
Epics_On_RPi Documentation
Release 2014.0317.2

Pete Jemian

Sep 27, 2017

Contents

1 Raspberry Pi Distribution 3

2 Preparing for EPICS 5

3 EPICS Base 7
3.1 Downloading . 7
3.2 Building . 7
3.3 Starting . 8
3.4 Environment Declarations . 8

4 synApps 11
4.1 Download . 11
4.2 Configuring . 11
4.3 xxx module: reconfigure . 12
4.4 Install necessary EPICS Extensions . 13
4.5 Install other support . 13
4.6 Building . 13

5 PyEpics 15
5.1 Preparing Python . 15
5.2 Install PyEpics . 15
5.3 Testing PyEpics . 16
5.4 Testing PyEpics with an IOC . 16

6 Files 19

7 Delimiters: Parentheses, Braces, and Back-Quotes 21

i

ii

Epics_On_RPi Documentation, Release 2014.0317.2

What is EPICS?

For those who haven’t heard, EPICS (http://www.aps.anl.gov/epics) is an open-source control system used world-
wide for the routine operation and control of many particle accelerators such as FermiLab and SLAC, for the op-
eration of scientific telescopes such as the Gemini and Keck telescopes, X-ray synchrotrons such as the Advanced
Photon Source and the Diamond Light Source, neutron diffraction facilities such as the Spallation Neutron Source,
and lots of other neat stuff. The system is scalable and runs on lots of different hardware. Here, we show you how
to run EPICS on the Raspberry Pi!

Contents

• Raspberry Pi Distribution

• Preparing for EPICS

• EPICS Base

• synApps

• PyEpics

• Files

Here is how I installed the Experimental Physics and Industrial Control System software (EPICS)1 on the Raspberry
Pi2.

The EPICS software is a client/server system. To keep things simple, we will run both the server and a client on the
Raspberry Pi. (Clients on other computers on our LAN might be able to interact with our EPICS server as well but we
will not discuss that now.)

The EPICS server we will use is built in several parts:

• EPICS Base provides all the development libraries and a few applications and utilities.

• synApps provides additional capabilities that will be useful in real projects. We only use a little of it here, though.

There are many, many possible EPICS clients. Since the RPi already has Python, we’ll work with that:

• PyEpics is an EPICS binding to the Python language, allowing us to build a simple client and interact with our
server.

1 EPICS: http://www.aps.anl.gov/epics
2 RPi: http://www.raspberrypi.org/

Contents 1

http://www.aps.anl.gov/epics
http://www.aps.anl.gov/epics
http://www.raspberrypi.org/

Epics_On_RPi Documentation, Release 2014.0317.2

2 Contents

CHAPTER 1

Raspberry Pi Distribution

hardware Raspberry Pi, model B, RASPBRRY-MODB-512M3

software 2012-12-16 wheezy-raspbian distribution4

Installed wheezy-raspbian distribution on a 16 GB SD card. (It is helpful, but not necessary, to expand the partition to
use the full memory of the SD card using raspi-config before starting X11):

Filesystem Size Used Avail Use% Mounted on
rootfs 15G 2.4G 12G 18% /
/dev/root 15G 2.4G 12G 18% /
devtmpfs 220M 0 220M 0% /dev
tmpfs 44M 252K 44M 1% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 88M 68K 88M 1% /run/shm
/dev/mmcblk0p1 56M 17M 40M 30% /boot

3 vendor: http://www.newark.com/jsp/search/productdetail.jsp?SKU=43W5302
4 wheezy-raspbian: http://downloads.raspberrypi.org/images/raspbian/2012-12-16-wheezy-raspbian/2012-12-16-wheezy-raspbian.zip

3

http://www.newark.com/jsp/search/productdetail.jsp?SKU=43W5302
http://downloads.raspberrypi.org/images/raspbian/2012-12-16-wheezy-raspbian/2012-12-16-wheezy-raspbian.zip

Epics_On_RPi Documentation, Release 2014.0317.2

4 Chapter 1. Raspberry Pi Distribution

CHAPTER 2

Preparing for EPICS

EPICS is flexible about where (which directory path) it is placed. Still, it helps to use standard locations. We’ll build
it from a directory in the pi account, but make a link to that directory called /usr/local/epics. You’ll need to
open a terminal window:

1 cd ~
2 mkdir -p ~/Apps/epics
3 sudo su
4 cd /usr/local
5 ln -s /home/pi/Apps/epics
6 exit
7 cd ~/Apps/epics

By making the epics directory in pi account, we will be able to modify any of our EPICS resources without needing
to gain higher privileges.

5

Epics_On_RPi Documentation, Release 2014.0317.2

6 Chapter 2. Preparing for EPICS

CHAPTER 3

EPICS Base

EPICS Base is very easy to build. The wheezy-raspbian distribution already has all the tools necessary to build EPICS
Base. All that is necessary is to define the host architecture and then build it.

Downloading

The latest stable version of EPICS Base is 3.14.12.3 (3.15 is released but is still not recommended for production use):

1 wget http://www.aps.anl.gov/epics/download/base/baseR3.14.12.3.tar.gz
2 tar xzf baseR3.14.12.3.tar.gz
3 ln -s ./base-3.14.12.3 ./base

Building

note the backticks

Note the use of backticks in the export command. They evaluate the enclosed text as a command and return the
result. For more discussion, see the section below titled Delimiters: Parentheses, Braces, and Back-Quotes.

EPICS base can be built for many different operating systems and computers. Each build is directed by the
EPICS_HOST_ARCH environment variable. A command is provided to determine the best choice amongst all the
systems for which EPICS currently has definitions. Here is the way to set the environment variable on any UNIX or
Linux OS using the bash shell (use either of these two commands, they are equivalent in the bash shell:

1 export EPICS_HOST_ARCH=`/usr/local/epics/base/startup/EpicsHostArch`
2 export EPICS_HOST_ARCH=$(/usr/local/epics/base/startup/EpicsHostArch)

We can check this value by printing it to the command-line (remember, we are logged in as root):

7

Epics_On_RPi Documentation, Release 2014.0317.2

1 echo $EPICS_HOST_ARCH
2 linux-arm

Good! EPICS base will build for a Linux OS on an ARM architecture. This matches my Raspberry Pi.

Tip: The export command above will be useful for future software development. Add it to the ~/.bash_aliases
file if it exists, otherwise add it to the ~/.bashrc file with a text editor (such as nano ~/.bashrc).

Now, build EPICS base for the first time:

1 cd ~/Apps/epics/base
2 make

This process took about 50 minutes.

Starting

It is possible to start an EPICS IOC at this point, although there is not much added functionality configured. We can
prove to ourselves that things will start. Use this linux command:

1 ./bin/linux-arm/softIoc

and EPICS will start with a basic command line prompt:

1 epics>

At this prompt, type:

iocInit

and lines like these (different time stamp) will be printed:

1 Starting iocInit
2 ##
3 ## EPICS R3.14.12.3 $Date: Mon 2012-12-17 14:11:47 -0600$
4 ## EPICS Base built Jan 19 2013
5 ##
6 iocRun: All initialization complete
7 epics>

Congratulations! EPICS Base has now been built on the Raspberry Pi.

Environment Declarations

To simplify using the tools from EPICS base, consider making these declarations in your environment (~/.
bash_aliases):

1 export EPICS_ROOT=/usr/local/epics
2 export EPICS_BASE=${EPICS_ROOT}/base
3 export EPICS_HOST_ARCH=`${EPICS_BASE}/startup/EpicsHostArch`
4 export EPICS_BASE_BIN=${EPICS_BASE}/bin/${EPICS_HOST_ARCH}
5 export EPICS_BASE_LIB=${EPICS_BASE}/lib/${EPICS_HOST_ARCH}

8 Chapter 3. EPICS Base

Epics_On_RPi Documentation, Release 2014.0317.2

6 if ["" = "${LD_LIBRARY_PATH}"]; then
7 export LD_LIBRARY_PATH=${EPICS_BASE_LIB}
8 else
9 export LD_LIBRARY_PATH=${EPICS_BASE_LIB}:${LD_LIBRARY_PATH}

10 fi
11 export PATH=${PATH}:${EPICS_BASE_BIN}

Note: We are being a bit cautious here, not to remove any existing definition of LD_LIBRARY_PATH. Also the
comparison is a Yoda condition5, placing the constant term on the left of the comparison. Yoda conditions can reveal
accidental assignments at run time. Perhaps not so much in the bash shell, but it’s useful in programming languages.

After EPICS base has been built, we see that it has taken ~35 MB of storage:

1 pi@raspberrypi:~$ du -sc base-3.14.12.3
2 35636 base-3.14.12.3

5 Yoda condition: https://en.wikipedia.org/wiki/Yoda_Conditions

3.4. Environment Declarations 9

https://en.wikipedia.org/wiki/Yoda_Conditions

Epics_On_RPi Documentation, Release 2014.0317.2

10 Chapter 3. EPICS Base

CHAPTER 4

synApps

synApps is a collection of software tools that help to create a control system for beamlines. It contains beamline-control
and data-acquisition components for an EPICS based control system.

There are instructions for installing synApps posted online: http://www.aps.anl.gov/bcda/synApps/synApps_5_6.html

Download

The current release of synApps (as this was written in 2013-02) is v5.6. The compressed source archive file is available
from the BCDA group at APS. The file should be 149 MB:

1 wget http://www.aps.anl.gov/bcda/synApps/tar/synApps_5_6.tar.gz
2 tar xzf synApps_5_6.tar.gz

Uncompressed and unconfigured, the synApps_5_6 source folder is ~541 MB.

Configuring

All work will be relative to this folder:

1 cd ~/Apps/epics/synApps_5_6/support

Follow the instructions in the README file. These are the changes I made to run on the Raspberry Pi.

file changes
config-
ure/CONFIG_SITE

no changes

config-
ure/RELEASE

SUPPORT=/usr/local/epics/synApps_5_6/support
EPICS_BASE=/usr/local/epics/base

After modifying configure/RELEASE, propagate changes to all module RELEASE files by running:

11

http://www.aps.anl.gov/bcda/synApps/synApps_5_6.html

Epics_On_RPi Documentation, Release 2014.0317.2

cd ~/Apps/epics/synApps_5_6/support
make release

Edit Makefile and remove support for these modules:

• ALLEN_BRADLEY

• DAC128V

• IP330

• IPUNIDIG

• LOVE

• IP

• VAC

• SOFTGLUE

• QUADEM

• DELAYGEN

• CAMAC

• VME

• AREA_DETECTOR

• DXP

xxx module: reconfigure

The xxx module is an example and template EPICS IOC, demonstrating configuration of many synApps modules.
APS beam line IOCs are built using xxx as a template.

In xxx-5-6/configure/RELEASE, place a comment on lines 19 and 32 to remove build support for areaDetector
in xxx:

#AREA_DETECTOR=$(SUPPORT)/areaDetector-1-8beta1

#IP=$(SUPPORT)/ip-2-13

In xxx-5-6/xxxApp/src/xxxCommonInclude.dbd, place a comment on line 34:

#include "ipSupport.dbd"

Then, in xxx-5-6/xxxApp/src/Makefile, comment out all lines that refer to areaDetector components, such
as ADsupport, “NDPlugin*, simDetector, and netCDF, as well as dxp support. Here are the lines I found:

#iocxxxWin32_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_WIN32 += ADBase NDPlugin netCDF
#iocxxxCygwin_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_cygwin32 += ADBase NDPlugin netCDF
#iocxxxCygwin_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_cygwin32 += ADBase NDPlugin netCDF
#iocxxxLinux_DBD += ADSupport.dbd NDFileNetCDF.dbd
#xxx_LIBS_Linux += ADBase NDPlugin netCDF

12 Chapter 4. synApps

Epics_On_RPi Documentation, Release 2014.0317.2

#iocxxxCygwin_DBD += simDetectorSupport.dbd commonDriverSupport.dbd
#xxx_LIBS_cygwin32 += simDetector
#iocxxxLinux_DBD += simDetectorSupport.dbd commonDriverSupport.dbd
#xxx_LIBS_Linux += simDetector

#xxx_Common_LIBS += ip

Install necessary EPICS Extensions

synApps 5.6 requires the msi EPICS extension. First, setup the extensions subdirectory

1 cd ~/Apps/epics
2 wget http://www.aps.anl.gov/epics/download/extensions/extensionsTop_20120904.tar.gz
3 tar xzf extensionsTop_20120904.tar.gz

Now, download msi, unpack, build, and install it:

1 wget http://www.aps.anl.gov/epics/download/extensions/msi1-5.tar.gz
2 cd extensions/src
3 tar xzf ../../msi1-5.tar.gz
4 cd msi1-5
5 make

Make these additional declarations in your environment (~/.bash_aliases):

1 export EPICS_EXT=${EPICS_ROOT}/extensions
2 export EPICS_EXT_BIN=${EPICS_EXT}/bin/${EPICS_HOST_ARCH}
3 export EPICS_EXT_LIB=${EPICS_EXT}/lib/${EPICS_HOST_ARCH}
4 if ["" = "${LD_LIBRARY_PATH}"]; then
5 export LD_LIBRARY_PATH=${EPICS_EXT_LIB}
6 else
7 export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${EPICS_BASE_LIB}
8 fi
9 export PATH=${PATH}:${EPICS_EXT_BIN}

Install other support

The EPICS sequencer needs the re2c package (http://re2c.org/). This is available through the standard package instal-
lation repositories:

1 sudo apt-get install re2c

Building

Now, build the components of synApps selected in the Makefile:

1 cd ~/Apps/epics/synApps_5_6/support
2 make release
3 make rebuild

4.4. Install necessary EPICS Extensions 13

http://re2c.org/

Epics_On_RPi Documentation, Release 2014.0317.2

The make rebuild step took about 70 minutes.

14 Chapter 4. synApps

CHAPTER 5

PyEpics

It is possible to run the PyEpics support from Matt Newville (http://cars.uchicago.edu/software/python/pyepics3/) on
the Raspberry Pi!

Preparing Python

To simplify installation, we’ll use easy_install (from setuptools).

Note: The additions to the Python installation will be done as root. Here’s how to become root on the default
wheezy-raspbian distribution.

sudo su

First, install the setuptools package from the wheezy repository. (Also, as long as we’re here, the ipython shell is very
helpful.) Let’s load them both:

sudo apt-get install python-setuptools ipython

Next, we want to know which version of Python will be run:

which python
/usr/bin/python
ls -lAFg /usr/bin/python
lrwxrwxrwx 1 root 9 Jun 5 2012 /usr/bin/python -> python2.7*

Python 2.7 will be run.

Install PyEpics

With the setuptools installed, it becomes simple to install PyEpics (still as root):

15

http://cars.uchicago.edu/software/python/pyepics3/

Epics_On_RPi Documentation, Release 2014.0317.2

easy_install -U PyEpics

The installation will complain about missing EPICS support libraries (libca and libCom). Now, we can address that
(still as root):

cd /usr/local/lib/python2.7/dist-packages/pyepics-3.2.1-py2.7.egg
cp /home/pi/Apps/epics/base-3.14.12.3/lib/linux-arm/libca.so.3.14 ./
cp /home/pi/Apps/epics/base-3.14.12.3/lib/linux-arm/libCom.so.3.14 ./
ln -s libca.so.3.14 libca.so
ln -s libCom.so.3.14 libCom.so

Now, exit from root back to the pi account session:

exit

Testing PyEpics

First, you might be eager to see that PyEpics will load. Save this code in the file verify.py (in whatever folder you
wish, we’ll use /home/pi):

1 #!/usr/bin/env python
2

3 import epics
4

5 print epics.__version__
6 print epics.__file__

Also, remember to make the file executable:

chmod +x verify.py

Now, run this and hope for the best:

./verify.py
3.2.1
/usr/local/lib/python2.7/dist-packages/epics/__init__.pyc

This shows that PyEpics was installed but it does not test that EPICS is working.

Testing PyEpics with an IOC

Note: We’ll need to use several tools at the same time. It is easiest to create several terminal windows.

To test that EPICS communications are working, we need to do some preparations.

softIoc

The simplest way to do this is to use the softIoc support from EPICS base with a simple EPICS database. Save this
into a file called simple.db:

16 Chapter 5. PyEpics

Epics_On_RPi Documentation, Release 2014.0317.2

1 record(bo, "rpi:trigger")
2 {
3 field(DESC, "trigger PV")
4 field(ZNAM, "off")
5 field(ONAM, "on")
6 }
7 record(stringout, "rpi:message")
8 {
9 field(DESC, "message on the RPi")

10 field(VAL, "RPi default message")
11 }

Note: The file simple.db defines two EPICS records: rpi:trigger and rpi:message. The first record can take the value
of 0 or 1, which also have the string values of “off” and “on”, respectively. The second record is a string.

Now, run the EPICS soft IOC support with this database:

1 pi@raspberrypi:~$ softIoc -d simple.db
2 Starting iocInit
3 ##
4 ## EPICS R3.14.12.3 $Date: Mon 2012-12-17 14:11:47 -0600$
5 ## EPICS Base built Jan 19 2013
6 ##
7 iocRun: All initialization complete
8 epics> dbl
9 rpi:trigger

10 rpi:message
11 epics>

camonitor

In a separate terminal window, watch the soft IOC for any changes to EPICS PVs we created above:

pi@raspberrypi:~$ camonitor rpi:trigger rpi:trigger.DESC rpi:message rpi:message.DESC
rpi:trigger <undefined> off UDF INVALID
rpi:trigger.DESC <undefined> trigger PV UDF INVALID
rpi:message <undefined> RPi default message UDF INVALID
rpi:message.DESC <undefined> message on the RPi UDF INVALID

Python code

Now, let’s communicate with the PVs of the softIoc. Put this code in file test.py:

1 #!/usr/bin/env python
2

3 import epics
4

5 print epics.caget('rpi:trigger.DESC')
6 print epics.caget('rpi:trigger')
7 print epics.caget('rpi:message.DESC')
8 print epics.caget('rpi:message')
9

10 epics.caput('rpi:message', 'setting trigger')

5.4. Testing PyEpics with an IOC 17

Epics_On_RPi Documentation, Release 2014.0317.2

11 epics.caput('rpi:trigger', 1)
12 print epics.caget('rpi:trigger.DESC')
13 print epics.caget('rpi:trigger')
14 print epics.caget('rpi:message.DESC')
15 print epics.caget('rpi:message')
16

17 epics.caput('rpi:message', 'clearing trigger')
18 epics.caput('rpi:trigger', 0)
19 print epics.caget('rpi:trigger.DESC')
20 print epics.caget('rpi:trigger')
21 print epics.caget('rpi:message.DESC')
22 print epics.caget('rpi:message')

Make the file executable and then run it:

pi@raspberrypi:~$ chmod +x test.py
pi@raspberrypi:~$./test.py
trigger PV
0
message on the RPi
RPi default message
trigger PV
1
message on the RPi
setting trigger
trigger PV
0
message on the RPi
clearing trigger
pi@raspberrypi:~$

Note that new messages have also printed on the terminal running camonitor:

rpi:message 2013-01-21 08:20:28.658746 setting trigger
rpi:trigger 2013-01-21 08:20:28.664845 on
rpi:message 2013-01-21 08:20:28.697210 clearing trigger
rpi:trigger 2013-01-21 08:20:28.702967 off

18 Chapter 5. PyEpics

CHAPTER 6

Files

These files, described above, are available for direct download:

file description
verify.py test that PyEpics is installed
simple.db simple EPICS database to test PyEpics communications with EPICS
test.py Python code to test PyEpics communications with EPICS

19

Epics_On_RPi Documentation, Release 2014.0317.2

20 Chapter 6. Files

CHAPTER 7

Delimiters: Parentheses, Braces, and Back-Quotes

In the code examples above, a combination of parentheses, braces, and back-quotes (a.k.a. accent grave or backtick)
are used.

In the /bin/bash shell, braces, { and }, are used to delimit the scope of symbol names during shell expansion. In the
code examples above, the delimiters are probably unnecessary. Using these delimiters is a cautious practice to adopt.
Parentheses are not recognized in this context:

~$ echo $EPICS_ROOT
/usr/local/epics
~$ echo ${EPICS_ROOT}
/usr/local/epics
~$ echo $(EPICS_ROOT)
EPICS_ROOT: command not found

However, in the various files and commands that configure and command the EPICS components, parentheses, (and
), are the required delimiters. See these examples from above:

#AREA_DETECTOR=$(SUPPORT)/areaDetector-1-8beta1
#IP=$(SUPPORT)/ip-2-13

Sometimes, in a shell script, it is necessary to assign a variable with the value obtained from a command line tool. One
common way to do that, shared by bash and some other shells such as tcsh, is to enclose the command line tool with
the ‘ back-quote character. See this example:

~$ echo $SHELL
/bin/bash
~$ echo `/usr/local/epics/base-3.14.12.3/startup/EpicsHostArch`
linux-x86_64

An alternative way to do this assignment in bash was pointed out, to use shell expansion with parentheses as the
delimiters, such as:

~$ echo $(/usr/local/epics/base-3.14.12.3/startup/EpicsHostArch)
linux-x86_64

21

	Raspberry Pi Distribution
	Preparing for EPICS
	EPICS Base
	Downloading
	Building
	Starting
	Environment Declarations

	synApps
	Download
	Configuring
	xxx module: reconfigure
	Install necessary EPICS Extensions
	Install other support
	Building

	PyEpics
	Preparing Python
	Install PyEpics
	Testing PyEpics
	Testing PyEpics with an IOC

	Files
	Delimiters: Parentheses, Braces, and Back-Quotes

