
eqtools Documentation
Release 1.1

Mark Chilenski, Ian Faust and John Walk

August 17, 2016

Contents

1 Overview 3

2 Installation 5

3 Tutorial: Performing Coordinate Transforms on Alcator C-Mod Data 7

4 Package Reference 9
4.1 eqtools package . 9

4.1.1 Submodules . 9
4.1.2 eqtools.CModEFIT module . 9
4.1.3 eqtools.D3DEFIT module . 12
4.1.4 eqtools.EFIT module . 13
4.1.5 eqtools.FromArrays module . 23
4.1.6 eqtools.NSTXEFIT module . 25
4.1.7 eqtools.TCVLIUQE module . 27
4.1.8 eqtools.afilereader module . 34
4.1.9 eqtools.core module . 34
4.1.10 eqtools.eqdskreader module . 148
4.1.11 eqtools.filewriter module . 166
4.1.12 eqtools.pfilereader module . 167
4.1.13 eqtools.trispline module . 168
4.1.14 Module contents . 170

5 Indices and tables 171

Python Module Index 173

i

ii

eqtools Documentation, Release 1.1

Homepage: https://github.com/PSFCPlasmaTools/eqtools

Contents 1

https://github.com/PSFCPlasmaTools/eqtools

eqtools Documentation, Release 1.1

2 Contents

CHAPTER 1

Overview

eqtools is a Python package for working with magnetic equilibrium reconstructions from magnetic plasma con-
finement devices. At present, interfaces exist for data from the Alcator C-Mod and NSTX MDSplus trees as well as
eqdsk a- and g-files. eqtools is designed to be flexible and extensible such that it can become a uniform interface to
perform mapping operations and accessing equilibrium data for any magnetic confinement device, regardless of how
the data are accessed.

The main class of eqtools is the Equilibrium, which contains all of the coordinate mapping functions as well
as templates for methods to fetch data (primarily dictated to the quantities computed by EFIT). Subclasses such as
EFITTree, CModEFITTree, NSTXEFITTree and EqdskReader implement specific methods to access the
data and convert it to the form needed for the routines in Equilibrium. These classes are smart about caching
intermediate results, so you will get a performance boost by using the same instance throughout your analysis of a
given shot.

3

eqtools Documentation, Release 1.1

4 Chapter 1. Overview

CHAPTER 2

Installation

The easiest way to install the latest release version is with pip:

pip install eqtools

To install from source, uncompress the source files and, from the directory containing setup.py, run the following
command:

python setup.py install

Or, to build in place, run:

python setup.py build_ext --inplace

5

eqtools Documentation, Release 1.1

6 Chapter 2. Installation

CHAPTER 3

Tutorial: Performing Coordinate Transforms on Alcator C-Mod Data

The basic class for manipulating EFIT results stored in the Alcator C-Mod MDSplus tree is CModEFITTree. To
load the data from a specific shot, simply create the CModEFITTree object with the shot number as the argument:

e = eqtools.CModEFITTree(1140729030)

The default EFIT to use is “ANALYSIS.” If you want to use a different tree, such as “EFIT20,” then you simply set
this with the tree keyword:

e = eqtools.CModEFITTree(1140729030, tree='EFIT20')

eqtools understands units. The default is to convert all lengths to meters (whereas quantities in the tree are in-
consistent – some are meters, some centimeters). If you want to specify a different default unit, use the length_unit
keyword:

e = eqtools.CModEFITTree(1140729030, length_unit='cm')

Once this is loaded, you can access the data you would normally have to pull from specific nodes in the tree using
convenient getter methods. For instance, to get the elongation as a function of time, you can run:

kappa = e.getElongation()

The timebase used for quantities like this is accessed with:

t = e.getTimeBase()

For length/area/volume quantities, eqtools understands units. The default is to return in whatever units you specified
when creating the CModEFITTree, but you can override this with the length_unit keyword. For instance, to get the
vertical position of the magnetic axis in mm, you can run:

Z_mag = e.getMagZ(length_unit='mm')

eqtools can map from almost any coordinate to any common flux surface label. For instance, say you want to know
what the square root of normalized toroidal flux corresponding to a normalized flux surface volume of 0.5 is at t=1.0s.
You can simply call:

rho = e.volnorm2phinorm(0.5, 1.0, sqrt=True)

If a list of times is provided, the default behavior is to evaluate all of the points to be converted at each of the times.
So, to follow the mapping of normalized poloidal flux values [0.1, 0.5, 1.0] to outboard midplane major radius at time
points [1.0, 1.25, 1.5, 1.75], you could call:

psinorm = e.psinorm2rmid([0.1, 0.5, 1.0], [1.0, 1.25, 1.5, 1.75])

7

eqtools Documentation, Release 1.1

This will return a 4-by-3 array: one row for each time, one column for each location. If you want to override this
behavior and instead consider a sequence of (psi, t) points, set the each_t keyword to False:

psinorm = e.psinorm2rmid([0.3, 0.35], [1.0, 1.1], each_t=False)

This will return a two-element array with the Rmid values for (psinorm=0.3, t=1.0) and (psinorm=0.35, t=1.1).

For programmatically mapping between coordinates, the rho2rho() method is quite useful. To map from outboard
midplane major radius to normalized flux surface volume, you can simply call:

e.rho2rho('Rmid', 'volnorm', 0.75, 1.0)

Finally, to get a look at the flux surfaces, simply run:

e.plotFlux()

8 Chapter 3. Tutorial: Performing Coordinate Transforms on Alcator C-Mod Data

CHAPTER 4

Package Reference

4.1 eqtools package

4.1.1 Submodules

4.1.2 eqtools.CModEFIT module

This module provides classes inheriting eqtools.EFIT.EFITTree for working with C-Mod EFIT data.

class eqtools.CModEFIT.CModEFITTree(shot, tree=’ANALYSIS’, length_unit=’m’, gfile=’g_eqdsk’,
afile=’a_eqdsk’, tspline=False, monotonic=True)

Bases: eqtools.EFIT.EFITTree

Inherits eqtools.EFIT.EFITTree class. Machine-specific data handling class for Alcator C-Mod. Pulls
EFIT data from selected MDS tree and shot, stores as object attributes. Each EFIT variable or set of variables
is recovered with a corresponding getter method. Essential data for EFIT mapping are pulled on initialization
(e.g. psirz grid). Additional data are pulled at the first request and stored for subsequent usage.

Intializes C-Mod version of EFITTree object. Pulls data from MDS tree for storage in instance attributes. Core
attributes are populated from the MDS tree on initialization. Additional attributes are initialized as None, filled
on the first request to the object.

Parameters shot (integer) – C-Mod shot index.

Keyword Arguments

• tree (string) – Optional input for EFIT tree, defaults to ‘ANALYSIS’ (i.e., EFIT data
are under analysis::top.efit.results). For any string TREE (such as ‘EFIT20’) other than
‘ANALYSIS’, data are taken from TREE::top.results.

• length_unit (string) – Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

9

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• gfile (string) – Optional input for EFIT geqdsk location name, defaults to ‘g_eqdsk’
(i.e., EFIT data are under tree::top.results.G_EQDSK)

• afile (string) – Optional input for EFIT aeqdsk location name, defaults to ‘a_eqdsk’
(i.e., EFIT data are under tree::top.results.A_EQDSK)

• tspline (Boolean) – Sets whether or not interpolation in time is performed using a
tricubic spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at
least four complete equilibria at different times. It is also assumed that they are functionally
correlated, and that parameters do not vary out of their boundaries (derivative = 0 boundary
condition). Default is False (use nearest neighbor interpolation).

• monotonic (Boolean) – Sets whether or not the “monotonic” form of time window
finding is used. If True, the timebase must be monotonically increasing. Default is False
(use slower, safer method).

getFluxVol(length_unit=3)
returns volume within flux surface.

Keyword Arguments length_unit (String or 3) – unit for plasma volume. Defaults
to 3, indicating default volumetric unit (typically m^3).

Returns [nt,npsi] array of volume within flux surface.

Return type fluxVol (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRmidPsi(length_unit=1)
returns maximum major radius of each flux surface.

Keyword Arguments length_unit (String or 1) – unit of Rmid. Defaults to 1, indi-
cating the default parameter unit (typically m).

Returns [nt,npsi] array of maximum (outboard) major radius of flux surface psi.

Return type Rmid (Array)

Raises Value Error – if module cannot retrieve data from MDS tree.

getF()
returns F=RB_{Phi}(Psi), often calculated for grad-shafranov solutions.

Returns [nt,npsi] array of F=RB_{Phi}(Psi)

Return type F (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

10 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getFluxPres()
returns pressure at flux surface.

Returns [nt,npsi] array of pressure on flux surface psi.

Return type p (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFFPrime()
returns FF’ function used for grad-shafranov solutions.

Returns [nt,npsi] array of FF’ fromgrad-shafranov solution.

Return type FFprime (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getPPrime()
returns plasma pressure gradient as a function of psi.

Returns [nt,npsi] array of pressure gradient on flux surface psi from grad-shafranov solution.

Return type pprime (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQProfile()
returns profile of safety factor q.

Returns [nt,npsi] array of q on flux surface psi.

Return type qpsi (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRLCFS(length_unit=1)
returns R-values of LCFS position.

Returns [nt,n] array of R of LCFS points.

Return type RLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getZLCFS(length_unit=1)
returns Z-values of LCFS position.

Returns [nt,n] array of Z of LCFS points.

Return type ZLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMachineCrossSectionFull()
Pulls C-Mod cross-section data from tree, converts to plottable vector format for use in other plotting
routines

Returns

(x, y)

• x (Array) - [n] array of x-values for machine cross-section.

• y (Array) - [n] array of y-values for machine cross-section.

Raises ValueError – if module cannot retrieve data from MDS tree.

4.1. eqtools package 11

eqtools Documentation, Release 1.1

getRCentr(length_unit=1)
returns EFIT radius where Bcentr evaluated

Returns Radial position where Bcent calculated [m]

Return type R

Raises ValueError – if module cannot retrieve data from MDS tree.

class eqtools.CModEFIT.CModEFITTreeProp(shot, tree=’ANALYSIS’, length_unit=’m’,
gfile=’g_eqdsk’, afile=’a_eqdsk’, tspline=False,
monotonic=True)

Bases: eqtools.CModEFIT.CModEFITTree, eqtools.core.PropertyAccessMixin

CModEFITTree with the PropertyAccessMixin added to enable property-style access. This is good for interac-
tive use, but may drag the performance down.

4.1.3 eqtools.D3DEFIT module

This module provides classes inheriting eqtools.EFIT.EFITTree for working with DIII-D EFIT data.

class eqtools.D3DEFIT.D3DEFITTree(shot, tree=’EFIT01’, length_unit=’m’, gfile=’geqdsk’,
afile=’aeqdsk’, tspline=False, monotonic=True)

Bases: eqtools.EFIT.EFITTree

Inherits eqtools.EFIT.EFITTree class. Machine-specific data handling class for DIII-D. Pulls EFIT data
from selected MDS tree and shot, stores as object attributes. Each EFIT variable or set of variables is recovered
with a corresponding getter method. Essential data for EFIT mapping are pulled on initialization (e.g. psirz
grid). Additional data are pulled at the first request and stored for subsequent usage.

Intializes DIII-D version of EFITTree object. Pulls data from MDS tree for storage in instance attributes. Core
attributes are populated from the MDS tree on initialization. Additional attributes are initialized as None, filled
on the first request to the object.

Parameters shot (integer) – DIII-D shot index.

Keyword Arguments

• tree (string) – Optional input for EFIT tree, defaults to ‘EFIT01’ (i.e., EFIT data are
under EFIT01::top.results).

• length_unit (string) – Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• gfile (string) – Optional input for EFIT geqdsk location name, defaults to ‘geqdsk’
(i.e., EFIT data are under tree::top.results.GEQDSK)

12 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• afile (string) – Optional input for EFIT aeqdsk location name, defaults to ‘aeqdsk’
(i.e., EFIT data are under tree::top.results.AEQDSK)

• tspline (Boolean) – Sets whether or not interpolation in time is performed using a
tricubic spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at
least four complete equilibria at different times. It is also assumed that they are functionally
correlated, and that parameters do not vary out of their boundaries (derivative = 0 boundary
condition). Default is False (use nearest neighbor interpolation).

• monotonic (Boolean) – Sets whether or not the “monotonic” form of time window
finding is used. If True, the timebase must be monotonically increasing. Default is False
(use slower, safer method).

getFluxVol()
Not implemented in D3DEFIT tree.

Returns volume within flux surface [psi,t]

getRmidPsi(length_unit=1)
returns maximum major radius of each flux surface.

Keyword Arguments length_unit (String or 1) – unit of Rmid. Defaults to 1, indi-
cating the default parameter unit (typically m).

Returns [nt,npsi] array of maximum (outboard) major radius of flux surface psi.

Return type Rmid (Array)

Raises Value Error – if module cannot retrieve data from MDS tree.

class eqtools.D3DEFIT.D3DEFITTreeProp(shot, tree=’EFIT01’, length_unit=’m’, gfile=’geqdsk’,
afile=’aeqdsk’, tspline=False, monotonic=True)

Bases: eqtools.D3DEFIT.D3DEFITTree, eqtools.core.PropertyAccessMixin

D3DEFITTree with the PropertyAccessMixin added to enable property-style access. This is good for interactive
use, but may drag the performance down.

4.1.4 eqtools.EFIT module

Provides class inheriting eqtools.core.Equilibrium for working with EFIT data.

class eqtools.EFIT.EFITTree(shot, tree, root, length_unit=’m’, gfile=’g_eqdsk’, afile=’a_eqdsk’,
tspline=False, monotonic=True)

Bases: eqtools.core.Equilibrium

Inherits Equilibrium class. EFIT-specific data handling class for machines using standard EFIT tag
names/tree structure with MDSplus. Constructor and/or data loading may need overriding in a machine-specific
implementation. Pulls EFIT data from selected MDS tree and shot, stores as object attributes. Each EFIT vari-
able or set of variables is recovered with a corresponding getter method. Essential data for EFIT mapping are
pulled on initialization (e.g. psirz grid). Additional data are pulled at the first request and stored for subsequent
usage.

Intializes EFITTree object. Pulls data from MDS tree for storage in instance attributes. Core attributes are
populated from the MDS tree on initialization. Additional attributes are initialized as None, filled on the first
request to the object.

Parameters

• shot (integer) – Shot number

• tree (string) – MDSplus tree to open to fetch EFIT data.

4.1. eqtools package 13

eqtools Documentation, Release 1.1

• root (string) – Root path for EFIT data in MDSplus tree.

Keyword Arguments

• length_unit (string) – Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• tspline (boolean) – Sets whether or not interpolation in time is performed using a
tricubic spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at
least four complete equilibria at different times. It is also assumed that they are functionally
correlated, and that parameters do not vary out of their boundaries (derivative = 0 boundary
condition). Default is False (use nearest neighbor interpolation).

• monotonic (boolean) – Sets whether or not the “monotonic” form of time window
finding is used. If True, the timebase must be monotonically increasing. Default is False
(use slower, safer method).

getInfo()
returns namedtuple of shot information

Returns

namedtuple containing

shot C-Mod shot index (long)
tree EFIT tree (string)
nr size of R-axis for spatial grid
nz size of Z-axis for spatial grid
nt size of timebase for flux grid

getTimeBase()
returns EFIT time base vector.

Returns [nt] array of time points.

Return type time (array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxGrid()
returns EFIT flux grid.

Note that this method preserves whatever sign convention is used in the tree. For C-Mod, this means that
the result should be multiplied by -1 * getCurrentSign() in most cases.

Returns [nt,nz,nr] array of (non-normalized) flux on grid.

Return type psiRZ (Array)

14 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Raises ValueError – if module cannot retrieve data from MDS tree.

getRGrid(length_unit=1)
returns EFIT R-axis.

Returns [nr] array of R-axis of flux grid.

Return type rGrid (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getZGrid(length_unit=1)
returns EFIT Z-axis.

Returns [nz] array of Z-axis of flux grid.

Return type zGrid (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxAxis()
returns psi on magnetic axis.

Returns [nt] array of psi on magnetic axis.

Return type psiAxis (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxLCFS()
returns psi at separatrix.

Returns [nt] array of psi at LCFS.

Return type psiLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxVol(length_unit=3)
returns volume within flux surface.

Keyword Arguments length_unit (String or 3) – unit for plasma volume. Defaults
to 3, indicating default volumetric unit (typically m^3).

Returns [nt,npsi] array of volume within flux surface.

Return type fluxVol (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getVolLCFS(length_unit=3)
returns volume within LCFS.

Keyword Arguments length_unit (String or 3) – unit for LCFS volume. Defaults to
3, denoting default volumetric unit (typically m^3).

Returns [nt] array of volume within LCFS.

Return type volLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRmidPsi(length_unit=1)
returns maximum major radius of each flux surface.

Keyword Arguments length_unit (String or 1) – unit of Rmid. Defaults to 1, indi-
cating the default parameter unit (typically m).

4.1. eqtools package 15

eqtools Documentation, Release 1.1

Returns [nt,npsi] array of maximum (outboard) major radius of flux surface psi.

Return type Rmid (Array)

Raises Value Error – if module cannot retrieve data from MDS tree.

getRLCFS(length_unit=1)
returns R-values of LCFS position.

Returns [nt,n] array of R of LCFS points.

Return type RLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getZLCFS(length_unit=1)
returns Z-values of LCFS position.

Returns [nt,n] array of Z of LCFS points.

Return type ZLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

remapLCFS(mask=False)
Overwrites RLCFS, ZLCFS values pulled from EFIT with explicitly-calculated contour of psinorm=1
surface. This is then masked down by the limiter array using core.inPolygon, restricting the contour to the
closed plasma surface and the divertor legs.

Keyword Arguments mask (Boolean) – Default False. Set True to mask LCFS path to limiter
outline (using inPolygon). Set False to draw full contour of psi = psiLCFS.

Raises

• NotImplementedError – if matplotlib.pyplot is not loaded.

• ValueError – if limiter outline is not available.

getF()
returns F=RB_{Phi}(Psi), often calculated for grad-shafranov solutions.

Note that this method preserves whatever sign convention is used in the tree. For C-Mod, this means that
the result should be multiplied by -1 * getCurrentSign() in most cases.

Returns [nt,npsi] array of F=RB_{Phi}(Psi)

Return type F (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxPres()
returns pressure at flux surface.

Returns [nt,npsi] array of pressure on flux surface psi.

Return type p (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFFPrime()
returns FF’ function used for grad-shafranov solutions.

Returns [nt,npsi] array of FF’ fromgrad-shafranov solution.

Return type FFprime (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

16 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getPPrime()
returns plasma pressure gradient as a function of psi.

Returns [nt,npsi] array of pressure gradient on flux surface psi from grad-shafranov solution.

Return type pprime (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getElongation()
returns LCFS elongation.

Returns [nt] array of LCFS elongation.

Return type kappa (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getUpperTriangularity()
returns LCFS upper triangularity.

Returns [nt] array of LCFS upper triangularity.

Return type deltau (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getLowerTriangularity()
returns LCFS lower triangularity.

Returns [nt] array of LCFS lower triangularity.

Return type deltal (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getShaping()
pulls LCFS elongation and upper/lower triangularity.

Returns namedtuple containing (kappa, delta_u, delta_l)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMagR(length_unit=1)
returns magnetic-axis major radius.

Returns [nt] array of major radius of magnetic axis.

Return type magR (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMagZ(length_unit=1)
returns magnetic-axis Z.

Returns [nt] array of Z of magnetic axis.

Return type magZ (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getAreaLCFS(length_unit=2)
returns LCFS cross-sectional area.

Keyword Arguments length_unit (String or 2) – unit for LCFS area. Defaults to 2,
denoting default areal unit (typically m^2).

Returns [nt] array of LCFS area.

4.1. eqtools package 17

eqtools Documentation, Release 1.1

Return type areaLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getAOut(length_unit=1)
returns outboard-midplane minor radius at LCFS.

Keyword Arguments length_unit (String or 1) – unit for minor radius. Defaults to
1, denoting default length unit (typically m).

Returns [nt] array of LCFS outboard-midplane minor radius.

Return type aOut (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRmidOut(length_unit=1)
returns outboard-midplane major radius.

Keyword Arguments length_unit (String or 1) – unit for major radius. Defaults to 1,
denoting default length unit (typically m).

Returns [nt] array of major radius of LCFS.

Return type RmidOut (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getGeometry(length_unit=None)
pulls dimensional geometry parameters.

Returns namedtuple containing (magR,magZ,areaLCFS,aOut,RmidOut)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQProfile()
returns profile of safety factor q.

Returns [nt,npsi] array of q on flux surface psi.

Return type qpsi (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ0()
returns q on magnetic axis,q0.

Returns [nt] array of q(psi=0).

Return type q0 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ95()
returns q at 95% flux surface.

Returns [nt] array of q(psi=0.95).

Return type q95 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQLCFS()
returns q on LCFS (interpolated).

Returns [nt] array of q* (interpolated).

Return type qLCFS (Array)

18 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ1Surf(length_unit=1)
returns outboard-midplane minor radius of q=1 surface.

Keyword Arguments length_unit (String or 1) – unit for minor radius. Defaults to
1, denoting default length unit (typically m).

Returns [nt] array of minor radius of q=1 surface.

Return type qr1 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ2Surf(length_unit=1)
returns outboard-midplane minor radius of q=2 surface.

Keyword Arguments length_unit (String or 1) – unit for minor radius. Defaults to
1, denoting default length unit (typically m).

Returns [nt] array of minor radius of q=2 surface.

Return type qr2 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ3Surf(length_unit=1)
returns outboard-midplane minor radius of q=3 surface.

Keyword Arguments length_unit (String or 1) – unit for minor radius. Defaults to
1, denoting default length unit (typically m).

Returns [nt] array of minor radius of q=3 surface.

Return type qr3 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQs(length_unit=1)
pulls q values.

Returns namedtuple containing (q0,q95,qLCFS,rq1,rq2,rq3).

Raises ValueError – if module cannot retrieve data from MDS tree.

getBtVac()
Returns vacuum toroidal field on-axis.

Returns [nt] array of vacuum toroidal field.

Return type BtVac (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBtPla()
returns on-axis plasma toroidal field.

Returns [nt] array of toroidal field including plasma effects.

Return type BtPla (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBpAvg()
returns average poloidal field.

Returns [nt] array of average poloidal field.

4.1. eqtools package 19

eqtools Documentation, Release 1.1

Return type BpAvg (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFields()
pulls vacuum and plasma toroidal field, avg poloidal field.

Returns namedtuple containing (btaxv,btaxp,bpolav).

Raises ValueError – if module cannot retrieve data from MDS tree.

getIpCalc()
returns EFIT-calculated plasma current.

Returns [nt] array of EFIT-reconstructed plasma current.

Return type IpCalc (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getIpMeas()
returns magnetics-measured plasma current.

Returns [nt] array of measured plasma current.

Return type IpMeas (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getJp()
returns EFIT-calculated plasma current density Jp on flux grid.

Returns [nt,nz,nr] array of current density.

Return type Jp (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBetaT()
returns EFIT-calculated toroidal beta.

Returns [nt] array of EFIT-calculated average toroidal beta.

Return type BetaT (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBetaP()
returns EFIT-calculated poloidal beta.

Returns [nt] array of EFIT-calculated average poloidal beta.

Return type BetaP (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getLi()
returns EFIT-calculated internal inductance.

Returns [nt] array of EFIT-calculated internal inductance.

Return type Li (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBetas()
pulls calculated betap, betat, internal inductance

Returns namedtuple containing (betat,betap,Li)

20 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamagFlux()
returns measured diamagnetic-loop flux.

Returns [nt] array of diamagnetic-loop flux.

Return type Flux (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamagBetaT()
returns diamagnetic-loop toroidal beta.

Returns [nt] array of measured toroidal beta.

Return type BetaT (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamagBetaP()
returns diamagnetic-loop avg poloidal beta.

Returns [nt] array of measured poloidal beta.

Return type BetaP (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamagTauE()
returns diamagnetic-loop energy confinement time.

Returns [nt] array of measured energy confinement time.

Return type tauE (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamagWp()
returns diamagnetic-loop plasma stored energy.

Returns [nt] array of measured plasma stored energy.

Return type Wp (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamag()
pulls diamagnetic flux measurements, toroidal and poloidal beta, energy confinement time and stored
energy.

Returns namedtuple containing (diamag. flux, betatd, betapd, tauDiamag, WDiamag)

Raises ValueError – if module cannot retrieve data from MDS tree.

getWMHD()
returns EFIT-calculated MHD stored energy.

Returns [nt] array of EFIT-calculated stored energy.

Return type WMHD (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getTauMHD()
returns EFIT-calculated MHD energy confinement time.

Returns [nt] array of EFIT-calculated energy confinement time.

4.1. eqtools package 21

eqtools Documentation, Release 1.1

Return type tauMHD (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getPinj()
returns EFIT-calculated injected power.

Returns [nt] array of EFIT-reconstructed injected power.

Return type Pinj (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getWbdot()
returns EFIT-calculated d/dt of magnetic stored energy.

Returns [nt] array of d(Wb)/dt

Return type dWdt (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getWpdot()
returns EFIT-calculated d/dt of plasma stored energy.

Returns [nt] array of d(Wp)/dt

Return type dWdt (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBCentr()
returns EFIT-Vacuum toroidal magnetic field in Tesla at Rcentr

Returns [nt] array of B_t at center [T]

Return type B_cent (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRCentr(length_unit=1)
returns EFIT radius where Bcentr evaluated

Returns Radial position where Bcent calculated [m]

Return type R

Raises ValueError – if module cannot retrieve data from MDS tree.

getEnergy()
pulls EFIT-calculated energy parameters - stored energy, tau_E, injected power, d/dt of magnetic and
plasma stored energy.

Returns namedtuple containing (WMHD,tauMHD,Pinj,Wbdot,Wpdot)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMachineCrossSection()
Returns R,Z coordinates of vacuum-vessel wall for masking, plotting routines.

Returns

(R_limiter, Z_limiter)

• R_limiter (Array) - [n] array of x-values for machine cross-section.

• Z_limiter (Array) - [n] array of y-values for machine cross-section.

22 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getMachineCrossSectionFull()
Returns R,Z coordinates of vacuum-vessel wall for plotting routines.

Absent additional vector-graphic data on machine cross-section, returns
getMachineCrossSection().

Returns result from getMachineCrossSection().

getCurrentSign()
Returns the sign of the current, based on the check in Steve Wolfe’s IDL implementation efit_rz2psi.pro.

Returns 1 for positive-direction current, -1 for negative.

Return type currentSign (Integer)

getParam(path)
Backup function, applying a direct path input for tree-like data storage access for parameters not typically
found in Equilbrium object. Directly calls attributes read from g/a-files in copy-safe manner.

Parameters name (String) – Parameter name for value stored in EqdskReader instance.

Raises AttributeError – raised if no attribute is found.

4.1.5 eqtools.FromArrays module

class eqtools.FromArrays.ArrayEquilibrium(psiRZ, rGrid, zGrid, time, q, fluxVol, psiLCFS, psi-
Axis, rmag, zmag, Rout, **kwargs)

Bases: eqtools.core.Equilibrium

Class to represent an equilibrium specified as arrays of data.

Create ArrayEquilibrium instance from arrays of data.

Has very little checking on the shape/type of the arrays at this point.

Parameters

• psiRZ – Array-like, (M, N, P). Flux values at M times, N Z locations and P R locations.

• rGrid – Array-like, (P,). R coordinates that psiRZ is given at.

• zGrid – Array-like, (N,). Z coordinates that psiRZ is given at.

• time – Array-like, (M,). Times that psiRZ is given at.

• q – Array-like, (S, M). q profile evaluated at S values of psinorm from 0 to 1, given at M
times.

• fluxVol – Array-like, (S, M). Flux surface volumes evaluated at S values of psinorm from
0 to 1, given at M times.

• psiLCFS – Array-like, (M,). Flux at the last closed flux surface, given at M times.

• psiAxis – Array-like, (M,). Flux at the magnetic axis, given at M times.

• rmag – Array-like, (M,). Radial coordinate of the magnetic axis, given at M times.

• zmag – Array-like, (M,). Vertical coordinate of the magnetic axis, given at M times.

• Rout – Outboard midplane radius of the last closed flux surface.

Keyword Arguments

• length_unit – String. Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

4.1. eqtools package 23

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• tspline – Boolean. Sets whether or not interpolation in time is performed using a tricubic
spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at least four
complete equilibria at different times. It is also assumed that they are functionally correlated,
and that parameters do not vary out of their boundaries (derivative = 0 boundary condition).
Default is False (use nearest neighbor interpolation).

• monotonic – Boolean. Sets whether or not the “monotonic” form of time window finding
is used. If True, the timebase must be monotonically increasing. Default is False (use
slower, safer method).

• verbose – Boolean. Allows or blocks console readout during operation. Defaults to True,
displaying useful information for the user. Set to False for quiet usage or to avoid console
clutter for multiple instances.

getTimeBase()
Returns a copy of the time base vector, array dimensions are (M,).

getFluxGrid()
Returns a copy of the flux array, dimensions are (M, N, P), corresponding to (time, Z, R).

getRGrid(length_unit=1)
Returns a copy of the radial grid, dimensions are (P,).

getZGrid(length_unit=1)
Returns a copy of the vertical grid, dimensions are (N,).

getQProfile()
Returns safety factor q profile (over Q values of psinorm from 0 to 1), dimensions are (Q, M)

getFluxVol(length_unit=3)
returns volume within flux surface [psi,t]

getFluxLCFS()
returns psi at separatrix [t]

getFluxAxis()
returns psi on magnetic axis [t]

getMagR(length_unit=1)
returns magnetic-axis major radius [t]

getMagZ(length_unit=1)
returns magnetic-axis Z [t]

getRmidOut(length_unit=1)
returns outboard-midplane major radius [t]

getRLCFS(length_unit=1)

24 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getZLCFS(length_unit=1)

getCurrentSign()

4.1.6 eqtools.NSTXEFIT module

This module provides classes inheriting eqtools.EFIT.EFITTree for working with NSTX EFIT data.

class eqtools.NSTXEFIT.NSTXEFITTree(shot, tree=’EFIT01’, length_unit=’m’, gfile=’geqdsk’,
afile=’aeqdsk’, tspline=False, monotonic=True)

Bases: eqtools.EFIT.EFITTree

Inherits EFITTree class. Machine-specific data handling class for the National Spherical Torus Experiment
(NSTX). Pulls EFIT data from selected MDS tree and shot, stores as object attributes. Each EFIT variable or
set of variables is recovered with a corresponding getter method. Essential data for EFIT mapping are pulled on
initialization (e.g. psirz grid). Additional data are pulled at the first request and stored for subsequent usage.

Intializes NSTX version of EFITTree object. Pulls data from MDS tree for storage in instance attributes. Core
attributes are populated from the MDS tree on initialization. Additional attributes are initialized as None, filled
on the first request to the object.

Parameters shot (integer) – NSTX shot index (long)

Keyword Arguments

• tree (string) – Optional input for EFIT tree, defaults to ‘EFIT01’ (i.e., EFIT data are
under EFIT01::top.results).

• length_unit (string) – Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• gfile (string) – Optional input for EFIT geqdsk location name, defaults to ‘geqdsk’
(i.e., EFIT data are under tree::top.results.GEQDSK)

• afile (string) – Optional input for EFIT aeqdsk location name, defaults to ‘aeqdsk’
(i.e., EFIT data are under tree::top.results.AEQDSK)

• tspline (Boolean) – Sets whether or not interpolation in time is performed using a
tricubic spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at
least four complete equilibria at different times. It is also assumed that they are functionally
correlated, and that parameters do not vary out of their boundaries (derivative = 0 boundary
condition). Default is False (use nearest neighbor interpolation).

• monotonic (Boolean) – Sets whether or not the “monotonic” form of time window
finding is used. If True, the timebase must be monotonically increasing. Default is False
(use slower, safer method).

4.1. eqtools package 25

eqtools Documentation, Release 1.1

getFluxGrid()
returns EFIT flux grid.

Returns [nt,nz,nr] array of (non-normalized) flux on grid.

Return type psiRZ (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMachineCrossSection()
Returns R,Z coordinates of vacuum-vessel wall for masking, plotting routines.

Returns The requested data.

getFluxVol()
Not implemented in NSTXEFIT tree.

Returns volume within flux surface [psi,t]

getRmidPsi(length_unit=1)
returns maximum major radius of each flux surface.

Keyword Arguments length_unit (String or 1) – unit of Rmid. Defaults to 1, indi-
cating the default parameter unit (typically m).

Returns [nt,npsi] array of maximum (outboard) major radius of flux surface psi.

Return type Rmid (Array)

Raises Value Error – if module cannot retrieve data from MDS tree.

getIpCalc()
returns EFIT-calculated plasma current.

Returns [nt] array of EFIT-reconstructed plasma current.

Return type IpCalc (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getVolLCFS(length_unit=3)
returns volume within LCFS.

Keyword Arguments length_unit (String or 3) – unit for LCFS volume. Defaults to
3, denoting default volumetric unit (typically m^3).

Returns [nt] array of volume within LCFS.

Return type volLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getJp()
Not implemented in NSTXEFIT tree.

Returns EFIT-calculated plasma current density Jp on flux grid [t,r,z]

rz2volnorm(*args, **kwargs)
Calculated normalized volume of flux surfaces not stored in NSTX EFIT.

Returns All mapping with Volnorm not implemented

psinorm2volnorm(*args, **kwargs)
Calculated normalized volume of flux surfaces not stored in NSTX EFIT.

Returns All maping with Volnorm not implemented

26 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

class eqtools.NSTXEFIT.NSTXEFITTreeProp(shot, tree=’EFIT01’, length_unit=’m’, gfile=’geqdsk’,
afile=’aeqdsk’, tspline=False, monotonic=True)

Bases: eqtools.NSTXEFIT.NSTXEFITTree, eqtools.core.PropertyAccessMixin

NSTXEFITTree with the PropertyAccessMixin added to enable property-style access. This is good for interac-
tive use, but may drag the performance down.

4.1.7 eqtools.TCVLIUQE module

This module provides classes inheriting eqtools.EFIT.EFITTree for working with TCV LIUQE Equilibrium.

eqtools.TCVLIUQE.greenArea(vs)

class eqtools.TCVLIUQE.TCVLIUQETree(shot, tree=’tcv_shot’, length_unit=’m’, gfile=’g_eqdsk’,
afile=’a_eqdsk’, tspline=False, monotonic=True)

Bases: eqtools.EFIT.EFITTree

Inherits eqtools.EFIT.EFITTree class. Machine-specific data handling class for TCV Machine. Pulls
LIUQUE data from selected MDS tree and shot, stores as object attributes eventually transforming it in the
equivalent quantity for EFIT. Each variable or set of variables is recovered with a corresponding getter method.
Essential data for LIUQUE mapping are pulled on initialization (e.g. psirz grid). Additional data are pulled at
the first request and stored for subsequent usage.

Intializes TCV version of EFITTree object. Pulls data from MDS tree for storage in instance attributes. Core
attributes are populated from the MDS tree on initialization. Additional attributes are initialized as None, filled
on the first request to the object.

Parameters shot (integer) – TCV shot index.

Keyword Arguments

• tree (string) – Optional input for LIUQE tree, defaults to ‘RESULTS’ (i.e., LIUQE
data are under results::).

• length_unit (string) – Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• gfile (string) – Optional input for EFIT geqdsk location name, defaults to ‘g_eqdsk’
(i.e., EFIT data are under tree::top.results.G_EQDSK)

• afile (string) – Optional input for EFIT aeqdsk location name, defaults to ‘a_eqdsk’
(i.e., EFIT data are under tree::top.results.A_EQDSK)

• tspline (Boolean) – Sets whether or not interpolation in time is performed using a
tricubic spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at
least four complete equilibria at different times. It is also assumed that they are functionally

4.1. eqtools package 27

eqtools Documentation, Release 1.1

correlated, and that parameters do not vary out of their boundaries (derivative = 0 boundary
condition). Default is False (use nearest neighbor interpolation).

• monotonic (Boolean) – Sets whether or not the “monotonic” form of time window
finding is used. If True, the timebase must be monotonically increasing. Default is False
(use slower, safer method).

getInfo()
returns namedtuple of shot information

Returns

namedtuple containing

shot TCV shot index (long)
tree LIUQE tree (string)
nr size of R-axis for spatial grid
nz size of Z-axis for spatial grid
nt size of timebase for flux grid

getTimeBase()
returns LIUQE time base vector.

Returns [nt] array of time points.

Return type time (array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxGrid()
returns LIUQE flux grid.

Returns [nt,nz,nr] array of (non-normalized) flux on grid.

Return type psiRZ (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRGrid(length_unit=1)
returns LIUQE R-axis.

Returns [nr] array of R-axis of flux grid.

Return type rGrid (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getZGrid(length_unit=1)
returns LIUQE Z-axis.

Returns [nz] array of Z-axis of flux grid.

Return type zGrid (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxAxis()
returns psi on magnetic axis.

Returns [nt] array of psi on magnetic axis.

Return type psiAxis (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxLCFS()
returns psi at separatrix.

28 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Returns [nt] array of psi at LCFS.

Return type psiLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxVol(length_unit=3)
returns volume within flux surface. This is not implemented in LIUQE as default output. So we use
contour and GREEN theorem to get the area within a default grid of the PSI. Then we compute the volume
by multipling for 2pi * VolLCFS / AreaLCFS.

Keyword Arguments length_unit (String or 3) – unit for plasma volume. Defaults
to 3, indicating default volumetric unit (typically m^3).

Returns [nt,npsi] array of volume within flux surface.

Return type fluxVol (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getVolLCFS(length_unit=3)
returns volume within LCFS.

Keyword Arguments length_unit (String or 3) – unit for LCFS volume. Defaults to
3, denoting default volumetric unit (typically m^3).

Returns [nt] array of volume within LCFS.

Return type volLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRmidPsi(length_unit=1)
returns maximum major radius of each flux surface.

Keyword Arguments length_unit (String or 1) – unit of Rmid. Defaults to 1, indi-
cating the default parameter unit (typically m).

Returns [nt,npsi] array of maximum (outboard) major radius of flux surface psi.

Return type Rmid (Array)

Raises Value Error – if module cannot retrieve data from MDS tree.

getRLCFS(length_unit=1)
returns R-values of LCFS position.

Returns [nt,n] array of R of LCFS points.

Return type RLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getZLCFS(length_unit=1)
returns Z-values of LCFS position.

Returns [nt,n] array of Z of LCFS points.

Return type ZLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getF()
returns F=RB_{Phi}(Psi), often calculated for grad-shafranov solutions. Not implemented on LIUQE

Returns [nt,npsi] array of F=RB_{Phi}(Psi) Not stored on LIUQE nodes

Return type F (Array)

4.1. eqtools package 29

eqtools Documentation, Release 1.1

Raises ValueError – if module cannot retrieve data from MDS tree.

getFluxPres()

returns pressure at flux surface. Not implemented. We have pressure saved on the same grid of psi

Returns [nt,npsi] array of pressure on flux surface psi. Not implemented on LIUQE nodes. We
have pressure on the grid use for psi

Return type p (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getFFPrime()
returns FF’ function used for grad-shafranov solutions.

Returns [nt,npsi] array of FF’ fromgrad-shafranov solution.

Return type FFprime (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getPPrime()
returns plasma pressure gradient as a function of psi.

Returns [nt,npsi] array of pressure gradient on flux surface psi from grad-shafranov solution.

Return type pprime (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getElongation()
returns LCFS elongation.

Returns [nt] array of LCFS elongation.

Return type kappa (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getUpperTriangularity()
returns LCFS upper triangularity.

Returns [nt] array of LCFS upper triangularity.

Return type deltau (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getLowerTriangularity()
returns LCFS lower triangularity.

Returns [nt] array of LCFS lower triangularity.

Return type deltal (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMagR(length_unit=1)
returns magnetic-axis major radius.

Returns [nt] array of major radius of magnetic axis.

Return type magR (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

30 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getMagZ(length_unit=1)
returns magnetic-axis Z.

Returns [nt] array of Z of magnetic axis.

Return type magZ (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getAreaLCFS(length_unit=2)
returns LCFS cross-sectional area.

Keyword Arguments length_unit (String or 2) – unit for LCFS area. Defaults to 2,
denoting default areal unit (typically m^2).

Returns [nt] array of LCFS area.

Return type areaLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getAOut(length_unit=1)

returns outboard-midplane minor radius at LCFS. In LIUQE it is the last value of

esults::r_max_psi

Keyword Args:

length_unit (String or 1): unit for minor radius. Defaults to 1, denoting default length
unit (typically m).

Returns: aOut (Array): [nt] array of LCFS outboard-midplane minor radius.

Raises: ValueError: if module cannot retrieve data from MDS tree.

getRmidOut(length_unit=1)
returns outboard-midplane major radius. It uses getA

Keyword Arguments length_unit (String or 1) – unit for major radius. Defaults to 1,
denoting default length unit (typically m).

Returns [nt] array of major radius of LCFS.

Return type RmidOut (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQProfile()
returns profile of safety factor q.

Returns [nt,npsi] array of q on flux surface psi.

Return type qpsi (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ0()
returns q on magnetic axis,q0.

Returns [nt] array of q(psi=0).

Return type q0 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQ95()
returns q at 95% flux surface.

4.1. eqtools package 31

eqtools Documentation, Release 1.1

Returns [nt] array of q(psi=0.95).

Return type q95 (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getQLCFS()
returns q on LCFS (interpolated).

Returns [nt] array of q* (interpolated).

Return type qLCFS (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBtVac()
Returns vacuum toroidal field on-axis. We use MDSplus.Connection for a proper use of the TDI function
tcv_eq()

Returns [nt] array of vacuum toroidal field.

Return type BtVac (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBtPla()
returns on-axis plasma toroidal field.

Returns [nt] array of toroidal field including plasma effects.

Return type BtPla (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getIpCalc()
returns EFIT-calculated plasma current.

Returns [nt] array of EFIT-reconstructed plasma current.

Return type IpCalc (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getIpMeas()
returns magnetics-measured plasma current.

Returns [nt] array of measured plasma current.

Return type IpMeas (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBetaT()
returns LIUQE-calculated toroidal beta.

Returns [nt] array of LIUQE-calculated average toroidal beta.

Return type BetaT (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getBetaP()
returns LIUQE-calculated poloidal beta.

Returns [nt] array of LIUQE-calculated average poloidal beta.

Return type BetaP (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

32 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getLi()
returns LIUQE-calculated internal inductance.

Returns [nt] array of LIUQE-calculated internal inductance.

Return type Li (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getDiamagWp()
returns diamagnetic-loop plasma stored energy.

Returns [nt] array of measured plasma stored energy.

Return type Wp (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getTauMHD()
returns LIUQE-calculated MHD energy confinement time.

Returns [nt] array of LIUQE-calculated energy confinement time.

Return type tauMHD (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getMachineCrossSection()
Pulls TCV cross-section data from tree, converts to plottable vector format for use in other plotting routines

Returns

(x, y)

• x (Array) - [n] array of x-values for machine cross-section.

• y (Array) - [n] array of y-values for machine cross-section.

Raises ValueError – if module cannot retrieve data from MDS tree.

getMachineCrossSectionPatch()
Pulls TCV cross-section data from tree, converts it directly to a matplotlib patch which can be simply
added to the approriate axes call in plotFlux()

Returns tiles matplotlib Patch, vessel matplotlib Patch

Raises ValueError – if module cannot retrieve data from MDS tree.

plotFlux(fill=True, mask=False)
Plots LIQUE TCV flux contours directly from psi grid.

Returns the Figure instance created and the time slider widget (in case you need to modify the callback).
f.axes contains the contour plot as the first element and the time slice slider as the second element.

Keyword Arguments fill (Boolean) – Set True to plot filled contours. Set False (default)
to plot white-background color contours.

class eqtools.TCVLIUQE.TCVLIUQETreeProp(shot, tree=’tcv_shot’, length_unit=’m’,
gfile=’g_eqdsk’, afile=’a_eqdsk’, tspline=False,
monotonic=True)

Bases: eqtools.TCVLIUQE.TCVLIUQETree, eqtools.core.PropertyAccessMixin

TCVLIUQETree with the PropertyAccessMixin added to enable property-style access. This is good for interac-
tive use, but may drag the performance down.

4.1. eqtools package 33

eqtools Documentation, Release 1.1

4.1.8 eqtools.afilereader module

This module contains the AFileReader class, a lightweight data handler for a-file (time-history) datasets.

Classes:

AFileReader: Data-storage class for a-file data. Reads data from ASCII a-file, storing as copy-safe object
attributes.

class eqtools.afilereader.AFileReader(afile)
Bases: object

Class to read ASCII a-file (time-history data storage) into lightweight, user-friendly data structure.

A-files store data blocks of scalar time-history data for EFIT plasma equilibrium. Each parameter is read into a
pseudo-private object attribute (marked by a leading underscore), followed by the standard EFIT variable names.

initialize object, reading from file.

Parameters afile (String) – file path to a-file

Examples

Load a-file data located at file_path:

afr = eqtools.AFileReader(file_path)

Recover a datapoint (for example, shot, stored as afr._shot), using copy-protected __getattribute__ method:

shot = afr.shot

Assign a new attribute to afr – note that this will raise an AttributeError if attempting to overwrite a previously-
stored attribute:

afr.attribute = val

4.1.9 eqtools.core module

This module provides the core classes for eqtools, including the base Equilibrium class.

exception eqtools.core.ModuleWarning
Bases: exceptions.Warning

Warning class to notify the user of unavailable modules.

class eqtools.core.PropertyAccessMixin
Bases: object

Mixin to implement access of getter methods through a property-type interface without the need to apply a
decorator to every property.

For any getter obj.getSomething(), the call obj.Something will do the same thing.

This is accomplished by overriding __getattribute__() such that if an attribute ATTR does not exist it
then attempts to call self.getATTR(). If self.getATTR() does not exist, an AttributeError will be raised as
usual.

Also overrides __setattr__() such that it will raise an AttributeError when attempting to write an
attribute ATTR for which there is already a method getATTR.

34 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

eqtools.core.inPolygon(polyx, polyy, pointx, pointy)
Function calculating whether a given point is within a 2D polygon.

Given an array of X,Y coordinates describing a 2D polygon, checks whether a point given by x,y coordinates lies
within the polygon. Operates via a ray-casting approach - the function projects a semi-infinite ray parallel to the
positive horizontal axis, and counts how many edges of the polygon this ray intersects. For a simply-connected
polygon, this determines whether the point is inside (even number of crossings) or outside (odd number of
crossings) the polygon, by the Jordan Curve Theorem.

Parameters

• polyx (Array-like) – Array of x-coordinates of the vertices of the polygon.

• polyy (Array-like) – Array of y-coordinates of the vertices of the polygon.

• pointx (Int or float) – x-coordinate of test point.

• pointy (Int or float) – y-coordinate of test point.

Returns True/False result for whether the point is contained within the polygon.

Return type result (Boolean)

class eqtools.core.Equilibrium(length_unit=’m’, tspline=False, monotonic=True, verbose=True)
Bases: object

Abstract class of data handling object for magnetic reconstruction outputs.

Defines the mapping routines and method fingerprints necessary. Each variable or set of variables is recovered
with a corresponding getter method. Essential data for mapping are pulled on initialization (psirz grid, for
example) to frontload overhead. Additional data are pulled at the first request and stored for subsequent usage.

Note: This abstract class should not be used directly. Device- and code- specific subclasses are set up to
account for inter-device/-code differences in data storage.

Keyword Arguments

• length_unit (String) – Sets the base unit used for any quantity whose dimensions are
length to any power. Valid options are:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘de-
fault’

whatever the default in the tree is (no conversion is performed, units may
be inconsistent)

Default is ‘m’ (all units taken and returned in meters).

• tspline (Boolean) – Sets whether or not interpolation in time is performed using a
tricubic spline or nearest-neighbor interpolation. Tricubic spline interpolation requires at
least four complete equilibria at different times. It is also assumed that they are functionally
correlated, and that parameters do not vary out of their boundaries (derivative = 0 boundary
condition). Default is False (use nearest-neighbor interpolation).

4.1. eqtools package 35

eqtools Documentation, Release 1.1

• monotonic (Boolean) – Sets whether or not the “monotonic” form of time window
finding is used. If True, the timebase must be monotonically increasing. Default is False
(use slower, safer method).

• verbose (Boolean) – Allows or blocks console readout during operation. Defaults to
True, displaying useful information for the user. Set to False for quiet usage or to avoid
console clutter for multiple instances.

Raises

• ValueError – If length_unit is not a valid unit specifier.

• ValueError – If tspline is True but module trispline did not load successfully.

rho2rho(origin, destination, *args, **kwargs)
Convert from one coordinate to another.

Parameters

• origin (String) – Indicates which coordinates the data are given in. Valid options are:

RZ R,Z coordinates
psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume
Rmid Midplane major radius
r/a Normalized minor radius

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• destination (String) – Indicates which coordinates to convert to. Valid options are:

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume
Rmid Midplane major radius
r/a Normalized minor radius
q Safety factor
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• rho (Array-like or scalar float) – Values of the starting coordinate to map
to the new coordinate. Will be two arguments R, Z if origin is ‘RZ’.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of rho. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as rho (or the meshgrid of R and Z if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

36 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in rho are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
rho or be a scalar. Default is True (evaluate ALL rho at EACH element in t).

• make_grid (Boolean) – Only applicable if origin is ‘RZ’. Set to True to pass R and
Z through scipy.meshgrid() before evaluating. If this is set to True, R and Z must
each only have a single dimension, but can have different lengths. Default is False (do not
form meshgrid).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid
when destination is Rmid. Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that quantities are given/returned in, as
applicable. If a string is given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Raises ValueError – If origin is not one of the supported values.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at r/a=0.6, t=0.26s:

psi_val = Eq_instance.rho2rho('r/a', 'psinorm', 0.6, 0.26)

Find psinorm values at r/a points 0.6 and 0.8 at the single time t=0.26s:

4.1. eqtools package 37

eqtools Documentation, Release 1.1

psi_arr = Eq_instance.rho2rho('r/a', 'psinorm', [0.6, 0.8], 0.26)

Find psinorm values at r/a of 0.6 at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.rho2rho('r/a', 'psinorm', 0.6, [0.2, 0.3])

Find psinorm values at (r/a, t) points (0.6, 0.2s) and (0.5, 0.3s):

psi_arr = Eq_instance.rho2rho('r/a', 'psinorm', [0.6, 0.5], [0.2, 0.3], each_t=False)

rz2psi(R, Z, t, return_t=False, make_grid=False, each_t=True, length_unit=1)
Converts the passed R, Z, t arrays to psi (unnormalized poloidal flux) values.

What is usually returned by EFIT is the stream function, 𝜓 = 𝜓𝑝/(2𝜋) which has units of Wb/rad.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
poloidal flux. If R and Z are both scalar values, they are used as the coordinate pair for all
of the values in t. Must have the same shape as Z unless the make_grid keyword is set. If
the make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
poloidal flux. If R and Z are both scalar values, they are used as the coordinate pair for all
of the values in t. Must have the same shape as R unless the make_grid keyword is set. If
the make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor

38 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

psi or (psi, time_idxs)

• psi (Array or scalar float) - The unnormalized poloidal flux. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both
have the same shape then psi has this shape as well, unless the make_grid keyword was
True, in which case psi has shape (len(Z), len(R)).

• time_idxs (Array with same shape as psi) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psi value at R=0.6m, Z=0.0m, t=0.26s:

psi_val = Eq_instance.rz2psi(0.6, 0, 0.26)

Find psi values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

psi_arr = Eq_instance.rz2psi([0.6, 0.8], [0, 0], 0.26)

Find psi values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.rz2psi(0.6, 0, [0.2, 0.3])

Find psi values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

psi_arr = Eq_instance.rz2psi([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find psi values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

psi_mat = Eq_instance.rz2psi(R, Z, 0.2, make_grid=True)

rz2psinorm(R, Z, t, return_t=False, sqrt=False, make_grid=False, each_t=True, length_unit=1)
Calculates the normalized poloidal flux at the given (R, Z, t).

Uses the definition:

psi_norm =
𝜓 − 𝜓(0)

𝜓(𝑎)− 𝜓(0)

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
psinorm. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
psinorm. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

4.1. eqtools package 39

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of psinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

psinorm or (psinorm, time_idxs)

• psinorm (Array or scalar float) - The normalized poloidal flux. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and
Z both have the same shape then psinorm has this shape as well, unless the make_grid
keyword was True, in which case psinorm has shape (len(Z), len(R)).

• time_idxs (Array with same shape as psinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at R=0.6m, Z=0.0m, t=0.26s:

40 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

psi_val = Eq_instance.rz2psinorm(0.6, 0, 0.26)

Find psinorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

psi_arr = Eq_instance.rz2psinorm([0.6, 0.8], [0, 0], 0.26)

Find psinorm values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.rz2psinorm(0.6, 0, [0.2, 0.3])

Find psinorm values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

psi_arr = Eq_instance.rz2psinorm([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find psinorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z at time t=0.2s:

psi_mat = Eq_instance.rz2psinorm(R, Z, 0.2, make_grid=True)

rz2phinorm(*args, **kwargs)
Calculates the normalized toroidal flux.

Uses the definitions:

phi =

∫︁
𝑞(𝜓) 𝑑𝜓

phi_norm =
𝜑

𝜑(𝑎)

This is based on the IDL version efit_rz2rho.pro by Steve Wolfe.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
phinorm. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
phinorm. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of phinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

4.1. eqtools package 41

eqtools Documentation, Release 1.1

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
psinorm to phinorm.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

phinorm or (phinorm, time_idxs)

• phinorm (Array or scalar float) - The normalized toroidal flux. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and
Z both have the same shape then phinorm has this shape as well, unless the make_grid
keyword was True, in which case phinorm has shape (len(Z), len(R)).

• time_idxs (Array with same shape as phinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value at R=0.6m, Z=0.0m, t=0.26s:

phi_val = Eq_instance.rz2phinorm(0.6, 0, 0.26)

Find phinorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the
Z vector must be fully specified, even if the values are all the same:

phi_arr = Eq_instance.rz2phinorm([0.6, 0.8], [0, 0], 0.26)

Find phinorm values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

phi_arr = Eq_instance.rz2phinorm(0.6, 0, [0.2, 0.3])

Find phinorm values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

phi_arr = Eq_instance.rz2phinorm([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

42 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Find phinorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z at time t=0.2s:

phi_mat = Eq_instance.rz2phinorm(R, Z, 0.2, make_grid=True)

rz2volnorm(*args, **kwargs)
Calculates the normalized flux surface volume.

Based on the IDL version efit_rz2rho.pro by Steve Wolfe.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
volnorm. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
volnorm. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of volnorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
psinorm to volnorm.

4.1. eqtools package 43

eqtools Documentation, Release 1.1

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

volnorm or (volnorm, time_idxs)

• volnorm (Array or scalar float) - The normalized volume. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both
have the same shape then volnorm has this shape as well, unless the make_grid keyword
was True, in which case volnorm has shape (len(Z), len(R)).

• time_idxs (Array with same shape as volnorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single volnorm value at R=0.6m, Z=0.0m, t=0.26s:

psi_val = Eq_instance.rz2volnorm(0.6, 0, 0.26)

Find volnorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the
Z vector must be fully specified, even if the values are all the same:

vol_arr = Eq_instance.rz2volnorm([0.6, 0.8], [0, 0], 0.26)

Find volnorm values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

vol_arr = Eq_instance.rz2volnorm(0.6, 0, [0.2, 0.3])

Find volnorm values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

vol_arr = Eq_instance.rz2volnorm([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find volnorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z at time t=0.2s:

vol_mat = Eq_instance.rz2volnorm(R, Z, 0.2, make_grid=True)

rz2rmid(*args, **kwargs)
Maps the given points to the outboard midplane major radius, Rmid.

Based on the IDL version efit_rz2rmid.pro by Steve Wolfe.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
Rmid. If R and Z are both scalar values, they are used as the coordinate pair for all of the
values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
Rmid. If R and Z are both scalar values, they are used as the coordinate pair for all of the
values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

44 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of Rmid. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that R, Z are given in, AND that Rmid
is returned in. If a string is given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
psinorm to Rmid.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

Rmid or (Rmid, time_idxs)

• Rmid (Array or scalar float) - The outboard midplan major radius. If all of the input
arguments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R
and Z both have the same shape then Rmid has this shape as well, unless the make_grid
keyword was True, in which case Rmid has shape (len(Z), len(R)).

• time_idxs (Array with same shape as Rmid) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

4.1. eqtools package 45

eqtools Documentation, Release 1.1

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single Rmid value at R=0.6m, Z=0.0m, t=0.26s:

R_mid_val = Eq_instance.rz2rmid(0.6, 0, 0.26)

Find R_mid values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

R_mid_arr = Eq_instance.rz2rmid([0.6, 0.8], [0, 0], 0.26)

Find Rmid values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

R_mid_arr = Eq_instance.rz2rmid(0.6, 0, [0.2, 0.3])

Find Rmid values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

R_mid_arr = Eq_instance.rz2rmid([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find Rmid values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z
at time t=0.2s:

R_mid_mat = Eq_instance.rz2rmid(R, Z, 0.2, make_grid=True)

rz2roa(*args, **kwargs)
Maps the given points to the normalized minor radius, r/a.

Based on the IDL version efit_rz2rmid.pro by Steve Wolfe.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to r/a.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
r/a. If R and Z are both scalar values, they are used as the coordinate pair for all of the
values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of r/a. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

46 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
psinorm to Rmid.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

roa or (roa, time_idxs)

• roa (Array or scalar float) - The normalized minor radius. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both
have the same shape then roa has this shape as well, unless the make_grid keyword was
True, in which case roa has shape (len(Z), len(R)).

• time_idxs (Array with same shape as roa) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single r/a value at R=0.6m, Z=0.0m, t=0.26s:

roa_val = Eq_instance.rz2roa(0.6, 0, 0.26)

Find r/a values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

roa_arr = Eq_instance.rz2roa([0.6, 0.8], [0, 0], 0.26)

Find r/a values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

roa_arr = Eq_instance.rz2roa(0.6, 0, [0.2, 0.3])

Find r/a values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

roa_arr = Eq_instance.rz2roa([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find r/a values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

4.1. eqtools package 47

eqtools Documentation, Release 1.1

roa_mat = Eq_instance.rz2roa(R, Z, 0.2, make_grid=True)

rz2rho(method, *args, **kwargs)
Convert the passed (R, Z, t) coordinates into one of several coordinates.

Parameters

• method (String) – Indicates which coordinates to convert to. Valid options are:

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume
Rmid Midplane major radius
r/a Normalized minor radius
q Safety factor
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• R (Array-like or scalar float) – Values of the radial coordinate to map to rho.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
rho. If R and Z are both scalar values, they are used as the coordinate pair for all of the
values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid
when destination is Rmid. Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that R, Z are given in, AND that Rmid
is returned in. If a string is given, it must be a valid unit specifier:

48 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Raises ValueError – If method is not one of the supported values.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at R=0.6m, Z=0.0m, t=0.26s:

psi_val = Eq_instance.rz2rho('psinorm', 0.6, 0, 0.26)

Find psinorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

psi_arr = Eq_instance.rz2rho('psinorm', [0.6, 0.8], [0, 0], 0.26)

Find psinorm values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.rz2rho('psinorm', 0.6, 0, [0.2, 0.3])

Find psinorm values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

psi_arr = Eq_instance.rz2rho('psinorm', [0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find psinorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z at time t=0.2s:

psi_mat = Eq_instance.rz2rho('psinorm', R, Z, 0.2, make_grid=True)

4.1. eqtools package 49

eqtools Documentation, Release 1.1

rmid2roa(R_mid, t, each_t=True, return_t=False, sqrt=False, blob=None, length_unit=1)
Convert the passed (R_mid, t) coordinates into r/a.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to r/a.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of r/a. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

roa or (roa, time_idxs)

• roa (Array or scalar float) - Normalized midplane minor radius. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as roa) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single r/a value at R_mid=0.6m, t=0.26s:

50 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

roa_val = Eq_instance.rmid2roa(0.6, 0.26)

Find roa values at R_mid points 0.6m and 0.8m at the single time t=0.26s.:

roa_arr = Eq_instance.rmid2roa([0.6, 0.8], 0.26)

Find roa values at R_mid of 0.6m at times t=[0.2s, 0.3s]:

roa_arr = Eq_instance.rmid2roa(0.6, [0.2, 0.3])

Find r/a values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

roa_arr = Eq_instance.rmid2roa([0.6, 0.5], [0.2, 0.3], each_t=False)

rmid2psinorm(R_mid, t, **kwargs)
Calculates the normalized poloidal flux corresponding to the passed R_mid (mapped outboard midplane
major radius) values.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to psinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of psinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

4.1. eqtools package 51

eqtools Documentation, Release 1.1

Returns

psinorm or (psinorm, time_idxs)

• psinorm (Array or scalar float) - Normalized poloidal flux. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as psinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value for Rmid=0.7m, t=0.26s:

psinorm_val = Eq_instance.rmid2psinorm(0.7, 0.26)

Find psinorm values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

psinorm_arr = Eq_instance.rmid2psinorm([0.5, 0.7], 0.26)

Find psinorm values at R_mid=0.5m at times t=[0.2s, 0.3s]:

psinorm_arr = Eq_instance.rmid2psinorm(0.5, [0.2, 0.3])

Find psinorm values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

psinorm_arr = Eq_instance.rmid2psinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

rmid2phinorm(*args, **kwargs)
Calculates the normalized toroidal flux.

Uses the definitions:

phi =

∫︁
𝑞(𝜓) 𝑑𝜓

phi_norm =
𝜑

𝜑(𝑎)

This is based on the IDL version efit_rz2rho.pro by Steve Wolfe.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to phinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of phinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

52 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

phinorm or (phinorm, time_idxs)

• phinorm (Array or scalar float) - Normalized toroidal flux. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as phinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value at R_mid=0.6m, t=0.26s:

phi_val = Eq_instance.rmid2phinorm(0.6, 0.26)

Find phinorm values at R_mid points 0.6m and 0.8m at the single time t=0.26s:

phi_arr = Eq_instance.rmid2phinorm([0.6, 0.8], 0.26)

Find phinorm values at R_mid point 0.6m at times t=[0.2s, 0.3s]:

phi_arr = Eq_instance.rmid2phinorm(0.6, [0.2, 0.3])

Find phinorm values at (R, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

phi_arr = Eq_instance.rmid2phinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

4.1. eqtools package 53

eqtools Documentation, Release 1.1

rmid2volnorm(*args, **kwargs)
Calculates the normalized flux surface volume.

Based on the IDL version efit_rz2rho.pro by Steve Wolfe.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to volnorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of volnorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

volnorm or (volnorm, time_idxs)

• volnorm (Array or scalar float) - Normalized volume. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as volnorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

54 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single volnorm value at R_mid=0.6m, t=0.26s:

vol_val = Eq_instance.rmid2volnorm(0.6, 0.26)

Find volnorm values at R_mid points 0.6m and 0.8m at the single time t=0.26s:

vol_arr = Eq_instance.rmid2volnorm([0.6, 0.8], 0.26)

Find volnorm values at R_mid points 0.6m at times t=[0.2s, 0.3s]:

vol_arr = Eq_instance.rmid2volnorm(0.6, [0.2, 0.3])

Find volnorm values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

vol_arr = Eq_instance.rmid2volnorm([0.6, 0.5], [0.2, 0.3], each_t=False)

rmid2rho(method, R_mid, t, **kwargs)
Convert the passed (R_mid, t) coordinates into one of several coordinates.

Parameters

• method (String) – Indicates which coordinates to convert to. Valid options are:

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume
r/a Normalized minor radius
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to rho.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

4.1. eqtools package 55

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at R_mid=0.6m, t=0.26s:

psi_val = Eq_instance.rmid2rho('psinorm', 0.6, 0.26)

Find psinorm values at R_mid points 0.6m and 0.8m at the single time t=0.26s.:

psi_arr = Eq_instance.rmid2rho('psinorm', [0.6, 0.8], 0.26)

Find psinorm values at R_mid of 0.6m at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.rmid2rho('psinorm', 0.6, [0.2, 0.3])

Find psinorm values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

psi_arr = Eq_instance.rmid2rho('psinorm', [0.6, 0.5], [0.2, 0.3], each_t=False)

roa2rmid(roa, t, each_t=True, return_t=False, blob=None, length_unit=1)
Convert the passed (r/a, t) coordinates into Rmid.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to Rmid.

56 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

Rmid or (Rmid, time_idxs)

• Rmid (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as Rmid) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single R_mid value at r/a=0.6, t=0.26s:

R_mid_val = Eq_instance.roa2rmid(0.6, 0.26)

Find R_mid values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

R_mid_arr = Eq_instance.roa2rmid([0.6, 0.8], 0.26)

Find R_mid values at r/a of 0.6 at times t=[0.2s, 0.3s]:

R_mid_arr = Eq_instance.roa2rmid(0.6, [0.2, 0.3])

Find R_mid values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

4.1. eqtools package 57

eqtools Documentation, Release 1.1

R_mid_arr = Eq_instance.roa2rmid([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2psinorm(*args, **kwargs)
Convert the passed (r/a, t) coordinates into psinorm.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to psinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of psinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

psinorm or (psinorm, time_idxs)

• psinorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as psinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at r/a=0.6, t=0.26s:

psinorm_val = Eq_instance.roa2psinorm(0.6, 0.26)

Find psinorm values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

psinorm_arr = Eq_instance.roa2psinorm([0.6, 0.8], 0.26)

Find psinorm values at r/a of 0.6 at times t=[0.2s, 0.3s]:

psinorm_arr = Eq_instance.roa2psinorm(0.6, [0.2, 0.3])

58 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Find psinorm values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

psinorm_arr = Eq_instance.roa2psinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2phinorm(*args, **kwargs)
Convert the passed (r/a, t) coordinates into phinorm.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to phinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of phinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

phinorm or (phinorm, time_idxs)

• phinorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as phinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value at r/a=0.6, t=0.26s:

phinorm_val = Eq_instance.roa2phinorm(0.6, 0.26)

Find phinorm values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

phinorm_arr = Eq_instance.roa2phinorm([0.6, 0.8], 0.26)

Find phinorm values at r/a of 0.6 at times t=[0.2s, 0.3s]:

4.1. eqtools package 59

eqtools Documentation, Release 1.1

phinorm_arr = Eq_instance.roa2phinorm(0.6, [0.2, 0.3])

Find phinorm values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

phinorm_arr = Eq_instance.roa2phinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2volnorm(*args, **kwargs)
Convert the passed (r/a, t) coordinates into volnorm.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to volnorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of volnorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

volnorm or (volnorm, time_idxs)

• volnorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as volnorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single volnorm value at r/a=0.6, t=0.26s:

volnorm_val = Eq_instance.roa2volnorm(0.6, 0.26)

Find volnorm values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

volnorm_arr = Eq_instance.roa2volnorm([0.6, 0.8], 0.26)

60 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Find volnorm values at r/a of 0.6 at times t=[0.2s, 0.3s]:

volnorm_arr = Eq_instance.roa2volnorm(0.6, [0.2, 0.3])

Find volnorm values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

volnorm_arr = Eq_instance.roa2volnorm([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2rho(method, *args, **kwargs)
Convert the passed (r/a, t) coordinates into one of several coordinates.

Parameters

• method (String) – Indicates which coordinates to convert to. Valid options are:

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume
Rmid Midplane major radius
q Safety factor
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to rho.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

4.1. eqtools package 61

eqtools Documentation, Release 1.1

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at r/a=0.6, t=0.26s:

psi_val = Eq_instance.roa2rho('psinorm', 0.6, 0.26)

Find psinorm values at r/a points 0.6 and 0.8 at the single time t=0.26s:

psi_arr = Eq_instance.roa2rho('psinorm', [0.6, 0.8], 0.26)

Find psinorm values at r/a of 0.6 at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.roa2rho('psinorm', 0.6, [0.2, 0.3])

Find psinorm values at (r/a, t) points (0.6, 0.2s) and (0.5, 0.3s):

psi_arr = Eq_instance.roa2rho('psinorm', [0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2rmid(psi_norm, t, **kwargs)
Calculates the outboard R_mid location corresponding to the passed psinorm (normalized poloidal flux)
values.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to Rmid.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of Rmid. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

62 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

Rmid or (Rmid, time_idxs)

• Rmid (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as Rmid) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single R_mid value for psinorm=0.7, t=0.26s:

R_mid_val = Eq_instance.psinorm2rmid(0.7, 0.26)

Find R_mid values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

R_mid_arr = Eq_instance.psinorm2rmid([0.5, 0.7], 0.26)

Find R_mid values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

R_mid_arr = Eq_instance.psinorm2rmid(0.5, [0.2, 0.3])

Find R_mid values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

4.1. eqtools package 63

eqtools Documentation, Release 1.1

R_mid_arr = Eq_instance.psinorm2rmid([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2roa(psi_norm, t, **kwargs)
Calculates the normalized minor radius location corresponding to the passed psi_norm (normalized
poloidal flux) values.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to r/a.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of r/a. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

roa or (roa, time_idxs)

• roa (Array or scalar float) - Normalized midplane minor radius. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as roa) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single r/a value for psinorm=0.7, t=0.26s:

roa_val = Eq_instance.psinorm2roa(0.7, 0.26)

Find r/a values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

roa_arr = Eq_instance.psinorm2roa([0.5, 0.7], 0.26)

Find r/a values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

64 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

roa_arr = Eq_instance.psinorm2roa(0.5, [0.2, 0.3])

Find r/a values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

roa_arr = Eq_instance.psinorm2roa([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2volnorm(psi_norm, t, **kwargs)
Calculates the normalized volume corresponding to the passed psi_norm (normalized poloidal flux) values.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to volnorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of volnorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

volnorm or (volnorm, time_idxs)

• volnorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as volnorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single volnorm value for psinorm=0.7, t=0.26s:

volnorm_val = Eq_instance.psinorm2volnorm(0.7, 0.26)

Find volnorm values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

4.1. eqtools package 65

eqtools Documentation, Release 1.1

volnorm_arr = Eq_instance.psinorm2volnorm([0.5, 0.7], 0.26)

Find volnorm values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

volnorm_arr = Eq_instance.psinorm2volnorm(0.5, [0.2, 0.3])

Find volnorm values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

volnorm_arr = Eq_instance.psinorm2volnorm([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2phinorm(psi_norm, t, **kwargs)
Calculates the normalized toroidal flux corresponding to the passed psi_norm (normalized poloidal flux)
values.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to phinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of phinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

phinorm or (phinorm, time_idxs)

• phinorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as phinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value for psinorm=0.7, t=0.26s:

66 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

phinorm_val = Eq_instance.psinorm2phinorm(0.7, 0.26)

Find phinorm values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

phinorm_arr = Eq_instance.psinorm2phinorm([0.5, 0.7], 0.26)

Find phinorm values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

phinorm_arr = Eq_instance.psinorm2phinorm(0.5, [0.2, 0.3])

Find phinorm values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

phinorm_arr = Eq_instance.psinorm2phinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2rho(method, *args, **kwargs)
Convert the passed (psinorm, t) coordinates into one of several coordinates.

Parameters

• method (String) – Indicates which coordinates to convert to. Valid options are:

phinorm Normalized toroidal flux
volnorm Normalized volume
Rmid Midplane major radius
r/a Normalized minor radius
q Safety factor
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to rho.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

4.1. eqtools package 67

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Raises ValueError – If method is not one of the supported values.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value at psinorm=0.6, t=0.26s:

phi_val = Eq_instance.psinorm2rho('phinorm', 0.6, 0.26)

Find phinorm values at phinorm of 0.6 and 0.8 at the single time t=0.26s:

phi_arr = Eq_instance.psinorm2rho('phinorm', [0.6, 0.8], 0.26)

Find phinorm values at psinorm of 0.6 at times t=[0.2s, 0.3s]:

phi_arr = Eq_instance.psinorm2rho('phinorm', 0.6, [0.2, 0.3])

Find phinorm values at (psinorm, t) points (0.6, 0.2s) and (0.5m, 0.3s):

phi_arr = Eq_instance.psinorm2rho('phinorm', [0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2psinorm(phinorm, t, **kwargs)
Calculates the normalized poloidal flux corresponding to the passed phinorm (normalized toroidal flux)
values.

Parameters

68 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to psinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of psinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

psinorm or (psinorm, time_idxs)

• psinorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as psinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value for phinorm=0.7, t=0.26s:

psinorm_val = Eq_instance.phinorm2psinorm(0.7, 0.26)

Find psinorm values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

psinorm_arr = Eq_instance.phinorm2psinorm([0.5, 0.7], 0.26)

Find psinorm values at phinorm=0.5 at times t=[0.2s, 0.3s]:

psinorm_arr = Eq_instance.phinorm2psinorm(0.5, [0.2, 0.3])

Find psinorm values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

psinorm_arr = Eq_instance.phinorm2psinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

4.1. eqtools package 69

eqtools Documentation, Release 1.1

phinorm2volnorm(*args, **kwargs)
Calculates the normalized flux surface volume corresponding to the passed phinorm (normalized toroidal
flux) values.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to volnorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of volnorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

volnorm or (volnorm, time_idxs)

• volnorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as volnorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single volnorm value for phinorm=0.7, t=0.26s:

volnorm_val = Eq_instance.phinorm2volnorm(0.7, 0.26)

Find volnorm values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

volnorm_arr = Eq_instance.phinorm2volnorm([0.5, 0.7], 0.26)

Find volnorm values at phinorm=0.5 at times t=[0.2s, 0.3s]:

volnorm_arr = Eq_instance.phinorm2volnorm(0.5, [0.2, 0.3])

70 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Find volnorm values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

volnorm_arr = Eq_instance.phinorm2volnorm([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2rmid(*args, **kwargs)
Calculates the mapped outboard midplane major radius corresponding to the passed phinorm (normalized
toroidal flux) values.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to Rmid.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of Rmid. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

Rmid or (Rmid, time_idxs)

• Rmid (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

4.1. eqtools package 71

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as Rmid) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single Rmid value for phinorm=0.7, t=0.26s:

Rmid_val = Eq_instance.phinorm2rmid(0.7, 0.26)

Find Rmid values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

Rmid_arr = Eq_instance.phinorm2rmid([0.5, 0.7], 0.26)

Find Rmid values at phinorm=0.5 at times t=[0.2s, 0.3s]:

Rmid_arr = Eq_instance.phinorm2rmid(0.5, [0.2, 0.3])

Find Rmid values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

Rmid_arr = Eq_instance.phinorm2rmid([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2roa(phi_norm, t, **kwargs)
Calculates the normalized minor radius corresponding to the passed phinorm (normalized toroidal flux)
values.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to r/a.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of r/a. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

roa or (roa, time_idxs)

72 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• roa (Array or scalar float) - Normalized midplane minor radius. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as roa) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single r/a value for phinorm=0.7, t=0.26s:

roa_val = Eq_instance.phinorm2roa(0.7, 0.26)

Find r/a values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

roa_arr = Eq_instance.phinorm2roa([0.5, 0.7], 0.26)

Find r/a values at phinorm=0.5 at times t=[0.2s, 0.3s]:

roa_arr = Eq_instance.phinorm2roa(0.5, [0.2, 0.3])

Find r/a values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

roa_arr = Eq_instance.phinorm2roa([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2rho(method, *args, **kwargs)
Convert the passed (phinorm, t) coordinates into one of several coordinates.

Parameters

• method (String) – Indicates which coordinates to convert to. Valid options are:

psinorm Normalized poloidal flux
volnorm Normalized volume
Rmid Midplane major radius
r/a Normalized minor radius
q Safety factor
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to rho.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

4.1. eqtools package 73

eqtools Documentation, Release 1.1

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Raises ValueError – If method is not one of the supported values.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at phinorm=0.6, t=0.26s:

psi_val = Eq_instance.phinorm2rho('psinorm', 0.6, 0.26)

Find psinorm values at phinorm of 0.6 and 0.8 at the single time t=0.26s:

74 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

psi_arr = Eq_instance.phinorm2rho('psinorm', [0.6, 0.8], 0.26)

Find psinorm values at phinorm of 0.6 at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.phinorm2rho('psinorm', 0.6, [0.2, 0.3])

Find psinorm values at (phinorm, t) points (0.6, 0.2s) and (0.5m, 0.3s):

psi_arr = Eq_instance.phinorm2rho('psinorm', [0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2psinorm(*args, **kwargs)
Calculates the normalized poloidal flux corresponding to the passed volnorm (normalized flux surface
volume) values.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to psinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of psinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

psinorm or (psinorm, time_idxs)

• psinorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as psinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value for volnorm=0.7, t=0.26s:

4.1. eqtools package 75

eqtools Documentation, Release 1.1

psinorm_val = Eq_instance.volnorm2psinorm(0.7, 0.26)

Find psinorm values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

psinorm_arr = Eq_instance.volnorm2psinorm([0.5, 0.7], 0.26)

Find psinorm values at volnorm=0.5 at times t=[0.2s, 0.3s]:

psinorm_arr = Eq_instance.volnorm2psinorm(0.5, [0.2, 0.3])

Find psinorm values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

psinorm_arr = Eq_instance.volnorm2psinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2phinorm(*args, **kwargs)
Calculates the normalized toroidal flux corresponding to the passed volnorm (normalized flux surface
volume) values.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to phinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of phinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

phinorm or (phinorm, time_idxs)

• phinorm (Array or scalar float) - The converted coordinates. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as phinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

76 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value for volnorm=0.7, t=0.26s:

phinorm_val = Eq_instance.volnorm2phinorm(0.7, 0.26)

Find phinorm values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

phinorm_arr = Eq_instance.volnorm2phinorm([0.5, 0.7], 0.26)

Find phinorm values at volnorm=0.5 at times t=[0.2s, 0.3s]:

phinorm_arr = Eq_instance.volnorm2phinorm(0.5, [0.2, 0.3])

Find phinorm values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

phinorm_arr = Eq_instance.volnorm2phinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2rmid(*args, **kwargs)
Calculates the mapped outboard midplane major radius corresponding to the passed volnorm (normalized
flux surface volume) values.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to Rmid.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of Rmid. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

4.1. eqtools package 77

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

Rmid or (Rmid, time_idxs)

• Rmid (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as Rmid) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single Rmid value for volnorm=0.7, t=0.26s:

Rmid_val = Eq_instance.volnorm2rmid(0.7, 0.26)

Find Rmid values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

Rmid_arr = Eq_instance.volnorm2rmid([0.5, 0.7], 0.26)

Find Rmid values at volnorm=0.5 at times t=[0.2s, 0.3s]:

Rmid_arr = Eq_instance.volnorm2rmid(0.5, [0.2, 0.3])

Find Rmid values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

Rmid_arr = Eq_instance.volnorm2rmid([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2roa(*args, **kwargs)
Calculates the normalized minor radius corresponding to the passed volnorm (normalized flux surface
volume) values.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to r/a.

78 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of r/a. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

Returns

roa or (roa, time_idxs)

• roa (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as roa) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single r/a value for volnorm=0.7, t=0.26s:

roa_val = Eq_instance.volnorm2roa(0.7, 0.26)

Find r/a values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

roa_arr = Eq_instance.volnorm2roa([0.5, 0.7], 0.26)

Find r/a values at volnorm=0.5 at times t=[0.2s, 0.3s]:

roa_arr = Eq_instance.volnorm2roa(0.5, [0.2, 0.3])

Find r/a values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

roa_arr = Eq_instance.volnorm2roa([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2rho(method, *args, **kwargs)
Convert the passed (volnorm, t) coordinates into one of several coordinates.

Parameters

• method (String) – Indicates which coordinates to convert to. Valid options are:

4.1. eqtools package 79

eqtools Documentation, Release 1.1

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
Rmid Midplane major radius
r/a Normalized minor radius
q Safety factor
F Flux function 𝐹 = 𝑅𝐵𝜑

FFPrime Flux function 𝐹𝐹 ′

p Pressure
pprime Pressure gradient
v Flux surface volume

Additionally, each valid option may be prepended with ‘sqrt’ to specify the square root of
the desired unit.

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to rho.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of rho. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of Rmid.
Default is False (return major radius, Rmid).

• length_unit (String or 1) – Length unit that Rmid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (rho, time_idxs), where
time_idxs is the array of time indices actually used in evaluating rho with nearest-neighbor
interpolation. (This is mostly present as an internal helper.) Default is False (only return
rho).

80 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Returns

rho or (rho, time_idxs)

• rho (Array or scalar float) - The converted coordinates. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as rho) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Raises ValueError – If method is not one of the supported values.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at volnorm=0.6, t=0.26s:

psi_val = Eq_instance.volnorm2rho('psinorm', 0.6, 0.26)

Find psinorm values at volnorm of 0.6 and 0.8 at the single time t=0.26s:

psi_arr = Eq_instance.volnorm2rho('psinorm', [0.6, 0.8], 0.26)

Find psinorm values at volnorm of 0.6 at times t=[0.2s, 0.3s]:

psi_arr = Eq_instance.volnorm2rho('psinorm', 0.6, [0.2, 0.3])

Find psinorm values at (volnorm, t) points (0.6, 0.2s) and (0.5m, 0.3s):

psi_arr = Eq_instance.volnorm2rho('psinorm', [0.6, 0.5], [0.2, 0.3], each_t=False)

rz2q(R, Z, t, **kwargs)
Calculates the safety factor (“q”) at the given (R, Z, t).

By default, EFIT only computes this inside the LCFS.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to q.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to q.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as R unless the make_grid keyword is set. If the make_grid
keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of q. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

4.1. eqtools package 81

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (q, time_idxs), where time_idxs is
the array of time indices actually used in evaluating q with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return q).

Returns

q or (q, time_idxs)

• q (Array or scalar float) - The safety factor (“q”). If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have the
same shape then q has this shape as well, unless the make_grid keyword was True, in
which case q has shape (len(Z), len(R)).

• time_idxs (Array with same shape as q) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single q value at R=0.6m, Z=0.0m, t=0.26s:

q_val = Eq_instance.rz2q(0.6, 0, 0.26)

Find q values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

q_arr = Eq_instance.rz2q([0.6, 0.8], [0, 0], 0.26)

Find q values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

q_arr = Eq_instance.rz2q(0.6, 0, [0.2, 0.3])

Find q values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

82 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

q_arr = Eq_instance.rz2q([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find q values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

q_mat = Eq_instance.rz2q(R, Z, 0.2, make_grid=True)

rmid2q(R_mid, t, **kwargs)
Calculates the safety factor (“q”) corresponding to the passed R_mid (mapped outboard midplane major
radius) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to q.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of q. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (q, time_idxs), where time_idxs is
the array of time indices actually used in evaluating q with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return q).

Returns

q or (q, time_idxs)

• q (Array or scalar float) - The safety factor (“q”). If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

4.1. eqtools package 83

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as q) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single q value for Rmid=0.7m, t=0.26s:

q_val = Eq_instance.rmid2q(0.7, 0.26)

Find q values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

q_arr = Eq_instance.rmid2q([0.5, 0.7], 0.26)

Find q values at R_mid=0.5m at times t=[0.2s, 0.3s]:

q_arr = Eq_instance.rmid2q(0.5, [0.2, 0.3])

Find q values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

q_arr = Eq_instance.rmid2q([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2q(roa, t, **kwargs)
Convert the passed (r/a, t) coordinates into safety factor (“q”).

By default, EFIT only computes this inside the LCFS.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to q.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of q. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (q, time_idxs), where time_idxs is
the array of time indices actually used in evaluating q with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return q).

Returns

q or (q, time_idxs)

• q (Array or scalar float) - The safety factor (“q”). If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

84 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as q) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single q value at r/a=0.6, t=0.26s:

q_val = Eq_instance.roa2q(0.6, 0.26)

Find q values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

q_arr = Eq_instance.roa2q([0.6, 0.8], 0.26)

Find q values at r/a of 0.6 at times t=[0.2s, 0.3s]:

q_arr = Eq_instance.roa2q(0.6, [0.2, 0.3])

Find q values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

q_arr = Eq_instance.roa2q([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2q(psinorm, t, **kwargs)
Calculates the safety factor (“q”) corresponding to the passed psi_norm (normalized poloidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to q.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of q. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (q, time_idxs), where time_idxs is
the array of time indices actually used in evaluating q with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return q).

Returns

q or (q, time_idxs)

4.1. eqtools package 85

eqtools Documentation, Release 1.1

• q (Array or scalar float) - The safety factor (“q”). If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as q) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single q value for psinorm=0.7, t=0.26s:

q_val = Eq_instance.psinorm2q(0.7, 0.26)

Find q values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

q_arr = Eq_instance.psinorm2q([0.5, 0.7], 0.26)

Find q values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

q_arr = Eq_instance.psinorm2q(0.5, [0.2, 0.3])

Find q values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

q_arr = Eq_instance.psinorm2q([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2q(phinorm, t, **kwargs)
Calculates the safety factor (“q”) corresponding to the passed phinorm (normalized toroidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to q.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of q. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (q, time_idxs), where time_idxs is
the array of time indices actually used in evaluating q with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return q).

86 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Returns

q or (q, time_idxs)

• q (Array or scalar float) - The safety factor (“q”). If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as q) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single q value for phinorm=0.7, t=0.26s:

q_val = Eq_instance.phinorm2q(0.7, 0.26)

Find q values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

q_arr = Eq_instance.phinorm2q([0.5, 0.7], 0.26)

Find q values at phinorm=0.5 at times t=[0.2s, 0.3s]:

q_arr = Eq_instance.phinorm2q(0.5, [0.2, 0.3])

Find q values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

q_arr = Eq_instance.phinorm2q([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2q(volnorm, t, **kwargs)
Calculates the safety factor (“q”) corresponding to the passed volnorm (normalized flux surface volume)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to q.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of q. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

4.1. eqtools package 87

eqtools Documentation, Release 1.1

• return_t (Boolean) – Set to True to return a tuple of (q, time_idxs), where time_idxs is
the array of time indices actually used in evaluating q with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return q).

Returns

q or (q, time_idxs)

• q (Array or scalar float) - The safety factor (“q”). If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as q) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single q value for volnorm=0.7, t=0.26s:

q_val = Eq_instance.volnorm2q(0.7, 0.26)

Find q values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

q_arr = Eq_instance.volnorm2q([0.5, 0.7], 0.26)

Find q values at volnorm=0.5 at times t=[0.2s, 0.3s]:

q_arr = Eq_instance.volnorm2q(0.5, [0.2, 0.3])

Find q values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

q_arr = Eq_instance.volnorm2q([0.6, 0.5], [0.2, 0.3], each_t=False)

rz2F(R, Z, t, **kwargs)
Calculates the flux function 𝐹 = 𝑅𝐵𝜑 at the given (R, Z, t).

By default, EFIT only computes this inside the LCFS.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to F.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to F.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as R unless the make_grid keyword is set. If the make_grid
keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of F. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

88 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (F, time_idxs), where time_idxs
is the array of time indices actually used in evaluating F with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return F).

Returns

F or (F, time_idxs)

• F (Array or scalar float) - The flux function 𝐹 = 𝑅𝐵𝜑. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have
the same shape then F has this shape as well, unless the make_grid keyword was True, in
which case F has shape (len(Z), len(R)).

• time_idxs (Array with same shape as F) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single F value at R=0.6m, Z=0.0m, t=0.26s:

F_val = Eq_instance.rz2F(0.6, 0, 0.26)

Find F values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

F_arr = Eq_instance.rz2F([0.6, 0.8], [0, 0], 0.26)

Find F values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

F_arr = Eq_instance.rz2F(0.6, 0, [0.2, 0.3])

Find F values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

4.1. eqtools package 89

eqtools Documentation, Release 1.1

F_arr = Eq_instance.rz2F([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find F values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

F_mat = Eq_instance.rz2F(R, Z, 0.2, make_grid=True)

rmid2F(R_mid, t, **kwargs)
Calculates the flux function 𝐹 = 𝑅𝐵𝜑 corresponding to the passed R_mid (mapped outboard midplane
major radius) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to F.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of F. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (F, time_idxs), where time_idxs
is the array of time indices actually used in evaluating F with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return F).

Returns

F or (F, time_idxs)

• F (Array or scalar float) - The flux function 𝐹 = 𝑅𝐵𝜑. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

90 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as F) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single F value for Rmid=0.7m, t=0.26s:

F_val = Eq_instance.rmid2F(0.7, 0.26)

Find F values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

F_arr = Eq_instance.rmid2F([0.5, 0.7], 0.26)

Find F values at R_mid=0.5m at times t=[0.2s, 0.3s]:

F_arr = Eq_instance.rmid2F(0.5, [0.2, 0.3])

Find F values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

F_arr = Eq_instance.rmid2F([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2F(roa, t, **kwargs)
Convert the passed (r/a, t) coordinates into the flux function 𝐹 = 𝑅𝐵𝜑.

By default, EFIT only computes this inside the LCFS.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to F.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of F. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (F, time_idxs), where time_idxs
is the array of time indices actually used in evaluating F with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return F).

Returns

F or (F, time_idxs)

• F (Array or scalar float) - The flux function 𝐹 = 𝑅𝐵𝜑. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

4.1. eqtools package 91

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as F) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single F value at r/a=0.6, t=0.26s:

F_val = Eq_instance.roa2F(0.6, 0.26)

Find F values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

F_arr = Eq_instance.roa2F([0.6, 0.8], 0.26)

Find F values at r/a of 0.6 at times t=[0.2s, 0.3s]:

F_arr = Eq_instance.roa2F(0.6, [0.2, 0.3])

Find F values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

F_arr = Eq_instance.roa2F([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2F(psinorm, t, **kwargs)
Calculates the flux function 𝐹 = 𝑅𝐵𝜑 corresponding to the passed psi_norm (normalized poloidal flux)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to F.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of F. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (F, time_idxs), where time_idxs
is the array of time indices actually used in evaluating F with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return F).

Returns

F or (F, time_idxs)

92 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• F (Array or scalar float) - The flux function 𝐹 = 𝑅𝐵𝜑. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as F) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single F value for psinorm=0.7, t=0.26s:

F_val = Eq_instance.psinorm2F(0.7, 0.26)

Find F values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

F_arr = Eq_instance.psinorm2F([0.5, 0.7], 0.26)

Find F values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

F_arr = Eq_instance.psinorm2F(0.5, [0.2, 0.3])

Find F values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

F_arr = Eq_instance.psinorm2F([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2F(phinorm, t, **kwargs)
Calculates the flux function 𝐹 = 𝑅𝐵𝜑 corresponding to the passed phinorm (normalized toroidal flux)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to F.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of F. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (F, time_idxs), where time_idxs
is the array of time indices actually used in evaluating F with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return F).

4.1. eqtools package 93

eqtools Documentation, Release 1.1

Returns

F or (F, time_idxs)

• F (Array or scalar float) - The flux function 𝐹 = 𝑅𝐵𝜑. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as F) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single F value for phinorm=0.7, t=0.26s:

F_val = Eq_instance.phinorm2F(0.7, 0.26)

Find F values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

F_arr = Eq_instance.phinorm2F([0.5, 0.7], 0.26)

Find F values at phinorm=0.5 at times t=[0.2s, 0.3s]:

F_arr = Eq_instance.phinorm2F(0.5, [0.2, 0.3])

Find F values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

F_arr = Eq_instance.phinorm2F([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2F(volnorm, t, **kwargs)
Calculates the flux function 𝐹 = 𝑅𝐵𝜑 corresponding to the passed volnorm (normalized flux surface
volume) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to F.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of F. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

94 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• return_t (Boolean) – Set to True to return a tuple of (F, time_idxs), where time_idxs
is the array of time indices actually used in evaluating F with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return F).

Returns

F or (F, time_idxs)

• F (Array or scalar float) - The flux function 𝐹 = 𝑅𝐵𝜑. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as F) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single F value for volnorm=0.7, t=0.26s:

F_val = Eq_instance.volnorm2F(0.7, 0.26)

Find F values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

F_arr = Eq_instance.volnorm2F([0.5, 0.7], 0.26)

Find F values at volnorm=0.5 at times t=[0.2s, 0.3s]:

F_arr = Eq_instance.volnorm2F(0.5, [0.2, 0.3])

Find F values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

F_arr = Eq_instance.volnorm2F([0.6, 0.5], [0.2, 0.3], each_t=False)

Fnorm2psinorm(F, t, **kwargs)
Calculates the psinorm (normalized poloidal flux) corresponding to the passed normalized flux function
𝐹 = 𝑅𝐵𝜑 values.

This is provided as a convenience method to plot current lines with the correct spacing: current lines
launched from a grid uniformly-spaced in Fnorm will have spacing directly proportional to the magnitude.

By default, EFIT only computes this inside the LCFS. Furthermore, it is truncated at the radius at which is
becomes non-monotonic.

Parameters

• F (Array-like or scalar float) – Values of F to map to psinorm.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of psinorm. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

4.1. eqtools package 95

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in F are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
F or be a scalar. Default is True (evaluate ALL volnorm at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (psinorm, time_idxs), where
time_idxs is the array of time indices actually used in evaluating psinorm with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return psinorm).

Returns

psinorm or (psinorm, time_idxs)

• psinorm (Array or scalar float) - The normalized poloidal flux. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as psinorm) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value for F=0.7, t=0.26s:

psinorm_val = Eq_instance.F2psinorm(0.7, 0.26)

Find psinorm values at F values of 0.5 and 0.7 at the single time t=0.26s:

psinorm_arr = Eq_instance.F2psinorm([0.5, 0.7], 0.26)

Find psinorm values at F=0.5 at times t=[0.2s, 0.3s]:

psinorm_arr = Eq_instance.F2psinorm(0.5, [0.2, 0.3])

Find psinorm values at (F, t) points (0.6, 0.2s) and (0.5, 0.3s):

psinorm_arr = Eq_instance.F2psinorm([0.6, 0.5], [0.2, 0.3], each_t=False)

rz2FFPrime(R, Z, t, **kwargs)
Calculates the flux function 𝐹𝐹 ′ at the given (R, Z, t).

By default, EFIT only computes this inside the LCFS.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
FFPrime. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
FFPrime. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

96 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of FFPrime. Only the square
root of positive values is taken. Negative values are replaced with zeros, consistent with
Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (FFPrime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating FFPrime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return FFPrime).

Returns

FFPrime or (FFPrime, time_idxs)

• FFPrime (Array or scalar float) - The flux function 𝐹𝐹 ′. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have
the same shape then FFPrime has this shape as well, unless the make_grid keyword was
True, in which case FFPrime has shape (len(Z), len(R)).

• time_idxs (Array with same shape as FFPrime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single FFPrime value at R=0.6m, Z=0.0m, t=0.26s:

4.1. eqtools package 97

eqtools Documentation, Release 1.1

FFPrime_val = Eq_instance.rz2FFPrime(0.6, 0, 0.26)

Find FFPrime values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the
Z vector must be fully specified, even if the values are all the same:

FFPrime_arr = Eq_instance.rz2FFPrime([0.6, 0.8], [0, 0], 0.26)

Find FFPrime values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

FFPrime_arr = Eq_instance.rz2FFPrime(0.6, 0, [0.2, 0.3])

Find FFPrime values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

FFPrime_arr = Eq_instance.rz2FFPrime([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find FFPrime values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z at time t=0.2s:

FFPrime_mat = Eq_instance.rz2FFPrime(R, Z, 0.2, make_grid=True)

rmid2FFPrime(R_mid, t, **kwargs)
Calculates the flux function 𝐹𝐹 ′ corresponding to the passed R_mid (mapped outboard midplane major
radius) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to FFPrime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of FFPrime. Only the square
root of positive values is taken. Negative values are replaced with zeros, consistent with
Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

98 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (FFPrime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating FFPrime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return FFPrime).

Returns

FFPrime or (FFPrime, time_idxs)

• FFPrime (Array or scalar float) - The flux function 𝐹𝐹 ′. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as FFPrime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single FFPrime value for Rmid=0.7m, t=0.26s:

FFPrime_val = Eq_instance.rmid2FFPrime(0.7, 0.26)

Find FFPrime values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

FFPrime_arr = Eq_instance.rmid2FFPrime([0.5, 0.7], 0.26)

Find FFPrime values at R_mid=0.5m at times t=[0.2s, 0.3s]:

FFPrime_arr = Eq_instance.rmid2FFPrime(0.5, [0.2, 0.3])

Find FFPrime values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

FFPrime_arr = Eq_instance.rmid2FFPrime([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2FFPrime(roa, t, **kwargs)
Convert the passed (r/a, t) coordinates into the flux function 𝐹𝐹 ′.

By default, EFIT only computes this inside the LCFS.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to FFPrime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of FFPrime. Only the square
root of positive values is taken. Negative values are replaced with zeros, consistent with
Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

4.1. eqtools package 99

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (FFPrime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating FFPrime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return FFPrime).

Returns

FFPrime or (FFPrime, time_idxs)

• FFPrime (Array or scalar float) - The flux function 𝐹𝐹 ′. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as FFPrime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single FFPrime value at r/a=0.6, t=0.26s:

FFPrime_val = Eq_instance.roa2FFPrime(0.6, 0.26)

Find FFPrime values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

FFPrime_arr = Eq_instance.roa2FFPrime([0.6, 0.8], 0.26)

Find FFPrime values at r/a of 0.6 at times t=[0.2s, 0.3s]:

FFPrime_arr = Eq_instance.roa2FFPrime(0.6, [0.2, 0.3])

Find FFPrime values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

FFPrime_arr = Eq_instance.roa2FFPrime([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2FFPrime(psinorm, t, **kwargs)
Calculates the flux function 𝐹𝐹 ′ corresponding to the passed psi_norm (normalized poloidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to FFPrime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

100 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• sqrt (Boolean) – Set to True to return the square root of FFPrime. Only the square
root of positive values is taken. Negative values are replaced with zeros, consistent with
Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (FFPrime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating FFPrime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return FFPrime).

Returns

FFPrime or (FFPrime, time_idxs)

• FFPrime (Array or scalar float) - The flux function 𝐹𝐹 ′. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as FFPrime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single FFPrime value for psinorm=0.7, t=0.26s:

FFPrime_val = Eq_instance.psinorm2FFPrime(0.7, 0.26)

Find FFPrime values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

FFPrime_arr = Eq_instance.psinorm2FFPrime([0.5, 0.7], 0.26)

Find FFPrime values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

FFPrime_arr = Eq_instance.psinorm2FFPrime(0.5, [0.2, 0.3])

Find FFPrime values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

FFPrime_arr = Eq_instance.psinorm2FFPrime([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2FFPrime(phinorm, t, **kwargs)
Calculates the flux function 𝐹𝐹 ′ corresponding to the passed phinorm (normalized toroidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to FFPrime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,

4.1. eqtools package 101

eqtools Documentation, Release 1.1

then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of FFPrime. Only the square
root of positive values is taken. Negative values are replaced with zeros, consistent with
Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (FFPrime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating FFPrime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return FFPrime).

Returns

FFPrime or (FFPrime, time_idxs)

• FFPrime (Array or scalar float) - The flux function 𝐹𝐹 ′. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as FFPrime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single FFPrime value for phinorm=0.7, t=0.26s:

FFPrime_val = Eq_instance.phinorm2FFPrime(0.7, 0.26)

Find FFPrime values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

FFPrime_arr = Eq_instance.phinorm2FFPrime([0.5, 0.7], 0.26)

Find FFPrime values at phinorm=0.5 at times t=[0.2s, 0.3s]:

FFPrime_arr = Eq_instance.phinorm2FFPrime(0.5, [0.2, 0.3])

Find FFPrime values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

FFPrime_arr = Eq_instance.phinorm2FFPrime([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2FFPrime(volnorm, t, **kwargs)
Calculates the flux function 𝐹𝐹 ′ corresponding to the passed volnorm (normalized flux surface volume)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

102 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to FFPrime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of FFPrime. Only the square
root of positive values is taken. Negative values are replaced with zeros, consistent with
Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (FFPrime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating FFPrime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return FFPrime).

Returns

FFPrime or (FFPrime, time_idxs)

• FFPrime (Array or scalar float) - The flux function 𝐹𝐹 ′. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as FFPrime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single FFPrime value for volnorm=0.7, t=0.26s:

FFPrime_val = Eq_instance.volnorm2FFPrime(0.7, 0.26)

Find FFPrime values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

FFPrime_arr = Eq_instance.volnorm2FFPrime([0.5, 0.7], 0.26)

Find FFPrime values at volnorm=0.5 at times t=[0.2s, 0.3s]:

FFPrime_arr = Eq_instance.volnorm2FFPrime(0.5, [0.2, 0.3])

Find FFPrime values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

FFPrime_arr = Eq_instance.volnorm2FFPrime([0.6, 0.5], [0.2, 0.3], each_t=False)

rz2p(R, Z, t, **kwargs)
Calculates the pressure at the given (R, Z, t).

4.1. eqtools package 103

eqtools Documentation, Release 1.1

By default, EFIT only computes this inside the LCFS.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to p.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to p.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as R unless the make_grid keyword is set. If the make_grid
keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of p. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

p or (p, time_idxs)

• p (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have the same
shape then p has this shape as well, unless the make_grid keyword was True, in which
case p has shape (len(Z), len(R)).

104 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as p) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single p value at R=0.6m, Z=0.0m, t=0.26s:

p_val = Eq_instance.rz2p(0.6, 0, 0.26)

Find p values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

p_arr = Eq_instance.rz2p([0.6, 0.8], [0, 0], 0.26)

Find p values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

p_arr = Eq_instance.rz2p(0.6, 0, [0.2, 0.3])

Find p values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

p_arr = Eq_instance.rz2p([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find p values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

p_mat = Eq_instance.rz2p(R, Z, 0.2, make_grid=True)

rmid2p(R_mid, t, **kwargs)
Calculates the pressure corresponding to the passed R_mid (mapped outboard midplane major radius)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to p.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of p. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

4.1. eqtools package 105

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

p or (p, time_idxs)

• p (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as p) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single p value for Rmid=0.7m, t=0.26s:

p_val = Eq_instance.rmid2p(0.7, 0.26)

Find p values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

p_arr = Eq_instance.rmid2p([0.5, 0.7], 0.26)

Find p values at R_mid=0.5m at times t=[0.2s, 0.3s]:

p_arr = Eq_instance.rmid2p(0.5, [0.2, 0.3])

Find p values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

p_arr = Eq_instance.rmid2p([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2p(roa, t, **kwargs)
Convert the passed (r/a, t) coordinates into pressure.

By default, EFIT only computes this inside the LCFS.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to p.

106 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of p. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

p or (p, time_idxs)

• p (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as p) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single p value at r/a=0.6, t=0.26s:

p_val = Eq_instance.roa2p(0.6, 0.26)

Find p values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

p_arr = Eq_instance.roa2p([0.6, 0.8], 0.26)

Find p values at r/a of 0.6 at times t=[0.2s, 0.3s]:

p_arr = Eq_instance.roa2p(0.6, [0.2, 0.3])

Find p values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

p_arr = Eq_instance.roa2p([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2p(psinorm, t, **kwargs)
Calculates the pressure corresponding to the passed psi_norm (normalized poloidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to p.

4.1. eqtools package 107

eqtools Documentation, Release 1.1

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of p. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

p or (p, time_idxs)

• p (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as p) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single p value for psinorm=0.7, t=0.26s:

p_val = Eq_instance.psinorm2p(0.7, 0.26)

Find p values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

p_arr = Eq_instance.psinorm2p([0.5, 0.7], 0.26)

Find p values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

p_arr = Eq_instance.psinorm2p(0.5, [0.2, 0.3])

Find p values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

p_arr = Eq_instance.psinorm2p([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2p(phinorm, t, **kwargs)
Calculates the pressure corresponding to the passed phinorm (normalized toroidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

108 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to p.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of p. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

p or (p, time_idxs)

• p (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as p) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single p value for phinorm=0.7, t=0.26s:

p_val = Eq_instance.phinorm2p(0.7, 0.26)

Find p values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

p_arr = Eq_instance.phinorm2p([0.5, 0.7], 0.26)

Find p values at phinorm=0.5 at times t=[0.2s, 0.3s]:

p_arr = Eq_instance.phinorm2p(0.5, [0.2, 0.3])

Find p values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

p_arr = Eq_instance.phinorm2p([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2p(volnorm, t, **kwargs)
Calculates the pressure corresponding to the passed volnorm (normalized flux surface volume) values.

By default, EFIT only computes this inside the LCFS.

4.1. eqtools package 109

eqtools Documentation, Release 1.1

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to p.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of p. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

p or (p, time_idxs)

• p (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as p) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single p value for volnorm=0.7, t=0.26s:

p_val = Eq_instance.volnorm2p(0.7, 0.26)

Find p values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

p_arr = Eq_instance.volnorm2p([0.5, 0.7], 0.26)

Find p values at volnorm=0.5 at times t=[0.2s, 0.3s]:

p_arr = Eq_instance.volnorm2p(0.5, [0.2, 0.3])

Find p values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

p_arr = Eq_instance.volnorm2p([0.6, 0.5], [0.2, 0.3], each_t=False)

rz2pprime(R, Z, t, **kwargs)
Calculates the pressure gradient at the given (R, Z, t).

110 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

By default, EFIT only computes this inside the LCFS.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
pprime. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
pprime. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of pprime. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (pprime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating pprime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return pprime).

Returns

pprime or (pprime, time_idxs)

• pprime (Array or scalar float) - The pressure gradient. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have

4.1. eqtools package 111

eqtools Documentation, Release 1.1

the same shape then p has this shape as well, unless the make_grid keyword was True, in
which case p has shape (len(Z), len(R)).

• time_idxs (Array with same shape as pprime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single pprime value at R=0.6m, Z=0.0m, t=0.26s:

pprime_val = Eq_instance.rz2pprime(0.6, 0, 0.26)

Find pprime values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

pprime_arr = Eq_instance.rz2pprime([0.6, 0.8], [0, 0], 0.26)

Find pprime values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

pprime_arr = Eq_instance.rz2pprime(0.6, 0, [0.2, 0.3])

Find pprime values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

pprime_arr = Eq_instance.rz2pprime([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find pprime values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z at time t=0.2s:

pprime_mat = Eq_instance.rz2pprime(R, Z, 0.2, make_grid=True)

rmid2pprime(R_mid, t, **kwargs)
Calculates the pressure gradient corresponding to the passed R_mid (mapped outboard midplane major
radius) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to pprime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of pprime. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

112 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (pprime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating pprime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return pprime).

Returns

pprime or (pprime, time_idxs)

• pprime (Array or scalar float) - The pressure gradient. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as pprime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single pprime value for Rmid=0.7m, t=0.26s:

pprime_val = Eq_instance.rmid2pprime(0.7, 0.26)

Find pprime values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

pprime_arr = Eq_instance.rmid2pprime([0.5, 0.7], 0.26)

Find pprime values at R_mid=0.5m at times t=[0.2s, 0.3s]:

pprime_arr = Eq_instance.rmid2pprime(0.5, [0.2, 0.3])

Find pprime values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

pprime_arr = Eq_instance.rmid2pprime([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2pprime(roa, t, **kwargs)
Convert the passed (r/a, t) coordinates into pressure gradient.

By default, EFIT only computes this inside the LCFS.

4.1. eqtools package 113

eqtools Documentation, Release 1.1

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to pprime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of pprime. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (pprime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating pprime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return pprime).

Returns

pprime or (pprime, time_idxs)

• pprime (Array or scalar float) - The pressure gradient. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as pprime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single pprime value at r/a=0.6, t=0.26s:

pprime_val = Eq_instance.roa2pprime(0.6, 0.26)

Find pprime values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

pprime_arr = Eq_instance.roa2pprime([0.6, 0.8], 0.26)

Find pprime values at r/a of 0.6 at times t=[0.2s, 0.3s]:

pprime_arr = Eq_instance.roa2pprime(0.6, [0.2, 0.3])

Find pprime values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

pprime_arr = Eq_instance.roa2pprime([0.6, 0.5], [0.2, 0.3], each_t=False)

114 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

psinorm2pprime(psinorm, t, **kwargs)
Calculates the pressure gradient corresponding to the passed psi_norm (normalized poloidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to pprime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of pprime. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (pprime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating pprime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return pprime).

Returns

pprime or (pprime, time_idxs)

• pprime (Array or scalar float) - The pressure gradient. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as pprime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single pprime value for psinorm=0.7, t=0.26s:

pprime_val = Eq_instance.psinorm2pprime(0.7, 0.26)

Find pprime values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

pprime_arr = Eq_instance.psinorm2pprime([0.5, 0.7], 0.26)

Find pprime values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

4.1. eqtools package 115

eqtools Documentation, Release 1.1

pprime_arr = Eq_instance.psinorm2pprime(0.5, [0.2, 0.3])

Find pprime values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

pprime_arr = Eq_instance.psinorm2pprime([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2pprime(phinorm, t, **kwargs)
Calculates the pressure gradient corresponding to the passed phinorm (normalized toroidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to pprime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of pprime. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (pprime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating pprime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return pprime).

Returns

pprime or (pprime, time_idxs)

• pprime (Array or scalar float) - The pressure gradient. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as pprime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single pprime value for phinorm=0.7, t=0.26s:

pprime_val = Eq_instance.phinorm2pprime(0.7, 0.26)

Find pprime values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

116 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

pprime_arr = Eq_instance.phinorm2pprime([0.5, 0.7], 0.26)

Find pprime values at phinorm=0.5 at times t=[0.2s, 0.3s]:

pprime_arr = Eq_instance.phinorm2pprime(0.5, [0.2, 0.3])

Find pprime values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

pprime_arr = Eq_instance.phinorm2pprime([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2pprime(volnorm, t, **kwargs)
Calculates the pressure gradient corresponding to the passed volnorm (normalized flux surface volume)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to pprime.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of pprime. Only the square root
of positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (pprime, time_idxs), where
time_idxs is the array of time indices actually used in evaluating pprime with nearest-
neighbor interpolation. (This is mostly present as an internal helper.) Default is False
(only return pprime).

Returns

pprime or (pprime, time_idxs)

• pprime (Array or scalar float) - The pressure gradient. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as pprime) - The indices (in
self.getTimeBase()) that were used for nearest-neighbor interpolation. Only
returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

4.1. eqtools package 117

eqtools Documentation, Release 1.1

Find single pprime value for volnorm=0.7, t=0.26s:

pprime_val = Eq_instance.volnorm2pprime(0.7, 0.26)

Find pprime values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

pprime_arr = Eq_instance.volnorm2pprime([0.5, 0.7], 0.26)

Find pprime values at volnorm=0.5 at times t=[0.2s, 0.3s]:

pprime_arr = Eq_instance.volnorm2pprime(0.5, [0.2, 0.3])

Find pprime values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

pprime_arr = Eq_instance.volnorm2pprime([0.6, 0.5], [0.2, 0.3], each_t=False)

rz2v(R, Z, t, **kwargs)
Calculates the flux surface volume at the given (R, Z, t).

By default, EFIT only computes this inside the LCFS.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to v.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to v.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as R unless the make_grid keyword is set. If the make_grid
keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of v. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

118 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (v, time_idxs), where time_idxs is
the array of time indices actually used in evaluating v with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return v).

Returns

v or (v, time_idxs)

• v (Array or scalar float) - The flux surface volume. If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have the
same shape then v has this shape as well, unless the make_grid keyword was True, in
which case v has shape (len(Z), len(R)).

• time_idxs (Array with same shape as v) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single v value at R=0.6m, Z=0.0m, t=0.26s:

v_val = Eq_instance.rz2v(0.6, 0, 0.26)

Find v values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

v_arr = Eq_instance.rz2v([0.6, 0.8], [0, 0], 0.26)

Find v values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

v_arr = Eq_instance.rz2v(0.6, 0, [0.2, 0.3])

Find v values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

v_arr = Eq_instance.rz2v([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find v values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

v_mat = Eq_instance.rz2v(R, Z, 0.2, make_grid=True)

rmid2v(R_mid, t, **kwargs)
Calculates the flux surface volume corresponding to the passed R_mid (mapped outboard midplane major
radius) values.

4.1. eqtools package 119

eqtools Documentation, Release 1.1

By default, EFIT only computes this inside the LCFS.

Parameters

• R_mid (Array-like or scalar float) – Values of the outboard midplane major
radius to map to v.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R_mid. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as R_mid.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of v. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in R_mid are evaluated at each value in
t. If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R_mid or be a scalar. Default is True (evaluate ALL R_mid at EACH element in t).

• length_unit (String or 1) – Length unit that R_mid is given in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (p, time_idxs), where time_idxs is
the array of time indices actually used in evaluating p with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return p).

Returns

v or (v, time_idxs)

• v (Array or scalar float) - The flux surface volume. If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as v) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single v value for Rmid=0.7m, t=0.26s:

120 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

v_val = Eq_instance.rmid2v(0.7, 0.26)

Find v values at R_mid values of 0.5m and 0.7m at the single time t=0.26s:

v_arr = Eq_instance.rmid2v([0.5, 0.7], 0.26)

Find v values at R_mid=0.5m at times t=[0.2s, 0.3s]:

v_arr = Eq_instance.rmid2v(0.5, [0.2, 0.3])

Find v values at (R_mid, t) points (0.6m, 0.2s) and (0.5m, 0.3s):

v_arr = Eq_instance.rmid2v([0.6, 0.5], [0.2, 0.3], each_t=False)

roa2v(roa, t, **kwargs)
Convert the passed (r/a, t) coordinates into flux surface volume.

By default, EFIT only computes this inside the LCFS.

Parameters

• roa (Array-like or scalar float) – Values of the normalized minor radius to
map to v.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of roa. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as roa.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of v. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in roa are evaluated at each value in t. If
True, t must have only one dimension (or be a scalar). If False, t must match the shape of
roa or be a scalar. Default is True (evaluate ALL roa at EACH element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (v, time_idxs), where time_idxs is
the array of time indices actually used in evaluating v with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return v).

Returns

v or (v, time_idxs)

• v (Array or scalar float) - The flux surface volume. If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as v) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single v value at r/a=0.6, t=0.26s:

4.1. eqtools package 121

eqtools Documentation, Release 1.1

v_val = Eq_instance.roa2v(0.6, 0.26)

Find v values at r/a points 0.6 and 0.8 at the single time t=0.26s.:

v_arr = Eq_instance.roa2v([0.6, 0.8], 0.26)

Find v values at r/a of 0.6 at times t=[0.2s, 0.3s]:

v_arr = Eq_instance.roa2v(0.6, [0.2, 0.3])

Find v values at (roa, t) points (0.6, 0.2s) and (0.5, 0.3s):

v_arr = Eq_instance.roa2v([0.6, 0.5], [0.2, 0.3], each_t=False)

psinorm2v(psinorm, t, **kwargs)
Calculates the flux surface volume corresponding to the passed psi_norm (normalized poloidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• psi_norm (Array-like or scalar float) – Values of the normalized poloidal
flux to map to v.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of psi_norm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as psi_norm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of v. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in psi_norm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match
the shape of psi_norm or be a scalar. Default is True (evaluate ALL psi_norm at EACH
element in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (v, time_idxs), where time_idxs is
the array of time indices actually used in evaluating v with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return v).

Returns

v or (v, time_idxs)

• v (Array or scalar float) - The pressure. If all of the input arguments are scalar, then a
scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as v) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

122 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Find single v value for psinorm=0.7, t=0.26s:

v_val = Eq_instance.psinorm2v(0.7, 0.26)

Find v values at psi_norm values of 0.5 and 0.7 at the single time t=0.26s:

v_arr = Eq_instance.psinorm2v([0.5, 0.7], 0.26)

Find v values at psi_norm=0.5 at times t=[0.2s, 0.3s]:

v_arr = Eq_instance.psinorm2v(0.5, [0.2, 0.3])

Find v values at (psinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

v_arr = Eq_instance.psinorm2v([0.6, 0.5], [0.2, 0.3], each_t=False)

phinorm2v(phinorm, t, **kwargs)
Calculates the flux surface volume corresponding to the passed phinorm (normalized toroidal flux) values.

By default, EFIT only computes this inside the LCFS.

Parameters

• phinorm (Array-like or scalar float) – Values of the normalized toroidal
flux to map to v.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of phinorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as phinorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of v. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in phinorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of phinorm or be a scalar. Default is True (evaluate ALL phinorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (v, time_idxs), where time_idxs is
the array of time indices actually used in evaluating v with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return v).

Returns

v or (v, time_idxs)

• v (Array or scalar float) - The flux surface volume. If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

• time_idxs (Array with same shape as v) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

4.1. eqtools package 123

eqtools Documentation, Release 1.1

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single v value for phinorm=0.7, t=0.26s:

v_val = Eq_instance.phinorm2v(0.7, 0.26)

Find v values at phinorm values of 0.5 and 0.7 at the single time t=0.26s:

v_arr = Eq_instance.phinorm2v([0.5, 0.7], 0.26)

Find v values at phinorm=0.5 at times t=[0.2s, 0.3s]:

v_arr = Eq_instance.phinorm2v(0.5, [0.2, 0.3])

Find v values at (phinorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

v_arr = Eq_instance.phinorm2v([0.6, 0.5], [0.2, 0.3], each_t=False)

volnorm2v(volnorm, t, **kwargs)
Calculates the flux surface volume corresponding to the passed volnorm (normalized flux surface volume)
values.

By default, EFIT only computes this inside the LCFS.

Parameters

• volnorm (Array-like or scalar float) – Values of the normalized flux sur-
face volume to map to v.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of volnorm. If the each_t keyword is True,
then t must be scalar or have exactly one dimension. If the each_t keyword is False, t must
have the same shape as volnorm.

Keyword Arguments

• sqrt (Boolean) – Set to True to return the square root of v. Only the square root of
positive values is taken. Negative values are replaced with zeros, consistent with Steve
Wolfe’s IDL implementation efit_rz2rho.pro. Default is False.

• each_t (Boolean) – When True, the elements in volnorm are evaluated at each value
in t. If True, t must have only one dimension (or be a scalar). If False, t must match the
shape of volnorm or be a scalar. Default is True (evaluate ALL volnorm at EACH element
in t).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• return_t (Boolean) – Set to True to return a tuple of (v, time_idxs), where time_idxs is
the array of time indices actually used in evaluating v with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return v).

Returns

v or (v, time_idxs)

• v (Array or scalar float) - The flux surface volume. If all of the input arguments are scalar,
then a scalar is returned. Otherwise, a scipy Array is returned.

124 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as v) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single v value for volnorm=0.7, t=0.26s:

v_val = Eq_instance.volnorm2p(0.7, 0.26)

Find v values at volnorm values of 0.5 and 0.7 at the single time t=0.26s:

v_arr = Eq_instance.volnorm2v([0.5, 0.7], 0.26)

Find v values at volnorm=0.5 at times t=[0.2s, 0.3s]:

v_arr = Eq_instance.volnorm2v(0.5, [0.2, 0.3])

Find v values at (volnorm, t) points (0.6, 0.2s) and (0.5, 0.3s):

v_arr = Eq_instance.volnorm2v([0.6, 0.5], [0.2, 0.3], each_t=False)

rz2BR(R, Z, t, return_t=False, make_grid=False, each_t=True, length_unit=1)
Calculates the major radial component of the magnetic field at the given (R, Z, t) coordinates.

Uses

𝐵𝑅 = − 1

𝑅

𝜕𝜓

𝜕𝑍

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
radial field. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as Z unless the make_grid keyword is set. If the
make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
radial field. If R and Z are both scalar values, they are used as the coordinate pair for all of
the values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

4.1. eqtools package 125

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (BR, time_idxs), where time_idxs
is the array of time indices actually used in evaluating BR with nearest-neighbor interpo-
lation. (This is mostly present as an internal helper.) Default is False (only return BR).

Returns

BR or (BR, time_idxs)

• BR (Array or scalar float) - The major radial component of the magnetic field. If all of the
input arguments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.
If R and Z both have the same shape then BR has this shape as well, unless the make_grid
keyword was True, in which case BR has shape (len(Z), len(R)).

• time_idxs (Array with same shape as BR) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single BR value at R=0.6m, Z=0.0m, t=0.26s:

BR_val = Eq_instance.rz2BR(0.6, 0, 0.26)

Find BR values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

BR_arr = Eq_instance.rz2BR([0.6, 0.8], [0, 0], 0.26)

Find BR values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

BR_arr = Eq_instance.rz2BR(0.6, 0, [0.2, 0.3])

Find BR values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

BR_arr = Eq_instance.rz2BR([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find BR values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

BR_mat = Eq_instance.rz2BR(R, Z, 0.2, make_grid=True)

rz2BZ(R, Z, t, return_t=False, make_grid=False, each_t=True, length_unit=1)
Calculates the vertical component of the magnetic field at the given (R, Z, t) coordinates.

126 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Uses

𝐵𝑍 =
1

𝑅

𝜕𝜓

𝜕𝑅

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
vertical field. If R and Z are both scalar values, they are used as the coordinate pair for all
of the values in t. Must have the same shape as Z unless the make_grid keyword is set. If
the make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
vertical field. If R and Z are both scalar values, they are used as the coordinate pair for all
of the values in t. Must have the same shape as R unless the make_grid keyword is set. If
the make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (BZ, time_idxs), where time_idxs
is the array of time indices actually used in evaluating BZ with nearest-neighbor interpo-
lation. (This is mostly present as an internal helper.) Default is False (only return BZ).

Returns

BZ or (BZ, time_idxs)

• BZ (Array or scalar float) - The vertical component of the magnetic field. If all of the
input arguments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.
If R and Z both have the same shape then BZ has this shape as well, unless the make_grid
keyword was True, in which case BZ has shape (len(Z), len(R)).

4.1. eqtools package 127

eqtools Documentation, Release 1.1

• time_idxs (Array with same shape as BZ) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single BZ value at R=0.6m, Z=0.0m, t=0.26s:

BZ_val = Eq_instance.rz2BZ(0.6, 0, 0.26)

Find BZ values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

BZ_arr = Eq_instance.rz2BZ([0.6, 0.8], [0, 0], 0.26)

Find BZ values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

BZ_arr = Eq_instance.rz2BZ(0.6, 0, [0.2, 0.3])

Find BZ values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

BZ_arr = Eq_instance.rz2BZ([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find BZ values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

BZ_mat = Eq_instance.rz2BZ(R, Z, 0.2, make_grid=True)

rz2BT(R, Z, t, **kwargs)
Calculates the toroidal component of the magnetic field at the given (R, Z, t).

Uses 𝐵𝜑 = 𝐹/𝑅.

By default, EFIT only computes this inside the LCFS. To approximate the field outside of the LCFS,
𝐵𝜑 ≈ 𝐵𝑡,𝑣𝑎𝑐𝑅0/𝑅 is used, where 𝐵𝑡,𝑣𝑎𝑐 is obtained with getBtVac() and 𝑅0 is the major radius of
the magnetic axis obtained from getMagR().

The coordinate system used is right-handed, such that “forward” field on Alcator C-Mod (clockwise when
seen from above) has negative BT.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to BT.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
BT. If R and Z are both scalar values, they are used as the coordinate pair for all of the
values in t. Must have the same shape as R unless the make_grid keyword is set. If the
make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

128 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (BT, time_idxs), where time_idxs
is the array of time indices actually used in evaluating BT with nearest-neighbor interpo-
lation. (This is mostly present as an internal helper.) Default is False (only return BT).

Returns

BT or (BT, time_idxs)

• BT (Array or scalar float) - The toroidal magnetic field. If all of the input arguments are
scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both have
the same shape then BT has this shape as well, unless the make_grid keyword was True,
in which case BT has shape (len(Z), len(R)).

• time_idxs (Array with same shape as BT) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single BT value at R=0.6m, Z=0.0m, t=0.26s:

BT_val = Eq_instance.rz2BT(0.6, 0, 0.26)

Find BT values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z
vector must be fully specified, even if the values are all the same:

BT_arr = Eq_instance.rz2BT([0.6, 0.8], [0, 0], 0.26)

Find BT values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

BT_arr = Eq_instance.rz2BT(0.6, 0, [0.2, 0.3])

Find BT values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

4.1. eqtools package 129

eqtools Documentation, Release 1.1

BT_arr = Eq_instance.rz2BT([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find BT values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

BT_mat = Eq_instance.rz2BT(R, Z, 0.2, make_grid=True)

rz2B(R, Z, t, **kwargs)
Calculates the magnitude of the magnetic field at the given (R, Z, t).

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to B.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as Z unless the make_grid keyword is set. If the make_grid
keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to B.
If R and Z are both scalar values, they are used as the coordinate pair for all of the values
in t. Must have the same shape as R unless the make_grid keyword is set. If the make_grid
keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (B, time_idxs), where time_idxs
is the array of time indices actually used in evaluating B with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return B).

Returns

B or (B, time_idxs)

130 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• B (Array or scalar float) - The magnitude of the magnetic field. If all of the input argu-
ments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and
Z both have the same shape then B has this shape as well, unless the make_grid keyword
was True, in which case B has shape (len(Z), len(R)).

• time_idxs (Array with same shape as B) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single B value at R=0.6m, Z=0.0m, t=0.26s:

B_val = Eq_instance.rz2B(0.6, 0, 0.26)

Find B values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

B_arr = Eq_instance.rz2B([0.6, 0.8], [0, 0], 0.26)

Find B values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

B_arr = Eq_instance.rz2B(0.6, 0, [0.2, 0.3])

Find B values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

B_arr = Eq_instance.rz2B([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find B values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

B_mat = Eq_instance.rz2B(R, Z, 0.2, make_grid=True)

rz2jR(R, Z, t, **kwargs)
Calculates the major radial component of the current density at the given (R, Z, t) coordinates.

𝑗𝑅 = − 1

𝜇0𝑅
𝐹 ′ 𝜕𝜓

𝜕𝑍
=
𝐹 ′𝐵𝑅

𝜇0

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
radial current density. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as Z unless the make_grid keyword
is set. If the make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
radial current density. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as R unless the make_grid keyword
is set. If the make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

4.1. eqtools package 131

eqtools Documentation, Release 1.1

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (jR, time_idxs), where time_idxs
is the array of time indices actually used in evaluating jR with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return jR).

Returns

jR or (jR, time_idxs)

• jR (Array or scalar float) - The major radial component of the current density. If all of the
input arguments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.
If R and Z both have the same shape then jR has this shape as well, unless the make_grid
keyword was True, in which case jR has shape (len(Z), len(R)).

• time_idxs (Array with same shape as jR) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single jR value at R=0.6m, Z=0.0m, t=0.26s:

jR_val = Eq_instance.rz2jR(0.6, 0, 0.26)

Find jR values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

jR_arr = Eq_instance.rz2jR([0.6, 0.8], [0, 0], 0.26)

Find jR values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

jR_arr = Eq_instance.rz2jR(0.6, 0, [0.2, 0.3])

Find jR values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

132 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

jR_arr = Eq_instance.rz2jR([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find jR values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

jR_mat = Eq_instance.rz2jR(R, Z, 0.2, make_grid=True)

rz2jZ(R, Z, t, **kwargs)
Calculates the vertical component of the current density at the given (R, Z, t) coordinates.

Uses

𝑗𝑍 =
1

𝜇0𝑅
𝐹 ′ 𝜕𝜓

𝜕𝑅
=
𝐹 ′𝐵𝑍

𝜇0

Note that this function includes a factor of -1 to correct the FF’ from Alcator C-Mod’s EFIT implementa-
tion. You should check the sign of your data.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
vertical current density. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as Z unless the make_grid keyword
is set. If the make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
vertical current density. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as R unless the make_grid keyword
is set. If the make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

4.1. eqtools package 133

eqtools Documentation, Release 1.1

• return_t (Boolean) – Set to True to return a tuple of (jZ, time_idxs), where time_idxs
is the array of time indices actually used in evaluating jZ with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return jZ).

Returns

jZ or (jZ, time_idxs)

• jZ (Array or scalar float) - The vertical component of the current density. If all of the
input arguments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.
If R and Z both have the same shape then jZ has this shape as well, unless the make_grid
keyword was True, in which case jZ has shape (len(Z), len(R)).

• time_idxs (Array with same shape as jZ) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single jZ value at R=0.6m, Z=0.0m, t=0.26s:

jZ_val = Eq_instance.rz2jZ(0.6, 0, 0.26)

Find jZ values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

jZ_arr = Eq_instance.rz2jZ([0.6, 0.8], [0, 0], 0.26)

Find jZ values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

jZ_arr = Eq_instance.rz2jZ(0.6, 0, [0.2, 0.3])

Find jZ values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

jZ_arr = Eq_instance.rz2jZ([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find jZ values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

jZ_mat = Eq_instance.rz2jZ(R, Z, 0.2, make_grid=True)

rz2jT(R, Z, t, **kwargs)
Calculates the toroidal component of the current density at the given (R, Z, t) coordinates.

Uses

𝑗𝜑 = 𝑅𝑝′ +
𝐹𝐹 ′

𝜇0𝑅

The coordinate system used is right-handed, such that “forward” field on Alcator C-Mod (clockwise when
seen from above) has negative jT.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
toroidal current density. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as Z unless the make_grid keyword
is set. If the make_grid keyword is True, R must have exactly one dimension.

134 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
toroidal current density. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as R unless the make_grid keyword
is set. If the make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (jT, time_idxs), where time_idxs
is the array of time indices actually used in evaluating jT with nearest-neighbor interpola-
tion. (This is mostly present as an internal helper.) Default is False (only return jT).

Returns

jT or (jT, time_idxs)

• jT (Array or scalar float) - The major radial component of the current density. If all of the
input arguments are scalar, then a scalar is returned. Otherwise, a scipy Array is returned.
If R and Z both have the same shape then jT has this shape as well, unless the make_grid
keyword was True, in which case jT has shape (len(Z), len(R)).

• time_idxs (Array with same shape as jT) - The indices (in self.getTimeBase())
that were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single jT value at R=0.6m, Z=0.0m, t=0.26s:

4.1. eqtools package 135

eqtools Documentation, Release 1.1

jT_val = Eq_instance.rz2jT(0.6, 0, 0.26)

Find jT values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

jT_arr = Eq_instance.rz2jT([0.6, 0.8], [0, 0], 0.26)

Find jT values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

jT_arr = Eq_instance.rz2jT(0.6, 0, [0.2, 0.3])

Find jT values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

jT_arr = Eq_instance.rz2jT([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find jT values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

jT_mat = Eq_instance.rz2jT(R, Z, 0.2, make_grid=True)

rz2j(R, Z, t, **kwargs)
Calculates the magnitude of the current density at the given (R, Z, t) coordinates.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
current density magnitude. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as Z unless the make_grid keyword
is set. If the make_grid keyword is True, R must have exactly one dimension.

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
current density magnitude. If R and Z are both scalar values, they are used as the coordinate
pair for all of the values in t. Must have the same shape as R unless the make_grid keyword
is set. If the make_grid keyword is True, Z must have exactly one dimension.

• t (Array-like or scalar float) – Times to perform the conversion at. If t is a
single value, it is used for all of the elements of R, Z. If the each_t keyword is True, then t
must be scalar or have exactly one dimension. If the each_t keyword is False, t must have
the same shape as R and Z (or their meshgrid if make_grid is True).

Keyword Arguments

• each_t (Boolean) – When True, the elements in R, Z are evaluated at each value in t.
If True, t must have only one dimension (or be a scalar). If False, t must match the shape
of R and Z or be a scalar. Default is True (evaluate ALL R, Z at EACH element in t).

• make_grid (Boolean) – Set to True to pass R and Z through scipy.meshgrid()
before evaluating. If this is set to True, R and Z must each only have a single dimension,
but can have different lengths. Default is False (do not form meshgrid).

• length_unit (String or 1) – Length unit that R, Z are given in. If a string is given,
it must be a valid unit specifier:

136 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (use meters).

• return_t (Boolean) – Set to True to return a tuple of (j, time_idxs), where time_idxs is
the array of time indices actually used in evaluating j with nearest-neighbor interpolation.
(This is mostly present as an internal helper.) Default is False (only return j).

Returns

j or (j, time_idxs)

• j (Array or scalar float) - The magnitude of the current density. If all of the input arguments
are scalar, then a scalar is returned. Otherwise, a scipy Array is returned. If R and Z both
have the same shape then j has this shape as well, unless the make_grid keyword was True,
in which case j has shape (len(Z), len(R)).

• time_idxs (Array with same shape as j) - The indices (in self.getTimeBase()) that
were used for nearest-neighbor interpolation. Only returned if return_t is True.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single j value at R=0.6m, Z=0.0m, t=0.26s:

j_val = Eq_instance.rz2j(0.6, 0, 0.26)

Find j values at (R, Z) points (0.6m, 0m) and (0.8m, 0m) at the single time t=0.26s. Note that the Z vector
must be fully specified, even if the values are all the same:

j_arr = Eq_instance.rz2j([0.6, 0.8], [0, 0], 0.26)

Find j values at (R, Z) points (0.6m, 0m) at times t=[0.2s, 0.3s]:

j_arr = Eq_instance.rz2j(0.6, 0, [0.2, 0.3])

Find j values at (R, Z, t) points (0.6m, 0m, 0.2s) and (0.5m, 0.2m, 0.3s):

j_arr = Eq_instance.rz2j([0.6, 0.5], [0, 0.2], [0.2, 0.3], each_t=False)

Find j values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z at
time t=0.2s:

j_mat = Eq_instance.rz2j(R, Z, 0.2, make_grid=True)

rz2FieldLineTrace(R0, Z0, t, phi0=0.0, field=’B’, num_rev=1.0, rev_method=’toroidal’,
dphi=0.06283185307179587, integrator=’dopri5’)

Trace a field line starting from a given (R, phi, Z) point.

4.1. eqtools package 137

eqtools Documentation, Release 1.1

Parameters

• R0 (float) – Major radial coordinate of starting point.

• Z0 (float) – Vertical coordinate of starting point.

• t (float) – Time to trace field line at.

Keyword Arguments

• phi0 (float) – Toroidal angle of starting point in radians. Default is 0.0.

• field ({’B’, ’j’}) – The field to use. Can be magnetic field (‘B’) or current density
(‘j’). Default is ‘B’ (magnetic field).

• num_rev (float) – The number of revolutions to trace the field line through. Whether
this refers to toroidal or poloidal revolutions is determined by the rev_method keyword.
Default is 1.0.

• rev_method (’toroidal’, ’poloidal’) – Whether num_rev refers to the num-
ber of toroidal or poloidal revolutions the field line should make. Note that ‘poloidal’ only
makes sense for close field lines. Default is ‘toroidal’.

• dphi (float) – Toroidal step size, in radians. Default is 0.02*pi. The number of steps
taken is then 2*pi times the number of toroidal rotations divided by dphi. This can be
negative to trace a field line clockwise instead of counterclockwise.

• integrator (str) – The integrator to use with scipy.integrate.ode. De-
fault is ‘dopri5’ (explicit Dormand-Prince of order (4)5). Can also be an instance of
scipy.integrate.ode for which the integrator and its options has been set.

Returns Containing the (R, Z, phi) coordinates.

Return type array, (nsteps + 1, 3)

rho2FieldLineTrace(rho, t, origin=’psinorm’, **kwargs)
Trace a field line starting from a given normalized coordinate point.

The field line is started at the outboard midplane.

Parameters

• rho (float) – Flux surface label of starting point.

• t (float) – Time to trace field line at.

Keyword Arguments

• origin ({’psinorm’, ’phinorm’, ’volnorm’, ’r/a’, ’Rmid’,
’Fnorm’}) – The flux surface coordinates which rhovals is given in. Default is
‘psinorm’.

• phi0 (float) – Toroidal angle of starting point in radians. Default is 0.0.

• field ({’B’, ’j’}) – The field to use. Can be magnetic field (‘B’) or current density
(‘j’). Default is ‘B’ (magnetic field).

• num_rev (float) – The number of revolutions to trace the field line through. Whether
this refers to toroidal or poloidal revolutions is determined by the rev_method keyword.
Default is 1.0.

• rev_method (’toroidal’, ’poloidal’) – Whether num_rev refers to the num-
ber of toroidal or poloidal revolutions the field line should make. Note that ‘poloidal’ only
makes sense for close field lines. Default is ‘toroidal’.

138 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• dphi (float) – Toroidal step size, in radians. Default is 0.02*pi. The number of steps
taken is then 2*pi times the number of toroidal rotations divided by dphi. This can be
negative to trace a field line clockwise instead of counterclockwise.

• integrator (str) – The integrator to use with scipy.integrate.ode. De-
fault is ‘dopri5’ (explicit Dormand-Prince of order (4)5). Can also be an instance of
scipy.integrate.ode for which the integrator and its options has been set.

Returns Containing the (R, Z, phi) coordinates.

Return type array, (nsteps + 1, 3)

plotField(t, rhovals=6, rhomin=0.05, rhomax=0.95, color=’b’, cmap=’plasma’, alpha=0.5, ar-
rows=True, linewidth=1.0, arrowlinewidth=3.0, a=None, **kwargs)

Plot the field lines starting from a number of points.

The field lines are started at the outboard midplane.

If uniformly-spaced psinorm points are used, the spacing of the magnetic field lines will be directly pro-
portional to the field strength, assuming a sufficient number of revolutions is traced.

Parameters t (float) – Time to trace field line at.

Keyword Arguments

• rhovals (int or array of int) – The number of uniformly-spaced rho points
between rhomin and rhomax to use, or an explicit grid of rho points to use. Default is 6.

• rhomin (float) – The minimum value of rho to use when using a uniformly-spaced
grid. Default is 0.05.

• rhomax (float) – The maximum value of rho to use when using a uniformly-spaced
grid. Default is 0.95.

• color (str) – The color to plot the field lines in. Default is ‘b’. If set to ‘sequential’,
each field line will be a different color, in the sequence matplotlib assigns them. If set to
‘magnitude’, the coloring will be proportional to the magnitude of the field. Note that this
is very time-consuming, as the limitations of matplotlib mean that each line segment must
be plotted individually.

• cmap (str) – The colormap to use when color is ‘magnitude’. Default is ‘plasma’, a
perceptually uniform sequential colormap.

• alpha (float) – The transparency to plot the field lines with. Default is 0.5.

• arrows (bool) – If True, an arrowhead indicating the field direction will be drawn at
the start of each field line. Default is True.

• linewidth (float) – The line width to use when plotting the field lines. Default is
1.0.

• arrowlinewidth (float) – The line width to use when plotting the arrows. Default
is 3.0

• a (matplotlib.axes._subplots.Axes3DSubplot) – The axes to plot the field
lines on. Default is to make a new figure. Note that a colorbar will be drawn when color
is magnitude, but only if a is not provided.

• origin ({’psinorm’, ’phinorm’, ’volnorm’, ’r/a’, ’Rmid’,
’Fnorm’}) – The flux surface coordinates which rhovals is given in. Default is
‘psinorm’.

• phi0 (float) – Toroidal angle of starting point in radians. Default is 0.0.

4.1. eqtools package 139

eqtools Documentation, Release 1.1

• field ({’B’, ’j’}) – The field to use. Can be magnetic field (‘B’) or current density
(‘j’). Default is ‘B’ (magnetic field).

• num_rev (float) – The number of revolutions to trace the field line through. Whether
this refers to toroidal or poloidal revolutions is determined by the rev_method keyword.
Default is 1.0.

• rev_method (’toroidal’, ’poloidal’) – Whether num_rev refers to the num-
ber of toroidal or poloidal revolutions the field line should make. Note that ‘poloidal’ only
makes sense for close field lines. Default is ‘toroidal’.

• dphi (float) – Toroidal step size, in radians. Default is 0.02*pi. The number of steps
taken is then 2*pi times the number of toroidal rotations divided by dphi. This can be
negative to trace a field line clockwise instead of counterclockwise.

• integrator (str) – The integrator to use with scipy.integrate.ode. De-
fault is ‘dopri5’ (explicit Dormand-Prince of order (4)5). Can also be an instance of
scipy.integrate.ode for which the integrator and its options has been set.

Returns The figure and axis which the field lines were plotted in.

Return type (figure, axis)

getMagRSpline(length_unit=1, kind=’nearest’)
Gets the univariate spline to interpolate R_mag as a function of time.

Only used if the instance was created with keyword tspline=True.

Keyword Arguments

• length_unit (String or 1) – Length unit that R_mag is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (R_out returned in
meters).

• kind (String or non-negative int) – Specifies the type of interpola-
tion to be performed in getting from t to R_mag. This is passed to
scipy.interpolate.interp1d. Valid options are: ‘linear’, ‘nearest’, ‘zero’, ‘slin-
ear’, ‘quadratic’, ‘cubic’ If this keyword is an integer, it specifies the order of spline to use.
See the documentation for interp1d for more details. Default value is ‘cubic’ (3rd order
spline interpolation) when trispline is True, ‘nearest’ otherwise.

Returns scipy.interpolate.interp1d to convert from t to R_mid.

getMagZSpline(length_unit=1, kind=’nearest’)
Gets the univariate spline to interpolate Z_mag as a function of time.

Generated for completeness of the core position calculation when using tspline = True

Keyword Arguments

140 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• length_unit (String or 1) – Length unit that R_mag is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (R_out returned in
meters).

• kind (String or non-negative int) – Specifies the type of interpola-
tion to be performed in getting from t to Z_mag. This is passed to
scipy.interpolate.interp1d. Valid options are: ‘linear’, ‘nearest’, ‘zero’, ‘slin-
ear’, ‘quadratic’, ‘cubic’ If this keyword is an integer, it specifies the order of spline to use.
See the documentation for interp1d for more details. Default value is ‘cubic’ (3rd order
spline interpolation) when trispline is True, ‘nearest’ otherwise.

Returns scipy.interpolate.interp1d to convert from t to R_mid.

getRmidOutSpline(length_unit=1, kind=’nearest’)
Gets the univariate spline to interpolate R_mid_out as a function of time.

Generated for completeness of the core position calculation when using tspline = True

Keyword Arguments

• length_unit (String or 1) – Length unit that R_mag is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (R_out returned in
meters).

• kind (String or non-negative int) – Specifies the type of interpola-
tion to be performed in getting from t to R_mid_out. This is passed to
scipy.interpolate.interp1d. Valid options are: ‘linear’, ‘nearest’, ‘zero’, ‘slin-
ear’, ‘quadratic’, ‘cubic’ If this keyword is an integer, it specifies the order of spline to use.
See the documentation for interp1d for more details. Default value is ‘cubic’ (3rd order
spline interpolation) when trispline is True, ‘nearest’ otherwise.

Returns scipy.interpolate.interp1d to convert from t to R_mid.

4.1. eqtools package 141

eqtools Documentation, Release 1.1

getAOutSpline(length_unit=1, kind=’nearest’)
Gets the univariate spline to interpolate a_out as a function of time.

Keyword Arguments

• length_unit (String or 1) – Length unit that a_out is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (a_out returned in
meters).

• kind (String or non-negative int) – Specifies the type of interpo-
lation to be performed in getting from t to a_out. This is passed to
scipy.interpolate.interp1d. Valid options are: ‘linear’, ‘nearest’, ‘zero’, ‘slin-
ear’, ‘quadratic’, ‘cubic’ If this keyword is an integer, it specifies the order of spline to use.
See the documentation for interp1d for more details. Default value is ‘cubic’ (3rd order
spline interpolation) when trispline is True, ‘nearest’ otherwise.

Returns scipy.interpolate.interp1d to convert from t to a_out.

getBtVacSpline(kind=’nearest’)
Gets the univariate spline to interpolate BtVac as a function of time.

Only used if the instance was created with keyword tspline=True.

Keyword Arguments kind (String or non-negative int) – Specifies the type
of interpolation to be performed in getting from t to BtVac. This is passed to
scipy.interpolate.interp1d. Valid options are: ‘linear’, ‘nearest’, ‘zero’, ‘slin-
ear’, ‘quadratic’, ‘cubic’ If this keyword is an integer, it specifies the order of spline to use.
See the documentation for interp1d for more details. Default value is ‘cubic’ (3rd order
spline interpolation) when trispline is True, ‘nearest’ otherwise.

Returns scipy.interpolate.interp1d to convert from t to BtVac.

getInfo()
Abstract method. See child classes for implementation.

Returns namedtuple of instance parameters (shot, equilibrium type, size, timebase, etc.)

getTimeBase()
Abstract method. See child classes for implementation.

Returns timebase array [t]

getFluxGrid()
Abstract method. See child classes for implementation.

returns 3D grid of psi(r,z,t)

The array returned should have the following dimensions: First dimension: time Second dimen-
sion: Z Third dimension: R

142 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getRGrid()
Abstract method. See child classes for implementation.

Returns vector of R-values for psiRZ grid [r]

getZGrid()
Abstract method. See child classes for implementation.

Returns vector of Z-values for psiRZ grid [z]

getFluxAxis()
Abstract method. See child classes for implementation.

Returns psi at magnetic axis [t]

getFluxLCFS()
Abstract method. See child classes for implementation.

Returns psi a separatrix [t]

getRLCFS()
Abstract method. See child classes for implementation.

Returns R-positions (n points) mapping LCFS [t,n]

getZLCFS()
Abstract method. See child classes for implementation.

Returns Z-positions (n points) mapping LCFS [t,n]

remapLCFS()
Abstract method. See child classes for implementation.

Overwrites stored R,Z positions of LCFS with explicitly calculated psinorm=1 surface. This surface is
then masked using core.inPolygon() to only draw within vacuum vessel, the end result replacing RLCFS,
ZLCFS with an R,Z array showing the divertor legs of the flux surface in addition to the core-enclosing
closed flux surface.

getFluxVol()
Abstract method. See child classes for implementation.

Returns volume contained within flux surface as function of psi [psi,t]. Psi assumed to be evenly-spaced
grid on [0,1]

getVolLCFS()
Abstract method. See child classes for implementation.

Returns plasma volume within LCFS [t]

getRmidPsi()
Abstract method. See child classes for implementation.

Returns outboard-midplane major radius of flux surface [t,psi]

getF()
Abstract method. See child classes for implementation.

Returns F=RB_{Phi}(Psi), often calculated for grad-shafranov solutions [psi,t]

getFluxPres()
Abstract method. See child classes for implementation.

Returns calculated pressure profile [psi,t]. Psi assumed to be evenly-spaced grid on [0,1]

4.1. eqtools package 143

eqtools Documentation, Release 1.1

getFFPrime()
Abstract method. See child classes for implementation.

Returns FF’ function used for grad-shafranov solutions [psi,t]

getPPrime()
Abstract method. See child classes for implementation.

Returns plasma pressure gradient as a function of psi [psi,t]

getElongation()
Abstract method. See child classes for implementation.

Returns LCFS elongation [t]

getUpperTriangularity()
Abstract method. See child classes for implementation.

Returns LCFS upper triangularity [t]

getLowerTriangularity()
Abstract method. See child classes for implementation.

Returns LCFS lower triangularity [t]

getShaping()
Abstract method. See child classes for implementation.

Returns dimensionless shaping parameters for plasma. Namedtuple containing {LCFS elongation, LCFS
upper/lower triangularity}

getMagR()
Abstract method. See child classes for implementation.

Returns magnetic-axis major radius [t]

getMagZ()
Abstract method. See child classes for implementation.

Returns magnetic-axis Z [t]

getAreaLCFS()
Abstract method. See child classes for implementation.

Returns LCFS surface area [t]

getAOut()
Abstract method. See child classes for implementation.

Returns outboard-midplane minor radius [t]

getRmidOut()
Abstract method. See child classes for implementation.

Returns outboard-midplane major radius [t]

getGeometry()
Abstract method. See child classes for implementation.

Returns dimensional geometry parameters Namedtuple containing {mag axis R,Z, LCFS area, volume,
outboard-midplane major radius}

getQProfile()
Abstract method. See child classes for implementation.

Returns safety factor q profile [psi,t] Psi assumed to be evenly-spaced grid on [0,1]

144 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getQ0()
Abstract method. See child classes for implementation.

Returns q on magnetic axis [t]

getQ95()
Abstract method. See child classes for implementation.

Returns q on 95% flux surface [t]

getQLCFS()
Abstract method. See child classes for implementation.

Returns q on LCFS [t]

getQ1Surf()
Abstract method. See child classes for implementation.

Returns outboard-midplane minor radius of q=1 surface [t]

getQ2Surf()
Abstract method. See child classes for implementation.

Returns outboard-midplane minor radius of q=2 surface [t]

getQ3Surf()
Abstract method. See child classes for implementation.

Returns outboard-midplane minor radius of q=3 surface [t]

getQs()
Abstract method. See child classes for implementation.

Returns specific q-profile values. Namedtuple containing {q0, q95, qLCFS, minor radius of q=1,2,3 sur-
faces}

getBtVac()
Abstract method. See child classes for implementation.

Returns vacuum on-axis toroidal field [t]

getBtPla()
Abstract method. See child classes for implementation.

Returns plasma on-axis toroidal field [t]

getBpAvg()
Abstract method. See child classes for implementation.

Returns average poloidal field [t]

getFields()
Abstract method. See child classes for implementation.

Returns magnetic-field values. Namedtuple containing {Btor on magnetic axis (plasma and vacuum), avg
Bpol}

getIpCalc()
Abstract method. See child classes for implementation.

Returns calculated plasma current [t]

getIpMeas()
Abstract method. See child classes for implementation.

Returns measured plasma current [t]

4.1. eqtools package 145

eqtools Documentation, Release 1.1

getJp()
Abstract method. See child classes for implementation.

Returns grid of calculated toroidal current density [t,z,r]

getBetaT()
Abstract method. See child classes for implementation.

Returns calculated global toroidal beta [t]

getBetaP()
Abstract method. See child classes for implementation.

Returns calculated global poloidal beta [t]

getLi()
Abstract method. See child classes for implementation.

Returns calculated internal inductance of plasma [t]

getBetas()
Abstract method. See child classes for implementation.

Returns calculated betas and inductance. Namedtuple of {betat,betap,Li}

getDiamagFlux()
Abstract method. See child classes for implementation.

Returns diamagnetic flux [t]

getDiamagBetaT()
Abstract method. See child classes for implementation.

Returns diamagnetic-loop toroidal beta [t]

getDiamagBetaP()
Abstract method. See child classes for implementation.

Returns diamagnetic-loop poloidal beta [t]

getDiamagTauE()
Abstract method. See child classes for implementation.

Returns diamagnetic-loop energy confinement time [t]

getDiamagWp()
Abstract method. See child classes for implementation.

Returns diamagnetic-loop plasma stored energy [t]

getDiamag()
Abstract method. See child classes for implementation.

Returns diamagnetic measurements of plasma parameters. Namedtuple of {diamag. flux, betat, betap from
coils, tau_E from diamag., diamag. stored energy}

getWMHD()
Abstract method. See child classes for implementation.

Returns calculated MHD stored energy [t]

getTauMHD()
Abstract method. See child classes for implementation.

Returns calculated MHD energy confinement time [t]

146 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getPinj()
Abstract method. See child classes for implementation.

Returns calculated injected power [t]

getCurrentSign()
Abstract method. See child classes for implementation.

Returns calculated current direction, where CCW = +

getWbdot()
Abstract method. See child classes for implementation.

Returns calculated d/dt of magnetic stored energy [t]

getWpdot()
Abstract method. See child classes for implementation.

Returns calculated d/dt of plasma stored energy [t]

getBCentr()
Abstract method. See child classes for implementation.

Returns Vacuum Toroidal magnetic field at Rcent point [t]

getRCentr()
Abstract method. See child classes for implementation.

Radial position for Vacuum Toroidal magnetic field calculation

getEnergy()
Abstract method. See child classes for implementation.

Returns stored-energy parameters. Namedtuple of {stored energy, confinement time, injected power, d/dt
of magnetic, plasma stored energy}

getParam(path)
Abstract method. See child classes for implementation.

Backup function: takes parameter name for variable, returns variable directly. Acts as wrapper to direct
data-access routines from within object.

getMachineCrossSection()
Abstract method. See child classes for implementation.

Returns (R,Z) coordinates of vacuum wall cross-section for plotting/masking routines.

getMachineCrossSectionFull()
Abstract method. See child classes for implementation.

Returns (R,Z) coordinates of machine wall cross-section for plotting routines. Returns a more detailed
cross-section than getLimiter(), generally a vector map displaying non-critical cross-section information.
If this is unavailable, this should point to self.getMachineCrossSection(), which pulls the limiter outline
stored by default in data files e.g. g-eqdsk files.

gfile(time=None, nw=None, nh=None, shot=None, name=None, tunit=’ms’, title=’EQTOOLS’,
nbbbs=100)

Generates an EFIT gfile with gfile naming convention

Keyword Arguments

• time (scalar float) – Time of equilibrium to generate the gfile from. This will use
the specified spline functionality to do so. Allows for it to be unspecified for single-time-
frame equilibria.

4.1. eqtools package 147

eqtools Documentation, Release 1.1

• nw (scalar integer) – Number of points in R. R is the major radius, and describes
the ‘width’ of the gfile.

• nh (scalar integer) – Number of points in Z. In cylindrical coordinates Z is the
height, and nh describes the ‘height’ of the gfile.

• shot (scalar integer) – The shot numer of the equilibrium. Used to help generate
the gfile name if unspecified.

• name (String) – Name of the gfile. If unspecified, will follow standard gfile naming
convention (g+shot.time) under current python operating directory. This allows for it to be
saved in other directories, etc.

• tunit (String) – Specified unit for tin. It can only be ‘ms’ for milliseconds or ‘s’ for
seconds.

• title (String) – Title of the gfile on the first line. Name cannot exceed 10 digits. This
is so that the style of the first line is preserved.

• nbbbs (scalar integer) – Number of points to define the plasma seperatrix within
the gfile. The points are defined equally spaced in angle about the plasma center. This will
cause the x-point to be poorly defined.

Raises ValueError – If title is longer than 10 characters.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class (example shot number of 1001).

Generate a gfile at t=0.26s, output of g1001.26:

Eq_instance.gfile(.26)

plotFlux(fill=True, mask=True, lw=3)
Plots flux contours directly from psi grid.

Returns the Figure instance created and the time slider widget (in case you need to modify the callback).
f.axes contains the contour plot as the first element and the time slice slider as the second element.

Keyword Arguments fill (Boolean) – Set True to plot filled contours. Set False (default)
to plot white-background color contours.

4.1.10 eqtools.eqdskreader module

This module contains the EqdskReader class, which creates Equilibrium class functionality for equilibria stored in
eqdsk files from EFIT(a- and g-files).

Classes:

EqdskReader: Class inheriting Equilibrium reading g- and a-files for equilibrium data.

class eqtools.eqdskreader.EqdskReader(shot=None, time=None, gfile=None, afile=None,
length_unit=’m’, verbose=True)

Bases: eqtools.core.Equilibrium

Equilibrium subclass working from eqdsk ASCII-file equilibria.

Inherits mapping and structural data from Equilibrium, populates equilibrium and profile data from g- and a-files
for a selected shot and time window.

148 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Create instance of EqdskReader.

Generates object and reads data from selected g-file (either manually set or autodetected based on user shot and
time selection), storing as object attributes for usage in Equilibrium mapping methods.

Calling structure - user may call class with shot and time (ms) values, set by keywords (or positional placement
allows calling without explicit keyword syntax). EqdskReader then attempts to construct filenames from the
shot/time, of the form ‘g[shot].[time]’ and ‘a[shot].[time]’. Alternately, the user may skip this input and explic-
itly set paths to the g- and/or a-files, using the gfile and afile keyword arguments. If both types of calls are set,
the explicit g-file and a-file paths override the auto-generated filenames from the shot and time.

Keyword Arguments

• shot (Integer) – Shot index.

• time (Integer) – Time index (typically ms). Shot and Time used to autogenerate file-
names.

• gfile (String) – Manually selects ASCII file for equilibrium read.

• afile (String) – Manually selects ASCII file for time-history read.

• length_unit (String) – Flag setting length unit for equilibrium scales. Defaults to
‘m’ for lengths in meters.

• verbose (Boolean) – When set to False, suppresses terminal outputs during CSV read.
Defaults to True (prints terminal output).

Raises

• IOError – if both name/shot and explicit filenames are not set.

• ValueError – if the g-file cannot be found, or if multiple valid g/a-files are found.

Examples

Instantiate EqdskReader for a given shot and time – will search current working directory for files of the form
g[shot].[time] and a[shot].[time], suppressing terminal outputs:

edr = eqtools.EqdskReader(shot,time,verbose=False)

or:

edr = eqtools.EqdskReader(shot=shot,time=time,verbose=False)

Instantiate EqdskReader with explicit file paths gfile_path and afile_path:

edr = eqtools.EqdskReader(gfile=gfile_path,afile=afile_path)

getInfo()
returns namedtuple of equilibrium information

Returns

namedtuple containing

shot shot index
time time point of g-file
nr size of R-axis of spatial grid
nz size of Z-axis of spatial grid
efittype EFIT calculation type (magnetic, kinetic, MSE)

4.1. eqtools package 149

eqtools Documentation, Release 1.1

readAFile(afile)
Reads a-file (scalar time-history data) to pull additional equilibrium data not found in g-file, populates
remaining data (initialized as None) in object.

Parameters afile (String) – Path to ASCII a-file.

Raises IOError – If afile is not found.

rz2psi(R, Z, *args, **kwargs)
Calculates the non-normalized poloidal flux at the given (R, Z). Wrapper for Equilibrium.rz2psi
masking out timebase dependence.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
poloidal flux. If R and Z are both scalar, then a scalar psi is returned. R and Z must have
the same shape unless the make_grid keyword is set. If make_grid is True, R must have
shape (len_R,).

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
poloidal flux. If R and Z are both scalar, then a scalar psi is returned. R and Z must have
the same shape unless the make_grid keyword is set. If make_grid is True, Z must have
shape (len_Z,).

All keyword arguments are passed to the parent Equilibrium.rz2psi. Remaining arguments in *args
are ignored.

Returns non-normalized poloidal flux. If all input arguments are scalar, then psi is scalar. IF R
and Z have the same shape, then psi has this shape as well. If make_grid is True, then psi has
the shape (len_R, len_Z).

Return type psi (Array-like or scalar float)

Examples

All assume that Eq_instance is a valid instance EqdskReader:

Find single psi value at R=0.6m, Z=0.0m:

psi_val = Eq_instance.rz2psi(0.6, 0)

Find psi values at (R, Z) points (0.6m, 0m) and (0.8m, 0m). Note that the Z vector must be fully specified,
even if the values are all the same:

psi_arr = Eq_instance.rz2psi([0.6, 0.8], [0, 0])

Find psi values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions Z:

psi_mat = Eq_instance.rz2psi(R, Z, make_grid=True)

rz2psinorm(R, Z, *args, **kwargs)
Calculates the normalized poloidal flux at the given (R,Z). Wrapper for Equilibrium.rz2psinorm
masking out timebase dependence.

Uses the definition:

psi_norm =
𝜓 − 𝜓(0)

𝜓(𝑎)− 𝜓(0)

Parameters

150 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• R (Array-like or scalar float) – Values of the radial coordinate to map to
normalized poloidal flux. Must have the same shape as Z unless the make_grid keyword
is set. If the make_grid keyword is True, R must have shape (len_R,).

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
normalized poloidal flux. Must have the same shape as R unless the make_grid keyword
is set. If the make_grid keyword is True, Z must have shape (len_Z,).

All keyword arguments are passed to the parent Equilibrium.rz2psinorm. Remaining arguments
in *args are ignored.

Returns non-normalized poloidal flux. If all input arguments are scalar, then psinorm is scalar.
IF R and Z have the same shape, then psinorm has this shape as well. If make_grid is True,
then psinorm has the shape (len_R, len_Z).

Return type psinorm (Array-like or scalar float)

Examples

All assume that Eq_instance is a valid instance of EqdskReader:

Find single psinorm value at R=0.6m, Z=0.0m:

psi_val = Eq_instance.rz2psinorm(0.6, 0)

Find psinorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m). Note that the Z vector must be fully
specified, even if the values are all the same:

psi_arr = Eq_instance.rz2psinorm([0.6, 0.8], [0, 0])

Find psinorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z:

psi_mat = Eq_instance.rz2psinorm(R, Z, make_grid=True)

rz2phinorm(R, Z, *args, **kwargs)
Calculates normalized toroidal flux at a given (R,Z), using

phi =

∫︁
𝑞(𝜓) 𝑑𝜓

phi_norm =
𝜑

𝜑(𝑎)

Wrapper for Equilibrium.rz2phinorm masking out timebase dependence.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
normalized toroidal flux. Must have the same shape as Z unless the make_grid keyword is
set. If the make_grid keyword is True, R must have shape (len_R,).

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
normalized toroidal flux. Must have the same shape as R unless the make_grid keyword is
set. If the make_grid keyword is True, Z must have shape (len_Z,).

All keyword arguments are passed to the parent Equilibrium.rz2phinorm. Remaining arguments
in *args are ignored.

Returns non-normalized poloidal flux. If all input arguments are scalar, then phinorm is scalar.
IF R and Z have the same shape, then phinorm has this shape as well. If make_grid is True,
then phinorm has the shape (len_R, len_Z).

4.1. eqtools package 151

eqtools Documentation, Release 1.1

Return type phinorm (Array-like or scalar float)

Examples

All assume that Eq_instance is a valid instance of EqdskReader.

Find single phinorm value at R=0.6m, Z=0.0m:

phi_val = Eq_instance.rz2phinorm(0.6, 0)

Find phinorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m). Note that the Z vector must be fully
specified, even if the values are all the same:

phi_arr = Eq_instance.rz2phinorm([0.6, 0.8], [0, 0])

Find phinorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z:

phi_mat = Eq_instance.rz2phinorm(R, Z, make_grid=True)

rz2volnorm(*args, **kwargs)
Calculates the normalized flux surface volume.

Not implemented for EqdskReader, as necessary parameter is not read from a/g-files.

Raises NotImplementedError – in all cases.

rz2rho(method, R, Z, t=False, sqrt=False, make_grid=False, k=3, length_unit=1)
Convert the passed (R, Z) coordinates into one of several normalized coordinates. Wrapper for
Equilibrium.rz2rho masking timebase dependence.

Parameters

• method (String) – Indicates which normalized coordinates to use. Valid options are:

psinorm Normalized poloidal flux
phinorm Normalized toroidal flux
volnorm Normalized volume

• R (Array-like or scalar float) – Values of the radial coordinate to map to
normalized coordinate. Must have the same shape as Z unless the make_grid keyword is
set. If the make_grid keyword is True, R must have shape (len_R,).

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
normalized coordinate. Must have the same shape as R unless the make_grid keyword is
set. If the make_grid keyword is True, Z must have shape (len_Z,).

Keyword Arguments

• t (indeterminant) – Provides duck typing for inclusion of t values. Passed t values
either as an Arg or Kwarg are neglected.

• sqrt (Boolean) – Set to True to return the square root of normalized coordinate. Only
the square root of positive values is taken. Negative values are replaced with zeros, con-
sistent with Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False (return
normalized coordinate itself).

• make_grid (Boolean) – Set to True to pass R and Z through meshgrid before evaluat-
ing. If this is set to True, R and Z must each only have a single dimension, but can have
different lengths. Default is False (do not form meshgrid).

152 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• length_unit (String or 1) – Length unit that R and Z are being given in. If a
string is given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (R and Z given in
meters).

Returns If all of the input arguments are scalar, then a scalar is returned. Otherwise, a scipy
Array instance is returned. If R and Z both have the same shape then rho has this shape as
well. If the make_grid keyword was True then rho has shape (len(Z), len(R)).

Return type rho (Array-like or scalar float)

Raises ValueError – If method is not one of the supported values.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single psinorm value at R=0.6m, Z=0.0m:

psi_val = Eq_instance.rz2rho('psinorm', 0.6, 0)

Find psinorm values at (R, Z) points (0.6m, 0m) and (0.8m, 0m). Note that the Z vector must be fully
specified, even if the values are all the same:

psi_arr = Eq_instance.rz2rho('psinorm', [0.6, 0.8], [0, 0])

Find psinorm values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z:

psi_mat = Eq_instance.rz2rho('psinorm', R, Z, make_grid=True)

rz2rmid(R, Z, t=False, sqrt=False, make_grid=False, rho=False, k=3, length_unit=1)
Maps the given points to the outboard midplane major radius, R_mid. Wrapper for
Equilibrium.rz2rmid masking timebase dependence.

Based on the IDL version efit_rz2rmid.pro by Steve Wolfe.

Parameters

• R (Array-like or scalar float) – Values of the radial coordinate to map to
midplane radius. Must have the same shape as Z unless the make_grid keyword is set. If
the make_grid keyword is True, R must have shape (len_R,).

4.1. eqtools package 153

eqtools Documentation, Release 1.1

• Z (Array-like or scalar float) – Values of the vertical coordinate to map to
midplane radius. Must have the same shape as R unless the make_grid keyword is set. If
the make_grid keyword is True, Z must have shape (len_Z,).

Keyword Arguments

• t (indeterminant) – Provides duck typing for inclusion of t values. Passed t values
either as an Arg or Kwarg are neglected.

• sqrt (Boolean) – Set to True to return the square root of midplane radius. Only the
square root of positive values is taken. Negative values are replaced with zeros, consistent
with Steve Wolfe’s IDL implementation efit_rz2rho.pro. Default is False (return R_mid
itself).

• make_grid (Boolean) – Set to True to pass R and Z through meshgrid before evaluat-
ing. If this is set to True, R and Z must each only have a single dimension, but can have
different lengths. Default is False (do not form meshgrid).

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of R_mid.
Default is False (return major radius, R_mid).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• length_unit (String or 1) – Length unit that R and Z are being given in AND
that R_mid is returned in. If a string is given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (R and Z given in
meters, R_mid returned in meters).

Returns If all of the input arguments are scalar, then a scalar is returned. Otherwise, a scipy
Array instance is returned. If R and Z both have the same shape then R_mid has this shape
as well. If the make_grid keyword was True then R_mid has shape (len(Z), len(R)).

Return type R_mid (Array or scalar float)

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single R_mid value at R=0.6m, Z=0.0m:

R_mid_val = Eq_instance.rz2rmid(0.6, 0)

Find R_mid values at (R, Z) points (0.6m, 0m) and (0.8m, 0m). Note that the Z vector must be fully
specified, even if the values are all the same:

154 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

R_mid_arr = Eq_instance.rz2rmid([0.6, 0.8], [0, 0])

Find R_mid values on grid defined by 1D vector of radial positions R and 1D vector of vertical positions
Z:

R_mid_mat = Eq_instance.rz2rmid(R, Z, make_grid=True)

psinorm2rmid(psi_norm, t=False, rho=False, k=3, length_unit=1)
Calculates the outboard R_mid location corresponding to the passed psi_norm (normalized poloidal flux)
values.

Parameters psi_norm (Array-like or scalar float) – Values of the normalized
poloidal flux to map to midplane radius.

Keyword Arguments

• t (indeterminant) – Provides duck typing for inclusion of t values. Passed t values
either as an Arg or Kwarg are neglected.

• rho (Boolean) – Set to True to return r/a (normalized minor radius) instead of R_mid.
Default is False (return major radius, R_mid).

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

• length_unit (String or 1) – Length unit that R_mid is returned in. If a string is
given, it must be a valid unit specifier:

‘m’ meters
‘cm’ centimeters
‘mm’ millimeters
‘in’ inches
‘ft’ feet
‘yd’ yards
‘smoot’ smoots
‘cubit’ cubits
‘hand’ hands
‘default’ meters

If length_unit is 1 or None, meters are assumed. The default value is 1 (R_mid returned in
meters).

Returns If all of the input arguments are scalar, then a scalar is returned. Otherwise, a scipy
Array instance is returned.

Return type R_mid (Array-like or scalar float)

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single R_mid value for psinorm=0.7:

R_mid_val = Eq_instance.psinorm2rmid(0.7)

Find R_mid values at psi_norm values of 0.5 and 0.7. Note that the Z vector must be fully specified, even
if the values are all the same:

4.1. eqtools package 155

eqtools Documentation, Release 1.1

R_mid_arr = Eq_instance.psinorm2rmid([0.5, 0.7])

psinorm2volnorm(*args, **kwargs)
Calculates the outboard R_mid location corresponding to psi_norm (normalized poloidal flux) values.

Not implemented for EqdskReader, as necessary parameter is not read from a/g-files.

Raises NotImplementedError – in all cases.

psinorm2phinorm(psi_norm, t=False, k=3)
Calculates the normalized toroidal flux corresponding to the passed psi_norm (normalized poloidal flux)
values.

Parameters psi_norm (Array-like or scalar float) – Values of the normalized
poloidal flux to map to normalized toroidal flux.

Keyword Arguments

• t (indeterminant) – Provides duck typing for inclusion of t values. Passed t values
either as an Arg or Kwarg are neglected.

• k (positive int) – The degree of polynomial spline interpolation to use in converting
coordinates.

Returns If all of the input arguments are scalar, then a scalar is returned. Otherwise, a scipy
Array instance is returned.

Return type phinorm (Array-like or scalar float)

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class.

Find single phinorm value for psinorm=0.7:

phinorm_val = Eq_instance.psinorm2phinorm(0.7)

Find phinorm values at psi_norm values of 0.5 and 0.7. Note that the Z vector must be fully specified, even
if the values are all the same:

phinorm_arr = Eq_instance.psinorm2phinorm([0.5, 0.7])

getTimeBase()
Returns EFIT time point.

Returns 1-element, 1D array of time in s. Returns array for consistency with Equilibrium
implementations with time variation.

Return type time (Array)

getCurrentSign()
Returns the sign of the current, based on the check in Steve Wolfe’s IDL implementation efit_rz2psi.pro.

Returns 1 for positive current, -1 for reversed.

Return type currentSign (Int)

getFluxGrid()
Returns EFIT flux grid.

Returns [1,r,z] Array of flux values. Includes 1-element time axis for consistency with
Equilibrium implementations with time variation.

156 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Return type psiRZ (Array)

getRGrid(length_unit=1)
Returns EFIT R-axis.

Returns [r] array of R-axis values for RZ grid.

Return type R (Array)

getZGrid(length_unit=1)
Returns EFIT Z-axis.

Returns [z] array of Z-axis values for RZ grid.

Return type Z (Array)

getFluxAxis()
Returns psi on magnetic axis.

Returns [1] array of psi on magnetic axis. Returns array for consistency with Equilibrium
implementations with time variation.

Return type psi0 (Array)

getFluxLCFS()
Returns psi at separatrix.

Returns [1] array of psi at separatrix. Returns array for consistency with Equilibrium im-
plementations with time variation.

Return type psia (Array)

getRLCFS(length_unit=1)
Returns array of R-values of LCFS.

Returns [1,n] array of R values describing LCFS. Returns array for consistency with
Equilibrium implementations with time variation.

Return type RLCFS (Array)

getZLCFS(length_unit=1)
Returns array of Z-values of LCFS.

Returns [1,n] array of Z values describing LCFS. Returns array for consistency with
Equilibrium implementations with time variation.

Return type ZLCFS (Array)

remapLCFS(mask=False)
Overwrites RLCFS, ZLCFS values pulled from EFIT with explicitly-calculated contour of psinorm=1
surface.

Keyword Arguments mask (Boolean) – Set True to mask LCFS path to limiter outline (using
inPolygon). Set False to draw full contour of psi = psiLCFS. Defaults to False.

getFluxVol()
Returns volume contained within a flux surface as a function of psi.

Not implemented in EqdskReader, as required data is not stored in g/a-files.

Raises NotImplementedError – in all cases.

getVolLCFS(length_unit=3)
Returns volume with LCFS.

4.1. eqtools package 157

eqtools Documentation, Release 1.1

Returns [1] array of plasma volume. Returns array for consistency with Equilibrium im-
plementations with time variation.

Return type Vol (Array)

Raises ValueError – if a-file data is not read.

getRmidPsi()
Returns outboard-midplane major radius of flux surfaces.

Data not read from a/g-files, not implemented for EqdskReader.

Raises NotImplementedError – in all cases.

getF()

returns F=RB_{Phi}(Psi), calculated for grad-shafranov solutions [psi,t]

Returns [1,n] array of F(psi). Returns array for consistency with Equilibrium implementa-
tions with time variation.

Return type F (Array)

getFluxPres()
Returns pressure on flux surface p(psi).

Returns [1,n] array of pressure. Returns array for consistency with Equilibrium implemen-
tations with time variation.

Return type p (Array)

getFFPrime()
returns FF’ function used for grad-shafranov solutions.

Returns [1,n] array of FF’(psi). Returns array for consistency with Equilibrium implemen-
tations with time variation.

Return type FF (Array)

getPPrime()
returns plasma pressure gradient as a function of psi.

Returns [1,n] array of pp’(psi). Returns array for consistency with Equilibrium implemen-
tations with time variation.

Return type pp (Array)

getElongation()
Returns elongation of LCFS.

Returns [1] array of plasma elongation. Returns array for consistency with Equilibrium
implementations with time variation.

Return type kappa (Array)

Raises ValueError – if a-file data is not read.

getUpperTriangularity()
Returns upper triangularity of LCFS.

Returns [1] array of plasma upper triangularity. Returns array for consistency with
Equilibrium implementations with time variation.

Return type delta (Array)

Raises ValueError – if a-file data is not read.

158 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

getLowerTriangularity()
Returns lower triangularity of LCFS.

Returns [1] array of plasma lower triangularity. Returns array for consistency with
Equilibrium implementations with time variation.

Return type delta (Array)

Raises ValueError – if a-file data is not read.

getShaping()
Pulls LCFS elongation, upper/lower triangularity.

Returns namedtuple containing [kappa,delta_u,delta_l].

Raises ValueError – if a-file data is not read.

getMagR(length_unit=1)
Returns major radius of magnetic axis.

Keyword Arguments length_unit (String or 1) – length unit R is specified in. De-
faults to 1 (default unit of rmagx, typically m).

Returns [1] array of major radius of magnetic axis. Returns array for consistency with
Equilibrium implementations with time variation.

Return type magR (Array)

Raises ValueError – if a-file data is not read.

getMagZ(length_unit=1)
Returns Z of magnetic axis.

Keyword Arguments length_unit (String or 1) – length unit Z is specified in. De-
faults to 1 (default unit of zmagx, typically m).

Returns [1] array of Z of magnetic axis. Returns array for consistency with Equilibrium
implementations with time variation.

Return type magZ (Array)

Raises ValueError – if a-file data is not read.

getAreaLCFS(length_unit=2)
Returns surface area of LCFS.

Keyword Arguments length_unit (String or 2) – unit area is specified in. Defaults to
2 (default unit, typically m^2).

Returns [1] array of surface area of LCFS. Returns array for consistency with Equilibrium
implementations with time variation.

Return type AreaLCFS (Array)

Raises ValueError – if a-file data is not read.

getAOut(length_unit=1)
Returns outboard-midplane minor radius of LCFS.

Keyword Arguments length_unit (String or 1) – unit radius is specified in. Defaults
to 1 (default unit, typically m).

Returns [1] array of outboard-midplane minor radius at LCFS.

Return type AOut (Array)

Raises ValueError – if a-file data is not read.

4.1. eqtools package 159

eqtools Documentation, Release 1.1

getRmidOut(length_unit=1)
Returns outboard-midplane major radius of LCFS.

Keyword Arguments length_unit (String or 1) – unit radius is specified in. Defaults
to 1 (default unit, typically m).

Returns [1] array of outboard-midplane major radius at LCFS. Returns array for consistency
with Equilibrium implementations with time variation.

Return type Rmid (Array)

Raises ValueError – if a-file data is not read.

getGeometry(length_unit=None)
Pulls dimensional geometry parameters.

Keyword Arguments length_unit (String) – length unit parameters are specified in. De-
faults to None, using default units for individual getter methods for constituent parameters.

Returns namedtuple containing [Rmag,Zmag,AreaLCFS,aOut,RmidOut]

Raises ValueError – if a-file data is not read.

getQProfile()
Returns safety factor q(psi).

Returns [1,n] array of q(psi).

Return type qpsi (Array)

getQ0()
Returns safety factor q on-axis, q0.

Returns [1] array of q(psi=0). Returns array for consistency with Equilibrium implementa-
tions with time variation.

Return type q0 (Array)

Raises ValueError – if a-file data is not read.

getQ95()
Returns safety factor q at 95% flux surface.

Returns [1] array of q(psi=0.95). Returns array for consistency with Equilibrium imple-
mentations with time variation.

Return type q95 (Array)

Raises ValueError – if a-file data is not read.

getQLCFS()
Returns safety factor q at LCFS (interpolated).

Returns [1] array of q* (interpolated). Returns array for consistency with Equilibrium im-
plementations with time variation.

Return type qLCFS (Array)

Raises ValueError – if a-file data is not loaded.

getQ1Surf(length_unit=1)
Returns outboard-midplane minor radius of q=1 surface.

Keyword Arguments length_unit (String or 1) – unit of minor radius. Defaults to 1
(default unit, typically m)

160 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Returns [1] array of minor radius of q=1 surface. Returns array for consistency with
Equilibrium implementations with time variation.

Return type qr1 (Array)

Raises ValueError – if a-file data is not read.

getQ2Surf(length_unit=1)
Returns outboard-midplane minor radius of q=2 surface.

Keyword Arguments length_unit (String or 1) – unit of minor radius. Defaults to 1
(default unit, typically m)

Returns [1] array of minor radius of q=2 surface. Returns array for consistency with
Equilibrium implementations with time variation.

Return type qr2 (Array)

Raises ValueError – if a-file data is not read.

getQ3Surf(length_unit=1)
Returns outboard-midplane minor radius of q=3 surface.

Keyword Arguments length_unit (String or 1) – unit of minor radius. Defaults to 1
(default unit, typically m)

Returns [1] array of minor radius of q=3 surface. Returns array for consistency with
Equilibrium implementations with time variation.

Return type qr3 (Array)

Raises ValueError – if a-file data is not read.

getQs(length_unit=1)
Pulls q-profile data.

Keyword Arguments length_unit (String or 1) – unit of minor radius. Defaults to 1
(default unit, typically m)

Returns namedtuple containing [q0,q95,qLCFS,rq1,rq2,rq3]

Raises ValueError – if a-file data is not read.

getBtVac()
Returns vacuum toroidal field on-axis.

Returns [1] array of vacuum toroidal field. Returns array for consistency with Equilibrium
implementations with time variation.

Return type BtVac (Array)

Raises ValueError – if a-file data is not read.

getBtPla()
Returns plasma toroidal field on-axis.

Returns [1] array of toroidal field including plasma effects. Returns array for consistency with
Equilibrium implementations with time variation.

Return type BtPla (Array)

Raises ValueError – if a-file data is not read.

getBpAvg()
Returns average poloidal field.

4.1. eqtools package 161

eqtools Documentation, Release 1.1

Returns [1] array of average poloidal field. Returns array for consistency with Equilibrium
implementations with time variation.

Return type BpAvg (Array)

Raises ValueError – if a-file data is not read.

getFields()
Pulls vacuum and plasma toroidal field, poloidal field data.

Returns namedtuple containing [BtVac,BtPla,BpAvg]

Raises ValueError – if a-file data is not read.

getIpCalc()
Returns EFIT-calculated plasma current.

Returns [1] array of EFIT-reconstructed plasma current. Returns array for consistency with
Equilibrium implementations with time variation.

Return type IpCalc (Array)

getIpMeas()
Returns measured plasma current.

Returns [1] array of measured plasma current. Returns array for consistency with
Equilibrium implementations with time variation.

Return type IpMeas (Array)

Raises ValueError – if a-file data is not read.

getJp()
Returns (r,z) grid of toroidal plasma current density.

Data not read from g-file, not implemented for EqdskReader.

Raises NotImplementedError – In all cases.

getBetaT()
Returns EFIT-calculated toroidal beta.

Returns [1] array of average toroidal beta. Returns array for consistency with Equilibrium
implementations with time variation.

Return type BetaT (Array)

Raises ValueError – if a-file data is not read.

getBetaP()
Returns EFIT-calculated poloidal beta.

Returns [1] array of average poloidal beta. Returns array for consistency with Equilibrium
implementations with time variation.

Return type BetaP (Array)

Raises ValueError – if a-file data is not read

getLi()
Returns internal inductance of plasma.

Returns [1] array of internal inductance. Returns array for consistency with Equilibrium
implementations with time variation.

Return type Li (Array)

162 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Raises ValueError – if a-file data is not read.

getBetas()
Pulls EFIT-calculated betas and internal inductance.

Returns namedtuple containing [betat,betap,Li]

Raises ValueError – if a-file data is not read.

getDiamagFlux()
Returns diamagnetic flux.

Returns [1] array of measured diamagnetic flux. Returns array for consistency with
Equilibrium implementations with time variation.

Return type Flux (Array)

Raises ValueError – if a-file data is not read.

getDiamagBetaT()
Returns diamagnetic-loop measured toroidal beta.

Returns [1] array of measured diamagnetic toroidal beta. Returns array for consistency with
Equilibrium implementations with time variation.

Return type BetaT (Array)

Raises ValueError – if a-file data is not read.

getDiamagBetaP()
Returns diamagnetic-loop measured poloidal beta.

Returns [1] array of measured diamagnetic poloidal beta. Returns array for consistency with

Return type

BetaP (Array)

Equilibrium implementations with time variation.

Raises ValueError – if a-file data is not read.

getDiamagTauE()
Returns diamagnetic-loop energy confinement time.

Returns [1] array of measured energy confinement time. Returns array for consistency with
Equilibrium implementations with time variation.

Return type TauE (Array)

Raises ValueError – if a-file data is not read.

getDiamagWp()
Returns diamagnetic-loop measured stored energy.

Returns [1] array of diamagnetic stored energy. Returns array for consistency with
Equilibrium implementations with time variation.

Return type Wp (Array)

Raises ValueError – if a-file data is not read.

getDiamag()
Pulls diamagnetic flux, diamag. measured toroidal and poloidal beta, stored energy, and energy confine-
ment time.

Returns namedtuple containing [diaFlux,diaBetat,diaBetap,diaTauE,diaWp]

4.1. eqtools package 163

eqtools Documentation, Release 1.1

Raises ValueError – if a-file data is not read

getWMHD()
Returns EFIT-calculated stored energy.

Returns [1] array of EFIT-reconstructed stored energy. Returns array for consistency with
Equilibrium implementations with time variation.

Return type WMHD (Array)

Raises ValueError – if a-file data is not read.

getTauMHD()
Returns EFIT-calculated energy confinement time.

Returns [1] array of EFIT-reconstructed energy confinement time. Returns array for consistency
with Equilibrium implementations with time variation.

Return type tauMHD (Array)

Raises ValueError – if a-file data is not read.

getPinj()
Returns EFIT injected power.

Returns [1] array of EFIT-reconstructed injected power. Returns array for consistency with
Equilibrium implementations with time variation.

Return type Pinj (Array)

Raises ValueError – if a-file data is not read.

getWbdot()
Returns EFIT d/dt of magnetic stored energy

Returns [1] array of d(Wb)/dt. Returns array for consistency with Equilibrium implemen-
tations with time variation.

Return type dWdt (Array)

Raises ValueError – if a-file data is not read.

getWpdot()
Returns EFIT d/dt of plasma stored energy.

Returns [1] array of d(Wp)/dt. Returns array for consistency with Equilibrium implemen-
tations with time variation.

Return type dWdt (Array)

Raises ValueError – if a-file data is not read.

getBCentr()
returns Vacuum toroidal magnetic field in Tesla at Rcentr

Returns [nt] array of B_t at center [T]

Return type B_cent (Array)

Raises ValueError – if module cannot retrieve data from MDS tree.

getRCentr(length_unit=1)
returns radius where Bcentr evaluated

Returns Radial position where Bcent calculated [m]

Return type R

164 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

Raises ValueError – if module cannot retrieve data from MDS tree.

getEnergy()
Pulls EFIT stored energy, energy confinement time, injected power, and d/dt of magnetic and plasma stored
energy.

Returns namedtuple containing [WMHD,tauMHD,Pinj,Wbdot,Wpdot]

Raises ValueError – if a-file data is not read.

getParam(name)
Backup function, applying a direct path input for tree-like data storage access for parameters not typically
found in Equilbrium object. Directly calls attributes read from g/a-files in copy-safe manner.

Parameters name (String) – Parameter name for value stored in EqdskReader instance.

Returns value stored as attribute in EqdskReader.

Return type param (Array-like or scalar float)

Raises AttributeError – raised if no attribute is found.

getMachineCrossSection()
Method to pull machine cross-section from data storage, convert to standard format for plotting routine.

Returns

(R_limiter, Z_limiter)

• R_limiter (Array) - [n] array of x-values for machine cross-section.

• Z_limiter (Array) - [n] array of y-values for machine cross-section.

getMachineCrossSectionFull()
Returns vectorization of machine cross-section.

Absent additional data (not found in eqdsks) simply returns self.getMachineCrossSection().

gfile(time=None, nw=None, nh=None, shot=None, name=None, tunit=’ms’, title=’EQTOOLS’,
nbbbs=100)

Generates an EFIT gfile with gfile naming convention

Keyword Arguments

• time (scalar float) – Time of equilibrium to generate the gfile from. This will use
the specified spline functionality to do so. Allows for it to be unspecified for single-time-
frame equilibria.

• nw (scalar integer) – Number of points in R. R is the major radius, and describes
the ‘width’ of the gfile.

• nh (scalar integer) – Number of points in Z. In cylindrical coordinates Z is the
height, and nh describes the ‘height’ of the gfile.

• shot (scalar integer) – The shot numer of the equilibrium. Used to help generate
the gfile name if unspecified.

• name (String) – Name of the gfile. If unspecified, will follow standard gfile naming
convention (g+shot.time) under current python operating directory. This allows for it to be
saved in other directories, etc.

• tunit (String) – Specified unit for tin. It can only be ‘ms’ for milliseconds or ‘s’ for
seconds.

• title (String) – Title of the gfile on the first line. Name cannot exceed 10 digits. This
is so that the style of the first line is preserved.

4.1. eqtools package 165

eqtools Documentation, Release 1.1

• nbbbs (scalar integer) – Number of points to define the plasma seperatrix within
the gfile. The points are defined equally spaced in angle about the plasma center. This will
cause the x-point to be poorly defined.

Raises ValueError – If title is longer than 10 characters.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class (example shot number of 1001).

Generate a gfile (time at t=.26s) output of g1001.26:

Eq_instance.gfile()

plotFlux(fill=True, mask=True)
streamlined plotting of flux contours directly from psi grid

Keyword Arguments

• fill (Boolean) – Default True. Set True to plot filled contours of flux delineated by
black outlines. Set False to instead plot color-coded line contours on a blank background.

• mask (Boolean) – Default True. Set True to draw a clipping mask based on the limiter
outline for the flux contours. Set False to draw the full RZ grid.

4.1.11 eqtools.filewriter module

eqtools.filewriter.gfile(obj, tin, nw=None, nh=None, shot=None, name=None, tunit=’ms’, ti-
tle=’EQTOOLS’, nbbbs=100)

Generates an EFIT gfile with gfile naming convention

Parameters

• obj (eqtools Equilibrium Object) – Object which describes the tokamak This
functionality is dependent on matplotlib, and is not not retained in core.py for this reason. It
is a hidden function which takes an arbitrary equilibrium object and generates a gfile.

• tin (scalar float) – Time of equilibrium to generate the gfile from. This will use the
specified spline functionality to do so.

Keyword Arguments

• nw (scalar integer) – Number of points in R. R is the major radius, and describes the
‘width’ of the gfile.

• nh (scalar integer) – Number of points in Z. In cylindrical coordinates Z is the
height, and nh describes the ‘height’ of the gfile.

• shot (scalar integer) – The shot numer of the equilibrium. Used to help generate
the gfile name if unspecified.

• name (String) – Name of the gfile. If unspecified, will follow standard gfile naming
convention (g+shot.time) under current python operating directory. This allows for it to be
saved in other directories, etc.

• tunit (String) – Specified unit for tin. It can only be ‘ms’ for milliseconds or ‘s’ for
seconds.

• title (String) – Title of the gfile on the first line. Name cannot exceed 10 digits. This
is so that the style of the first line is preserved.

166 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

• nbbbs (scalar integer) – Number of points to define the plasma seperatrix within
the gfile. The points are defined equally spaced in angle about the plasma center. This will
cause the x-point to be poorly defined.

Raises ValueError – If title is longer than 10 characters.

Examples

All assume that Eq_instance is a valid instance of the appropriate extension of the Equilibrium abstract
class (example shot number of 1001).

Generate a gfile at t=0.26s, output of g1001.26:

gfile(Eq_instance,.26)

4.1.12 eqtools.pfilereader module

This module contains the PFileReader class, a lightweight data handler for p-file (radial profile) datasets.

Classes:

PFileReader: Data-storage class for p-file data. Reads data from ASCII p-file, storing as copy-safe object
attributes.

class eqtools.pfilereader.PFileReader(pfile, verbose=True)
Bases: object

Class to read ASCII p-file (profile data storage) into lightweight, user-friendly data structure.

P-files store data blocks containing the following: a header with parameter name, parameter units, x-axis units,
and number of data points, followed by values of axis x, parameter y, and derivative dy/dx. Each parameter
block is read into a namedtuple storing

‘name’ parameter name
‘npts’ array size
‘x’ abscissa array
‘y’ data array
‘dydx’ data gradient
‘xunits’ abscissa units
‘units’ data units

with each namedtuple stored as an attribute of the PFileReader instance. This gracefully handles variable for-
mats of p-files (differing versions of p-files will have different parameters stored). Data blocks are accessed as
attributes in a copy-safe manner.

Creates instance of PFileReader.

Parameters pfile (String) – Path to ASCII p-file to be loaded.

Keyword Arguments verbose (Boolean) – Option to print message on object creation listing
available data parameters. Defaults to True.

Examples

Load p-file data located at file_path, while suppressing terminal output of stored parameters:

4.1. eqtools package 167

eqtools Documentation, Release 1.1

pfr = eqtools.PFileReader(file_path,verbose=False)

Recover electron density data (for example):

ne_data = pfr.ne

Recover abscissa and electron density data (for example):

ne = pfr.ne.y
abscis = pfr.ne.x

Available parameters in pfr may be listed via the overridden __str__ command.

4.1.13 eqtools.trispline module

This module provides interface to the tricubic spline interpolator. It also contains an enhanced bivariate spline which
generates bounds errors.

class eqtools.trispline.Spline(z, y, x, f, regular=True, fast=False, dx=0, dy=0, dz=0)
Tricubic interpolating spline with forced edge derivative equal zero conditions. It assumes a cartesian grid. The
ordering of f[z,y,x] is extremely important for the proper evaluation of the spline. It assumes that f is in C order.

Create a new Spline instance.

Parameters

• z (1-dimensional float array) – Values of the positions of the 1st Dimension of
f. Must be monotonic without duplicates.

• y (1-dimensional float array) – Values of the positions of the 2nd dimension of
f. Must be monotonic without duplicates.

• x (1-dimensional float array) – Values of the positions of the 3rd dimension of
f. Must be monotonic without duplicates.

• f (3-dimensional float array) – f[z,y,x]. NaN and Inf will hamper performance
and affect interpolation in 4x4x4 space about its value.

Keyword Arguments

• regular (Boolean) – If the grid is known to be regular, forces matrix-based fast evalu-
ation of interpolation.

• fast (Boolean) – Outdated input to test the indexing performance of the c code vs inter-
nal python handling.

Raises

• ValueError – If any of the dimensions do not match specified f dim

• ValueError – If x,y, or z are not monotonic

Examples

All assume that x, y, z, and f are valid instances of the appropriate numpy arrays which take independent
variables x,y,z and create numpy array f. x1, y1, and z1 are numpy arrays which data f is to be interpolated.

Generate a Trispline instance map with data x, y, z and f:

168 Chapter 4. Package Reference

eqtools Documentation, Release 1.1

map = Spline(z, y, x, f)

Evaluate Trispline instance map at x1, y1, z1:

output = map.ev(z1, y1, x1)

ev(z1, y1, x1)
evaluates tricubic spline at point (x1,y1,z1) which is f[z1,y1,x1].

Parameters

• z1 (scalar float or 1-dimensional float) – Position in z dimension. This
is the first dimension of 3d-valued grid.

• y1 (scalar float or 1-dimensional float) – Position in y dimension. This
is the second dimension of 3d-valued grid.

• x1 (scalar float or 1-dimensional float) – Position in x dimension. This
is the third dimension of 3d-valued grid.

Returns The interpolated value at (x1,y1,z1).

Return type val (array or scalar float)

Raises ValueError – If any of the dimensions exceed the evaluation boundary of the grid

class eqtools.trispline.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3,
ky=3, s=0, bounds_error=True, fill_value=nan)

Bases: scipy.interpolate.fitpack2.RectBivariateSpline

the lack of a graceful bounds error causes the fortran to fail hard. This masks
scipy.interpolate.RectBivariateSpline with a proper bound checker and value filler such that it will not
fail in use for EqTools

Can be used for both smoothing and interpolating data.

Parameters

• x (1-dimensional float array) – 1-D array of coordinates in monotonically in-
creasing order.

• y (1-dimensional float array) – 1-D array of coordinates in monotonically in-
creasing order.

• z (2-dimensional float array) – 2-D array of data with shape (x.size,y.size).

Keyword Arguments

• bbox (1-dimensional float) – Sequence of length 4 specifying the boundary of
the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx),
min(y,ty),max(y,ty)].

• kx (integer) – Degrees of the bivariate spline. Default is 3.

• ky (integer) – Degrees of the bivariate spline. Default is 3.

• s (float) – Positive smoothing factor defined for estimation condition,
sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default is s=0,
which is for interpolation.

ev(xi, yi)

Evaluate the rectBiVariateSpline at (xi,yi). (x,y)values are checked for being in the bounds of the in-
terpolated data.

4.1. eqtools package 169

eqtools Documentation, Release 1.1

Parameters

• xi (float array) – input x dimensional values

• yi (float array) – input x dimensional values

Returns evaluated spline at points (x[i], y[i]), i=0,...,len(x)-1

Return type val (float array)

class eqtools.trispline.BivariateInterpolator(x, y, z)
Bases: object

This class provides a wrapper for scipy.interpolate.CloughTocher2DInterpolator.

This is necessary because scipy.interpolate.SmoothBivariateSpline cannot be made to interpolate, and gives
inaccurate answers near the boundaries.

ev(xi, yi)

class eqtools.trispline.UnivariateInterpolator(*args, **kwargs)
Bases: scipy.interpolate.fitpack2.InterpolatedUnivariateSpline

Interpolated spline class which overcomes the shortcomings of interp1d (inaccurate near edges) and Interpolat-
edUnivariateSpline (can’t set NaN where it extrapolates).

4.1.14 Module contents

Provides classes for interacting with magnetic equilibrium data in a variety of formats.

170 Chapter 4. Package Reference

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

171

eqtools Documentation, Release 1.1

172 Chapter 5. Indices and tables

Python Module Index

e
eqtools, 170
eqtools.afilereader, 34
eqtools.CModEFIT, 9
eqtools.core, 34
eqtools.D3DEFIT, 12
eqtools.EFIT, 13
eqtools.eqdskreader, 148
eqtools.filewriter, 166
eqtools.FromArrays, 23
eqtools.NSTXEFIT, 25
eqtools.pfilereader, 167
eqtools.TCVLIUQE, 27
eqtools.trispline, 168

173

eqtools Documentation, Release 1.1

174 Python Module Index

Index

A
AFileReader (class in eqtools.afilereader), 34
ArrayEquilibrium (class in eqtools.FromArrays), 23

B
BivariateInterpolator (class in eqtools.trispline), 170

C
CModEFITTree (class in eqtools.CModEFIT), 9
CModEFITTreeProp (class in eqtools.CModEFIT), 12

D
D3DEFITTree (class in eqtools.D3DEFIT), 12
D3DEFITTreeProp (class in eqtools.D3DEFIT), 13

E
EFITTree (class in eqtools.EFIT), 13
EqdskReader (class in eqtools.eqdskreader), 148
eqtools (module), 170
eqtools.afilereader (module), 34
eqtools.CModEFIT (module), 9
eqtools.core (module), 34
eqtools.D3DEFIT (module), 12
eqtools.EFIT (module), 13
eqtools.eqdskreader (module), 148
eqtools.filewriter (module), 166
eqtools.FromArrays (module), 23
eqtools.NSTXEFIT (module), 25
eqtools.pfilereader (module), 167
eqtools.TCVLIUQE (module), 27
eqtools.trispline (module), 168
Equilibrium (class in eqtools.core), 35
ev() (eqtools.trispline.BivariateInterpolator method), 170
ev() (eqtools.trispline.RectBivariateSpline method), 169
ev() (eqtools.trispline.Spline method), 169

F
Fnorm2psinorm() (eqtools.core.Equilibrium method), 95

G
getAOut() (eqtools.core.Equilibrium method), 144
getAOut() (eqtools.EFIT.EFITTree method), 18
getAOut() (eqtools.eqdskreader.EqdskReader method),

159
getAOut() (eqtools.TCVLIUQE.TCVLIUQETree

method), 31
getAOutSpline() (eqtools.core.Equilibrium method), 141
getAreaLCFS() (eqtools.core.Equilibrium method), 144
getAreaLCFS() (eqtools.EFIT.EFITTree method), 17
getAreaLCFS() (eqtools.eqdskreader.EqdskReader

method), 159
getAreaLCFS() (eqtools.TCVLIUQE.TCVLIUQETree

method), 31
getBCentr() (eqtools.core.Equilibrium method), 147
getBCentr() (eqtools.EFIT.EFITTree method), 22
getBCentr() (eqtools.eqdskreader.EqdskReader method),

164
getBetaP() (eqtools.core.Equilibrium method), 146
getBetaP() (eqtools.EFIT.EFITTree method), 20
getBetaP() (eqtools.eqdskreader.EqdskReader method),

162
getBetaP() (eqtools.TCVLIUQE.TCVLIUQETree

method), 32
getBetas() (eqtools.core.Equilibrium method), 146
getBetas() (eqtools.EFIT.EFITTree method), 20
getBetas() (eqtools.eqdskreader.EqdskReader method),

163
getBetaT() (eqtools.core.Equilibrium method), 146
getBetaT() (eqtools.EFIT.EFITTree method), 20
getBetaT() (eqtools.eqdskreader.EqdskReader method),

162
getBetaT() (eqtools.TCVLIUQE.TCVLIUQETree

method), 32
getBpAvg() (eqtools.core.Equilibrium method), 145
getBpAvg() (eqtools.EFIT.EFITTree method), 19
getBpAvg() (eqtools.eqdskreader.EqdskReader method),

161
getBtPla() (eqtools.core.Equilibrium method), 145
getBtPla() (eqtools.EFIT.EFITTree method), 19

175

eqtools Documentation, Release 1.1

getBtPla() (eqtools.eqdskreader.EqdskReader method),
161

getBtPla() (eqtools.TCVLIUQE.TCVLIUQETree
method), 32

getBtVac() (eqtools.core.Equilibrium method), 145
getBtVac() (eqtools.EFIT.EFITTree method), 19
getBtVac() (eqtools.eqdskreader.EqdskReader method),

161
getBtVac() (eqtools.TCVLIUQE.TCVLIUQETree

method), 32
getBtVacSpline() (eqtools.core.Equilibrium method), 142
getCurrentSign() (eqtools.core.Equilibrium method), 147
getCurrentSign() (eqtools.EFIT.EFITTree method), 23
getCurrentSign() (eqtools.eqdskreader.EqdskReader

method), 156
getCurrentSign() (eqtools.FromArrays.ArrayEquilibrium

method), 25
getDiamag() (eqtools.core.Equilibrium method), 146
getDiamag() (eqtools.EFIT.EFITTree method), 21
getDiamag() (eqtools.eqdskreader.EqdskReader method),

163
getDiamagBetaP() (eqtools.core.Equilibrium method),

146
getDiamagBetaP() (eqtools.EFIT.EFITTree method), 21
getDiamagBetaP() (eqtools.eqdskreader.EqdskReader

method), 163
getDiamagBetaT() (eqtools.core.Equilibrium method),

146
getDiamagBetaT() (eqtools.EFIT.EFITTree method), 21
getDiamagBetaT() (eqtools.eqdskreader.EqdskReader

method), 163
getDiamagFlux() (eqtools.core.Equilibrium method), 146
getDiamagFlux() (eqtools.EFIT.EFITTree method), 21
getDiamagFlux() (eqtools.eqdskreader.EqdskReader

method), 163
getDiamagTauE() (eqtools.core.Equilibrium method),

146
getDiamagTauE() (eqtools.EFIT.EFITTree method), 21
getDiamagTauE() (eqtools.eqdskreader.EqdskReader

method), 163
getDiamagWp() (eqtools.core.Equilibrium method), 146
getDiamagWp() (eqtools.EFIT.EFITTree method), 21
getDiamagWp() (eqtools.eqdskreader.EqdskReader

method), 163
getDiamagWp() (eqtools.TCVLIUQE.TCVLIUQETree

method), 33
getElongation() (eqtools.core.Equilibrium method), 144
getElongation() (eqtools.EFIT.EFITTree method), 17
getElongation() (eqtools.eqdskreader.EqdskReader

method), 158
getElongation() (eqtools.TCVLIUQE.TCVLIUQETree

method), 30
getEnergy() (eqtools.core.Equilibrium method), 147
getEnergy() (eqtools.EFIT.EFITTree method), 22

getEnergy() (eqtools.eqdskreader.EqdskReader method),
165

getF() (eqtools.CModEFIT.CModEFITTree method), 10
getF() (eqtools.core.Equilibrium method), 143
getF() (eqtools.EFIT.EFITTree method), 16
getF() (eqtools.eqdskreader.EqdskReader method), 158
getF() (eqtools.TCVLIUQE.TCVLIUQETree method),

29
getFFPrime() (eqtools.CModEFIT.CModEFITTree

method), 11
getFFPrime() (eqtools.core.Equilibrium method), 143
getFFPrime() (eqtools.EFIT.EFITTree method), 16
getFFPrime() (eqtools.eqdskreader.EqdskReader

method), 158
getFFPrime() (eqtools.TCVLIUQE.TCVLIUQETree

method), 30
getFields() (eqtools.core.Equilibrium method), 145
getFields() (eqtools.EFIT.EFITTree method), 20
getFields() (eqtools.eqdskreader.EqdskReader method),

162
getFluxAxis() (eqtools.core.Equilibrium method), 143
getFluxAxis() (eqtools.EFIT.EFITTree method), 15
getFluxAxis() (eqtools.eqdskreader.EqdskReader

method), 157
getFluxAxis() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getFluxAxis() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getFluxGrid() (eqtools.core.Equilibrium method), 142
getFluxGrid() (eqtools.EFIT.EFITTree method), 14
getFluxGrid() (eqtools.eqdskreader.EqdskReader

method), 156
getFluxGrid() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getFluxGrid() (eqtools.NSTXEFIT.NSTXEFITTree

method), 25
getFluxGrid() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getFluxLCFS() (eqtools.core.Equilibrium method), 143
getFluxLCFS() (eqtools.EFIT.EFITTree method), 15
getFluxLCFS() (eqtools.eqdskreader.EqdskReader

method), 157
getFluxLCFS() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getFluxLCFS() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getFluxPres() (eqtools.CModEFIT.CModEFITTree

method), 10
getFluxPres() (eqtools.core.Equilibrium method), 143
getFluxPres() (eqtools.EFIT.EFITTree method), 16
getFluxPres() (eqtools.eqdskreader.EqdskReader

method), 158
getFluxPres() (eqtools.TCVLIUQE.TCVLIUQETree

method), 30

176 Index

eqtools Documentation, Release 1.1

getFluxVol() (eqtools.CModEFIT.CModEFITTree
method), 10

getFluxVol() (eqtools.core.Equilibrium method), 143
getFluxVol() (eqtools.D3DEFIT.D3DEFITTree method),

13
getFluxVol() (eqtools.EFIT.EFITTree method), 15
getFluxVol() (eqtools.eqdskreader.EqdskReader method),

157
getFluxVol() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getFluxVol() (eqtools.NSTXEFIT.NSTXEFITTree

method), 26
getFluxVol() (eqtools.TCVLIUQE.TCVLIUQETree

method), 29
getGeometry() (eqtools.core.Equilibrium method), 144
getGeometry() (eqtools.EFIT.EFITTree method), 18
getGeometry() (eqtools.eqdskreader.EqdskReader

method), 160
getInfo() (eqtools.core.Equilibrium method), 142
getInfo() (eqtools.EFIT.EFITTree method), 14
getInfo() (eqtools.eqdskreader.EqdskReader method),

149
getInfo() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getIpCalc() (eqtools.core.Equilibrium method), 145
getIpCalc() (eqtools.EFIT.EFITTree method), 20
getIpCalc() (eqtools.eqdskreader.EqdskReader method),

162
getIpCalc() (eqtools.NSTXEFIT.NSTXEFITTree

method), 26
getIpCalc() (eqtools.TCVLIUQE.TCVLIUQETree

method), 32
getIpMeas() (eqtools.core.Equilibrium method), 145
getIpMeas() (eqtools.EFIT.EFITTree method), 20
getIpMeas() (eqtools.eqdskreader.EqdskReader method),

162
getIpMeas() (eqtools.TCVLIUQE.TCVLIUQETree

method), 32
getJp() (eqtools.core.Equilibrium method), 145
getJp() (eqtools.EFIT.EFITTree method), 20
getJp() (eqtools.eqdskreader.EqdskReader method), 162
getJp() (eqtools.NSTXEFIT.NSTXEFITTree method), 26
getLi() (eqtools.core.Equilibrium method), 146
getLi() (eqtools.EFIT.EFITTree method), 20
getLi() (eqtools.eqdskreader.EqdskReader method), 162
getLi() (eqtools.TCVLIUQE.TCVLIUQETree method),

32
getLowerTriangularity() (eqtools.core.Equilibrium

method), 144
getLowerTriangularity() (eqtools.EFIT.EFITTree

method), 17
getLowerTriangularity() (eq-

tools.eqdskreader.EqdskReader method),
158

getLowerTriangularity() (eq-
tools.TCVLIUQE.TCVLIUQETree method),
30

getMachineCrossSection() (eqtools.core.Equilibrium
method), 147

getMachineCrossSection() (eqtools.EFIT.EFITTree
method), 22

getMachineCrossSection() (eq-
tools.eqdskreader.EqdskReader method),
165

getMachineCrossSection() (eq-
tools.NSTXEFIT.NSTXEFITTree method),
26

getMachineCrossSection() (eq-
tools.TCVLIUQE.TCVLIUQETree method),
33

getMachineCrossSectionFull() (eq-
tools.CModEFIT.CModEFITTree method),
11

getMachineCrossSectionFull() (eqtools.core.Equilibrium
method), 147

getMachineCrossSectionFull() (eqtools.EFIT.EFITTree
method), 22

getMachineCrossSectionFull() (eq-
tools.eqdskreader.EqdskReader method),
165

getMachineCrossSectionPatch() (eq-
tools.TCVLIUQE.TCVLIUQETree method),
33

getMagR() (eqtools.core.Equilibrium method), 144
getMagR() (eqtools.EFIT.EFITTree method), 17
getMagR() (eqtools.eqdskreader.EqdskReader method),

159
getMagR() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getMagR() (eqtools.TCVLIUQE.TCVLIUQETree

method), 30
getMagRSpline() (eqtools.core.Equilibrium method), 140
getMagZ() (eqtools.core.Equilibrium method), 144
getMagZ() (eqtools.EFIT.EFITTree method), 17
getMagZ() (eqtools.eqdskreader.EqdskReader method),

159
getMagZ() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getMagZ() (eqtools.TCVLIUQE.TCVLIUQETree

method), 30
getMagZSpline() (eqtools.core.Equilibrium method), 140
getParam() (eqtools.core.Equilibrium method), 147
getParam() (eqtools.EFIT.EFITTree method), 23
getParam() (eqtools.eqdskreader.EqdskReader method),

165
getPinj() (eqtools.core.Equilibrium method), 146
getPinj() (eqtools.EFIT.EFITTree method), 22

Index 177

eqtools Documentation, Release 1.1

getPinj() (eqtools.eqdskreader.EqdskReader method),
164

getPPrime() (eqtools.CModEFIT.CModEFITTree
method), 11

getPPrime() (eqtools.core.Equilibrium method), 144
getPPrime() (eqtools.EFIT.EFITTree method), 16
getPPrime() (eqtools.eqdskreader.EqdskReader method),

158
getPPrime() (eqtools.TCVLIUQE.TCVLIUQETree

method), 30
getQ0() (eqtools.core.Equilibrium method), 144
getQ0() (eqtools.EFIT.EFITTree method), 18
getQ0() (eqtools.eqdskreader.EqdskReader method), 160
getQ0() (eqtools.TCVLIUQE.TCVLIUQETree method),

31
getQ1Surf() (eqtools.core.Equilibrium method), 145
getQ1Surf() (eqtools.EFIT.EFITTree method), 19
getQ1Surf() (eqtools.eqdskreader.EqdskReader method),

160
getQ2Surf() (eqtools.core.Equilibrium method), 145
getQ2Surf() (eqtools.EFIT.EFITTree method), 19
getQ2Surf() (eqtools.eqdskreader.EqdskReader method),

161
getQ3Surf() (eqtools.core.Equilibrium method), 145
getQ3Surf() (eqtools.EFIT.EFITTree method), 19
getQ3Surf() (eqtools.eqdskreader.EqdskReader method),

161
getQ95() (eqtools.core.Equilibrium method), 145
getQ95() (eqtools.EFIT.EFITTree method), 18
getQ95() (eqtools.eqdskreader.EqdskReader method),

160
getQ95() (eqtools.TCVLIUQE.TCVLIUQETree

method), 31
getQLCFS() (eqtools.core.Equilibrium method), 145
getQLCFS() (eqtools.EFIT.EFITTree method), 18
getQLCFS() (eqtools.eqdskreader.EqdskReader method),

160
getQLCFS() (eqtools.TCVLIUQE.TCVLIUQETree

method), 32
getQProfile() (eqtools.CModEFIT.CModEFITTree

method), 11
getQProfile() (eqtools.core.Equilibrium method), 144
getQProfile() (eqtools.EFIT.EFITTree method), 18
getQProfile() (eqtools.eqdskreader.EqdskReader

method), 160
getQProfile() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getQProfile() (eqtools.TCVLIUQE.TCVLIUQETree

method), 31
getQs() (eqtools.core.Equilibrium method), 145
getQs() (eqtools.EFIT.EFITTree method), 19
getQs() (eqtools.eqdskreader.EqdskReader method), 161
getRCentr() (eqtools.CModEFIT.CModEFITTree

method), 11

getRCentr() (eqtools.core.Equilibrium method), 147
getRCentr() (eqtools.EFIT.EFITTree method), 22
getRCentr() (eqtools.eqdskreader.EqdskReader method),

164
getRGrid() (eqtools.core.Equilibrium method), 142
getRGrid() (eqtools.EFIT.EFITTree method), 15
getRGrid() (eqtools.eqdskreader.EqdskReader method),

157
getRGrid() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getRGrid() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getRLCFS() (eqtools.CModEFIT.CModEFITTree

method), 11
getRLCFS() (eqtools.core.Equilibrium method), 143
getRLCFS() (eqtools.EFIT.EFITTree method), 16
getRLCFS() (eqtools.eqdskreader.EqdskReader method),

157
getRLCFS() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getRLCFS() (eqtools.TCVLIUQE.TCVLIUQETree

method), 29
getRmidOut() (eqtools.core.Equilibrium method), 144
getRmidOut() (eqtools.EFIT.EFITTree method), 18
getRmidOut() (eqtools.eqdskreader.EqdskReader

method), 159
getRmidOut() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getRmidOut() (eqtools.TCVLIUQE.TCVLIUQETree

method), 31
getRmidOutSpline() (eqtools.core.Equilibrium method),

141
getRmidPsi() (eqtools.CModEFIT.CModEFITTree

method), 10
getRmidPsi() (eqtools.core.Equilibrium method), 143
getRmidPsi() (eqtools.D3DEFIT.D3DEFITTree method),

13
getRmidPsi() (eqtools.EFIT.EFITTree method), 15
getRmidPsi() (eqtools.eqdskreader.EqdskReader

method), 158
getRmidPsi() (eqtools.NSTXEFIT.NSTXEFITTree

method), 26
getRmidPsi() (eqtools.TCVLIUQE.TCVLIUQETree

method), 29
getShaping() (eqtools.core.Equilibrium method), 144
getShaping() (eqtools.EFIT.EFITTree method), 17
getShaping() (eqtools.eqdskreader.EqdskReader method),

159
getTauMHD() (eqtools.core.Equilibrium method), 146
getTauMHD() (eqtools.EFIT.EFITTree method), 21
getTauMHD() (eqtools.eqdskreader.EqdskReader

method), 164
getTauMHD() (eqtools.TCVLIUQE.TCVLIUQETree

method), 33

178 Index

eqtools Documentation, Release 1.1

getTimeBase() (eqtools.core.Equilibrium method), 142
getTimeBase() (eqtools.EFIT.EFITTree method), 14
getTimeBase() (eqtools.eqdskreader.EqdskReader

method), 156
getTimeBase() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getTimeBase() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getUpperTriangularity() (eqtools.core.Equilibrium

method), 144
getUpperTriangularity() (eqtools.EFIT.EFITTree

method), 17
getUpperTriangularity() (eq-

tools.eqdskreader.EqdskReader method),
158

getUpperTriangularity() (eq-
tools.TCVLIUQE.TCVLIUQETree method),
30

getVolLCFS() (eqtools.core.Equilibrium method), 143
getVolLCFS() (eqtools.EFIT.EFITTree method), 15
getVolLCFS() (eqtools.eqdskreader.EqdskReader

method), 157
getVolLCFS() (eqtools.NSTXEFIT.NSTXEFITTree

method), 26
getVolLCFS() (eqtools.TCVLIUQE.TCVLIUQETree

method), 29
getWbdot() (eqtools.core.Equilibrium method), 147
getWbdot() (eqtools.EFIT.EFITTree method), 22
getWbdot() (eqtools.eqdskreader.EqdskReader method),

164
getWMHD() (eqtools.core.Equilibrium method), 146
getWMHD() (eqtools.EFIT.EFITTree method), 21
getWMHD() (eqtools.eqdskreader.EqdskReader method),

164
getWpdot() (eqtools.core.Equilibrium method), 147
getWpdot() (eqtools.EFIT.EFITTree method), 22
getWpdot() (eqtools.eqdskreader.EqdskReader method),

164
getZGrid() (eqtools.core.Equilibrium method), 143
getZGrid() (eqtools.EFIT.EFITTree method), 15
getZGrid() (eqtools.eqdskreader.EqdskReader method),

157
getZGrid() (eqtools.FromArrays.ArrayEquilibrium

method), 24
getZGrid() (eqtools.TCVLIUQE.TCVLIUQETree

method), 28
getZLCFS() (eqtools.CModEFIT.CModEFITTree

method), 11
getZLCFS() (eqtools.core.Equilibrium method), 143
getZLCFS() (eqtools.EFIT.EFITTree method), 16
getZLCFS() (eqtools.eqdskreader.EqdskReader method),

157
getZLCFS() (eqtools.FromArrays.ArrayEquilibrium

method), 24

getZLCFS() (eqtools.TCVLIUQE.TCVLIUQETree
method), 29

gfile() (eqtools.core.Equilibrium method), 147
gfile() (eqtools.eqdskreader.EqdskReader method), 165
gfile() (in module eqtools.filewriter), 166
greenArea() (in module eqtools.TCVLIUQE), 27

I
inPolygon() (in module eqtools.core), 34

M
ModuleWarning, 34

N
NSTXEFITTree (class in eqtools.NSTXEFIT), 25
NSTXEFITTreeProp (class in eqtools.NSTXEFIT), 26

P
PFileReader (class in eqtools.pfilereader), 167
phinorm2F() (eqtools.core.Equilibrium method), 93
phinorm2FFPrime() (eqtools.core.Equilibrium method),

101
phinorm2p() (eqtools.core.Equilibrium method), 108
phinorm2pprime() (eqtools.core.Equilibrium method),

116
phinorm2psinorm() (eqtools.core.Equilibrium method),

68
phinorm2q() (eqtools.core.Equilibrium method), 86
phinorm2rho() (eqtools.core.Equilibrium method), 73
phinorm2rmid() (eqtools.core.Equilibrium method), 71
phinorm2roa() (eqtools.core.Equilibrium method), 72
phinorm2v() (eqtools.core.Equilibrium method), 123
phinorm2volnorm() (eqtools.core.Equilibrium method),

69
plotField() (eqtools.core.Equilibrium method), 139
plotFlux() (eqtools.core.Equilibrium method), 148
plotFlux() (eqtools.eqdskreader.EqdskReader method),

166
plotFlux() (eqtools.TCVLIUQE.TCVLIUQETree

method), 33
PropertyAccessMixin (class in eqtools.core), 34
psinorm2F() (eqtools.core.Equilibrium method), 92
psinorm2FFPrime() (eqtools.core.Equilibrium method),

100
psinorm2p() (eqtools.core.Equilibrium method), 107
psinorm2phinorm() (eqtools.core.Equilibrium method),

66
psinorm2phinorm() (eqtools.eqdskreader.EqdskReader

method), 156
psinorm2pprime() (eqtools.core.Equilibrium method),

114
psinorm2q() (eqtools.core.Equilibrium method), 85
psinorm2rho() (eqtools.core.Equilibrium method), 67

Index 179

eqtools Documentation, Release 1.1

psinorm2rmid() (eqtools.core.Equilibrium method), 62
psinorm2rmid() (eqtools.eqdskreader.EqdskReader

method), 155
psinorm2roa() (eqtools.core.Equilibrium method), 64
psinorm2v() (eqtools.core.Equilibrium method), 122
psinorm2volnorm() (eqtools.core.Equilibrium method),

65
psinorm2volnorm() (eqtools.eqdskreader.EqdskReader

method), 156
psinorm2volnorm() (eqtools.NSTXEFIT.NSTXEFITTree

method), 26

R
readAFile() (eqtools.eqdskreader.EqdskReader method),

149
RectBivariateSpline (class in eqtools.trispline), 169
remapLCFS() (eqtools.core.Equilibrium method), 143
remapLCFS() (eqtools.EFIT.EFITTree method), 16
remapLCFS() (eqtools.eqdskreader.EqdskReader

method), 157
rho2FieldLineTrace() (eqtools.core.Equilibrium method),

138
rho2rho() (eqtools.core.Equilibrium method), 36
rmid2F() (eqtools.core.Equilibrium method), 90
rmid2FFPrime() (eqtools.core.Equilibrium method), 98
rmid2p() (eqtools.core.Equilibrium method), 105
rmid2phinorm() (eqtools.core.Equilibrium method), 52
rmid2pprime() (eqtools.core.Equilibrium method), 112
rmid2psinorm() (eqtools.core.Equilibrium method), 51
rmid2q() (eqtools.core.Equilibrium method), 83
rmid2rho() (eqtools.core.Equilibrium method), 55
rmid2roa() (eqtools.core.Equilibrium method), 49
rmid2v() (eqtools.core.Equilibrium method), 119
rmid2volnorm() (eqtools.core.Equilibrium method), 53
roa2F() (eqtools.core.Equilibrium method), 91
roa2FFPrime() (eqtools.core.Equilibrium method), 99
roa2p() (eqtools.core.Equilibrium method), 106
roa2phinorm() (eqtools.core.Equilibrium method), 59
roa2pprime() (eqtools.core.Equilibrium method), 113
roa2psinorm() (eqtools.core.Equilibrium method), 58
roa2q() (eqtools.core.Equilibrium method), 84
roa2rho() (eqtools.core.Equilibrium method), 61
roa2rmid() (eqtools.core.Equilibrium method), 56
roa2v() (eqtools.core.Equilibrium method), 121
roa2volnorm() (eqtools.core.Equilibrium method), 60
rz2B() (eqtools.core.Equilibrium method), 130
rz2BR() (eqtools.core.Equilibrium method), 125
rz2BT() (eqtools.core.Equilibrium method), 128
rz2BZ() (eqtools.core.Equilibrium method), 126
rz2F() (eqtools.core.Equilibrium method), 88
rz2FFPrime() (eqtools.core.Equilibrium method), 96
rz2FieldLineTrace() (eqtools.core.Equilibrium method),

137
rz2j() (eqtools.core.Equilibrium method), 136

rz2jR() (eqtools.core.Equilibrium method), 131
rz2jT() (eqtools.core.Equilibrium method), 134
rz2jZ() (eqtools.core.Equilibrium method), 133
rz2p() (eqtools.core.Equilibrium method), 103
rz2phinorm() (eqtools.core.Equilibrium method), 41
rz2phinorm() (eqtools.eqdskreader.EqdskReader

method), 151
rz2pprime() (eqtools.core.Equilibrium method), 110
rz2psi() (eqtools.core.Equilibrium method), 38
rz2psi() (eqtools.eqdskreader.EqdskReader method), 150
rz2psinorm() (eqtools.core.Equilibrium method), 39
rz2psinorm() (eqtools.eqdskreader.EqdskReader

method), 150
rz2q() (eqtools.core.Equilibrium method), 81
rz2rho() (eqtools.core.Equilibrium method), 48
rz2rho() (eqtools.eqdskreader.EqdskReader method), 152
rz2rmid() (eqtools.core.Equilibrium method), 44
rz2rmid() (eqtools.eqdskreader.EqdskReader method),

153
rz2roa() (eqtools.core.Equilibrium method), 46
rz2v() (eqtools.core.Equilibrium method), 118
rz2volnorm() (eqtools.core.Equilibrium method), 43
rz2volnorm() (eqtools.eqdskreader.EqdskReader

method), 152
rz2volnorm() (eqtools.NSTXEFIT.NSTXEFITTree

method), 26

S
Spline (class in eqtools.trispline), 168

T
TCVLIUQETree (class in eqtools.TCVLIUQE), 27
TCVLIUQETreeProp (class in eqtools.TCVLIUQE), 33

U
UnivariateInterpolator (class in eqtools.trispline), 170

V
volnorm2F() (eqtools.core.Equilibrium method), 94
volnorm2FFPrime() (eqtools.core.Equilibrium method),

102
volnorm2p() (eqtools.core.Equilibrium method), 109
volnorm2phinorm() (eqtools.core.Equilibrium method),

76
volnorm2pprime() (eqtools.core.Equilibrium method),

117
volnorm2psinorm() (eqtools.core.Equilibrium method),

75
volnorm2q() (eqtools.core.Equilibrium method), 87
volnorm2rho() (eqtools.core.Equilibrium method), 79
volnorm2rmid() (eqtools.core.Equilibrium method), 77
volnorm2roa() (eqtools.core.Equilibrium method), 78
volnorm2v() (eqtools.core.Equilibrium method), 124

180 Index

	Overview
	Installation
	Tutorial: Performing Coordinate Transforms on Alcator C-Mod Data
	Package Reference
	eqtools package
	Submodules
	eqtools.CModEFIT module
	eqtools.D3DEFIT module
	eqtools.EFIT module
	eqtools.FromArrays module
	eqtools.NSTXEFIT module
	eqtools.TCVLIUQE module
	eqtools.afilereader module
	eqtools.core module
	eqtools.eqdskreader module
	eqtools.filewriter module
	eqtools.pfilereader module
	eqtools.trispline module
	Module contents

	Indices and tables
	Python Module Index

