

 Navigation

 	
 index

 	
 next |

 	ESWP3

ESWP3 - Embedded Software Principles, Procedures and Patterns

This project is about summarizing, referencing, structuring and relating
principles, procedures (as sequences of patterns in a pattern language) and
patterns in the context of embedded software engineering.

As “(P)atterns are only meaningful as part of a Pattern Language(.)” (Bergin
2013, pos. 74) this project tries also to “make” relations between different
pattern languages and the higher-level principles “visible”.

MAY I HAVE YOUR ATTENTION PLEASE:

1) I setup a new website which lists and references resources to learn about
embedded system development on http://awesome-embedded-systems.org.
Feel free to visit and contribute to the project on GitHub by clicking on the
“Fork me on GitHub” in the upper right corner of the main page.

2) I am playing around with some generic principle, pattern language and pattern
mining project in my spare time here https://github.com/fkromer/p3 . Feel free
to contribute and to join the journey of making pattern management public and
as easy as possible.

Contents:

	Principles
	Categorization of principles

	All principles in alphabetic order

	Procedures (Pattern Languages)
	Categorization of pattern languages

	All pattern languages in alphabetic order

	Patterns
	Human Relation Patterns

	Build Patterns

	Requirement Patterns

	Design Patterns

	Unit Test Patterns

	Tool evaluation patterns

	System patterns

	About the meta-data

	Bibliography

	Contribution
	Project related contribution

	Content related contibution

	“It is all about structure and vision.”
	Why principles, pattern languages and patterns?

	A “real world” example

	The project history

Indices and tables

	Index

	Search Page

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

Principles

Categorization of principles

Many principles which has been discovered in the context of software
development have a much broader scope. The following categorization tries to
address this fact:

	general

	As little as possible, as much as needed

	divide and conquer

	Don’t repeat yourself (DRY)

	Keep it simple, studid (KISS)

	programming

	object-oriented programming

	SOLID (no principle, but a well-known mnemonic acronym for 5 basic
principles)

	Single responsibility principle (SRP)

	Open/Closed principle (OCP)

	Liskov substitution principle (LSP)

	Interface segregation principle (ISP)

	Dependency inversion principle (DIP)

All principles in alphabetic order

	Balancing feedback loops lead to stability

	Change

	Collaboration

	Dependency inversion (DIP)

	Divide and conquer

	Don’t repeat yourself (DRY)

	Dynamic Equilibrium

	Effectiveness

	Efficiency

	Feedback loops are causal connections between stocks

	Inflows rise stock

	Interconnections Operate Through Information

	Keep it simple, stupid (KISS)

	Magic Triangle (Project Management Triangle)

	More than its parts

	Open/closed principle (OCP)

	Outflows degrade stock

	Pareto

	Purpose Detemines Behaviour

	Redundancy

	Reinforcing feedback loops lead to growth or collapse

	Separation of concerns (SOC)

	Single responsibility principle (SRP)

	Stock acts as delay

	Stock decouples flows

	Stock memorizes changing flows

	Structure Is Source Of Behavior

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Balancing feedback loops lead to stability

Balancing feedback loops are equilibriating or goal-seeking structures in systems
and are both sources of stability and sources of resistance to change (Mae 2008, p. 30 & p. 189).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Change

Situations do exist in a static manner only for limited time frames. Change is
regular and has to be considered everywhere. When a change occurs and you are
forced to handle it the following adaption phase consumes energy. To
keep the energy to be invested as minimal as possible prepare for change
whenever possible.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Collaboration

	Context:	A problem influences at least one individual.

	Problem:	The problem complexity or the work that has to be done to overcome the problem
requires a lot of energy invest for the individual or can not be solved by an
individual at all.

	Solution:	Individuals which are influenced by the problem solve the problem together in a
cooperative manner. Individuals which are not affected by the problem may
contribute to the problem solving as well.

	Resulting context:

		The directly affected individual has to invest less energy to solve the problem
or the problem is solveable in general. The individuals which are not influeced
by the problem benefit from the collective somehow. There energy invest is less
than their benefit from the collective. To manage the collaboration of the
individuals additional communication of the individuals is required. The
problem can be divided into managable subproblems by applying the principle
“divide and conquer” (context domain, time domain, etc.).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Dependency inversion (DIP)

In contrast to the general dependency relation (high level abstraction may not dependent on low level details) regarding the modules interface low level modules may not depend on high level modules. As a result both should depend only on abstration.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Divide and conquer

This general principle eases the solution finding to a problem by breaking
it apart. This can be in a variaty of dimension (context, spartial, time, etc.).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Don’t repeat yourself (DRY)

DRY is an acronym for “don’t repeat yourself”. The principle is related to the Single Responsibility principle.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Dynamic Equilibrium

If the sum of outflows equals the sum of inflows, the stock level will not change -
it will be held in dynamic equilibrium (Mae 2008, p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Effectiveness

	Context:	
	someone else (or yourself) discovers that the achieved result is not as high
as the target was defined to be

	Problem:	
	either the result is too low or the target definition to high

	Forces:	
	circumstances

	definition of the target (attributes ~ SpecificMeasurableAchievableRelevantTimely)

	Solution:	
	analyze the impact of the circumstances

	analyze the quality of the target definition

	if the circumstances and the target definition do have an impact that
excuses the decreased/low effectiveness:
explain which circumstances are relevant or which target definition attributes
are relevant and why they do impact the effectiveness

	if the circumstances and the target definition do not have an impact that
excuses the decreased/low effectiveness:
- analyze if you “Do the right things.”:

	no: change your methodology!

	
	yes: you can try to compensate the lack of effectivness

	by increasing the efficiency

	Resulting context:

		
	you have to argue either way

	try to increase the efficiency applying the pattern efficiency

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Efficiency

	Context:	
	you did have already applied effectivness
(Do never apply efficiency before effectivness!!!)

	someone else (or yourself) figures out that the output in a given time
and under unchanged circumstances is not as high as it could be related
to a comparable “standard”

	Problem:	
	either the result is too low or the effort too high

	Forces:	
	circumstances

	Solution:	
	analyze the impact of the circumstances

	if the circumstances do have an impact which excuses the decreased/low efficiency:
explain which circumstances are relevant and why they do impact the efficiency

	if the circumstances do not have an impact which excuses the decreased/low efficiency:
“Do the things right.” (Do not mix this with effectivness.)

	Resulting context:

		
	you do have to argue either way

	to do the things right:
- you need to invest energy initially
- you might need to invest energy continuoulsy
- your efficiency is increased

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Feedback loops are causal connections between stocks

A feedback loop is a closed chain of causal connections from a stock, through a set of decisions or rules or physical laws
or actions that are dependent on the level on the stock, and back again through a flow to change the stock (Mae 2008, p. 27 & p. 189).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Inflows rise stock

If the sum of inflows exceeds the sum of outflows, the stock level will rise (Mae 2008, p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Interconnections Operate Through Information

Many of the interconnections in systems operate through the flow of information (Mea 2008, p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Keep it simple, stupid (KISS)

	Synomyms:	YAGNI (acronym for “You aren’t gonna need it”)

KISS is an acronym for “keep it simple, stupid”. This principle may not be
missinterpreted in the context of software design: It does not mean not to
design at all but to evolve the design dependend on the current requirements
(As little as possible, as much as required).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

 ï»¿.. _magic_triangle:

Magic Triangle (Project Management Triangle)

Projects are constraint by three (plus one) attributes:
- cost
- scope / features
- schedule
- (quality)

The attributes cost, scope and schedule represent the corners of the triangle.
The attribute quality represents the area which is span by the triangle.

	Problem:	

expecting a constant quality, one of the other attributes can not be changed
without affecting the others (e.g. scope increases/decreases ->
cost or schedule increases/decreases)

	Resulting context:

		

	expecting a constant quality the following combinations are possible:
- Fast and Much (not Cheap)
- Fast and Cheap (not Much)
- Much and Cheap (not Fast)

	... or if quality is included in scope/features the following combinations are possible:
- Fast and Good (not Cheap)
- Fast and Cheap (not Good)
- Good and Cheap (not Fast)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

More than its parts

A system is more than the sum of its parts. (Mea 2008, p. 188)

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Open/closed principle (OCP)

“Software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification” (Bertrand 1988)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Outflows degrade stock

If the sum of outflows exceeds the sum of inflows, the stock level will fall (Mae 2008, p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

 ï»¿.. _pareto:

Pareto

80 % of the result are achieved with 20 % of the effort.
The remaining 20 % of the result require the remaining 80 % effort.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Purpose Detemines Behaviour

The least obvious part of the system, its function and purpose,
is often the most crucial determination of the system’s behaviour (Mea 2008, p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Redundancy

	Context:

	You depend on a subject with critical functionality whose absence or
malfunction would lead to not managable problem in the overall system.

	Problem:

	The absence or malfunction of the subject leads to a malfunction of the overall
system.

	Solution:

	“Use” more than one copy of the subject and implement a mechanism which allows
to switch from one/all to one/the remaining subjects in case of the malfunction
of one/many subject(s).

	Use cases:

	
	employees with key skills/in key positions

	safety/availability critical software and systems

	Resulting context:

	The malfunction or absence of up to n-1 of the n copies of the subject do not
result in a malfunction of the overall system. The probability of the system
failing (probability of all redundant copies failing) \(p_{system}\)
is \(p_{system} = \prod \limits_{i=1}^{n}p_{i}\) with \(n\) number of subjects and
\(p_{i}\) probability of subject i failing.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Reinforcing feedback loops lead to growth or collapse

Reinforcing feedback loops are self-enhancing, leading to exponential growth or to runaway collapse over time (Mae 2008, p. 32 & p. 189).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Separation of concerns (SOC)

This principle is related to the structural architectural and design patterns.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Single responsibility principle (SRP)

The “single responsibility” principle is the most granular form of the “separation of concerns” principle.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Stock acts as delay

Stocks act as delays or buffers or shock absorbers in systems (Mae 2008, p. 23 & p. 189).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Stock decouples flows

Stocks allow inflows and outflows to be de-coupled and independent (Mae 2008, p. 24 & p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Stock memorizes changing flows

A stock is the memory of the history of changing flows within the system (Mae 2008, p. 188).

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Principles

Structure Is Source Of Behavior

System structure is the source of system behavior.
System behavior reveals itself as a series of events over time.
(Mea 2008, p.188)

category: systems

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

Procedures (Pattern Languages)

Procedures are meant to be pattern languages. They shall point out how to apply
several patterns of different levels of scope to solve a high-level problem in a
sequential manner considering the balancing of forces which are influenced.

Categorization of pattern languages

The most obvious categorization scheme for pattern lanugages is related to the
scope of optimization (~ pattern categories):

	human relation pattern languages

	build pattern languages

	requirement pattern languages

	design pattern languages

	unit test pattern languages

	tool pattern languages

All pattern languages in alphabetic order

	Pattern Extraction Pattern Language

	Design Pattern Languages

	Unittest Pattern Languages

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

Pattern Extraction Pattern Language

Before learning about specific patterns it makes sense to learn about how to
extract patterns because “(w)riting patterns in your own field can change the
way you think about that field(.)” and “(i)t can make you a better
practititioner.” (Bergin 2013, pos. 74)

Following the basic, high abstraction procedure:

	Identify the potential subject matter (Bergin 2013, pos. 107).

	a: What structure needs to be created?

	b: What problem need to be solved?
E.g. problems during adding features to an existing software project
occured. You want to build a better software design. Your subject is
design patterns.

	c: If you do not have ideas about a and b you (i) do not have enough
expertise or (ii) you do not have access to it. If (i) is true take your
time and try it again. If (ii) collect data beeing able to describe the
best known solution related to the pattern.

	Identify the format of the pattern description dependent on the subject
matter (Bergin 2013, pos. 119).

	a: Represent explicit meta-data as sections.
E.g. name, context, problem, solution, implementation examples, etc. are
common in technical subject matters.

	a: Represent implicit meta-data as hints within sections.
E.g. hints can crosslink different patterns even over subject matter
boundaries which arehard to document in a structural manner. Think of
object-oriented principles as patterns and a concret “implementation” with a
design pattern.

	b: Represent implicit meta-data typologically and structure the text
regarding the explicit meata-data.
E.g. The text is structured as paragraphs according to the explicit
meta-data. Bold or italic text formatting makes implicit meta-data
“visible”.

	Define the sequencial structure how the meta-data is arranged. The relation
between the meta-data should be as obvious as possible. E.g. the forces
should follow the problem (Bergin 2013, pos. 185).

	Optional, when pattern in relation to a pattern language: Identify the
format of the pattern language. “The pattern language is (at
least) a collection of patterns that work together and admit “sequences” of
patterns that solve problems larger than those of the individual
patterns.” (Bergin 2013, pos. 133)

	Identify the forces which shall be resolved.

	Priorice the forces which shall be resolved.

	Identify patterns which address the problem to be solved considering the
prioriticed forces. Begin with “large scale” patterns, end with
“small scale” patterns. The resulting context after appliying a pattern has
to fit the context before applying the next pattern.

	Choose a representation which eases to get the “big picture”. The “big
picture” can be communicated much easier with graphics.

	Identify the content of the meta-data.

	Identify the context. The context has to be about the situation “when” you
consider using this pattern (Bergin 2013, pos. 164).

	Identify the problem. The problem has to require action to be answered,
should be recurring and should be expressed in a single sentence.
Explanatory material should be avoided. Prefer a “stating” over “asking”
formulation.

	Identify forces. Think about “why” this solution is choosen. The solution
should balance all forces which “(...) push in all directions and with
different
levels of intensity (...)” (Bergin 2013, pos. 208). Forces are important
because it helps you to choose between different patterns, pattern
variantions, implementation alternatives, etc. addressing the same context
and overall resulting context related to the problem but with different
weighting and consideration of the single forces. With forces the solution
may be validated. E.g. quality attributes like scalability, complexity,
maintainability, testability, etc. are forces which have to be balanced by
a design pattern.

	Identify a solution or solution alternatives. The “what” should be
formulated as a single sentence.

	Iterate over the extraction process. An example of this iterative process
with different pattern versions and a discussion about each can be found in
(Bergin 2013, pos. 410). More examples can be found (Bergin 2013, pos. 667).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

Design Pattern Languages

All design pattern languages in alphabetic order

	Build Automation Pattern Language

	Embedded Unit Test Automation Pattern Language

	Python Distribution Language

	Python Exception Handling Language

	Python Import Pattern Language

	Python in-source code documentation pattern language

	Python Package Selection Pattern Language

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Build Automation Pattern Language

 digraph build_automation_language{
 // styling
 size="10";
 node [color=lightblue2, style=filled];

 // 1st to 2nd level node transitions
 bal -> ph;
 bal -> cfg;
 bal -> nlp;
 bal -> log;
 bal -> dist;

 // 1st to 3rd level node transitions
 bal -> fh;

 // 2nd to 3rd level node transitions
 ph -> fh;
 nlp -> kwdp;
 nlp -> tp;
 nlp -> rkwp;
 log -> pblog;

 // 3rd to 4th level node transitions
 kwdp -> kwr;
 kwdp -> kwm;

 // nodes
 bal [label="Build Automation Lanugage"];
 ph [label="Path Handling", href="../design_languages/build_automation_language.html#path-handling", target="_top"];
 cfg [label="Configuration", href="file:///home/florian/ws_github/eswp3/_build/html/design_languages/build_automation_language.html#configuration", target="_top"];
 nlp [label="Natural Language Processing"];
 log [label="Logging"];
 dist [label="Distribution"];
 fh [label="File Handling", href="../design_languages/build_automation_language.html#file-handling", target="_top"];
 kwdp [label="Keyword Processing"];
 tp [label="Token Processing"];
 rkwp [label="Relative-to-Token Processing"];
 pblog [label="Pre-buffered Logging"];
 kwr [label="Keyword Replacement"];
 kwm [label="Keyword Modification"];
}

Configuration

	Context:	The behaviour of the application has to be defined equal in many use cases.
and needs to be stored
consistent.

	Problem:	If CLIs do provide many arguments one gets confused very fast (the “cognitive
limit of humans” is known to be 7 contexts). The principle of single
responsibility is violated, because the application is stored in the calling
scipts instead in relation to the application itself. The maintainanance
effort of scripts which call these CLIs increase.

	Forces:	
	configuration complexity

	overall IT infrastrutcure (“communication” with other applications over the
configuration files)

	Solution:	Store the configuration in a separate file.

	Resulting context:

		The behaviour of the script may be defined in a flexible manner. In many
cases it is required to keep the application and specific configuration
settings consistent over time. You may apply the versioning pattern to ease
the consistent versioning of the application and its configuration(s).

[image: The graphical representation of a Configuration Pattern Language.]

File Handling

[image: The graphical representation of File Handling Pattern Language.]

Path Handling

[image: The graphical representation of a Path Handling Pattern Language.]

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Embedded Unit Test Automation Pattern Language

[image: The graphical representation of an Embedded Unit Test Automatio Language.]

Unit Test Automation Framework Setup Pattern Language

[image: The graphical representation of a Unit Test Automation Framework Pattern Language.]

Unit Test Framework Tool Evaluation

[image: The graphical representation of a Unit Test Framework Tool Evaluation Pattern Language.]

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Python Distribution Language

Application Distribution

	Forces:	
	python experience of users

Server Side Distribution

	Context:	
	all potential users of the application have access to the global source
control system

	Solution:	
	store release versions of the project directory

	Resulting context:

		
	clients can download application from source control

	clean dependency encapsulation increases stability (virtual environment)

	overhead due to application specific virtual environment managed
(activation/deactivation before/after each execution)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Python Exception Handling Language

(Philipps 2010, section 4 Expecting the Unexpected)

 digraph python_exception_handling_language{
 // styling
 size="10";

 // 1st to 2nd level node transitions
 ehl -> e;
 e -> becs;
 e -> cec;
 becs -> egfc;
 becs -> cec;
 cec -> seec -> egfc;
 cec -> eec -> iec -> egfc;

 // nodes
 ehl [label="Python Exception Handling Language", href="../design_languages/python_exception_handling.html#python-exception-handling-language", target="_top"];
 e [label="Exception", href="../design_languages/python_exception_handling.html#exception", target="_top"];
 becs [label="Built-in Exception Class Selection", href="../design_languages/python_exception_handling.html#built-in-exception-class-selection", target="_top"];
 cec [label="Customized Exception Class", href="../design_languages/python_exception_handling.html#customized-exception-class", target="_top"];
 seec [label="Self Explaining Exception Class", href="../design_languages/python_exception_handling.html#self-explaining-exception-class", target="_top"];
 iec [label="Intelligent Exception Class", href="../design_languages/python_exception_handling.html#intelligent-exception-class", target="_top"];
 eec [label="Enhanced Exception Class", href="../design_languages/python_exception_handling.html#enhanced-exception-class", target="_top"];
 egfc [label="Exception Guided Flow Control", href="../design_languages/python_exception_handling.html#exception-guided-flow-control", target="_top"];
}

Exception

	Context:	
	develop new application

	maintenance of legacy application with bad debug-ability

	maintenance of legacy application with bad logging capabilities

	maintenance of legacy library/framework with bad useability

	Problem:	
	communication of unusual circumstances/error conditions

	propagation of error conditions

	handling of error conditions without using input parameter checks

	Solution:	
	create instances of exception classes in exception conditions

	Resulting context:

		
	increased debug-ability

	increased logging capabilities

	increased useability of libraries/frameworks for client programmers

	insignificant overhead

Built-in Exception Class Selection

	Context:	
	problem condition in a function/method needs to be raised with an exception

	Problem:	
	there do exist excptions in the python standard library

	... but it is not

	Resulting context:

		
	communicate the exception context

	no implementation and test overhead

	features for customized info available (~ exception class)

Customized Exception Class

	Context:	
	problem condition in a function/method needs to be raised with an exception

	Problem:	
	no built-in exception suits the the exception context/condition

	Solution:	
	create customized error class which inherit from Exception or BaseException

	Resulting context:

		
	increased readablility of error info

Self-Explaining Exception Class

	Problem:	
	built-in exceptions do not suite the exception context

	Solution:	
	create error class which inherit from Exception or BaseException

	just “pass” (in class body)

	Implementation Example:

		Exception class which just “pass” to communicate inalid withdrawals in a
banking application (Philipps 2010, section Definig our own extensions).

	Resulting context:

		
	exception context is made obvious by exception class name

	no implementation and test overhead

Enhanced Exception Class

	Problem:	
	need to pass additional information in form of values instead of string

	Solution:	
	create class with attributes which are set e.g. with __init__(self, <attributes>)

	Resulting context:

		
	increased cross-class/module communication capabilities

	client code may acces exception class attributes -> enhanced exception guided
flow control

Intelligent Exception Class

	Context:	
	problem condition in a function/method needs to be raised with an exception

	Problem:	
	exception output may/needs to be derived from “input” values

	Implementation Example:

		Exception class with __init__ overriding (balance, amount) “intelligently”
derived attribute (overage) from it (Philipps 2010,
section Definig our own extensions).

	Resulting context:

		
	self-explaining exception name

	increased maintainability (just assignment of values instead of “info” string)

Exception Guided Flow Control

	Context:	
	you raise one or more exceptions in server code

	client code needs to act dependent on exception occured

	Problem:	
	flow control of application needs to address raised exceptions

	Solution:	
	use the

	Implementation example:

		Exception communication and exception guided flow control of classes addressing
authentication and authorization of an web application (Philipps 2010,
section Case study/page 112).

	Resulting Context:

		
	no need to explicitly check input parameters

	inter-class communication of exception related information

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Python Import Pattern Language

 digraph python_import_pattern_language{
 // styling
 size="10";

 // node transitions
 pipl -> esci -> ersci;
 esci -> emci;

 // nodes
 pipl [label="Python Import Pattern Language", href="../design_languages/python_import_pattern_language.html#", target="_top"];
 esci [label="Explicite Single Class Import", href="../design_languages/python_import_pattern_language.html#explicite_single_class_import", target="_top"];
 ersci [label="Explicite Renaming Single Class Import"];
 emci [label="Explicite Multi Class Import"];
 emi [label="Explicite Module Import"];
}

Import Pattern

	Context:	
	need for funtionality which is already available as
class, method or function defined in another module

	Problem:	
	do not re-invent the wheel

	Solution:	
	import at the beginning of the client file

	Resulting Context:

		
	imported functionality may be used

	client code with more or less maintainability

Explicite Single Class Import

	Context:	
	you need the funtionality of one class defined in another module

	Solution:	
	import with from <module> import <class>

	access with <instance> = <class>()
(Phillips 2010, section Modules and packages/page 43)

	Resulting Context:

		
	good maintainability (you may locate the class in the other class)

	editor code completion is available

	naming conflicts can occur (-> use Explicit Renaming Single Class Import instead)

Explicite Renaming Single Class Import

	Context:	
	you need funtionality of one class whose name is already used in your code

	Solution:	
	import with from <module> import <class> as <renamed class>
(Phillips 2010, section Modules and packages/page 44)

	access with <instance> = <renamed class>()

	Resulting Context:

		
	no naming conflicts of imported classes

Explicite Multi Class Import

	Context:	
	you need functionality of multiple classes from one module

	Problem:	
	importing with “Single Multi Class Import” may blow up the file

	if imports are not sorted it is not obvious which classes are
imported from which module

	Solution:	
	import with from <module> import <class 1>, <class 2>, <class ...>

	access with <instance 1> = <class 1>()

	Resulting Context:

		
	increased maintainability: obvious which classes are imported
from the module

	naming conflicts of imported classes may occur (-> “Explicit Renaming Multi Class Import”)

Explicite Module Import

	Context:	
	you need the functionality of the majority of the classes/functions in a module

	Solution:	
	import with import <module>

	access with instance = <module>.<class>()

	Resulting Context:

		
	good maintain: obvious where the classes come from

	better read-ability than “Explicite Multi Class Import”

	you will probably import something implicitly which you do not need

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Python in-source code documentation pattern language

Automated command line interface documentation

	Context:	
	develop an application with command line interface

	maintain an application with command line interface

	in-source code documentation is generated with sphinx-doc

	in-source code documentation may be generated with sphinx-doc

	Problem:	
	manual documentation tend to be outdated

	Solution:	
	[sphinxcontrib.autoprogram](https://pythonhosted.org/sphinxcontrib-autoprogram/)

	Resulting context:

		
	CLI documenation is updated with every sphinx-doc

Automated RESTful HTTP API documenation

	Context:	
	develop an application with RESTful HTTP application interface

	maintain an application with RESTful HTTP application interface

	in-source code documentation is generated with sphinx-doc

	in-source code documentation may be generated with sphinx-doc

	Problem:	
	manual documentation tend to be outdated

	Solution:	
	[sphinxcontrib.httpdomain](https://pythonhosted.org/sphinxcontrib-httpdomain/)

	for flask app use [sphinxcontrib.autohttp.flask](https://pythonhosted.org/sphinxcontrib-httpdomain/#module-sphinxcontrib.autohttp.flask)

	for bottle app use [sphinxcontrib.autohttp.bottle](https://pythonhosted.org/sphinxcontrib-httpdomain/#module-sphinxcontrib.autohttp.bottle)

	for tornado app use [sphinxcontrib.autohttp.tornado](https://pythonhosted.org/sphinxcontrib-httpdomain/#module-sphinxcontrib.autohttp.tornado)

UML diagram documentation pattern

	Problem:	
	documentation of UML diagrams tend to be outdated with external tools

	Forces:	
	generation type

	automated generation from source code (usually just possible for structural diagrams)

	generation from extension tool syntax

	supported UML diagram types

	dependencies to other python modules

	dependencies to external tools

Automated UML diagram generation pattern

	Implementation example:

		Generation of UML diagrams with the module
pyreverse https://pypi.python.org/pypi/sphinx-pyreverse

	Resulting context:

		You will have up-to-date documentation of UML diagrams whenever the sphinx-doc
build is run.

Automated database model diagram generation pattern

	Implementation example:

		
	Generation of database model diagram with the module sadisplay
https://bitbucket.org/estin/sadisplay/wiki/Home

	Resulting context:

		You will have up-to-date documentation of database model diagrams whenever the
sphinx-doc build is run.

Inline UML diagram generation pattern

	Forces:	
	experience of developers (with tool specific UML description syntax)

	Solution:	Write the dagrams in tool specific syntax and let sphinx-doc render the output.

	Implementation examples:

		
	Diagrams (sequence diagram, usecase diagram, class diagram, activity diagram,
component diagram, state diagram, deployment diagram, object diagram,
wireframe graphical interface = documentation of GUI elements) generated
from PlantUML syntax with module sphinxcontrib-plantuml
[https://pypi.python.org/pypi/sphinxcontrib-plantuml].

	Diagrams from yuml syntax with module sphinxcontrib-yuml
[https://pypi.python.org/pypi/sphinxcontrib-yuml].

	Diagrams (block, sequence, activity, network) from blockdiag
[http://blockdiag.com/en/#] syntax with modules blockdiag,**seqdiag**,
actdiag, nwdiag.

	Resulting context:

		
	no need for managing external files

	easy diffs of versions

	UML diagrams could outdate, but risk is not as high as with UML diagram file
embedding pattern

UML diagram file embedding pattern

	Solution:	Embed external files of diagrams and let sphinx-doc render the output.

	Implementation example:

		
	Embedding of MS visio diagram files into the sphinx-doc documentation with module
sphinxcontrib-visio [https://pypi.python.org/pypi/sphinxcontrib-visio]

	Embedding of TeX figures with the module sphinxcontrib-texfigure
[https://pypi.python.org/pypi/sphinxcontrib-texfigure].

	Resulting context:

		
	external files need to be managed (file names, locations, etc.)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Design Pattern Languages

Python Package Selection Pattern Language

 digraph python_module_selection_pattern_language{
// styling
size="11";
node [color=lightblue2, style=filled];

// node transitions
pmspl -> cmsp;
cmsp -> bmsp;
cmsp -> btp;
cmsp -> vcp;
cmsp -> distp;
btp -> utp;
distp -> deplp;

// nodes
pmspl [label="Package Selection Pattern Lanugage"];
cmsp [label="Common Package Selection", href="../design_languages/python_module_selection_language.html#common-package-selection", target="_top"];
bmsp [label="Build Package Selection", href="../design_languages/python_module_selection_language.html#build-package-selection", target="_top"];
btp [label="Behavior Test Package Selection", href="../design_languages/python_module_selection_language.html#behavior-test-package-selection", target="_top"];
utp [label="Unit Test Package Selection", href="../design_languages/python_module_selection_language.html#unit-test-package-selection", target="_top"];
vcp [label="Version Compatibility Package Selection", href="../design_languages/python_module_selection_language.html#version-compatibility-package-selection", target="_top"];
distp [label="Distribution Package Selection", href="../design_languages/python_module_selection_language.html#distribution-package-selection", target="_top"];
deplp [label="Deploy Package Selection", href="../design_languages/python_module_selection_language.html#deploy-package-selection", target="_top"];
}

Common Package Selection

	Context:	You whant to add functionality to a python application and the probability is
high that someone else already implemented the same functionality.

	Problem:	Implementing the functionality is often like reinventing the wheel because
someone else already implemented the functionality and deployed it as a python
module which may be imported into your project. If you whant to implement it
stable regarding future maintenance and imrovement you need to invest a lot of
time = money (CI environment for deployment, testing with different).

	Forces:	
	supported Python versions

	supported dependent-on Python package

	supported dependent-on Python package versions

	# dependent on packages (critical if major python version changes)

	# packages of dependent on packages (critical if python version changes)

	application developer/maintainer experience with Python

	module experience of developers/maintainers

	package “source” quality (official repository?)

	maintainance quality (updates/time, # contributors to the project,
downloads/time, issues/time, response time to issues, age of the project)

	Solution:	
	search modules in “trusted sources” [e.g. https://pypi.python.org]

	Resulting context:

		
	if suiteable package found: be happy :)

	if no suiteable package found at all you need to implement it:

	“private” project

	“public”/open source project (github.com, bitbucket.com, ...)

	if familiar package found you may extend it:

	“private” extended project: “fork” it and add features do not push to public

	contribute to public project: same advantages like implementing it

Behavior Test Package Selection

	Context:	You begin a new project or you need to add behavior/acceptance related tests
for an already existing legacy project.

	Problem:	
	BDD environment is critical for high quality python development

	Forces:	
	build environment integration/plugins

	feature definition syntax

	step definition syntax

	Solution:	Evaluate the currently available python modules regarding the forces.

	lettuce (Python 2 only)

	behave (Python 2 and 3, nose integration)

	Resulting Context:

		
	run behavior/acceptance tests on projects per cli

	prerequisite for continuos deployment/CI environment

Unit Test Package Selection

	Solution:	
	unittest (standard library package)

	nose (many plugins)

	pytest

Static Code Analysis Package Selection

	Context:	
	high reliability application

	application in the context of safety critical systems (build process)

	library implementation

	Problem:	
	ensuring code quality manually without tool support is impossible

	static code quality may influence the reliability (which may not always been
tested using unit test, integration test and acceptance test tools)

	static code quality influences design related quality attributes like
maintainability, etc. (non-functional requirements)

	Forces:	
	code analysis features

	file based configuration (for separate versioning ~ configuration management)

	programming “errors”

	code style (PEP8)

	integration with existing develop infrastructure (ADEs, IDEs, ...)

	integration with existing CI infrastructure (integration of report output into documentation or agile “dashboard”)

	Solution:	Evaluate the currently available python modules regarding the forces.

	pylint (wide range of checks) [http://www.pylint.org/]

	PyFlakes (limited checks, no style checking, all python versions supported) [https://pypi.python.org/pypi/pyflakes]

	PyChecker (outdated!) [https://pypi.python.org/pypi/PyChecker]

	pep8 (only style guide) [https://pypi.python.org/pypi/pep8]

	mccabe (only McCabe complexity metric) [https://pypi.python.org/pypi/mccabe]

	Resulting context:

		
	run static code analysis on projects per cli

	prerequisite to integrate static analysis into CI environment

Build Package Selection

	Context:	You are setting up a new project or you already begun a new project.
Having already a project you either do not have a build concept
or you are unsatisfied with your current concept. You have already
applied the “Python Module Selection Pattern”.

	Problem:	If the build process of the python application is not automated
you will miss important steps required to ensure a high quality
deployment for sure.

	Forces:	
	build features

	Solution:	Evaluate the currently available python modules regarding the forces.
The following modules are adressing relevant functionalities:

	paver (build/distribute/deploy) [http://pythonhosted.org/Paver/]

	Invoke (build/distribute/deploy) [http://www.pyinvoke.org/]

	SCons (build) [http://www.scons.org/]

	Resulting context:

		You can easily build, distribute and deploy your application running tasks
(equal to make targets). Using one or several modules you are able to
implement continuous integration up to continuous deployment.

Distribution Package Selection

	Forces:	
	distribute features

	Implementation:	
	distutils

Deploy Package Selection

	Forces:	
	deploy features

	ssh handling

	Solution:	
	Fabric (Python 2.5-2.7 only) [http://www.fabfile.org/]

Version Compatibility Package Selection

	Context:	

	Forces:	
	compatibility ensured for object model!?

	compatibility ensured for syntax!?

	Resulting context:

		
	high probability for good support of different major python versions
(e.g. Python 2.x and Python 3.x)

	encapsulated differentiations between implementations for different python
versions (see “Single responsibility principle”)

	major dependence on version compatibility package in use

Command Line Interface Package Selection

	Context:	
	develop application whose functionality shall be accesible over a command line interface

	Solution:	
	standard library module argparse

	Resulting context:

		
	easy creation of command line interface

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

Unittest Pattern Languages

All unittest pattern languages in alphabetic order

	Safety Embedded C Unittest Pattern Language

	Python Unit Test Pattern Language

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Unittest Pattern Languages

Safety Embedded C Unittest Pattern Language

[image: The graphical representation of an Embedded C Unittest Pattern Language.]

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Procedures (Pattern Languages)

 	Unittest Pattern Languages

Python Unit Test Pattern Language

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

Patterns

This project is solution-oriented. Therefor no antipatterns or “smells”
can be found explicitly. References to them are stated implicitly in the
explicit meta-data Problem of specifc patterns instead.

	Human Relation Patterns
	Categorization of human relation patterns

	All human relation patterns in alphabetic order

	Build Patterns
	Categorization of build patterns

	All build patterns in alphabetic order

	Requirement Patterns
	Categorization of requirement patterns

	About the pattern meta-data

	All requirement patterns in alphabetic order

	Design Patterns
	Categorization of “design” patterns

	Classification of idiomatic patterns

	Pattern Selection Procedure

	About the pattern meta-data

	All design patterns in alphabetic order

	Unit Test Patterns
	Categorization of unit test patterns

	About the meta-data

	All unit test patterns in alphabetic order

	Tool evaluation patterns
	Unit/Integration Test Tool

	All tool selection patterns in alphabetic order

	System patterns
	All system patterns in alphabetic order

About the meta-data

All patterns do have meta-data in common: the name. It is very important for
remembering and for communicating the ideas of the patterns. It should be as
short as possible but without neglecting expressivness and uniqueness.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

Human Relation Patterns

The understanding and handling of human relations is definitely the most
underestimated skill in all fields of live including the business of software
engineering. ”...(a)About 85 percent...” of the financial success of people
working in the field of engineering ”...is due to skill in human engineering...”
(Carnegie 2010, chapter “How this book was written and why”).

This does not only concern people in management but also everyone in your
company. You can even get the most for the people around you and yourself
regarding everyone’s feeling and satisfaction in your private environment. Due
to this fact this chapter is placed right at the beginning of the content.

Categorization of human relation patterns

Human relations patterns may be categorized accoring to the scheme of Carnegie
(pattern names have been extracted partly as made-up words from corresponing
chapters):

	Fundamental Techniques in Handling People

	Non-criticizer

	Honest appreciator

	Arouse in the other person an eager want.

	Make people like you

	Listener

	Personal asker

	Importantizer

	Name remember

	Smiler

	Smart talker

	Win people to your way of thinking

	Appeal to the nobler motives.

	Idea sympathetizer

	Friendly starter

	Dramatizer

	“Yes” initiator

	Fast admiter

	Monolog moderator

	Idea allocator

	Respecter

	Argument avoider

	Smart looser

	Point of view changer

	Change people

	Reserved asker

	Begin with praise and honest appreciation.
(Carnegie 2010, chapter “If you must find fault, this is the way to begin”)

	Call attention to people’s mistakes indirectly.

	Give the other person a fine reputation to live up to.

	Talk about your own mistakes before criticizing the other person.

	Let the other person save face.

	Make the other person happy about doing the thing you suggest.

	Praise the slightest improvement and praise every improvement. Be “hearty
in your approbation and lavish in your praise.”

	Use encouragement. Make the fault seem easy to correct.

All human relation patterns in alphabetic order

	Argument avoider

	Arouse in the other person an eager want.

	Don’t criticize, condemn or complain.

	Dramatizer

	Fast admiter

	Friendly starter

	Honest appreciator

	Idea allocator

	Idea sympathetizer

	Importantizer

	Listener

	Monolog moderator

	Name rememberer

	Non-criticizer

	Personal asker

	Point of view changer

	Reserved asker

	Respecter

	Smart looser

	Smart talker

	Smiler

	“Yes” initiator

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Argument avoider

The only way to get the best of an argument is to avoid it (Carnegie 2010,
chapter “You can’t win an argument”)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Arouse in the other person an eager want.

(Carnegie 2010, chapter “He who can do this has the whole world with him. He Who
cannot walks a lonely way”)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Don’t criticize, condemn or complain.

(Carnegie 2010, chapter “If you want to gather honey, don’t kick over the
beehive”)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Dramatizer

Dramatize your ideas.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Fast admiter

If you are wrong, admit it quickly and emphatically (Carnegie 2010, chapter “If
you are wrong, admit it”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Friendly starter

Begin in a friendly way (Carnegie 2010, chapter “A drop of honey”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Honest appreciator

Give honest and sincere appreciation (Carnegie 2010, chapter “The big secret of
dealing with people”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Idea allocator

Let the other person feel that the idea is his or hers (Carnegie 2010, chapter
“How to get cooperation”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Idea sympathetizer

Be sympathetic with the other person’s ideas and desires.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Importantizer

Make the other person feel important - and do it sincerely (Carnegie 2010,
chapter “How to make people like you instantly”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Listener

Be a good listener. Encourage others to talk about themselves (Carnegie 2010,
chapter “An easy way to become a good conversationalist”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Monolog moderator

Let the other person do a great deal of the talking (Carnegie 2010, chapter “The
safety valve in handling complaints”)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Name rememberer

Remember that a person’s name is to that person the sweetest and most important
sound in any language (Carnegie 2010, chapter “If you don’t do that you are
headed for trouble”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Non-criticizer

Donâ€™t criticize, condemn or complain (Carnegie 2010, chapter “If you want to
gather honey, don’t kick over the beehive”)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Personal asker

Become genuinely interested in other people (Carnegie 2010, chapter “Do this and
you’ll be welcome anywhere”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Point of view changer

Try honestly to see things from the other person’s point of view.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Reserved asker

Ask questions instead of giving direct orders.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Respecter

Show respect to the other person’s opinions. Never say, “You’re wrong.”
(Carnegie 2010, chapter “A sure way of making enemies - and how to avoid it”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Smart looser

Throw down a challenge.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Smart talker

Talk in terms of the other person’s interests (Carnegie 2010, chapter “How to
interest people”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

Smiler

Just smile (Carnegie 2010, chapter “A simple way to make a good first
impression”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Human Relation Patterns

“Yes” initiator

Get the other person saying “yes, yes” immediately (Carnegie 2010, chapter “The
secret of socrates”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

Build Patterns

Categorization of build patterns

Build patterns may be categorized according to the following scheme (Osherove 2015).

	Separation of concerns

	Build Script Injection

	Fill In The Blanks

	Productivity

	Accumulative Builds

	Gated Commit

	Incremental Feedback Loops

	Pipeline Disintegration

	Shipping Skeleton

	Maintainability

	Base Parameter

	Extract Script

	Fishbone Build Structure

	Location Agnostic Script

	Team Collaboration

	Dependency Stash

	Public API Hook

	Tipping Point

	Version by Snapshots Dependencies

	Stakeholder

	Deploy by Proxy

	Parallel Fire-hose

	Branching

	Scalability

	Fan Out Agents

	Split to Parallel

	Trustworthy

	Binary Result

	Irrelevant Build

	Big Ball of Mud

All build patterns in alphabetic order

	Accumulative Builds

	Build Script Injection

	Deploy robot

	Extract Script

	Fill In The Blanks

	Gated Commit

	Is it automatable

	Location Agnostic Script

	Parallel Fire-hose

	Pipeline Disintegration

	Public API Hook

	Shipping Skeletton

	Version by Snapshot Dependencies

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Accumulative Builds

The single responsibility principle applied to build scipts by using artifacts (results) of scripts as input for dependent scripts to decrease build time (Osherove 2015, chapter 7 “Accumulative Builds”).

CI Server Feature Requirements: artifacts

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Build Script Injection

Separation of the knowledge about the build process and the source file structure by “injection” of the info into the root directory of the source control repository (Osherove 2015, chapter 3 “Pattern: Build Script Injection”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Deploy robot

This most high-level build pattern sets the founation for the automation of the
deployment process.

	Context:	Actually the project deliveries (software, documentation, etc.) are deployed
manually. The start of a new project is right ahead an many with the same or a
slightly different development toolchain will follow.

	Problem:	In last projects the deployment of the software, documents, etc. took to much
time an slowed down the development process.

	Solution:	Automatize as much process steps as possible with a build environment.

	Forces:	
	operating system compatibility

	tool compatibility

	developer prouctivity

	build server maintainance

	time to market

	Resulting context:

		The basis for automating process steps has been set. Time has to be invested to
set up the build environment. But in this an all following projects the project
team will be much more productive and the time to market will be decreased.
The Is it automatable pattern could be applied next to identify what
process steps may be automated.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Extract Script

Refactoring of duplicated script code into separate scripts with parameter or environment variable dependency which are called in the main script (Osherove 2015, chapter 13 “Extract Script”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Fill In The Blanks

Parametrization of script knowledge about IT infrastructure, deployment, variants, etc. within build scripts (Osherove 2015, chapter 4 “Build Pattern: Fill In The Blanks”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Gated Commit

The CI server performs a pre-build of the developers code requested to be checked in on the master branch and does only check in the code into source control if all tests pass (Osherove 2015, chapter 9 “Pattern: Gated Commit”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Is it automatable

	Context:	An automatic deployment environment shall be set up.

	Problem:	It is not obvious what process steps may be automated.

	Forces:	
	process steps

	manual signing (aka “i’am that incredible important and am not worried about
slowing down the whole deployment process”)

	authority of roles envolved into the ooverall process

	implementation effort

	maintainance effort

	Solution:	
	Ientify what deployment deliveries need to get reviewed manually.

	Identify what deployment documents need to get signed manually.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Location Agnostic Script

Ensuring that all information about server directories is available for the
build script (Osherove 2015, chapter 12 “Build Pattern: Location Agnostic
Script”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Parallel Fire-hose

Bridging the physical connection between staging environment (server) an
production environment (server) with an isolated deploy server in a
demilitarized zone (Osherove 2015, chapter 21 “Pattern: Parallel Fire-hose”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Pipeline Disintegration

A build process is set up in parallel to an existing build process to add
additional features but not interfering the existing pipeline (Osherove 2015,
chapter 6 “Pattern: Pipeline Disintegration”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Public API Hook

Separation of API and logic of sw component to decoupe the dependency between sw
components (Osherove 2015, chapter 19 “Pattern: Public API Hook”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Shipping Skeletton

(Osherove 2015, chapter 5 “Pattern: Shipping Skeleton”)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Build Patterns

Version by Snapshot Dependencies

Ensure that the build of a software component is only triggered if all builds of
software components it depends on are build as “passed” (Osherove 2015, chapter
17 “Pattern: Version by Snapshot Dependencies”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

Requirement Patterns

Categorization of requirement patterns

Software requirement patterns may be categorized related to the context and/or according to software quality attributes as follows (Withall 2007):

	Fundamental Requirement Patterns

	Inter-System Interface Requirement Pattern

	Inter-System Interaction Requirement Pattern

	Technology Requirement Pattern

	Comply-with-Standard Requirement Pattern

	Refer-to-Requirements Requirement Pattern

	Documentation Requirement Pattern

	Information Requirement Patterns

	Data Type Requirement Pattern

	Data Structure Requirement Pattern

	ID Requirement Pattern

	Calculation Formula Requirement Pattern

	Data Longevity Requirement Pattern

	Data Archiving Requirement Pattern

	Living Entity Requirement Pattern

	Transaction Requirement Pattern

	Chronicle Requirement Pattern

	Information Storage Infrastructure

	User Function Requirement Patterns

	Inquiry Requirement Pattern

	Report Requirement Pattern

	Accesibility Requirement Pattern

	User Interface Infrastructure

	Reporting Infrastructure

	Performance Requirement Patterns

	Response Time Requirement Pattern

	Throughput Requirement Pattern

	Dynamic Capacity Requirement Pattern

	Static Capacity Requirement Pattern

	Availability Requirement Pattern

	Flexibility Requirement Patterns

	Scalability Requirement Pattern

	Extendability Requirement Pattern

	Unparochialness Requirement Pattern

	Multiness Requirement Pattern

	Multi-Lingual Requirement Pattern

	Installability Requirement Pattern

	Access Control Requirement Patterns

	User Registration Requirement Pattern

	User Authentification Requirement Pattern

	User Authorization Requirement Pattern

	Specific Authorization Requirement Pattern

	Configurable Authorization Requirement Pattern

	Approval Requirement Pattern

	Commercial Requirement Patterns

	Multi-Organization Unit Requirement Pattern

	Fee/Tax Requirement Pattern

About the pattern meta-data

Some literature uses explicit meta-data Basic details, Applicability, Discussion, Content, Template(s), Example(s), Extra requirements, Consideration for development and Considerations for testing specific to requirement patterns (Withall 2007, chapter “The Anatomy of a Requirement Pattern”). Basic details include the Related patterns, patter classification and other information.

However this project uses the common explicit meta-data Context, Problem, Solution and Resulting context recommended for patterns in general by Bergin 2007. The meta-data (Basic details/)Related patterns mentioned before is “extracted”. Applicability is merged into Context, Discussion (How to write? Consider what?) and Content (What to state?) and Considerations for developement (How to implement?) into Solution. The meta-data Consideration for testing and Extra requirements (What are higher-level patterns? What lower-level patterns do follow?) into Resulting context. The meta-data Template(s) (How to implement?) is merged into Example(s).

	Context:	Describes the situation before applying the pattern.

	Problem:	Describes the problem which leads to the Context.

	Solution:	Describes how the Problem can be addressed.

	Resulting context:

		Describes the situation after applying the Solution.

	Example(s):	Describes exemplary “implementations”.

All requirement patterns in alphabetic order

	Chronicle

	Configuration

	Inquiry

	Inter-System Interface

	Living entity

	Standardized Textual Specification Pattern

	Standardized Textual User Story

	Formal Review Pattern

	Transaction

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Chronicle

Specifies the requirement for recording a type of event in the life of the
system (Withall 2007, chapter “7.4 Chronicle Requirement Pattern”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Configuration

Specifies the requirement for parameter values which control the system behavior
(Withall 2007, chapter “7.3 Configuration Requirement Pattern”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Inquiry

Specifies a requirement for displaying static information on a screen to a user
(Withall 2007, chapter “8.1 Inquiry Requirement Pattern”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Inter-System Interface

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Living entity

Specifies the requirement for an entity for which information is stored and
which has a lifespan (creation, modification, optional termination) (Withall
2007, chapter “7.1 Living Entity Requirement Pattern”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Standardized Textual Specification Pattern

	Context:	The only test case related to a textual documented requirement failed but
it is not possible to identify the root cause.

	Problem:	The requirement is not “traceable” because it includes several other
requirements implicitly.

	Solution:	Indentify the included atomic requirements. You must be able to formulate every
requirement with a standardized textual description. Change the existing test
case and add new test cases for the new requirements.

	Resulting context:

		The existing requirement and the new ones are traceable.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Standardized Textual User Story

	Context:	A textual representatioon of a user story does not point out the important
issues “who”, “what” and “why”.

	Solution:	Formulate the user story in standardized grammar format.

	Implementation example:

		“As a <role>, I want <goal/desire> so that <benefit>. ... As a Database
Administrator, I should be able to revert a selected number of database updates
so that the desired version of the database is restored.”(ISTQB Agile Tester
Lesson 1 of 3, section “Format for creation of User Stories”/pos. 240).

	Resulting context:

		It is more obvious who (role) is interested in the user story, what
(goal) the user story shall address and why (benefit) it makes sense to
be addressed.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Formal Review Pattern

	Context:	You try to extract a test case from a requirement but you do not understand the
functionality despite you are experienced.

	Problem:	The formulation of the

	Solution:	Perform a manual review that verifies that a single requirement is unambiguous
and specifies importance. In addition it verifies that the requirement
characteristics pointed at with the “Standarized Textual Description
Pattern” (unitary, complete, non-conjugated, verifiable) are satisfied.

	Resulting context:

		The

Safety/availablitiy-critical Formal Review Pattern

If the context is safety/availability-critical the person who performs the
review has to be different from the person who wrote the requirement.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Requirement Patterns

Transaction

Specifies the requirement for a type of event in the lifetime of an entity and
or a function for entering such a transaction (Withall 2007, chapter “7.2
Transaction Requirement Pattern”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

Design Patterns

Categorization of “design” patterns

An obvious categorization scheme is accoring to the level of abstraction (Buschmann et al. 2001, chapter “The classification schema”).

	Architectural

	Design

	Idioms

The literature adds further categorizations according to the patterns scope of influence regarding the level of abstraction (Gamma et al.). These schemas apply to the already mentioned architectural and/or design patterns.

	subsystem and component patterns

	class patterns

	object patterns

Patterns may also be categorized according to their intend of optimization (Gamma et al. 1998).

	creational

	Abstract Factory

	Builder

	Factory Method

	Prototype

	Singleton

	structural

	Adapter

	Bridge

	Composite

	Decorator

	Facade

	Flyweight

	Proxy

	behavioral

	Chain of Responsibility

	Command

	Interpreter

	Iterator

	Mediator

	Memento

	Observer

	State

	Strategy

	Template Method

	Visitor

Threads may be added as scope of influence to the categorization of behavioral patterns (Douglass 2011, 2002).

	threads (Douglass 2011, 2002)

It is possible to add the problem category as another dimension for categorization which applies to all level of abstractions like (Buschann et al. 2001, chapter “The classification schema”) :

	From Mud to Structure

	Distributed Systems

	Interactive Systems

	Adaptable Systems

	Strucutral Decomposition

	Organization of work

	Access Control

	Management

	Communication

	Ressource Handling

In the context of concurrency and networking the following schema related to the problem category may be applied (Schmidt et al. 2000, chapter “6.4 Pattern Languages vs. Pattern Systems”):

	Base-line Architecture

	Architectural

	Broker

	Layers

	Microkernel

	Communication

	Architectural

	Pipes and Filters

	Design

	Abstract Session

	Command Processor

	Forwarder-Receiver

	Observer

	Remote Operation

	Serializer

	Initialization

	Design

	Activator

	Client-Dispatcher-Server

	Evictor

	Locator

	Object Lifetime Manager

	Service Access and Configuration

	Architecural

	Interceptor

	Design

	Component Configurator

	Extension Interface

	Half Object plus Protocol

	Manager-Agent

	Proxy

	Event Handling

	Architectural

	Proactor

	Reactor

	Design

	Acceptor-Connector

	Asynchronous Completion Token

	Event Notification

	Observer

	Publisher-Subscriber

	Synchronization

	Architectural

	Object Synchronizer

	Design

	Balking

	Code Locking

	Data Locking

	Guarded Suspension

	Double-Checked Locking Optimization

	Reader/Writer Locking

	Specific Notification

	Strategized Locking

	Thread-Safe Interface

	(Idioms)

	(Scoped Locking)

	Concurrency

	Architectural

	Half-Sync/Half-Async Producer-Consumer

	Leader/Followers

	Design

	Active Object

	Master-Slave

	Monitor Object

	Producer-Consumer Scheduler

	Two-phase Termination

	Thread-Specific Storage

Categorization related to the problem category specific to “(...) a number of subject areas of particular interest to embedded C developers(.)” (Douglass 2011, p. 78) may be applied as follows:

	Design Patterns for Accessing Hardware

	Hardware Proxy

	Hardware Adapter

	Mediator

	Observer

	Debouncing

	Interrupt

	Polling

	Design Patterns for Embedding Concurrency and Resource Management

	Scheduling

	Cyclic Executive

	Static Priority

	Task Coordination Patterns

	Critical Region

	Guarded Call

	Queuing

	Rendevouz

	Deadlock Avoidance Patterns

	Simultaneous Locking

	Ordered Locking

	Design Patterns for State Machines

	Single Event Receptor

	Multiple Event Receptor

	State Table

	State

	AND-States

	Decomposed AND-States

	Safety and Reliability Patterns

	One’s Complement

	CRC

	Smart Data

	Channel

	Protected Single Channel

	Dual Channel

Categorization related to the problem category in the architectural
abstraction layer of embedded software (Douglass 2002) may be applied as
follows:

	Subsystem and Component Architecture Patterns

	Layered Pattern

	Five-Layer Architecture Pattern

	Microkernel Architecture Pattern

	Channel Architecture Pattern

	Recursive Containment Pattern

	Hierarchical Control Pattern

	Virtual Machine Pattern

	Component-Based Architecture

	ROOM Pattern

	Concurrency Patterns

	Concurrency Pattern

	Message Queuing Pattern

	Interrupt Pattern

	Guarded Call Pattern

	Rendezvous Pattern

	Cyclic Executive Pattern

	Round Robin Pattern

	Static Priority Pattern

	Dynamic Priority Pattern

	Memory Patterns

	Memory Management Patterns

	Static Allocation Pattern

	Pool Allocation Pattern

	Fixed Sized Buffer Pattern

	Smart Pointer Pattern

	Garbage Collection Pattern

	Garbage Compactor Pattern

	Resource Patterns

	Critical Section Pattern

	Priority Inheritance Pattern

	Highest Locker Pattern

	Priority Ceiling Pattern

	Simultaneous Locking Pattern

	Ordered Locking Pattern

	Distribution Patterns

	Shared Memory Pattern

	Remote Method Call Pattern

	Observer Pattern

	Data Bus Pattern

	Proxy Pattern

	Broker Pattern

	Safety and Reliability Patterns

	Protected Single Channel Pattern

	Homogeneous Redundancy Pattern

	Triple Modular Redundancy Pattern

	Heterogeneous Redundancy Pattern

	Monitor-Actuator Pattern

	Sanity Check Pattern

	Watchdog Pattern

	Safety Executive Pattern

Classification of idiomatic patterns

Idiomatic patterns may be classified according to their scope of optimization
(Peterson 2010):

	robustness

	Array size by division

	Compound types with {0}

	Constants to the left

	Sizeof to variables

	expressiveness

	Assertion context

	Magic numbers as variables

	Named parameters

	Add the name space

Pattern Selection Procedure

The literature states the following schema to choose an appropriate pattern (Buschmann et al. 2001, chapter “5.3 Pattern Selection”):

	Specify the problem

	Select the pattern category

	Select the problem category

	Compare the problem descriptions

	Compare benefits and liabilities

	Select the variant

	Select an alternative problem category

About the pattern meta-data

	Advantages:	In comparison with related patterns (e.g. Cyclic Executive Pattern vs. Static Priority Pattern).

	Disadvantages:	In comparison with related patterns (e.g. Cyclic Executive Pattern vs. Static Priority Pattern).

	Implementation example:

		The implementation examples are not limited to the “embedded” domain. It is a good practice to transfer the examples to specific problems in other domains of software engineering.

	Pattern dependences:

		If the pattern or a specific implementation variant requires the usage of another pattern.

All design patterns in alphabetic order

	Abstract Factory Pattern

	Adapter Pattern

	Add the namespace

	Automated Administration Pattern

	Automatically Defined Perimeter Pattern

	Bare-Metal Provisioning Pattern

	Broad Access Pattern

	Builder Pattern

	Burst In Pattern

	Centralized Remote Administration Pattern

	Cloud Authentication Gateway Pattern

	Cloud Authentication Pattern

	Cloud Data Breach Protection Pattern

	Cloud Denial-of-Service Protection Pattern

	Cloud Key Management Pattern

	Cloud Resource Access Pattern

	Cloud Storage Data at Rest Encryption Pattern

	Cloud Storage Data Lifecycle Management Pattern

	Cloud Storage Data Management Pattern

	Cloud Storage Data Placement Compliance Check Pattern

	Cloud Storage Device Masking Pattern

	Cloud Storage Device Path Masking Pattern

	Cloud Storage Device Performance Enforcement Pattern

	Cloud Traffic Hijacking Protection Pattern

	Cloud VM Platform Encryption Pattern

	Configuration File

	Constants to the left

	Container Pattern

	CRC Pattern

	Critical Region Pattern

	Cyclic Executive Pattern

	Diagnostic Logger

	Diverse Redundancy Pattern

	Dynamic Priority Pattern

	Dynamic Scalability Pattern

	Facade Pattern

	Factory Method Pattern

	Guarded Call Pattern

	GUI-wrapped Configuration

	Homogeneous Redundancy Pattern

	Identify By Version Pattern

	INI Configuration File Pattern

	Iterator Pattern

	Layer Pattern

	Magic numbers as variables

	Mediator Pattern

	Model-View-Controller Pattern

	Multiple Event Receptor Pattern

	Namend parameters

	Observer Pattern

	One’s Complement Pattern

	Ordered Locking Pattern

	Pipes and Filters Pattern

	Pre Buffered Logging

	Prototype Pattern

	Proxy Pattern

	Python abstract base class pattern

	Round Robin Pattern

	Safe OOP emulation

	Safety Executive Pattern

	Single Event Receptor Pattern

	Singleton Pattern

	Sizeof to variables

	Smart Data Pattern

	Smart Pointer Pattern

	State Pattern

	Static Priority Pattern

	Transaction Pattern

	Watchdog Pattern

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Abstract Factory Pattern

Creates families of related objects without depending on their specific classes.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Adapter Pattern

Makes two incompatible interfaces compatible.

	Context:	
	need for functionality which could be achieved by modifying or slightly
extending preexisting code

	Problem:	
	modifying preexinsting code is not efficient or if provided by a third partiy
not possible

	adding “translating” code where ever the existing code is used adds code
dublication which violates the DRY principle (with all its disadvantages ->
increased risks for implementation errors, decreased maintainability, etc.)

	Solution:	
	use a component (not neccessarily a class e.g. in strucutral languages) which
“translates” between preexisting components

	the adapter compontent needs to implement the expected interface and maps the
existing interface to it

	Resulting context:

		
	preexisting code can be used with a new interface

	implement the required functionality with less resources consumption (manpower, time, money)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Add the namespace

Idiomatic pattern emulates the programming feature “namespace” in languages not
offering this feature.

	Context:	It is not obvious to what modules the functions in use belong to.

	Problem:	Some programming languages lack the support for name spaces. This makes the
programms harder maintain.

	Forces:	
	maintainability

	redability

	Solution:	Add a short version of the package/module/etc. name as prefix to its API
funtions.

	Example in C:	Add the name of the module (.c file) as prefix to its API funtions.

	Resulting context:

		The maintainability of the modules is increased. The trade-off is that the
names are longer an the code where the functions are used harder to read.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Automated Administration Pattern

How can common administrative tasks be carried out consistently and
automatically in response to pre-defined events?

(Erl 2015, p. 310)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Automatically Defined Perimeter Pattern

How can a perimeter be protected that is dynamic and extends from on-premise to
multi-vendor cloud resources?

(Erl 2015, p. 425)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Bare-Metal Provisioning Pattern

How can operating systems be remotely deployed on bare-metal servers?

(Erl 2015, p. 305)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Broad Access Pattern

How can cloud services be made accessible to a diverse range of cloud service consumers?

(Erl 2015, p. 93)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Builder Pattern

Composition of a complex object consisting of different parts step by step.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Burst In Pattern

Compound pattern that establishes a system that retracts IT resources from an environment that has reached a low level of utilization.

(Erl 2015, p. 499)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Centralized Remote Administration Pattern

How can diverse administrative tasks and controls be consolidated for
central remote access by cloud consumers?

(Erl 2015, p. 315)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Authentication Gateway Pattern

How can cloud-based IT resources be made accessible to cloud service consumers
with diverse protocol requirements?

(Erl 2015, p. 430)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Authentication Pattern

Compound pattern which implements a security management system.

(Erl 2015, p. 505)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Data Breach Protection Pattern

How can organizations provide protection against data breaches for cloud data?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Denial-of-Service Protection Pattern

How can cloud services be protected against denial-of-service attacks?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Key Management Pattern

How can encryption keys be effectively managed for a cloud environment?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Resource Access Pattern

How can cloud consumer attributes be made available to determine cloud resource access
control in multiple proprietary clouds?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Data at Rest Encryption Pattern

How can cloud providers securely store cloud consumer data on cloud storage devices?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Data Lifecycle Management Pattern

How can data be stored and managed in a cloud environment based on a defined lifecycle?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Data Management Pattern

How can cloud consumers directly interact with data stored on a cloud storage device
or provide access to other cloud consumers with appropriate permission levels?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Data Placement Compliance Check Pattern

How can cloud consumers ensure data is stored on a cloud storage device is physically located
in a region that meets required compliance policies?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Device Masking Pattern

How can data stored on a cloud storage device be isolated to specific consumers?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Device Path Masking Pattern

How can data stored on a cloud storage device be isolated to specific consumers via certain pathways?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Storage Device Performance Enforcement Pattern

How can data with different performance characteristics be stored on a cloud storage device
compliant with the performance requirements of each dataset?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud Traffic Hijacking Protection Pattern

How can cloud communication be protected from traffic hijacking?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cloud VM Platform Encryption Pattern

How can VM backups, snapshots, and live migration be secured?

(Erl 2015)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Configuration File

	Context:

	The configuration of an application needs to be stored persistent.

	Problem:

	It is not obvious how to store the configuration.

	Forces:

	
	readability

	editability

	configuration data

	data types (strings, integers, floating-point numbers, code)

	data format (values, lists, objects)

	Solution:

	Store the configuration in a data file.

	Resulting Context:

	The configuration is stored persistent in a maintainable manner.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Constants to the left

	Problem:	Instead of comparing variables against a value it may be assigned to the
variable.

	Solution:	The value to be compared against can be placed to the left of the comparison.
The compiler does the verification and warns you if applicable.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Container Pattern

Abstracts away data structuring from application domain classes.

	Implementation example:

		C++ - The Standard Template Library (STL) as part of the ANSI C++ provides many
container and iterators.

	Model example:	Generic model example with client (user of parts), iterator (mediates access to
parts, inserts/delets parts), container (manages part collection, provides access
operations) and two parts (data) (Douglass 1998, p. 271).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

CRC Pattern

Adds a cyclic redundancy check to identify when bits of the data have been
corrupted in vivo (Powell 2011, page 359).

	Use cases:	
	big memory segments

	complex data structures

	communication messaging

	in-memory error detection for harsh EMI environments

	in-memory error detection for mission-critical data

	Related patterns:

		One’s Complement Pattern

	Implementation Alternatives in C:

		
	table-driven algorithm -> fast, bigger memory consumption
(Powell 2011, page 369)

	polynominal calculation -> slower, smaller memory consumption
(Powell 2011, page 369)

	Implementation exmaple:

		C - Safety-relevant patient data (some structures) is linked to an alarm
mechanism which triggers data specific alarm handlers if the data is identified
as corrupted after setting or getting a data set
(Douglass 2011, p. 369).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Critical Region Pattern

Serializing access from tasks on resources to prevent data corruption by disabling task switching.

	Advantages:	easy

	Disadvantages:	high priority tasks which do not necessarily use the “critical” resource are blocked

	Implementation example:

		C - A task which manages a robot arm includes the movement of the robot arm as critical region (Douglass 2011, chapter 4.4.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Cyclic Executive Pattern

Minimalistic thread scheduling for hardware with limited resources (memory).

	Use Cases:	The literature states the following use cases for this pattern (Douglass 2002, p. 156).

	small systems

	avionics flight systems

	aircraft applications

	spacecraft applications

	Advantages:	simple

	Disadvantages:	bad responsiveness to incoming events

	Implementaion example:

		C - Gas flow application with 3 threads (updating the display, controlling a valve, measure gas flow) accessing the same data (configured gas flow, measured gas flow) of a data server (Douglass 2011, chapter 4.2.9).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Diagnostic Logger

	Intend:	Separates logging from the rest of the application.

	Context:	

	Problem:	

	Forces:	
	diagnostic messages must be accesible for whole application

	consistent look and feel

	easy to use

	specification of message destination

	order of messages

	specific (context) information

	retain information from one error to the next

	Solution:	
	diagnostic logger (implemented as singleton) object handles logging

	handle different output types (cli, file) to subclasses

	

	Resulting Context:

		

References:

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Diverse Redundancy Pattern

Increase system reliability by providing several (2+n) redundant, but not
identical channels.

	Model example:	Generic 2 channel example in the context of safety-critical embedded systems
with textual explanation (Douglass 1998, p. 230).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Dynamic Priority Pattern

Task scheduling by assignment and update of task priorities during runtime.

	Advantages:	urgency (Douglass 2002, p.170)

	Disadvantages:	criticality (Douglass 2002, p.170)

	Implementaion example:

		C - Three threads (data acquisition, filtering, display) share the same two data sets (raw, processed) (Douglass 2002, chapter 5.10.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Dynamic Scalability Pattern

How can IT resources be scaled automatically in response to fluctuating demand?

(Erl 2015, p. 26)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Facade Pattern

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Factory Method Pattern

Defines an interface for creating an instance of an object but lets the class
which implements the interface decide which class to instantiate.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Guarded Call Pattern

	Advantages:	
	better responsiveness (compared to Queueing Pattern)

	does not interfere with the execution of higher priority tasks that don’t need access to the resource (compared to Critical Region Pattern)

	Disadvantages:	if not combined with other patterns the naive implementation/use can result in unbounded priority inversion

	Implementaion example:

		C - The attitude and position sensors of an aircraft (data servers) are accessed by a attitude control, a data displayer and a position control (data clients) (Douglass 2011, chapter 4.5.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

GUI-wrapped Configuration

An idiomatic variation of the wrapper pattern which uses a gui as wrapper for
the textual application configuration for more safe and user friendly
configuration.

	Context:	You have an application which uses one or several textual configuration
mechanisms.

	Problem:	Textual configurations are often missused by the user. It is possible to inform
the user about the error but the response is not immediate and the actual
reason for the error not obvious.

	Solution:	Use a graphical user interface to wrap the configuration. Analyze the textual
entries entered, inform about errors and give advice for correct usage to the
user immediatelly. If the entries are correct override the configuration with
the new values.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Homogeneous Redundancy Pattern

Increase system reliability by providing several (2+n) redundant and identical
channels.

	Model example:	Generic 2 channel example in the context of safety-critical embedded systems
with class diagram and sequence diagram (Douglass 1998, p. 229).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Identify By Version Pattern

	Context:	
	begin develop an application

	begin develop a library

	Problem:	
	the version of an application is critical for client systems

	Solution:	
	print the version over the cli

	... or make it visible to users over a GUI tab e.g. application/help/about

	Resulting context:

		
	the version of the application may be checked by client systems

	the version of the application may be observed by users

	Implementation example:

		Python - Print the version of an application over its command line interface
(Lott 2014, section “–version display and exit”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

INI Configuration File Pattern

Idiomatic pattern to store configuration data of an application in an .ini file.

	Context:	You need to configure an application with data in simple data types and simple
data format on a windows operating system.

	Problem:	See parent design pattern, Configuration File

	Forces:	See parent design pattern, Configuration File

	Solution:	Use the .ini configuration file format to store the configuration.

	Resulting Context:

		The configuration is stored in a format which is easy to read. Due to the
similarity with the windows .ini file format the interoperability with this
operating system is good.

	Example in Python:

		Use the python standard library module configparser to manage .ini like
configuration files.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Iterator Pattern

	Implementation Alternatives in Python:

		
	package itertools from the python library

	class with __iter__() and next() method (compare iter() method of library classes)

	generator function that returns sequence of returns instead of single valueyields

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Layer Pattern

Organizes the software components in a hierarchical manner based on their level of abstraction.

5-Layer Architecture

A variant of the Layer Pattern with 5 components common for embedded and
real-time systems (Douglass 2002, chapter 4.2) is separated into:

	Application,

	User Interface,

	Communication,

	Abstract OS,

	Abstract HW.

The communication is not uni-directional as usual for the “strict” Layer Pattern.

	Model example:	C - An ECG monitor is composed of the software components ECG, Alarm, Trend, Data Transport, User Interface (5-tier Pattern) whose communication is not unidirectional “from top to bottom” (Douglass 2002, chapter 4.1.8).

	Model example:	C - A ventilator consists of the Ventilator Application, the Graphical User Interface, Communication (CAN, Corba), the RTOS vxWorks and the ventilator hardware abstraction (Douglass 2002, chapter 4.2.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Magic numbers as variables

	Problem:	Magic numbers are bad.

	Solution:	Instead of using #defines the handling of magic numbers may increased further
by defining constant variables. The tradeoff is memory size against code
maintainability.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Mediator Pattern

Centralization of the coordination of other components.

	Implementation example:

		C - Manager (mediator) for the coordination of the subcomponents (rotating joints, sliding joints, etc.) of a robot arm in C (Douglass 2011).

	Implementation example:

		C++ - Management of the update of Dialog elements (button, list box, entry field) in a graphical user interface (Gamma et al. 1995, chapter “Mediator”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Model-View-Controller Pattern

Separates the application (or part of it) into the parts model (data and logic),
view (HMI) and controller (links the model and the view).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Multiple Event Receptor Pattern

Handling of synchonous events from a single event server using an event receptor for each event (multiple event receptor finite state machine).

	Implementation example:

		C - Tokenizer for floating point number strings implemented as synchronous state machine with events (digit, white space, dot, end of string) triggered by the client (Douglass 2011, chapter 5.4.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Namend parameters

	Problem:	C does not support named parameters as language feature.

	Solution:	It is possible to emulate this feature by assigning a value to a variable while
handed over as function parameter. The readabiliby of the code is increased.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Observer Pattern

Notification of clients about the status of a data server.

	Implementation example:

		C - Gas data (server) of a gas sensor is observed by a display, gas mixer and a safety monitor (clients) in C (Douglass 2011, chapter 3.5.8).

	Implementation example:

		C++ - System time (server) is observed by a digital and an analog clock (clients) in C++ (Gamma et al. 1995, chapter “Observer”).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

One’s Complement Pattern

Adds a bitwise inverted copy of primitive data elements to identify when data is
corrupted in vivo (Powell 2011, page 359).

	Use Cases:	
	small safety/availability-critical data structures

	simple safety/availability-critical data structures

	primitive safety/availability-critical data types

	static variables in safety/availability-critical functions

	Implementation Alternatives in C:

		
	~ operator for primitive data types + iteration over all primitive data types
(Powell 2011, page 363)

	macro encapsulated conversion operation for primitive data types + iteration
over all primitive data types

	Implementation Alternatives in Python:

		
	conversion of class data: @property decorator to use setter/getter methods
like class properties -> good: same access syntax like attributes

	conversion of class data: explicit private setter/getter methods -> bad:
other access syntax than attributes

	Implementation Examples:

		C - The safety-relevant aircraft attitude (roll, yaw, pitch) is linked to an
alarm mechanism which triggers an alarm handler (~ whole attitude data) if one
of the data elements is identified as corrupted after getting the data set
(Douglass 2011, p. 364)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Ordered Locking Pattern

Prevention of resource-based deadlock by forcing ordered locking of resources.

	Implementation strageties:

		This pattern is implemented with one type of resource ID assignment (dynamic or design-time) and one or both types of resource access (dyadic or monadic).

Dynamic resource ID assignment means that IDs are dynamically assigned to resources during runtime.

Design-time resource ID assignment means that IDs are assigned to resources during compile-time.

Dyadic access means that the resource client does explicitly need to lock and unlock the resource.

Monadic access means that the resource client does not need to unlock the resource (implicitly locked and unlocked).

	Advantages:	
	easy (resource ID assignment: dynamic)

	difficult for big systems (resource ID assignment: design-time)

	flexible (access: dyadic)

	Disadvantages:	
	unsafe (resource ID assignment: dynamic)

	safe (resource ID assignment: design-time)

	unflexible (access: monadic)

	Implementation example:

		C - The attitude, velocity and position sensors of an aircraft (data servers)
are accessed by a kinematic and a route planing control (data clients)
(Douglass 2011, chapter 4.9.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Pipes and Filters Pattern

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Pre Buffered Logging

An idiomatic pattern which buffers information which has been logged before the
actual log location and configuration is known.

	Context:	You have an application which has to log info right from the beginning of the
application. The location and configuration of the log shall be configurable
application with a configuration which is read right at application startup.

	Problem:	There may not be logged info before the location and configuration of the
logger is known by the application.

	Solution:	Create a logger right at the beginning of the application. Log into there until
the logger location and configuration is known by the application. “Override”
the pre buffer logger, log into there from now on and merge the pre buffered
logs into the final log.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Prototype Pattern

Creation of an exact copy of an object.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Proxy Pattern

Standardization of component interface for better maintainability.

	Implementation example:

		C++ - An interface for graphical objects (proxy) may be used by the application (client) to access the implementation of a image class (Gamma et al. 1995, chapter “Proxy”).

Hardware Proxy

In the driver layer or HAL the access on hardware is encapsulated in a component.

	Implementation example:

		C - A motor (hardware) is accessed over an interface independent of the hardware-interface providing the control of speed and direction and monitoring the status (hardware proxy). The hardware is accessed per 16-bit wide memory-mapped interface (Douglass 2011, chapter 3.2.8).

Remote Proxy

In distributed systems software may access neighbor systems as remote “device”.

Security Proxy

In security applications it may be required to hold all component data within
the application in encrypted status. The data representation/format may not be
encapsulated within the proxy as usual then.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Python abstract base class pattern

	Context:	You are going to implement a python library which will be used by other
developers frequently.

	Problem:	
	application classes which do not exactly implement a predefined API chrash
applications which use these API

	application classes need to be implement according to pythons built-in
features to beeing able to integrate seamlessly with python

	Solution:	
	define abstract superclasses (parent classes) whose API have to be implemented by
application classes (child classes)

	>=python2.6: use the module collections.abc from the python standard library

	<=python2.5 [https://dbader.org/blog/abstract-base-classes-in-python]

	class Base:

	
	def foo(self):

	raise NotImplementedError()

	def bar(self):

	raise NotImplementedError()

	class Concrete(Base):

	
	def foo(self):

	return “foo() called”

Oh no, we forgot to override bar().
def bar(self):
return “bar() called”

>>> c = Concrete()
>>> c.foo()
'foo() called'
>>> c.bar()
NotImplementedError

>>> b = Base()
>>> b.foo()
NotImplementedError

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Round Robin Pattern

	Implementation example:

		C - Two tasks (monitor, display) are scheduled with time-controlled preemption (Douglass 2002, chapter 5.8.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Safe OOP emulation

	Context:	Complex safety/availability-critical software for hardware with limited stack/heap
shall be written in a structural programming language shall be run on hardware with limited stack/heap

	Problem:	A programming language with object oriented features would ease the development,
maintainability of the software.

	Solution:	Implement the OO features you need in the language in use.

	Implementation example in C:

		The standard library functions (malloc(), free()) which could be used to
implement OOP are know to be not “safe”. In addition this standard library
functions have been implmented in the “personal computer” context and do not
consider the fragmentation of memory which can lead to a crash of the software.
Implement own versions of the functions (malloc(), free()) with safety/availability

	Resulting context:

		Basic OOP capabilities (create, modify, destroy instance of an object) can be
used and speed-up development.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Safety Executive Pattern

Centralized coordination of safety monitoring and system recovery from faults.

	Other names:	Safety Kernel Pattern

	Model example:	Generic example of a safety object (safety policies and measures), watchdog
(observe subsystem response), 2 subsystems and a fail-safe channel (fault
recovery) in the context of safety-critical embedded systems with class diagram
and sequence diagram (Douglass 1998, p. 235).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Single Event Receptor Pattern

Handling of asynchronous or synchonous events from a single event server using one event receptor for all events (single event receptor finite state machine).

	Pattern dependences:

		
	Asynchronous version -> Queueing Pattern

	Synchronous version -> Guarded Call Pattern

	Implementation examples:

		C - Tokenizer for strings holding floating point numbers implemented as
asynchronous and as synchronous event handling state machine in C
(Douglass 2011, chapter 5.3.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Singleton Pattern

Ensures that only one instance of a class may be created.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Sizeof to variables

	Problem:	During the memory assignment of variables the data type of the variable has to
correspond to the datatype handed over to the function sizeof(). During code
evolution it may occur that not both sides of the assignment are kept redundant.

	Solution:	Use the variable itself instead of the data type of the variable as parameter
for sizeof().

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Smart Data Pattern

Idiomatic pattern implements self-checking data types to satisfy defensive
programming. Adds behavior to the data to ensure that the data’s preconditions
and constraints are adhered to (Douglas 2011, page 359).

	Context:	Requirements state there shall be implemented “safe” module or class data. Or
the software does not behave as expected during unit testing and the lack of
requirements mentioned before has been identified as the root cause.

	Use cases:	safety/availability-critical data

	Implementation alternatives in C:

		
	functions included from a util module to implement checks

	#defines included from a util module to implement checks

	smart data classe per data type (Douglas 2011, chapter “6.4.3 Pattern
Structure”)

	Forces:	
	performance

	memory usage

	heap usage

	testability

	debugability

	useability

	reusability

	Examples in C:	Self-checking patient data (when initialized and set) encapsulates a smart
integer data type (weight, age, heart rate, etc.) and a smart enumeration
data type (patient condition visualization). If a data range is violated the
corresponding error handler is called (Douglas 2011, chapter “6.4.8
Examples”)

	Resulting context:

		The unit tests addressing defensive programming issues related to the data
PASS.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Smart Pointer Pattern

Eliminate/mitigate problems introduced by the manual use of raw C/C++ pointers.

	Model example:	Generic example of a client (user of the smart pointer), smart pointer (valid
initialization, memory deallocation, refuse access to deleted pointer location)
and server (data source) with class diagram, sequence diagram and textual
explanation (Douglass 1998, p. 271).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

State Pattern

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Static Priority Pattern

Task scheduling using priorities.

	Advantages:	
	simplicity (Douglass 2002, p. 163)

	stability in sense of predictability of failing tasks in an overload
situation (Douglass 2002, p. 164)

	optimality, you can’t do better with other scheduling strategies
(Douglass 2002, p. 164)

	scale-ability for large amounts of tasks (Douglass 2002, p. 163)

	analyze-ability for schedule-ability e.g. with the standard rate monotonic
analysis methods (Douglass 2011, p. 170)

	responsiveness to urgent asynchronous events (Douglass 2002, p. 163)

	Disadvantages:	naive implementation with blocking resource sharing can lead to unbounded
priority inversion (Douglass 2011, p. 170)

	Model example:	C - Three threads (data acquisition, filtering, display) share the same two
data sets (raw, processed) (Douglass 2002, chapter 5.9.8).

	Implementation example:

		C - The motor position sensing, the display of info and the motor control
encapsulated in tasks of a RTOS (Douglass 2011, chapter 4.3.8).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Transaction Pattern

Ensures reliable communication over an unreliable communication channel.

	Model example:	Generic example of a source (message source),
sender (marshals, creates/destroys, send transactions),
send transaction (tracks # ALO or EO message transmits and retry period),
message (metadata and data),
receiver (demarshals, creates/destroys receive transactions),
receive transaction (tracks # EO message receives, TimeToLive handling) and
target (message destination)
with class diagram, sequence diagram for an EO transaction and textual
explanation (Douglass 1998, p. 265).
(BTW: AMO messages do not require the creation of send and receive transactions.)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Design Patterns

Watchdog Pattern

Ensure hard-real time conform functionality of the system.

	Model example:	Generic example of a watchdog observing a channel in the context of
safety-critical embedded systems with class diagram and sequence diagram
(Douglass 1998, p. 233).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

Unit Test Patterns

If and how the patterns may be applied in your actual situation strongly
depend on the unit test tool which is used. In the context of safety-critical
software it is common to use full-feature unit test tools. In this case you
do not have to worry about a lot of the problems which are addressed by
some unit test pattern categories related to “manage the test harness
yourself” test frameworks (e.g. xUnit Basics Patterns, Test
Organization Patterns). As “non-open-source” unit test tools in C/C++ implement
the “Test Automation Framework” unit test pattern some Unit Test Patterns
could be already implemented by the tool:

	Assertion Method

	Automated Teardown

	Chained Tests

	Configurable Test Double

	Creation Method

	Data-Driven Test

	Delegated Setup

	Delta Assertion

	Implicit Setup

	Implicit Teardown

	In-line Setup

	In-line Teardown

	Prebuilt Fixture

	Scripted Test

	Standard Fixture

	Test Discovery

	Test Double

	Test Runner

	Test Selection

	Testcase Object

	Unfinished Test Assertion

The basics for the functionality of the following patterns are implemented by most “non-open source” unit test tools for C but some implementation work is left to the tester:

	Behavior Verification

	Derived Value

	Fake Object

However it may be hard or even possible that some patterns can not be
implemented with full-fledged test frameworks due to their architecture:

	Lazy Setup

	Minimal Fixture

	Mock Object

	Testcase Class (~ C++)

	Testcase Class per Class (~ C++)

	Testcase Class per Feature (~ C++)

	Testcase Class per Fixture (~ C++)

	Testcase Superclass (~ C++)

In the safety/availability-critical contexts some patterns are not appliable
because the production code may be not modified before, during or after test
execution:

	Test Hook

	

Beside of this “i do not have to care about the
pattern implementation” it is important to know the patterns to get an idea
about the tool in use can be used as efficient as possible. However some
pattern categories may be relevant independent of the tool in use and the
business domain (e.g. Value Patterns).

Categorization of unit test patterns

According to the problem context one can categorize unit test patterns like
follows (Meszaros 2007, chapter “Contents”).

	Test Strategy Patterns

	recorded test

	scripted test

	data-driven test

	test automation framework

	minimal fixture

	standard fixture

	fresh fixture

	shared fixture

	back dooor manipulation

	layer test

xUnit Basics Patterns

	test method

	four-phase test

	assertion method

	assertion message

	testcase class

	test runner

	testcase object

	test suite object

	test discovery

	test enumeration

	test selection

	Fixture Setup Patterns

	in-line setup

	delegated setup

	creation method

	implicit setup

	prebuilt fixture

	lazy setup

	suite fixture setup

	setup decorator

	chained tests

	Result Verification Patterns

	State verification

	Behaviour verification

	custom assertion

	delta assertion

	guard assertion

	unfinished test assertion

	Fixture Teardown Patterns

	garbage-collected teardown

	automated teardown

	in-line teardown

	implicit teardown

	Test Double Patterns

	test double

	test stub

	test spy

	mock object

	fake object

	configurable test double

	hard-coded test double

	test-specific subclass

	Test Organization Patterns

	named test suite

	test utility method

	parameterized test

	testcase class per class

	testcase class per feature

	testcase superclass

	Database Patterns

	database sandbox

	stored procedure test

	table truncation teardown

	transaction rollback teardown

	Design-For-Testability Patterns

	dependency injection

	dependency lookup

	humble object

	test hook

	Value Patterns

	Literal Value

	Derived Value

	Generated Value

	Dummy Object

Value Patterns may be categorized further regarding the unit test context:

	whitebox patterns

	Has it been called

	Has it not been called

	blackbox patterns

	In/out range check

	Inverse data structures

About the meta-data

Equivalent to other (code) smells indicating bad practice there also some smells
aka “Unit Test Antipatterns” related to unit tests
(Meszaros 2007, chapter “Contents”). Whenever one of the following smell occurs
the design of the unit test should be refactored.

	Code Smells

	obscure test

	conditional test logic

	hard-to-test code

	test code duplication

	test logic in production

	Behavior Smells

	assertion roulette

	erratic test

	fragile test

	frequent debugging

	manual intervention

	slow tests

	project smells

	buggy tests

	developers not writing tests

	high test maintenance cost

	production bugs

However because this project is solution-oriented and not problem-oriented this
antipatterns will only be referenced as implicit meta-data in the Problem
section.

All unit test patterns in alphabetic order

	Cause-Effect Graphing

	Classification-tree method

	Database ORM relation test pattern

	Equivalence Partitioning

	Execution time test pattern

	Function wrapped macro pattern

	Has it been called

	Has it not been called

	In/out range check

	Inverse data structures

	Memory Corrupting Output Buffer

	Mock

	Spy

	State Transition Testing

	Assertion Message

	We include a descriptive string argument in each call to an Assertion Method
(Meszaros 2007, page 370).

	Assertion Method

	We call a utility method to evaluate whether an expected outcome has been
achieved (Meszaros 2007, page 362).

	Automated Teardown

	We keep track of all resources that are created in a test and automatically
destroy/free them during teardown (Meszaros 2007, page 503).

	Back Door Manipulation

	We set up the test fi xture or verify the outcome by going through a back
door (such as direct database access) (Meszaros 2007, page 327).

	Behavior Verification

	We capture the indirect outputs of the system under test (SUT) as they occur
and compare them to the expected behavior (Meszaros 2007, page 468).

	Chained Tests

	We let the other tests in a test suite set up the test fixture
(Meszaros 2007, page 454).

	Configurable Test Double

	We configure a reusable Test Double with the values to be returned or
verified during the fixture setup phase of a test (Meszaros 2007, page 558).

	Creation Method

	We set up the test fi xture by calling methods that hide the mechanics of
building ready-to-use objects behind Intent-Revealing Names
(Meszaros 2007, page 415).

	Custom Assertion

	We create a purpose-built Assertion Method that compares only those
attributes of the object that define test-specific equality
(Meszaros 2007, page 474).

	Data-Driven Test

	We store all the information needed for each test in a data file and write
an interpreter that reads the file and executes the tests
(Meszaros 2007, page 288).

	Database Sandbox

	We provide a separate test database for each developer or tester
(Meszaros 2007, page 650).

	Delegated Setup

	Each test creates its own Fresh Fixture by calling Creation Methods from
within the Test Methods (Meszaros 2007, page 411).

	Delta Assertion

	We specify assertions based on differences between the pre- and
post-exercise state of the SUT (Meszaros 2007, page 485).

	Dependency Injection

	The client provides the depended-on object to the SUT
(Meszaros 2007, page 678).

	Dependency Lookup

	The SUT asks another object to return the depended-on object before it uses
it (Meszaros 2007, page 686).

	Derived Value

	We use expressions to calculate values that can be derived from other values
(Meszaros 2007, page 718).

	Dummy Object

	We pass an object that has no implementation as an argument of a method
called on the SUT (Meszaros 2007, page 728).

	Fake Object

	We replace a component that the SUT depends on with a much lighter-weight
implementation (Meszaros 2007, page 551).

	Four-Phase Test

	We structure each test with four distinct parts executed in sequence
(Meszaros 2007, page 358).

	Fresh Fixture

	Each test constructs its own brand-new test fixture for its own private use
(Meszaros 2007, page 311).

	Garbage-Collected Teardown

	We let the garbage collection mechanism provided by the programming language
clean up after our test (Meszaros 2007, page 500).

	Generated Value

	We generate a suitable value each time the test is run
(Meszaros 2007, page 723).

	Guard Assertion

	We replace an if statement in a test with an assertion that fails the test
if not satisfied (Meszaros 2007, page 490).

	Hard-Coded Test Double

	We build the Test Double by hard-coding the return values and/or expected
calls (Meszaros 2007, page 568).

	Humble Object

	We extract the logic into a separate, easy-to-test component that is
decoupled from its environment (Meszaros 2007, page 695).

	Implicit Setup

	We build the test fixture common to several tests in the setUp method
(Meszaros 2007, page 424).

	Implicit Teardown

	The Test Automation Framework calls our clean up logic in the tearDown
method after every Test Method (Meszaros 2007, page 516).

	In-line Setup

	Each Test Method creates its own Fresh Fixture by calling the appropriate
constructor methods to build exactly the test fixture it requires
(Meszaros 2007, page 408).

	In-line Teardown

	We include teardown logic at the end of the Test Method immediately after
the result verification (Meszaros 2007, page 509).

	Layer Test

	We can write separate tests for each layer of the layered architecture
(Meszaros 2007, page 337).

	Lazy Setup

	We use Lazy Initialization of the fi xture to create it in the first test
that needs it (Meszaros 2007, page 435).

	Literal Value

	We use literal constants for object attributes and assertions
(Meszaros 2007, page 714).

	Minimal Fixture

	We use the smallest and simplest fi xture possible for each test
(Meszaros 2007, page 302).

	Mock Object

	We replace an object the SUT depends on with a test-specific object that
verifies it is being used correctly by the SUT (Meszaros 2007, page 544).

	Named Test Suite

	We define a test suite, suitably named, that contains a set of tests that
we wish to be able to run as a group (Meszaros 2007, page 592).

	Parameterized Test

	We pass the information needed to do fixture setup and result verification
to a utility method that implements the entire test life cycle
(Meszaros 2007, page 607).

	Prebuilt Fixture

	
	We build the Shared Fixture separately from running the tests

	(Meszaros 2007, page 429).

	Recorded Test

	We automate tests by recording interactions with the application and playing
them back using a test tool (Meszaros 2007, page 278).

	Scripted Test

	We automate the tests by writing test programs by hand
(Meszaros 2007, page 285).

	Setup Decorator

	We wrap the test suite with a Decorator that sets up the shared test fixture
before running the tests and tears it down after all the tests are done
(Meszaros 2007, page 447).

	Shared Fixture

	We reuse the same instance of the test fixture across many tests
(Meszaros 2007, page 317).

	Standard Fixture

	We reuse the same design of the test fi xture across many tests
(Meszaros 2007, page 305).

	State Verification

	We inspect the state of the SUT after it has been exercised and compare it
to the expected state (Meszaros 2007, page 462).

	Stored Procedure Test

	We write Fully Automated Tests for each stored procedure
(Meszaros 2007, page 654).

	Suite Fixture Setup

	We build/destroy the shared fi xture in special methods called by the Test
Automation Framework before/after the fi rst/last Test Method is called
(Meszaros 2007, page 441).

	Table Truncation Teardown

	We truncate the tables modifi ed during the test to tear down the fi xture
(Meszaros 2007, page 661).

	Test Automation Framework

	We use a framework that provides all the mechanisms needed to run the test
logic so the test writer needs to provide only the test-specifi c logic
(Meszaros 2007, page 298).

	Test Discovery

	The Test Automation Framework discovers all the tests that belong to the
test suite automatically (Meszaros 2007, page 393).

	Test Double

	We replace a component on which the SUT depends with a “test-specific
equivalent” (Meszaros 2007, page 522).

	Test Enumeration

	The test automater manually writes the code that enumerates all tests that
belong to the test suite (Meszaros 2007, page 399).

	Test Helper

	We defi ne a helper class to hold any Test Utility Methods we want to reuse
in several tests (Meszaros 2007, page 643).

	Test Hook

	We modify the SUT to behave differently during the test
(Meszaros 2007, page 709).

	Test Method

	We encode each test as a single Test Method on some class
(Meszaros 2007, page 348).

	Test Runner

	We define an application that instantiates a Test Suite Object and executes
all the Testcase Objects it contains (Meszaros 2007, page 377).

	Test Selection

	The Test Automation Framework selects the Test Methods to be run at runtime
based on attributes of the tests (Meszaros 2007, page 403).

	Test Spy

	We use a Test Double to capture the indirect output calls made to another
component by the SUT for later verification by the test
(Meszaros 2007, page 538).

	Test Stub

	We replace a real object with a test-specifi c object that feeds the desired
indirect inputs into the SUT (Meszaros 2007, page 529).

	Test Suite Object

	We defi ne a collection class that implements the standard test interface
and use it to run a set of related Testcase Objects
(Meszaros 2007, page 387).

	Test Utility Method

	We encapsulate the test logic we want to reuse behind a suitably named
utility method (Meszaros 2007, page 599).

	Test-Specific Subclass

	We add methods that expose the state or behavior needed by the test to a
subclass of the SUT (Meszaros 2007, page 579).

	Testcase Class

	We group a set of related Test Methods on a single Testcase Class
(Meszaros 2007, page 373).

	Testcase Class per Class

	We put all the Test Methods for one SUT class onto a single Testcase Class
(Meszaros 2007, page 617).

	Testcase Class per Feature

	We group the Test Methods onto Testcase Classes based on which testable
feature of the SUT they exercise (Meszaros 2007, page 624).

	Testcase Class per Fixture

	We organize Test Methods into Testcase Classes based on commonality of the
test fixture (Meszaros 2007, page 631).

	Testcase Object

	We create a Command object for each test and call the run method when we
wish to execute it (Meszaros 2007, page 382).

	Testcase Superclass

	We inherit reusable test-specific logic from an abstract Testcase
Superclass (Meszaros 2007, page 638).

	Transaction Rollback Teardown

	We roll back the uncommitted test transaction as part of the teardown
(Meszaros 2007, page 668).

	Unfinished Test Assertion

	We ensure that incomplete tests fail by executing an assertion that is
guaranteed to fail (Meszaros 2007, page 494).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Cause-Effect Graphing

Low level “helper pattern” to make

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Classification-tree method

High level informal test design pattern for systematic definition of blackbox tests.

	Context:	There is no good test basis (specifications, etc.) available to define
blackbox test cases but the tester has some or good (dependent on the quality
of the test basis) knowledge of the system under test.

	Problem:	It is required to verify if a function/method has been called.

	Solution:	Apply the classification-tree method (CTM). The CTM includes the application of
the equivalence partitioning pattern to define the aspect related classes
of input values.

	Model example:	Test cases for software which controls the speed of a car dependent on
different aspects of the input domain (own speed difference “shall” and “is”,
actual speed, car ahead?, speed difference to car ahead, distance to car
ahead) are designed (Broekman and Notenboom, section “11.5
Classification-tree method”).

	Resulting Context:

		Blackbox test cases are designed in a strucutured manner with a wide variaty
of possible # of test cases (minimal ~ # lowest level aspects, maximal ~ # of
all possible combinations of aspect value classes).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Database ORM relation test pattern

	Implementation example in Python:

		The relation of a object relational mapped class (with module sqlalchemy)
to a SQLite datase is tested (Lott 2013, pos. 9917).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Equivalence Partitioning

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Execution time test pattern

	Implementation example in Python:

		Test of method/function execution time (python standard library modules
unittest, timeit) (Lott 2013, pos. 10096)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Function wrapped macro pattern

	Context:	You need to implement time critical functionality or functionality related to
hardware access in safety-critical software.

	Forces:	
	complexity of functionality

	where does the funtionality need to be called?

	execution time

	stack consumption

	Problem:	In some situations (e.g. time critical functionality) it is required to
implement functionality as defines/macros which are “resolved” (inserted as “string”)
at compile time. If macros are called directly from within the UUTs this lead
to trouble during whitebox unit testing: To beeing able to access every function
path it is required to manipulate the macros “output” (return, manipulation of
global data, e.g.). In other cases it is required to spy the macros input
parameters. In all cases for every combination of the macro “manipulation” there
needs to be compiled a different test harness which increases the unit test
maintenance effort.

	Solution:

	Implement a function for every macro as wrapper.

	Resulting context:

		
	additional function call increases stack usage (slightly)

	additional function call increases execution time (influence ~ complexity of
macro functionality)

	macro needs to be tested

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Has it been called

Idiomatic pattern to verifiy that a function/method has been called.

	Problem:	It is required to verify if a function/method has been called.

	Use cases:	
	Common functionality verification

	error handling functions in safety-critical software

	Solution:	(a) If the function has no parameters a help variable of the test
harness may be used and be modified in the stubbed function. (b) If the
function has input parameters they can be defined as expected values.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Has it not been called

Idiomatic pattern to verifiy that a function/method has not been called.

	Problem:	It is required to verify that a function/method has not been called.

	Use Cases:	
	common functionality verification

	error handling functions (macros are also very common in C) in
safety-critical software

	Solution:	Compare the solution of “Has it been called”.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

In/out range check

	Problem:	The API of a function/method shall be verified.

	Solution:	Define the following input values for every input parameter:

	minimal value (related to intended parameter range) - 1

	mid value (related to intended parameter range)

	maximal value (related to intended parameter range) + 1

To every combination of parameter input values a (a) return value or (b) output
parameter is expected to have an expected value.

Consider that some programming languages support more than one return parameter
(e.g. Python).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Inverse data structures

Idiomatic unit test pattern to verify redundant data structures holding inverse
values.

	Problem:	Redundant data structures (variables, structures, etc.) holding
bit-inverted values during runtime are required in safety-critical contexts.
It is also required to check the correctness of this data strucutures
periodically and to call an error handling if the redundance is violated. The
related if-else structures decrease the code coverage if not considered.

	Solution:	Define inverted values as input value for the checking
functions dependent on the data type of the variable. The value range of
unsigned data types is 0..(2*n)-1 with n = # bits. So the bit-interted value
of an e.g. 8-bit unsigned integer (0..255) of 1 is 254. The range of signed
data types with two’s complement representation is -2*(n-1)..0..2*(n-1)-1 wit
n = # bits. So the bit-inverted value of an e.g. 8-bit signed integer
(-128,..,-1,0,+1,..,127) of 5 is -6.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Memory Corrupting Output Buffer

Idiomatic pattern which tries to corrupt the memory through the output parameter
of a function/method (Greening 2011, p. 40).

	Context:	You have to write a unit test for a function/method with an output parameter
pointing to buffer.

	Problem:	You do not know how to test if the memory in front of the buffer is corrupted
after the function is called.

	Solution:	Write a unit test which sets the start element of the buffer to element[1] and
make the buffer one element larger. After calling the function the element[0]
has to contain the same data.

	Resulting context:

		You know if the functions output parameter does corrupt the memory in
front of the parameter.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Mock

Hardware Mock

Emulatate the bevahior of hardware in software.

	Context:	A driver function which shall be unit tested accesses real hardware during its
execution.

	Problem:	The execution of the unit test depends on the availability/existence of
hardware.

	Solution:	Emulate the behavior of the hardware in software.

	Resulting context:

		The unit test of the driver function is decoupled from the actual hardware. The
unit test may be executed before actual hardware is available/existend for
testing.

	Implementation example:

		C - Link-time mock of a flash driver with the mock object extension “CppUMock”
of the unit test framework “CppUTest” (Greening 2011, section “10.1 Flash
Driver”).

C - Fake-stub of the processor I/O registers of a LED driver in the unit test
framework “CppUTest” (Greening 2011, p. 58).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

Spy

Observe the behaviour of a CUT.

	Context:	The behavior of a CUT shall be observed over time.

	Resulting context:

		Events related to the CUT may be observed over time.

	Implementation examples:

		C - Spy observes the print output of a circular buffer [Greening 2011, section
“9.4 Verifying Output with a Spy”]

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Unit Test Patterns

State Transition Testing

High level pattern for systematic derivation of test cases for state based
behavior (unit/component/system).

	Context:	A function or a collection of functions which has not been generated
automatically with a model-driven approach (assuming a high code generation
quality STT would not detect any faults) has state-based behavior. The
behavior is represented as table, activity chart or state chart in the test
basis.

	Problem:	19 faults categories exist in the context of state based behavior in total.
15 of them may be detected with state transition testing when designed with
care. The remaining (Broekman and Notenboom 2003, section “11.2.1 Fault
Categories”) It is not obvious how to derivate test cases to detect for

	Solution:	
	compose the state-event table

	compose the transition tree

	compose test script legal test cases

	compose test script illegal test cases

	compose the test script guards

	Model example:	Test cases for the state chart of a video cassette recorder are derived (Broekman and Notenboom 2003, section “11.2.2.2 Composing the state-event table”).

	Resulting Context:

		15 of the 19 fault categories related to state-based behavior can be
detected (state without incoming transition, missing inital state, additional
state, missing state,
). Applying STT leads to a high test effort. In the model example above
from 5 states with 18 state transitions 62 test cases in 14 test paths are
derived. Apply statistical usage testing to detect
faults of category “incorrect implementation of guard”. Apply error guessing to detect faults of category “reaction takes place to an undefined event (trap door)”.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

Tool evaluation patterns

Unit/Integration Test Tool

Classification of Unit/Integration Test Tool Capabilities

	infrastructure integration (bi-directional!!!)

	requirement management system interface

	continuous integration server interface

	test case model

	data driven test driver implementation

	manual test driver implementation

	test generation
	generate from headers

	test maintainance

	test execution

	run on host

	run on target

	test case separation support

	supported compilers

	supported RTOS

	test types

	code coverage

	statement

	branch

	basic path

	combinations of the others

	blackbox testing

	whitebox testing

	stubbing of private functions

	access to private variables, etc.

	result generation

	content

	data formats

All tool selection patterns in alphabetic order

	Dependency Structure Matrix

	Globetrotters

	Levelized Strucuture Map (LSM)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Tool evaluation patterns

Dependency Structure Matrix

	Category:	
	architecture development environment (ADE)

	Context:	
	you are interested in invalid dependencies in source code

	Problem:	
	looking at source code using an editor or IDEs gives you just a limited view
about the overall code structure

	-> it is hard to understand the overall functionality of source code

	-> invalid dependencies may not be found methodological

	Solution:	
	use a tool which provides this functionality

	write your own tool

	Examples for C/C++:

		
	Lattix (depends on Scitools Understand for C++)

	CppDepend

	Resulting context:

		
	you have an overview over inter-module dependencies

	violations geometric

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Tool evaluation patterns

Globetrotters

	Context:	You want to version your work and do not have an internet/network connection to
your company neccessarily.

	Problem:	You would like to version your work on the local file system for better
productivity and more confidence about the quality of your work.

	Forces:	
	data consistency

	useability

	maintainability

	data security: less risc for lost “versions”, risk of mistaces during merging

	Tool example:	Git

	Solution:	Use a decentralized versioning tool which allows to create versionized
repositories on the local file system which can be merged into a/the companies
versioning tool repository (remote repository).

	Resulting context:

		You can version your work on the local file system and you are a more confident
about the quality of your work. The data consistency is not worse than
without a local versioning tool. The useability is more complex due to the
communication between local and remote repository. The maintainability is
more complex because of the need for merging but the ability to version speeds-up
development. The data security is worse due to the risk of mistaces during
merging but a lot better because less risk of versions (information in a repo
does not get lost, local file system copies get lost regularly).

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	Tool evaluation patterns

Levelized Strucuture Map (LSM)

	Context:	
	maintaining legacy code of a big project

	start implementing code for a new project

	Problem:	
	software tends to violate design principles relating code structure

	not considering design the code maintainability decreases

	impact analysis (after code changes) is often difficult

	Forces:	
	source code size (the higher, the worse)

	release cycle frequency (the faster, the worse)

	Solution:	
	use a tool which offers a LSM view of source code

	verify the LSM continuously in parallel to the code implementation

	Examples for C/C++:

		
	Structure101 Studio (depends on Scitools Understand)

	Coverity Code Advisor (depends on analysis pack “Coverity Architecture Analysis”)

	Scitools Understand

	Resulting Context:

		
	easier to understand very big code base

	identify cyclic dependencies

	easier to perform impact/dependency analysis ~ code changes

	continuous use increases the code maintainability

	continuos use decreased influence of the release cycle frequency on the design quality

	good/maintainable design may be achieved without design documents which
is the precondition to succeed in agile processes

	as the value depends on continuous investigation you whant to integrate it
into the source code editor or CI process
(e.g. Structure101 Build + Structure101 WebApp)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

System patterns

All system patterns in alphabetic order

	Drift To Low Performance Handling Pattern

	Escalation Handling Pattern

	Expose Your Mental Models To The Light Of The Day Pattern

	Get The Beat Of The System Pattern

	Honor, Respect And Distribute Information Pattern

	Policy Resistance Handling Pattern

	Rule Beating Handling Pattern

	Seeking The Wrong Goal Handling Pattern

	Shifting The Burden To The Intervenor Handling Pattern

	Success To The Successful Handling Pattern

	Tragedy Of The Commons Handling Pattern

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Drift To Low Performance Handling Pattern

	Category:	system trap handling pattern

	Problem:	Allowing performance standards to be influenced by past performance, especially if there is a negative
bias in perceiving past performance, sets up a reinforcing feedback loop of eroding goals that sets a
system drifting toward low performance.

	Situation:	Keep performance standards absolute. Even better, let standards be enhanced by the best actual performance
instead of being discouraged by the worst. Set up a drift toward high performance!

(Mea 2008, p. 121 & p. 192)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Escalation Handling Pattern

	Category:	system trap handling pattern

	Problem:	When the state of one stock is determined by trying to surpass the state of another stock - and vice versa -
then there is a reinforcing feedback loop carrying the system into an arms race, a wealth race, a smear campaign,
escalating loudness, escalating violence. The escalation is exponential and can lead to extremes surprisingly
quickly. If nothing is done, the spiral will be stopped by someone’s collapse - because exponential growth
cannot go on forever.

	Situation:	The best way out of this trap is to avoid getting in it. If caught in an escalating system, one can refuse to
compete (unilaterally disarm), thereby interrupting the reinforcing loop. Or one can negotiate a new system
with balancing feedback loops to control the escalation.

(Mea 2008, p. 124 & p. 192)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Expose Your Mental Models To The Light Of The Day Pattern

	Category:	living in systems pattern

	Solution:	
	expose your assumptions about the system visible to others and yourself (self-reflection!)

	need to be complete

	need to add up

	need to be consistent

	invite others to challenge your assumptions

	invite others to add their assumptions to yours

	collect as many assumptions as possible

	consider all to be plausible until you are evident to rule some out

(Mea 2008, p. 172 & p. 194)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Get The Beat Of The System Pattern

	Category:	living in systems pattern

	Solution:	
	learn the systems history (graph of data over time)

	watch the system how it behaves

	no static, but dynamic analysis (not only “What’s wrong?”, but “How did we get there?”)

	no events, but behavior over different time periods

	watch what really happens instead of listening to peoples’ theories of what happens

	be aware of “predict, control, or impose your will” mode solutions

	analyze variable interconnections over different time periods

	interact with the system on the basis of the past and ongoing analyzation

(Mea 2008, p. 170 & p. 194)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Honor, Respect And Distribute Information Pattern

	Category:	living in systems pattern

	Problem:	Delayed, biased, scattered or missing information can make feedback loops malfunction.
Most what goes wrong in systems goes wrong because of biased, late or missing information.

	Solution:	“Thou shalt not distort, delay or withhold information.”

(Mea 2008, p. 173 & p. 194)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Policy Resistance Handling Pattern

	Category:	system trap handling pattern

	Problem:	When various actors try to pull a system state toward various goals, the result can be policy resistance.
Any new policy, especially if it’s effective, just pulls the system state farther from the goals of other
actors and produces additional resistance, with a result that no one likes, but that everyone expends
considerable effort in maintaining.

	Solution:	Let go. Bring in all the actors and use the energy formerly expended on resistance to seek out mutually
satisfactory ways for all goal to be realized - or redefinitions of larger and more important goals
that everyone can pull toward together.

(Mea 2008, p. 112 & p. 191)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Rule Beating Handling Pattern

	Category:	system trap handling pattern

	Problem:	Rules to govern a system can lead to rule-beating - perverse behavior that gives the appearance of
obeying the rules or achieving the goals, but that actually distorts the system.

	Situation:	Design, or redesign, rules to release creativity not in the direction of beating the rules, but in
the direction of achieving the purpose of the rules.

(Mea 2008, p. 136 & p. 192)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Seeking The Wrong Goal Handling Pattern

	Category:	system trap handling pattern

	Problem:	The system behavior is particularly sensitive to the goals of feedback loops. If the goals -
the indicators of satisfaction of the rules - are defined inaccurately or incompletely, the system
may obediently work to produce a result that is not really intended or wanted.

	Situation:	Specify inidicators and goals that reflect the real welfare of the system. Be especially careful
not to confuse effort with result or you will end up with a system that is producing effort, not result.

(Mea 2008, p. 121 & p. 192)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Shifting The Burden To The Intervenor Handling Pattern

	Category:	system trap handling pattern

	Problem:	Shifting the burden, dependence, and addition arise when a solution to a systemic problem reduces
(or disguises) the symptoms, but does nothing to solve the underlying problem. Whether it is a
substance that dulls one’s perception or a policy that hides the underlying trouble, the drug
of choice interferes ith the actions that could solve the real problem.
If the intervention designed to correct the problem causes the self-maintaining capacity of the
original system to atrophy or erode, then a destructive reinforcing feedback loop is set in motion.
The system deteriorates; more and more of the solution is then required. The system will become
more and more dependent on the intervention and less and less able to maintain its own desired state.

	Situation:	Again, the best way out of this trap is to avoid getting in. Beware of symptom-relieving or
signal-denying policies or practices that don’t really address the problem. Take the focus
off short-term relief and put it on long-term restructuring.
If you are the intervenor, work in such a way as to restore or enhance the system’s own ability
to solve its problem, then remove yourself.
If you are the the one with an unsupportable dependency, build your system’s own capabilities back
up before removing the intervention. Do it right away. The longer you wait, the harder the withdrawal
process will be.

(Mea 2008, p. 131 & p. 193)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Success To The Successful Handling Pattern

	Category:	system trap handling pattern

	Problem:	If the winners of a competition are systematically rewarded with the means to in again, a reinforcing
feedback loop is created by which, if it is allowed to proceed unihibited, the winners eventually take all,
while the losers are eliminated.

	Solution:	Diversification, which allows those who are losing the competition to get out of that game and start another
one; strict limitation on the fraction of the pie any one winner may win (antitrust laws); policies that level
the playing field, removing some of the advantage of the strongest players or increasing the advantage of the
weakest; policies that devise rewards for success that do not bias the next round of competition.

(Mea 2008, p. 126 & p. 192)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

 	Patterns

 	System patterns

Tragedy Of The Commons Handling Pattern

	Category:	system trap handling pattern

	Problem:	When there is a commonly shared resoure, every user benefits directly from its use, but shares the costs
of its abuse with everyone else. Therefore, there is very weak feedback from the condition of the resource
to the decisions of the resource users. The consequence is overuse of the resource, eroding it until it
becomes unavailable to anyone.

	Solution:	Educate and exhort the users, so they understand the consequences of abusing the resource.
And also restore or strengthen the missing feedback link, either by privatizing the resource so each user
feels the direct consequences of its abuse or (since many resources cannot be privatized) by regulating the
access of all users to the resource.

(Mea 2008, p. 116 & p. 191)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

Bibliography

	Author(s):	family name, first name

	Title:	title: optional subtitle

	Edition:	“agile” means that no specific version or edition of the book exists. The book is generated automatically in a lean process.

	Author(s)
	Title
	Publisher
	Edition
	Year

	Alexander, Christopher
	A Pattern Language: Towns, Buildings, Construction
	Oxford University Press
	
	1978

	Bergin, Joseph
	Writing Patterns: software, organizational, pedagogical
	Slant Flying Press
	agile
	2013

	Broekman, Bart und Notenboom, Edwin
	Testing Embedded Software
	Addison-Wesley
	1st
	2003

	Buschmann, Frank et al.
	Pattern-Oriented Software Architecture (Vol. 1): A System of Patterns
	John Wiley & Sons Ltd.
	7th
	2001

	Carnegie, Dale
	How to Win Friends & Influence People
	Simon and Schuster
	20th
	2010

	Crispin, Lisa and Gregory, Janet
	Agile Testing: A Practical Guide For Testers and Agile Teams
	Addison-Wesley
	9th
	2013

	Douglass, Bruce Powel
	Real-Time UML: Developing Efficient Objects for Embedded Systems
	Addison-Wesley
	1th
	1998

	Douglass, Bruce Powel
	Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems
	Elsevier
	1th
	2002

	Douglass, Bruce Powel
	Design Patterns for Embedded Systems in C: An Embedded Software Engineering Toolkit
	Elsevier
	1th
	2011

	Erl, Thomas et al.
	Cloud Computing Design Patterns
	Prentice Hall
	1th
	2015

	Fowler, Martin et al.
	Refactoring: Improving the Design of Existing Code
	Addison-Wesley
	
	1999

	Gamma, Erich et al.
	Design Patterns: Elements of Reusable Object-Oriented Software
	Addison-Wesley
	1th
	1998

	Greening, James W.
	Test-Driven Development for Embedded C
	Pragmatic Bookshelf
	
	2011

	Gregory, Janet and Crispin, Lisa
	More Agile Testing: Learning Journeys For The Whole Team
	Addison-Wesley
	1th
	2015

	Harrison, Neil
	Pattern Languages of Program Design 4
	Addison-Wesley Longman
	
	1999

	Humble, Jez and Farley, David
	Continous Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation
	Addison-Wesley
	
	2011

	Kasampalis, Sakis
	Mastering Python Design Patterns
	Packt Publishing Ltd.
	1st
	2015

	Leitner, Helmut
	Pattern Theory: Introduction and Perspectives on the Tracks of Christopher Alexander
	CreateSpace Independent
	1st
	2015

	Lerche-Jensen, Steen
	ISTQB Agile Tester: Agile testing lesson 1 of 3
	Amazon Wispernet
	agile
	2014

	Lerche-Jensen, Steen
	ISTQB Agile Tester: Agile testing lesson 2 of 3
	Amazon Wispernet
	agile
	2014

	Lerche-Jensen, Steen
	ISTQB Agile Tester: Agile testing lesson 3 of 3
	Amazon Wispernet
	agile
	2014

	Lott, Steven F.
	Mastering Object Oriented Python
	Packt Publishing Ltd.
	1st
	2014

	Martin, Robert C. et al.
	Pattern Languages of Program Design 3
	Addison Wesley
	
	1997

	Mayer, Bertrand
	Object-Oriented Software Construction
	Prentice Hall
	
	1988

	Manolescu, Dragos et al.
	Pattern Languages of Program Design 5
	Addison Wesley
	
	2006

	Meadows, Donella H.
	Thinking in Systems: A Primer
	Chelsea Green Publ.
	1st
	2008

	Meszaros, Gerard
	xUnit Test Patterns : Refactoring Test Code
	Addison-Wesley
	1st
	2007

	Osherove, Roy
	Beautiful Builds: Growing Readable, Maintainable Automated Build Processes
	Team Agile Publishing
	1st
	2015

	Phillips, Dusty
	Python 3 Object Oriented Programming: Harness the power of Python 3 objects
	Packt Publishing Ltd.
	1st
	2010

	Coplien, J. and Schmidt, D.
	Pattern Languages of Program Design 1
	Addison-Wesley Longman
	
	1995

	Schmidt, Douglas et al.
	Pattern Oriented Software Architecture (Vol. 2): Patterns for Concurrent and Networked Objects
	John Wiley & Sons, Inc.
	
	2000

	Tornhill, Adam
	Patterns in C
	Leanpub
	agile
	2015

	Tropashko, Vadim
	SQL Design Patterns: The Expert Guide to SQL Programming
	
	
	2014

	Vlissides, John M. et al.
	Pattern Languages of Program Design 2
	Addison Wesley
	
	2006

	Withall, Stephen
	Software Requirement Patterns
	Microsoft Press
	
	2007

	Zlobin, Gennadiy
	Learning Python Design Patterns
	Packt Publishing Ltd.
	1st
	2013

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ESWP3

Contribution

There are many ways how you can contribute to the project.

Project related contribution

If you found valueable information on this website let others know about your
experience. The more people know about the project the greater is the chance
to get additional contibuters. The more contributers attend the more feedback
is generated and may be addressed. A higher quality may be offered.

Content related contibution

If there is

	incorrect content,

	incorrect cross-referencing of content or

	misunderstanding content

please let us know about it.

The most maintainable way to communicate such finding is to add an issue on the
[espw3 issue page](https://github.com/fkromer/eswp3/issues).

If there is

	incomplete content (missing pattern information),

	incomplete cross-referencing of content (e.g. incomplete pattern language),

	missing content (e.g. non-existing pattern) or

	missing cross-referencing of content (e.g. non-existing pattern language)

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	ESWP3

“It is all about structure and vision.”

Why principles, pattern languages and patterns?

Lets start with the most general definition of the term “pattern language”:

“A pattern language is (at least) a collection of patterns that work together
and admit “sequences” of patterns that solve problems larger than those of the
individual patterns. (Bergin 2013, section “Format of a Pattern Language”)”

This means that pattern languages are a general and universal principle or
methodology for problem solving. There does not only exist one single
problem but many others in our daily life. But the probability that someone
else has to handle ir (as the problem is reoccuring there is a need for a
pattern or language) or already has handled the problem is high. Therefore
there must exist one pattern language or one pattern to address every problem
of these.

A language suggests a sequential application of patterns dependent on

	the situation before applying a pattern

	the problem before applying a pattern and

	the forces which influence which pattern of alternatives are influenced by

addresses from large-scale to small-scale patterns.

	not like other knowledge management systems (like https://www.wikipedia.org/)

	despite of fact that wikis do relay on the same theory

	focus on problem, not on content

	focus on problem related referencing, not on content related referencing

	structuring of single patterns

	situation, problem, solution, resulting situation

	conformance with problem solution methodology

	effective

In many cases patterns are pattern lanugages itself.
The identification of “Child Patterns” and its meta-data may evolve a
pattern to a pattern language.

Principles have to be considered as forces for patterns.

Pattern languages and patterns are part of the “pattern theory” (Leitner
2015, section “The concept of the pattern”) developed by the architect,
systems theorist and philosopher Christopher Alexander. The pattern languages
and patterns are very practical. The basic concepts of the pattern theory are
not. However my interpretation of the relation between pattern languages and
patterns with these basic concepts is to live a more relaxed life and beeing
able to spend more and enjoyable time with the people i love. This makes the
pattern theory as a whole very practicable for me.

A “real world” example

Pattern languages and patterns are everyhwere. In most cases we apply
patterns intuitively without thinking about it. While applying it we benefit
from our experiences or information we read about a topic before. However we
do not use all the power patterns provide if selecting and thinking about it
explicitely.

The following pattern languages shall point out the existence and benefit
from it in daily life. The basic meta-data for patterns are used:
context, problem, forces, solution and resulting context.
To point out that pattern languages must not include only other patterns the
example proposes another (lower level) pattern language in addition to a
pattern. This makes the challenge with pattern lanuages and patterns obvious:
it is not challenging to collect and summarize patterns, but it may become
very complex to structure several of them in a pattern language. Even if the
pattern languages scope is just for a very limited context (see e.g.
Unit Test Automation Pattern Language).

Grocery Shopping Pattern Language

	Context:	You need to buy some grocery.

	Problem:	You do not know how to structure your shopping tour to get all grocery “as
effective” as possible.

	Forces:	
	time you can spend

	time you want spend

	actual time -> time frame the shop is open

	your mood (stress, relaxed)

	Solution:	Depending on what “effective” means for you in this situation you cand apply
on of the following patterns in the context of buying grocery. If you
have much time, the store has open long enough, you want to spend much time

	effective means fast: Fast Shopper Pattern

	Anti-Cyclic Shopper Pattern

	Bulls-Eye Shopper Pattern

	Scanning Shopper Pattern

	effective means relaxed: Vacation Shopper Pattern

	Resulting context:

		You have bought all grocery you required. Depending on the applyed pattern
you eather

Fast Shopper Pattern

	Context:	You have little time and you may not spend more time than available.

	Problem:	You run out of time while shopping and you do not get all grocery you need.

	Solution:	Get your grocery as fast as possible.

	Resulting context:

		You can apply either the “Bulls-Eye Shopper Pattern” or the “Scanning Shopper Pattern”.

Anti-Cyclic Shopper Pattern

	Context:	You are not forced to go shopping in a predefined time frame.

	Solution:	Go shopping when nobody else does.

	Resulting context:

		You are more relaxed because you avoid “running the gauntlet” (other shoppers).
You do not spend time in the waiting line for paying.

Bulls-Eye Shopper Pattern

	Context:	You do know the store floor plan (e.g. from previous shopping tours) OR
the grocery store areas are labeled (e.g. “cereals”).

	Solution:	
	Think about where the grocery is located.

	Think about a sequence of grocery which leads to an as short as possible walking route.

	Go straight to the areas where your grocery is located by walking along your shopping tour specific walking pattern.

	Resulting context:

		You got your grocery as fast as possible. The probability to miss grocery is little.
(Really!? Or is it better to use the “Grocery Delivery Pattern” instead!?)

Scanning Shopper Pattern

	Context:	You do not know the store floor plan (e.g. from previous shopping tours) AND
the grocery store areas are not labeled (e.g. “cereals”).

	Solution:	
	Get an overview of the store floor plan.

	Walk along an as short as possible walking path (e.g. row-wise from right to left).

	Scan all the grocery.

	Get the grocery if you find

	Resulting context:

		You get the grocery nearly as fast as with the “Bulls-Eye Shopper Pattern”.
But you probably do not get all grocery because the store does not offer all of it.

Vacation Grocery Shopper Pattern

	Context:	You are on vacation and have much time.

	Solution:	Get the grocery as relaxed as possible:
do not hurry, ignore people which apply the “Fast Shopper Pattern” or the “Bulls-Eye Shopper Pattern”.

	Resulting context:

		You spend more time than required to get your grocery. But you are relaxed.
Because you had a lot of time think about what you want you will have bought
all the grocery required for sure.

The project history

From 2008 on the launcher of this website began to gain practical experience in
the context of Embedded Software Development. The first notes have been created
then and have been structured and maintained on local filesystems. From 2012 to
2014 the content has been published as ebook on the lean publishing platform
https://leanpub.com/.

From the very first the idea has been to share knowledge in an interactive,
structured, maintainable and sustainable manner. The first interactive version
of the content arose on a local testserver as WordPress implementation and has
been launched on “non-public” webhosting in 2014. Its public lauch on
http://eswkms.org followed immediatelly. In February 2015 the ESWKMS has been
migrated to TYPO3 to optimize issues regarding user management, versioning and
publication management.

After over 6 months of experimenting with TYPO3 as full-featured content
management system (CMS) its disadvantages (e.g. maintainance cost, complexity
for users, etc.) outweighed its advantages (e.g. content management mechanisms,
file management, etc.). To ensure best community interaction and a broad user
community the ESWKMS has been migrated to https://github.org for project
contribution in September 2015.

To make the project as valuable as possible the structuring of the content and
the content itself has been optimized related to “pattern languages” and
“patterns”. To reflect the evolution of the project regarding the
content and its intend the project has been renamed from ESWKMS (Embedded
Software Knowledge Management System) to ESWP3 (Embedded Software Principles,
Procedures and Patterns). The content is published with readthedocs.org on
http://eswp3.org. Feel free to contribute on https://github.com/fkromer/eswp3.

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	ESWP3

Index

 Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

 _images/python_file_handling_pattern_language.png

_images/unit_test_framework_tool_evaluation.png

_images/python_path_handling_pattern_language.png

_images/embedded_unit_test_automation_language.png
il
il

_images/unit_test_automation_framework_setup.png
Return Of Invest Analysis

Automated Unit Test Framework Implementation/integration

v

Automation Test Script Review

_images/python_configuration_pattern_language.png

search.html

 Navigation

 		
 index

 		ESWP3 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, fkromer.
 Last updated on Sep 27, 2017.
 Created using Sphinx 1.3.4.

_static/down.png

_static/down-pressed.png

_static/up-pressed.png

_static/up.png

_static/file.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

