navigate structure, making them easy for your staff (or custom software) to
review and move into the next stage of your ETD workflow.

A database is only required in order to facilitate user authentication,
though with a bit of Django expertise it is possible to replace the default
authentication system with a different one (e.g. using LDAP) potentially
eliminating the need for a database altogether.

	Data Storage Format
	Form Data Representation

	Understanding the Project Code

Data Storage Format

When an ETD submission is received from a user, the following steps
take place:

	The form data is validated according to which fields are marked with
'required': True in your settings.py file.

	A submission identifier is generated according to the following naming
scheme: YYYYMMDD-HHMMSS-username (e.g. 20140401-182104-stephen would be a
submission made on April 1, 2014, at 18:21:04, by a user logged in as
“stephen”)

	A directory in the ETD_STORAGE_DIRECTORY location is created with the
following structure:

	(identifier)/
	data/
	etd.pdf (the main thesis/dissertation PDF file)

	license.pdf (the license agreement PDF file, if provided)

	form.json (JSON-encoded representation of what was submitted via the form)

	form.xml (XML-encoded representation of what was submitted via the form)

	supplemental/ (contents of the supplemental data ZIP file, if provided)

	bagit.txt

	bag-info.txt

	manifest-md5.txt

You might recognize this structure as a BagIt bag. The submission package is
stored in this format to allow for easier management and the ability to verify
file checksums at a later point in time.

Form Data Representation

Along with the uploaded files, ETD Drop includes JSON and XML documents
containing the values given by the user via the submission form (along with
some basic metadata relating to the files that were uploaded). The documents
are stored as form.json and form.xml, and are found within the
data directory of a submission package. This document is small and should
be easy to parse (even for a human). The presence of individual keys will
depend on which form fields were enabled in settings.py and what was
actually provided by the user. Here is a sample of the contents of a typical
form.json:

{
 "document_file": {
 "content_type": "application/pdf",
 "original_filename": "thesis.pdf",
 "size": 2149036
 },
 "license_file": {
 "content_type": "application/pdf",
 "original_filename": "license.pdf",
 "size": 81439
 },
 "abstract": "Sample abstract.",
 "supplemental_file": {
 "content_type": "application/zip",
 "original_filename": "supplemental_data.zip",
 "size": 5181242
 },
 "title": "Sample Title",
 "author": "Sample Author"
}

And here is an equivalent example of a form.xml file:

<?xml version="1.0" ?>
<root>
 <author type="str">Sample Author</author>
 <abstract type="str">Sample abstract.</abstract>
 <title type="str">Sample Title</title>
 <document_file type="dict">
 <content_type type="str">application/pdf</content_type>
 <original_filename type="str">thesis.pdf</original_filename>
 <size type="int">2149036</size>
 </document_file>
 <license_file type="dict">
 <content_type type="str">application/pdf</content_type>
 <original_filename type="str">license.pdf</original_filename>
 <size type="int">81439</size>
 </license_file>
 <supplemental_file type="dict">
 <content_type type="str">application/zip</content_type>
 <original_filename type="str">supplemental_data.zip</original_filename>
 <size type="int">5181242</size>
 </supplemental_file>
</root>

Understanding the Project Code

For more in-depth information suited for developers, continue to the
Developer Overview.

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	ETD Drop 1.0 documentation

Developer Overview

This section contains information that should come in handy if you are
developing for (or on top of) ETD Drop. You should already be familiar
with the information in Technical Overview.

Overall, ETD Drop is an ordinary single-application Django project. The
primary difference between it and most Django apps is the total lack of
database models; All application data is represented as files on the
local filesystem, in order to make ETD Drop’s scope as limited as
possible and to facilitate easy atomic integration into larger
workflows.

This project makes heavy use of Python docstrings. These are the best
places to look for details about a particular module, class, method, or
function.

	Project Source Code Layout

Project Source Code Layout

The general structure of this repository is as follows:

etd-drop/ # Top level git repository
 docs/ ## Documentation (uses Sphinx Docs)
 etd_drop/ ## Django project files
 settings.py ### Project settings
 urls.py ### Project-level URL routing
 wsgi.py ### Project WSGI application
 etd_drop_app ## Main Django application code
 admin.py ### Django Admin UI configuration
 forms.py ### Form processing code
 static/ ### Static resources (CSS and images)
 templates/ ### HTML templates
 templatetags/ ### Custom template tag modules
 form_helpers.py #### Template tags for forms
 tests.py ### Unit tests
 urls.py ### Application-level URL routing
 validators.py ### Form validator functions
 vendor/ ### Modules included from elsewhere
 bag_describe.py #### Description Service integration
 views.py ### View generation code
 LICENSE ## Source code license
 manage.py ## Project management script
 nginx/ ## Sample configuration for nginx
 README.md ## Project README
 requirements.txt ## pip package dependencies

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	ETD Drop 1.0 documentation

Index

 Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

 _images/admin_edit_user.png
e AT VST i
Change user I eETETTID

dknuth

Required. 30 characters or fewer. Letters, digits and @/./+/-/_only.

Password: algorithm: pbkdf2_sha256 iterations: 12000 salt: alSNdx*+*+** hash:
NOSWR St b e s ot bt rer s sraer bstrerenss

Raw passwords are not stored, 5o there is 1o way to see this user's password, but you can change the password using
this form

R ——————————————N—
(0 Staff status
Designates whether the user can log into this admin site.

O Superuser status
Designates that this user has all permissions without explicity assigning them.

Last login: April 5, 2014, 12:30 a.m.
Datejoined: April 4, 2014, 11:54 p.m.

xDekte Save nd a6 anater) | Save and continue cating| Y

_images/submissions.png
Submissions Log Out (staffer)

Submissions

Identifier User PDF JSON
20140405-002526-jvneumann jvneumann PDF JSON
20140405-002046-grossum grossum PDF JSON
20140405-001803-dritchie dritchie PDF JSON
20140405-001552-dknuth dknuth PDFE JSON

v
B
8
g

20140405-001328-alovelace alovelace

_images/submission_detail.png
Submissions Log Out (staffer)

Submission Details

Download Links

Basic Information and Metadata
Identifier 20140405-001552-dknuth

Title Finite Semifields and Projective Planes
Author Donald Ervin Knuth

Subject mathematics

Abstract This paper makes contributions to the structure theory of finite semifields, .., of finite
nonassociative division algebras with unit. It is shown that a semifield may be conveniently
represented as a 3-dimensional array of numbers, and that matrix multiplications applied to
each of the three dimensions correspond to the concept of isotopy. The six permutations of
three coordinates yield a new way to obtain projective planes from a given plane. Several
new classes of semifields are constructed; in particular one class, called the binary
semifields, provides an affirmative answer to the conjecture that there exist non-
Desarguesian projective planes of all orders 2[..J, if nis greater than 3. With the advent of
binary semifields, the gap between necessary and sufficient conditions onthe possible
orders of semifields has disappeared.

Bag Info

Bag-Software-Agent: bagit.py <http://github.com/libraryofcongress/bagit-python>
Bagging-Date: 2014-04-05
Internal-Sender-Identifier: Finite Semifields and Projective Planes

Payload-Oxum: 5202829.5

Bag Manifest

7c2db699039188319bda3T60£7d27fa2 data/etd.pdf
ebbac3983b£66c1c1701c8a0282c9350 data/form. json
88003532cclebde09c3£1e3d£0172313 data/license.pdf
6e34a2a0e2a61748ba3233015284e813 data/supplemental/How fast.ogg
©9459290759345b289ba6c9e6517d4c2 data/supplemental/Josh Woodward - Swansong.ogg

_static/minus.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up.png

search.html

 Navigation

 		
 index

 		ETD Drop 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, University of North Texas.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

