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1 Welcome to the EPIC user’s guide!

Easy Parameter Inference in Cosmology (EPIC) is my implementation in Python of a MCMC
code for Bayesian inference of parameters of cosmological models and model comparison via the
computation of Bayesian evidences.

1.1 Why EPIC?

I started to develop EPIC as a means of learning how inference can be made with Markov Chain
Monte Carlo, rather than trying to decipher other codes or using them as black boxes. The program
has fulfilled this purposed and went on to incorporate a few cosmological observables that I have
actually employed in some of my publications. Now I release this code in the hope it can be useful
for students to learn some of the methods used in Observational Cosmology and even use it for
their own work. It still lacks some important features. A Boltzmann solver is not available. It is
possible that I will integrate it with CLASS1 to make it more useful for more advanced research.
At this moment it can be used very well for comparisons using background data alone or maybe
some perturbative aspects that can be calculated in a simple way (for example the approximation
of the growth rate in some models). Stay tuned for more. Meanwhile, enjoy these nice features:

• The code is compatible with both Python 2 and Python 3 (maybe not with Python below 2.7
or 2.6), in any operating system.

• It uses Python’s multiprocessing library for evolution of chains in parallel. The sepa-
rate processes can communicate with each other through some multiprocessing utilities,
which made possible the implementation of the Parallel Tempering algorithm. This method
is capable of detecting and accurately sampling posterior distributions that present two or
more separated peaks.

• Convergence between independent chains is tested with the multivariate version of the Gel-
man and Rubin test, a very robust method.

• Also, the plots are beautiful and can be customized to a certain extent directly from the com-
mand line, without having to change the code. You can view triangle plots with marginalized
distributions of parameters, derived parameters, two-dimensional joint-posterior distribu-
tions, autocorrelation plots, cross-correlation plots, sequence plots, convergence diagnosis
and more.

Besides, of course it can be altered to your needs A few changes can be made to the code so you can
constrain other models and/or use different datasets. In this case consider cloning the repository
with git so you can leverage all the version control tools and even contribute to this project.

The main changes will be in the observablesmodule. This is where the physical observables are
calculated. There is a general function for computing the Hubble rate as function of the redshift (or

1 Lesgourgues, J. “The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview”. arXiv:1104.2932
[astro-ph.IM]; Blas, D., Lesgourgues, J., Tram, T. “The Cosmic Linear Anisotropy Solving System (CLASS). Part
II: Approximation schemes”. JCAP07(2011)034



the scale factor converted to redshift), with conditionals for the different models. For some cases
a numeric integration is done with Runge-Kutta. The simplified JLA binned data only depends
on distances, for this case just properly including your model calculation in the function Eh, that
is, hE(z) = H(z)/100 or H will be sufficient. BAO calculations also depend mainly on the Hubble
rate but you should pay attention to the necessary density parameters too. CMB shift parameters is
similar. In any case, this is the place where you should introduce your calculations. You will choose
a label for your model, which should be used in you .ini file. This label becomes the attribute
model of your Cosmology class object. Insert the free parameters (and their priors) accordingly
and their LaTEX representation at the end of the file for the plots.

If you want to use other data, you can look at the ones provided to see the format used. There are
a few different ways. Standard Gaussian likelihoods generally use the function simple, if the data
contain only the measurements and their uncertainties, or the function matrixform if there is a
covariance matrix. Of course you can create a new one if these are not adequate for the specific
needs. Then you just need to tell which function this dataset uses in the dictionary allprobes at
the end of the file. The load_data module contains functions to read the data files. You will have
to create one there too. Detailed explanations are given at the end of the sections about the data
and the models.

Try it now!

2 How to install

There are two ways to install this program. You can download and install from PyPi or you can
clone it from BitBucket. But first, it is recommended that you make these changes inside a virtual
environment.

2.1 Setting up a virtual environment

if you are on Python 3.3 or superior, you can run:

$ python3 -m venv vEPIC

to create a virtual Python environment inside a folder named vEPIC. Activate it with:

$ source vEPIC/bin/activate

When you finish using the environment and want to leave it you can just use deactivate. To
activate it again, which you need in a new session, just run the command above, you do not need
to create it again. More details about Python3’s venv here.

With inferior versions of Python, you can install pyenv and pyenv-virtualenv, which let you create
a virtual environment and even choose another versionof Python to install. This is done with:

https://docs.python.org/3/library/venv.html
https://github.com/pyenv


$ pyenv virtualenv 3.6.1 vEPIC # or other version you like.

Then activate it running:

$ pyenv activate vEPIC # use pyenv deactivate vEPIC to deactivate it.

Your virtual environment name will appear in front of your username at the beginning of the line
to indicate that the environment is activated.

2.2 Installing with pip

The easiest way to install this program is to get it from PyPi. It is also the most recommended
since it can be easily updated when new versions come out. Inside your virtual environment, run:

$ pip install epic-code

Then, if you are using Linux, create a bind mount from your python path to an external directory
for your convenience. For example, in your home, create the directories cosmology_codes/EPIC
and cosmology_codes/EPIC-simulations. Run:

$ sudo mount --bind $PYTHONPATH/lib/python3.5/site-packages/EPIC/ cosmology_
↪→codes/EPIC

This will make your newly created folder reflect the contents of the installation directory and you
will be able to run the scripts and access the associated files from there, rather than only importing
the modules from inside the python interactive interpreter. If you do not have the privileges to
mount the directory then follow the instructions below for downloading and extracting manually
to your home directory.

Note: If you are on Mac OS X or macOS, you can achieve the same effect but will need to install
osxfuse and bindfs to create the link:

$ brew install osxfuse # or brew cask install osxfuse
$ brew install bindfs
$ bindfs $PYTHONPATH/lib/python3.5/site-packages/EPIC/ cosmology_codes/EPIC

Next, cd into cosmology_codes/EPIC, run:

$ python define_altdir.py

and pass the full path to cosmology_codes/EPIC-simulations to define this folder as the lo-
cation for saving simulations results. You are now good to go. To check and install updates if
available, just run:

https://osxfuse.github.io
https://bindfs.org


$ pip install --upgrade epic-code

On a Windows computer, if you have Windows 10 Pro, I recommend enabling the Windows Sub-
system for Linux and installing Bash on Ubuntu on Windows 10, then proceeding with the instruc-
tions above for installation on Linux. If not possible, then use the zip file as indicated below.

2.3 Downloading and extracting the tarball

If you rather not install it to your system you can just extract the tar.gz files from the Python
Package Index at https://pypi.python.org/pypi/epic-code. Extract the file with:

$ tar -xzf epic-code-[version].tar.gz

cd into the root folder and install to your (virtual) environment:

$ python setup.py install

This is necessary to guarantee that all modules will be loaded correctly. It also applies to the source
code extracted from the zip file or other compression format. You can then run the program from
the EPIC folder. To update the program you will have to download the new tarball/zip file and
execute this process again.

2.4 Cloning the repository

If you plan to contribute to this program you can clone the git repository at https://bitbucket.org/

rmarcondes/epic.

3 Introduction to MCMC

Users familiar with the Markov Chain Monte Carlo (MCMC) method may want to skip to the
next section. The typical problem the user will want to tackle with this program is the problem of
parameter estimation of a given theoretical model confronted with one or more sets of observational
data. This is a very common task in Cosmology these days, specially in the light of numerous data
from several surveys, with increasing quality. Important discoveries are expected to be made with
the data from new generation telescopes in the next decade.

In the following I give a very brief introduction to the MCMC technique and describe how to use
program.

https://pypi.python.org/pypi/epic-code
https://bitbucket.org/rmarcondes/epic
https://bitbucket.org/rmarcondes/epic


3.1 The Bayes Theorem

Bayesian inference is based on the inversion of the data-parameters probability relation, which is
the Bayes theorem1. This theorem states that the posterior probability p(θ | D,ℳ) of the parameter
set θ given the data D and other information from the modelℳ can be given by

p(θ | D,ℳ) =
ℒ(D | θ,ℳ) π(θ | ℳ)

p(D,ℳ)
,

where ℒ(D | θ,ℳ) is the likelihood of the data given the model parameters, π(θ | ℳ) is the prior
probability, containing any information known a priori about the distribution of the parameters, and
p(D,ℳ) is the marginal likelihood, also popularly known as the evidence, giving the normalization
of the posterior probability. The evidence is not required for the parameter inference but is essential
in problems of selection model, when comparing two or more different models to see which of them
is favored by the data.

Direct evaluation of p(θ | D,ℳ) is generally a difficult integration in a multiparameter space that
we do not know how to perform. Usually we do know how to compute the likelihood ℒ(D | θ,ℳ)
that is assigned to the experiment (most commonly a distribution that is Gaussian on the data or
the parameters), thus the use of the Bayes theorem to give the posterior probability. Flat priors are
commonly assumed, which makes the computation of the right-hand side of the equation above
trivial. Remember that the evidence is a normalization constant not necessary for us to learn about
the most likely values of the parameters.

3.2 The Metropolis-Hastings sampler

The MCMC method shifts the problem of calculating the unknown posterior probability distribu-
tion in the entire space, which can be extremly expensive for models with large number of param-
eters, to the problem of sampling from the posterior distribution. This is possible, for example, by
growing a Markov chain with new states generated by the Metropolis sampler2.

The Markov chain has the property that every new state depends on its current state, and only on
this current state. Dependence on more previous states or on some statistics involving all states
is not allowed. That can be done and can even also be useful for purposes like ours, but then the
chain can not be called Markovian.

The standard MCMC consists of generating a random state y according to a proposal probability
Q(· | xt) given the current state xt at time t. Then a random number u is drawn from a uniform
distribution between 0 and 1. The new state is accepted if r ≥ u, where

r = min
[︃
1,

p(y | D,ℳ)Q(xt | y)
p(xt | D,ℳ)Q(y | xt)

]︃
.

1 Hobson M. P., Jaffe A. H., Liddle A. R., Mukherjee P. & Parkinson D., “Bayesian methods in cosmology”.
(Cambridge University Press, 2010).

2 Gayer C., “Introduction to Markov Chain Monte Carlo”. in “Handbook of Markov Chain Monte Carlo” http:
//www.mcmchandbook.net/

http://www.mcmchandbook.net/
http://www.mcmchandbook.net/


The fraction is the Metropolis-Hastings ratio. When the proposal function is symmetrical, Q(xt |y)
Q(y|xt)

reduces to 1 and the ratio is just the original Metropolis ratio of the posteriors. If the new state is
accepted, we set xt+1 := y, otherwise we repeat the state in the chain by setting xt+1 := xt.

The acceptance rate α =
number of accepted states

total number of states of a chain should be around 0.234 for optimal effi-
ciency3. This can be obtained by tuning the parameters of the function Q. In this implementation,
I use a multivariate Gaussian distribution with a diagonal covariance matrix S .

3.3 The Parallel Tempering algorithm

Standard MCMC is powerful and works in most cases but there are some problems where the
user may be better off using some other method. Due to the characteristic behavior of a Markov
chain, it is possible (and even likely) that a chain become stuck in a single mode of a multimodal
distribution. If two or more peaks are far away from each other, the proposal function tuned for
good performance in a peak may have difficulty escaping that peak to explore the other, because the
jump may be too short. To overcome this inefficiency, a neat variation of MCMC, called Parallel
Tempering4, favors a better exploration of the entire parameter space in such cases thanks to an
arrangement of multiple chains that are run in parallel, each one with a different ‘’temperature”
T . The posterior is calculated as ℒβπ, with β = 1/T . The first chain is the one that corresponds
to the real life posterior we are interested in; the other chains, at higher temperatures, will have
wider distributions, which makes it easier to jump between peaks, thus exploring more properly
the parameter space. Periodically, a swap of states between neighboring chains is proposed and
accepted or rejected according to a Hastings-like ratio.

4 Using EPIC

You can use standard MCMC and Parallel-Tempering MCMC with this program. Besides, there is
one experimental adaptive feature to each method that adjusts the covariance of the proposal mul-
tivariate Gaussian probability density for optimal efficiency, aiming at an acceptance rate around
0.234. In the PT-MCMC, the adaptation also adjusts the temperature levels of the chains and
reduces the number of necessary chains if possible.

In the following sections I guide the user through the two approaches, with typical examples for
demonstration.

3 Roberts G. O. & Rosenthal J. S., “Optimal scaling for various Metropolis-Hastings algorithms”. Statistical Sci-
ence 16 (2001) 351-367.

4 Gregory P. C., “Bayesian logical data analysis for the physical sciences: a comparative approach with Mathemat-
ica support”. (Cambridge University Press, 2005).



4.1 Before starting

The problem is set up through a .ini file containing the parameters, priors, model type, data files
to be used and tex strings for plotting. The program creates a folder in the working directory with
the same name of this .ini file, if not already existing. Another folder is created with the date and
time for the output of each run of the code, but you can always continue a previous run from where
it stopped, just giving the folder name instead of the .ini file.

The folder epic is the root of the project. The python codes are in the EPIC source folder, where
the .ini files should also be placed. The default working directory is the EPIC’s parent directory,
i.e., the epic repository folder.

Changing the default working directory

By default, the folders with the name of the .ini files are created at the repository root level. But
the chains can get very long and you might want to have them stored in a different drive. In order
to set a new default location for all the new files, run:

python define_altdir.py

This will ask for the path of the folder where you want to save all the output of the program and
keep this information in a file altdir.txt. If you want to revert this change you can delete the
altdir.txt file or run again the command above and leave the answer empty when prompted.

The parameters names

Each cosmological parameter already implemented has a name to be used in the code that must be
respected in the .ini file. The table below lists some of the parameters, their definitions and their
names in the program.

Parameter Description Name
h Reduced Hubble constant h
Ωb0h2 Physical baryonic density parameter Obh2
Ωc0h2 Physical cold dark matter density parameter Och2
Ωr0h2 Physical radiation density parameter Orh2
Ωb0 Baryonic density parameter Ob0
Ωc0 Cold dark matter density parameter Oc0
Ωm0 Matter (baryons plus DM) density parameter Om0
Ωd0 Dark energy density parameter Oc0
wd Dark energy equation-of-state parameter w or wd



The structure of the .ini file

Let us work with an example, with a simple flat ΛCDM model. Suppose we want to constrain its
parameters with H(z), supernovae data, CMB shift parameters and BAO data. The model parame-
ters are the reduced Hubble constant h, the present-day values of the physical density parameters
of dark matter Ωc0h2, baryons Ωb0h2 and radiation Ωr0h2. We will not consider perturbations, we
are only constraining the parameters at the background level. Since we are using supernovae data
we must include a nuisance parameter M, which represents a shift in the absolute magnitudes of
the supernovae. It is also possible to use the full JLA catalogue with this program. In this case, we
would have to include also the nuisance parameters α, β and ∆M from the light-curve fit. The first
section of the LCDM.ini file defines the priors and at the same time the names of the parameters.
They must be inserted in the following form:

## PRIORS

h 0.6 0.8 4e-4
Och2 0.08 0.20 2e-4
Obh2 0.01 0.08 5e-5
Orh2 4e-5 8e-5 2e-7
M -0.3 0.3 2e-3 nuisance

## end of priors

Delimiting lines are mandatory: the line defining the beginning of the priors section must contain
the word PRIORS. The priors are read until the word end is found. The first column are the names
of the parameters in the code. The second and third columns set the flat priors intervals. The fourth
column is optional. Gaussian priors are also supported. In this case, one should add gaussian
at the end of the line. The second and third values will then be the Gaussian parameters µ and
σ instead. It gives the standard deviation for each parameter in the covariance of the proposal
function. The values will vary according to the problem but a first guess can be 1/10 or other small
fraction of the prior interval. Notice that the nuisance parameter is signaled as such by the word
nuisance at the end of the line. To remove a parameter, you can just comment out its line with the
character #. If the parameter removed is necessary for the model predictions then a default value
will be assumed.

After the priors come the type of the model, needed to select the proper functions in the calculation
of model predictions, and a display name, both with identifiers MODEL and NAME. They are signaled
in the .ini file in the same way of the priors, but since they are single-line the final delimiter is
not needed:

## MODEL
lcdm

## NAME
$\Lambda$CDM

The class model could also be wcdm for a wCDM model, of which ΛCDM is a special case.



Omitting the dark energy equation of state parameter would automatically set it to -1. Notice that
the use of LaTEX input is allowed in the model name. Next is the list of observables to be used,
with the filename or directory with the data. The list is read until an occurrence of end is found:

## DATA files

JLAsimple jla_likelihood_v4
Planck2015_distances Planck2015_LCDM
BAO BAO-6dF+SDSS+BOSS+Lyalpha+WiggleZ.txt
CosmicChrono thirtypointsHz.txt

## end of data

Finally, tex strings must be given to be used in the plots:

## TEX REPRESENTATION

h h
Och2 \Omega_{c0}h^2
Obh2 \Omega_{b0}h^2
Orh2 \Omega_{r0}h^2
Oc0 \Omega_{c0}
Ob0 \Omega_{b0}
Or0 \Omega_{r0}
Od0 \Omega_{d0}
Om0 \Omega_{m0}
M \Delta{M}

# end of tex

Here, strings for the derived parameters are also needed. The tex strings should not contain any
spaces. If you need to separate a tex command from a following variable, use {} instead, as is
done for the last parameter in this example. Also note that the first column needs to be consistent
with the names given in the priors and also in the parameters_names.txt dictionary.

To summarize, we end up with the LCDM.ini file in the EPIC folder looking like this:

## PRIORS

h 0.6 0.8 4e-4
Och2 0.08 0.20 2e-4
Obh2 0.01 0.08 5e-5
Orh2 4e-5 8e-5 2e-7
M -0.3 0.3 2e-3 nuisance

## end of priors

(continues on next page)



(continued from previous page)

## MODEL
lcdm

## NAME
$\Lambda$CDM

## DATA files

JLAsimple jla_likelihood_v4
Planck2015_distances Planck2015_LCDM
BAO BAO-6dF+SDSS+BOSS+Lyalpha+WiggleZ.txt
CosmicChrono thirtypointsHz.txt

## end of data

## TEX REPRESENTATION

h h
Och2 \Omega_{c0}h^2
Obh2 \Omega_{b0}h^2
Orh2 \Omega_{r0}h^2
Oc0 \Omega_{c0}
Ob0 \Omega_{b0}
Or0 \Omega_{r0}
Od0 \Omega_{d0}
Om0 \Omega_{m0}
M \Delta{M}

# end of tex

4.2 The datasets

We list and detail below the datasets already implemented and give instructions on how to include
other data.

Type Ia supernovae

Two types of analyses can be made with the JLA catalogue. Here we are using the binned data
consisting of distance modulus estimates at 31 points (defining 30 bins of redshift). This dataset is
select via the JLAsimple entry in the list of data sources. If you want to use the full dataset (which



makes the analysis much slower since it involves three more nuisance parameters and requires the
program to invert a 740 by 740 matrix at every iteration for the calculation of the JLA likelihood),
insert SNeJLA instead. Also, you need to download the full data from http://supernovae.in2p3.
fr/sdss_snls_jla/ReadMe.html or from my copy on Google Drive. Since the data files are too
big, EPIC includes only the jla_likelihood_v4/data folder. In this case you will need the
jla_likelihood_v4/covmat. Make sure to properly include it in you installation directory.

Either way, the argument is the same data folder jla_likelihood_v4. Note that the binned
dataset introduces one nuisance parameter M, representing an overall shift in the absolute mag-
nitudes, and the full dataset introduce other four nuisance parameters related to the light-curve
parametrization. See Betoule et al. (2014)1 for more details.

Note: This version of EPIC supports version V4 (June 2014) of the dataset release. Current
version is V6 (March 2015). An update to implement use of V6 is being considered for the near
future.

CMB distance priors

Constraining models with temperature or polarization anisotropy amplitudes is not currently
implemented. However, you can include the CMB distance priors from Planck2015 with
Planck2015_distances. These data consist of an acoustic scale lA, a shift parameter R and
the physical density of baryons Ωb0h2. You can choose between the data for ΛCDM, wCDM
and ΛCDM + Ωk models2, specifying the folders Planck2015_LCDM, Planck2015_wCDM or
Planck2015_LCDM+Omega_k, respectively.

BAO data

Measurements of the baryon acoustic scales from the Six Degree Field Galaxy Survey (6dF), the
Main Galaxy Sample of Data Release 7 of Sloan Digital Sky Survey (SDSS-MGS), the LOWZ
and CMASS galaxy samples of the Baryon Oscillation Spectroscopic Survey (BOSS-LOWZ and
BOSS-CMASS), the WiggleZ Dark Energy Survey and the distribution of the Lyman α forest in
BOSS (BOSS-Ly) are compiled file BAO-6dF+SDSS+BOSS+Lyalpha+WiggleZ.txt. The sub-
samples BAO-6dF+SDSS+BOSS+Lyalpha.txt and BAO-6dF.txt are also available, the first ex-
cluding the WiggleZ data and the second only with the 6dF data. Since these files simply contain
the redshift of the measurement, the value of the characteristic ratio rBAO(z) ≡ rs(zd)/dV(z) between
the sound horizon rs at decoupling time (zd) and the effective BAO distance dV and the measure-
ment error, it is really simple to remove or add new measurements of this observable.

1 Betoule M. et al. “Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova
samples”. Astronomy & Astrophysics 568, A22 (2014).

2 Huang Q.-G., Wang K. & Wang S. “Distance priors from Planck 2015 data”. Journal of Cosmology and As-
troparticle Physics 1512, 022 (2015).

http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
https://drive.google.com/drive/folders/1p67JzXxz32NAes6CsjqTyvesuUldk7PE?usp=sharing


H(z) data

These are the cosmic chronometer data. 30 measurements of the Hubble expansion rate H(z) at
redshifts between 0 and 2, plus a 2.4% precision local measure of H0. The values of redshift, H
and the uncertainties are given in the file thirtypointsHz.txt.

fσ8 data

Large-scale structure data from redshift-space distortion and peculiar velocity measurements giv-
ing the growth rate times the RMS amplitude of matter perturbations fσ8(z) can also be used.
Notice that in this case you need to provide an analytic evaluation of the growth rate (for example,
as f = Ω

γ
m) in your model since this program does not evolve perturbations numerically at the

present moment. See for example the implementation in Marcondes et al. (2016)3.

Including other data

You can include other data if you want. In the simplest case, you will have measurement values and
error bars for a certain quantity, say f (z), at given points. Put them on a text file in three columns
separated by TAB or spaces, as in, for example, the SDSS+BOSS.txt file:

0.15 4.47 0.17
0.32 8.47 0.17
0.57 13.77 0.13

Choose a label for this dataset and put it in the .ini file in the data files section:

my_data my_data_file.txt

Next, you need to tell the code how to read this new type of dataset. In this simple case you add a
function like:

def my_data(obsble):
return simplest_data(obsble, 'my_data', r'$f(z)$')

to the load_datamodule. The name of this function must be the same as the label that goes in the
.ini file. This function, or its more complicated equivalent, is the only change needed to be made
in the load_data.py file. In the simplest_data function call, the obsble variable carries the
dataset file information (the filename or directory), the second argument is a string to be displayed
indicating that your data is loaded. The third argument is a raw string, possibly including LaTEX
notation, to be displayed in the triangle plots compounding the label that describes the datasets
used in this analysis when you plot together results from more than one analysis.

3 Marcondes R. J. F., Landim R. C. G., Costa A. A., Wang B. & Abdalla E. “Analytic study of the effect of dark
energy-dark matter interaction on the growth of structures”. Journal of Cosmology and Astroparticle Physics 1612,
009 (2016).



You then need to define the likelihood calculation in the likelihood module. At the end of the
file, add to the dictionary allprobes an entry with the key 'my_data' (again the same label) and
the likelihood function, say my_data_likelihood, as its value. For a Gaussian likelihood, this
function can be:

def my_data_likelihood(datapoints, cosmology):
return simple(datapoints, observables.my_f, cosmology)

Now, as you may have already figured out, the next step is to add the theoretical calculation my_f
of your observable f to the observables.py file. Of course, this will vary with each case. Do not
forget to use the model attribute of the Cosmology class object named cosmology to set different
calculations according to each cosmological model you might want to use.

4.3 The cosmological models

A few models are already implemented. I give a brief description below, with references for works
that discuss some of them in detail and works that analyzed them with this code. There are some
models for which we have analytical solutions for the evolutions of the energy densities and can
write the Hubble rate in a closed form: this is done via the function h E(z) (Eh in the module
observables) from which H(z) = 100 h E(z) is obtained in the function H from the same module.
Generally, this is implemented using the physical densities Ωi0h2 and h as parameters. For other
models, a numerical integral is performed with fourth-order Runge-Kutta. Since this integration is
done backwards in time from a = 1, it is easier to deal with the density parameters Ωi0 and H0. The
result is a H(z) function that can be interpolated for any redshift within the interval of integration.
This is registered in a Cosmology class object as the attribute H_solution, from which h E(z) as
well can be obtained when convenient. The code is written so that the integration is done only once
given a set of parameters and model. In all cases the dark energy density parameter is obtained,
as a derived parameter, from the flatness condition that all the density parameters must add up to
1. At the end of this section, I instruct the user on how to include a new model for use with this
program.

The ΛCDM model

The standard models accepts the parameters h, Ωc0h2, Ωb0h2, Ωr0h2, and has Ωc0, Ωb0, Ωr0, Ωd0, as
derived parameters. Extending this model to allow curvature is not completely supported yet. The
Friedmann equation is

H(z)
100 km s−1 Mpc−1 = hE(z) =

√︀
(Ωb0h2 + Ωc0h2)(1 + z)3 + Ωr0h2(1 + z)4 + Ωdh2

or

H(z) = H0

√︀
(Ωb0 + Ωc0)(1 + z)3 + Ωr0(1 + z)4 + Ωd,

with Ωd = 1 −Ωb0 −Ωc0 −Ωr0 and H0 = 100 h km s−1 Mpc−1. This model is identified in the code
by the label lcdm.



The wCDM model

Identified by wcdm, this is like the standard model except that the dark energy equation of state can
be any constant wd, thus having the ΛCDM model as a specific case with wd = −1. The Friedmann
equation is like the above but with the dark energy contribution multiplied by (1 + z)3(1+wd).

Interacting Dark Energy models

A comprehensive review of models that consider a possible interaction between dark energy and
dark matter is given by Wang et al.2. In interacting models, the individual conservation equations
of the two dark fluids are violated, although still preserving the total energy conservation:

ρ̇c + 3Hρc = Q
ρ̇d + 3H(1 + wd)ρd = −Q.

The shape of Q is what characterizes each model. Common forms are proportional to ρc, to ρd or
to some combination of both.

Proportional to ρd

This model uses Q = 3Hξρd. We were interested in studying the growth rate of matter perturba-
tions in such a model in an analytic way in a previous work3. Some assumptions were made and
the growth rate was approximated as f ≈ Ω

γ
m, with γ determined in terms of the coupling constant

ξ, a free parameter of the model. Other parameters involved are σ8,0 and Ωd0, and w0 and w1 from

wd(Ωd) = w0 + w1Ωd + 𝒪(Ω2
d).

A recurrence relation is used to approximate the evolution of densities. This imple-
mentation, dubbed model2 in the code, is meant to be used with the myfsigma8 or
growth_rate_sigma_eight functions only, to have its predictions compared with the fσ8(z)
data.

Interacting dark energy in the dark S U(2)R model

As per the recent paper by Landim et al4, This model actually proposes an interaction possibly
between more than two components of a dark sector from the decay of the heaviest particle (ϕ+)

2 Wang B., Abdalla E., Atrio-Barandela F., Pavón D., “Dark matter and dark energy interactions: theoretial chal-
lenges, cosmological implications and observational signatures”. Reports on Progress in Physics 79 (2016) 096901.

3 Marcondes R. J. F., Landim R. C. G., Costa A. A., Wang B. and Abdalla E., “Analytic study of the effect of dark
energy-dark matter interaction on the growth of structures”. Journal of Cosmology and Astroparticle Physics 1612,
009 (2016).

4 Landim R. C. G., Marcondes R. J. F., Bernardi F. F. and Abdalla E., “Interacting dark energy in the dark SU(2)R
model”. arXiv:1711.07282 [astro-ph.CO]



of the dark energy doublet (ϕ0, ϕ+). The other particles in the sector are a dark matter candidate ψ,
a dark matter neutrino νd. The right-hand side of the conservation equations of these particles are
obtained in terms of a characteristic decay time scale Γ and mass ratios with respect to the heaviest
particle. The model is implemented in two flavours: the more general darkSU2 and the specific
case with the neutrino mass set to zero, darkSU2wnu0. The solution to the full set of background
density evolutions is obtained numerically.

Fast-varying dark energy equation-of-state models

Models of dark energy with fast-varying equation-of-state parameter have been studied in some
works1. Three such models were implemented as described in Marcondes and Pan (2017)5. We
used this code in that work. They have all the density parameters present in the ΛCDM model
besides the dark energy parameters that we describe in the following.

Model 1

This model fastvarying1 has the free parameters wp, w f , at and τ characterizing the equation of
state

wd(a) = w f +
wp − w f

1 + (a/at)1/τ .

wp and w f are the asymptotic values of wd in the past (a → 0) and in the future (a → ∞), respec-
tively; at is the scale factor at the transition epoch and τ is the transition width. The Friedmann
equation is

H(a)2

H2
0

=
Ωr0

a4 +
Ωm0

a3 +
Ωd0

a3(1+wp) f1(a),

where

f1(a) =

⎛⎜⎜⎜⎜⎝a1/τ + a1/τ
t

1 + a1/τ
t

⎞⎟⎟⎟⎟⎠3τ(wp−w f )

.

1 Corasaniti P. S. & Copeland E. J., “Constraining the quintessence equation of state with SnIa data and CMB
peaks”. Physical Review D 65 (2002) 043004; Basset B. A., Kunz M., Silk J., “A late-time transition in the cosmic
dark energy?”. Monthly Notices of the Royal Astronomical Society 336 (2002) 1217-1222; De Felice A., Nesseris S.,
Tsujikawa S., “Observational constraints on dark energy with a fast varying equation of state”. Journal of Cosmology
and Astroparticle Physics 1205, 029 (2012).

5 Marcondes R. J. F. & Pan S., “Cosmic chronometer constraints on some fast-varying dark energy equations of
state”. arXiv:1711.06157 [astro-ph.CO].



Model 2

This model fastvarying2 alters the previous model to allow the dark energy to feature an ex-
tremum value of the equation of state:

wd(a) = wp + (w0 − wp)a
1 − (a/at)1/τ

1 − (1/at)1/τ ,

where w0 is the current value of the equation of state and the other parameters have the interpreta-
tion as in the previous model. The Friedmann equation is

H(a)2

H2
0

=
Ωr0

a4 +
Ωm0

a3 +
Ωd0

a3(1+wp) e f2(a),

with

f2(a) = 3(w0 − wp)
1 + (1 − a−1/τ

t )τ + a
[︀{︀

(a/at)1/τ − 1
}︀
τ − 1

]︀
(1 + τ)(1 − a−1/τ

t )
.

Model 3

Finally, we have a third model fastvarying3 with the same parameters as in Model 2 but with
equation of state

wd(a) = wp + (w0 − wp)a1/τ1 − (a/at)1/τ

1 − (1/at)1/τ .

It has a Friedmann equation identical to Model 2’s except that f2(a) is replaced by

f3(a) = 3(w0 − wp)τ
2 − a−1/τ

t + a1/τ
t
[︀
(a/at)1/τ − 2

]︀
2
(︀
1 − a−1/τ

t
)︀ .

Including a new model

To define a new model in the program, you will need to implement your model calculation of the
observables you want to use. Choose a label for the model and use conditionals on the cosmology.
model attribute. In your .ini file, use the same label to describe this new model in the correspond-
ing section and do not forget to give LaTEX representations for your parameters. If there are derived
parameters that you want to get, include their recipes in derived.py and derived_bf.py. The
first one handles the Markov chains, while the second calculates the best-fit estimate point. No
other changes are required throughout the code.



4.4 Running MCMC

This is the vanilla Monte Carlo Markov Chain with the Metropolis algorithm, as introduced in the
previous section The Metropolis-Hastings sampler.

We will now proceed to run MCMC for the ΛCDM model. All the following commands must be
issued from your terminal at the EPIC directory.

Initializing the chains

Standard MCMC is the default option for sampling. The chains are initialized with:

python initialize_chains.py LCDM.ini

We already know the .ini file, a configuration file containing all the information for that specific
simulation. It defines the parameters names and priors, their TeX strings, the type of cosmological
model, which will determine how to calculate distances and the observables and sets a label for the
model.

The code will ask the number of chains to be used. It must be at least 2. You can also run the
command above with chains=8 as an argument to suppress this prompt. Each chain will create an
independent process with Python’s multiprocessing, so you should not choose a number higher
than the number of CPUs multiprocessing.cpu_count() of your machine.

This command will create a folder with the files that will store the states of the chains, named
reducedchain1.txt, reducedchain2.txt, etc, besides other relevant files. The sampling
mode (MCMC or PT) is prepended to the name of the folder, which is always the date-time of
creation (in UTC), unless the option cfullname=MyFirstRun (c standing for custom) is used,
then MCMC-MyFirstRun will be the folder name. A custom label can also be prepended with
cname=my_label creating, for example, the folder my_label-MCMC-171110-173000. It will
be stored within another folder with the same name of the .ini file, thus in this case LCDM/
my_label-MCMC-170704-201125. The folder name will be displayed in the first line of the out-
put.

Alternatively, this first command can be skipped by running the main file epic.py directly, as I
explain next. The main file can distinguish if the first argument is a .ini file or a directory. In the
first case, it will call initialize_chains.py with the same arguments. In the second case, if
the path given corresponds to a MCMC or PT (signaled by the mode.txt file) directory just created
with initialize_chains.py or any previously initiated simulation, it will continue to evolve its
chains from where they stopped.

Sampling the posterior distribution

The magic starts with:



python epic.py <FULL-PATH-TO>/LCDM/MCMC-MyFirstRun/

or simply:

python epic.py LCDM.ini

if you have not initialized the chains yet with the previous command or want to start a new run.
Two parameters of the code will be prompted:

Please specify the number of steps in each passage in the MCMC loop: 10000
Please specify the tolerance for convergence: 1e-2

but these can also be informed directly when executing epic.py in the form of arguments
steps=3000 and tol=1e-2. This number of steps means that the chains will be written to the
disk (the new states are appended to the chains files) after each steps states in all chains. A large
number prevents frequent writing operations, which could otherwise affect overall performance
unnecessarily. The relevant information will be displaying, in our example case looking similar to
the following:

Loading INI file...
Reading simplified JLA dataset...

jla_likelihood_v4
Reading distance priors from Planck 2015...

Planck2015_LCDM
Reading BAO (6dF+SDSS+BOSS+Lyalpha+WiggleZ) data...

BAO-6dF+SDSS+BOSS+Lyalpha+WiggleZ.txt
Reading cosmic chorometer H(z) data...

thirtypointsHz.txt
File <FULL-PATH-TO>/LCDM/MCMC-MyFirstRun/

and the MCMC will start.

In the MCMC mode, the code will periodically check for convergence according to the Gelman-
Rubin method (by default it is done every two hours but can be specified differently as 12h or
45min in the arguments, for example. Ideally this does not need to be a small time interval, but the
option of specifying this time in minutes or even in seconds (30sec) is implemented and available
for testing purposes. The MCMC run stops if convergence is achieved with a tolerance smaller
than tol.

The following is the output of our example after the MCMC has started. The 10000 steps take a
bit less than twelve minutes in my workstation running 8 chains in parallel. The number of chains
will not make much impact on this unless we use too many steps by iteration and are close to
the limit of memory. After approximately two hours, convergence is checked. Since it is smaller
than our required tol, the code continues with new iterations for more two hours before checking
convergence again and so on. When convergence smaller than tol is achieved the code makes the
relevant plots and quits.



Initiating MCMC...
i 1, 10000 steps, 8 ch; 11m48s, Mon Oct 16 19:09:09 2017. Next: ~1h48m.
i 2, 20000 steps, 8 ch; 11m50s, Mon Oct 16 19:21:00 2017. Next: ~1h36m.
i 3, 30000 steps, 8 ch; 11m51s, Mon Oct 16 19:32:51 2017. Next: ~1h24m.
i 4, 40000 steps, 8 ch; 11m50s, Mon Oct 16 19:44:42 2017. Next: ~1h12m.
i 5, 50000 steps, 8 ch; 11m49s, Mon Oct 16 19:56:31 2017. Next: ~1h0m.
i 6, 60000 steps, 8 ch; 11m51s, Mon Oct 16 20:08:23 2017. Next: ~48m58s.
i 7, 70000 steps, 8 ch; 11m50s, Mon Oct 16 20:20:14 2017. Next: ~37m7s.
i 8, 80000 steps, 8 ch; 11m50s, Mon Oct 16 20:32:04 2017. Next: ~25m16s.
i 9, 90000 steps, 8 ch; 11m52s, Mon Oct 16 20:43:57 2017. Next: ~13m24s.
i 10, 100000 steps, 8 ch; 11m53s, Mon Oct 16 20:55:50 2017. Checking now...
Loading chains... [##########] 8/8
n = 100000
Saving information for histograms... [##########] 100%
Monitoring convergence... [##########] 100%
Total time for data analysis: 14.5 seconds.
After 1h58m and 100000 steps, with 8 chains,
Convergence 3.73e-01 achieved. Current time: Mon Oct 16 20:56:04 2017.
i 11, 110000 steps, 8 ch; 11m49s, Mon Oct 16 21:07:54 2017. Next: ~1h48m.
...

At any time after the first iteration, the user can inspect the acceptance ratio of the chains. The
information after updated at every iteration and can be found in the file LCDM/MCMC-MyFirstRun/
llc.txt.

Adaptation (beta)

In development. Come back later to check!

Analyzing the chains

The code reads the chains and compile the distributions for a nice plot with the command:

python analyze.py <FULL-OR-RELATIVE-PATH-TO>/LCDM/MCMC-MyFirstRun/

Histograms are generated for the marginalized distributions using 20 bins or any other number
given with combobins=40, for example, if you think you have sufficient data. At any time one
can run this command with calculate_R to check the state of convergence. By default, it will
calculate R̂p − 1 for twenty different sizes considering the size of the chains to provide an idea of
the evolution of the convergence.

Convergence is assessed based on the Gelman-Rubin criteria. I will not enter into details of the



method here, but I refer the reader to the original papers12 for more information. The variation of
the original method for multivariate distribution is implemented. When using MCMC, all the chains
are checked for convergence and the final resulting distribution which is analyzed and plotted is the
concatenation of all the chains, since they are essentially all the same once they have converged.

Additional options

If for some reason you want to view the results for an intermediate point of the simulation, you can
tell the script to stop_at=18000, everything will be analyzed until that point.

Depending on the model being analyzed, one may be interested in seeing the derived parameters.
Once these are defined appropriately in the files derived.py and derived_bf.py, include them
in the analysis with the option use_derived.

If you want to check the random walk of the chains you can plot the sequences with
plot_sequences. This will make a grid plot containing all the chains and all parameters. Keep
in mind that this can take some time and generate a big output file if the chains are very long. You
can contour this problem by thinning the distributions by some factor thin=10. This also applies
for the calculation of the correlation of the parameters in each chain, enabled with the ACF option.

We generally represent distributions by their histograms but sometimes we may prefer to exhibit
smooth curves. Although it is possible to choose a higher number of histogram bins, this may
not be sufficient and may required much more data. Much better (although possibly slow when
there are too many states) are the kernel density estimates (KDE) tuned for Gaussian-like distribu-
tions3. To obtain smoothed shapes use smooth_hist=kde. This will compute KDE curves for the
marginalized parameter distributions and also the two-parameter joint posterior probabilities. Try
it for the 1D distributions only if it is taking too long, using kde1 instead. The option kde2 for the
2D distributions only is also available for completeness.

Making the triangle plots

The analyze.py routine will also produce the plots automatically (unless supressed with
dontdraw), but you can always redraw everything when you want, maybe you would like to tweak
some colors? Loading the chains again is not necessarily since the analysis already saves the in-
formation for the plots anyway. So, let’s say that we already saved this information for the chains
after 20000 steps. Now we must pass the path to the folder containing the results for those specific
size of chains and number of bins:

1 Gelman A & Rubin D. B. “Inference from Iterative Simulation Using Multiple Sequences”. Statistical Science 7
(1992) 457-472.

2 Brooks S. P. & Gelman A. “General Methods for Monitoring Convergence of Iterative Simulations”. Journal of
Computational and Graphical Statistics 7 (1998) 434.

3 Kristan M., Leonardis A. and Skocaj D. “Multivariate online kernel density estimation with Gaussian kernels”.
Pattern Recognit 44 (2011) 2630-2642.



python drawhistograms.py <FULL-OR-RELATIVE-PATH-TO>/LCDM/MCMC-MyFirstRun/n20000/
↪→results20/

You can choose to view the best-fit point with bf=+ or any other marker. To change the color, use
singlecolor=m (for magenta) or any other Python color name. The default is C0 (a shade of blue,
from the default Matplotlib palette).

The 1σ and 2σ confidence levels are shown and are written to the file hist_table.tex inside the
results20 folder. This is a LaTEX-ready file that can be compiled to make a nice table in a PDF
file or included in your paper as you want. To view and save information for more levels, use the
argument levels=1,2,3, for example.

If you have used the option smooth_hist with either kde, kde1 or kde2 option you need to
specify it again in order to make the corresponding plots, otherwise the histograms will be drawn.

Additional options

You can further tweak your plots and tables. usetex will make the program render the plot using
LaTEX, fitting nicely to the rest of your paper. You can even choose the Times New Roman font if
you prefer it over the default Computer Modern, using font=Times.

If you have nuisance parameters, you can opt to not show them with nonuisance.

fmt=3 can be used to set the number of figures to report the results (default is 5). You can plot
Gaussian fits together with the histograms (the Gaussian curve and the two first sigma levels),
using show_gaussian_fit, but probably only for the sake of comparison since this is not usually
done in publications.

All these options can be given to the analyze.py command, they will be passed to
drawhistograms.py accordingly.

Below we see the triangle plot of the histograms, with the default settings, in comparison with
a perfected version using the smoothed distributions, the Python color C9, the LaTEX renderer,
including the best-fit point and the 3σ confidence level. By default, the prior intervals are used as
axes limits, with ticks at predefined positions, but both images below override this setting reading
custom intervals and ticks given in the files LCDM.range and LCDM.ticks.

With use_derived, we can also check out the marginalized distributions of the derived parameters
in the der_pars directory

Combining two or more simulations in one plot

You just need to run drawhistograms.py with two or more paths in the arguments. To illustrate
this, I run a second MCMC simulation for the same model but this time without including the
distance priors data. It is then interesting to plot both realizations together so we can seethe effect
that including that dataset has on the results:



Fig. 1: Triangle plot with default configurations for histograms.

python drawhistograms.py \
<FULL-OR-RELATIVE-PATH-TO>/LCDM-no-Planck/MCMC-MySecondRun/n32500/results20/ \
<FULL-OR-RELATIVE-PATH-TO>/LCDM/MCMC-MyFirstRun/n1300000/results20/ \
colors=C3,k smooth_hist=kde units=Orh2:5,Obh2:2 \
range=h:0.66_0.75,Obh2:0.01_0.056,Och2:0.08_0.16,M:-0.12_0.18 \
ticks=Och2:0.09_0.12_0.15,Obh2:1.8e-2_3.3e-2_4.8e-2,Orh2:4.7e-5_6e-5_7.3e-5 \
usetex font=Times gname=noplanck

Notice how crucial the CMB data is to resolve the degeneracy between the baryon and radiation



Fig. 2: Customized plot with smoothed distributions.

densities when both are free parameters. The constraints are improved considerably.

You can combine as many results as you like. When this is done, any custom ranges or tick
positions defined in .range and .ticks files will be ignored (as well as the factor in the .units
file), since different simulations might give considerably different results that could go outside of
the ranges of one of them. In this case, after checking the results and determining the ranges that
you want to plot, pass this information in the command line as in the example above. The gname
option specifies the prefix for the name of the pdf file that will be generated. If you omit this option
you will be prompted to type it. All other settings are optional.



Fig. 3: Distributions of derived paramaters.

A legend will be included in the top right corner using the labels defined in the labels.txt files:
the lines of these files are combined with a plus sign but you can use whatever label you prefer by
replacing the contents of this file, for example, giving a name in a single line. The legend title uses
the model name of the first simulation in the arguments. This is intended for showing, at the same
time, results from different datasets with the same model. If this is not your case and you would
like to use a different title, change accordingly the name entry in the .ini file of the corresponding
simulation.

Visualizing chain sequences and convergence

If you include the argument plot_sequences you will get a plot like this

When monitoring convergence, the values of R̂p − 1 at twenty different lengths for the multi-
variate analysis and separate one-dimensional analyses for each parameter are plotted in the files
monitor_convergence_<N>.pdf and monitor_each_parameter_<N>.pdf, where N is the to-
tal utilized length of the chains. The absolute values of the between-chains and within-chains
variances, V̂ and W are also shown. For our ΛCDM example, we got

Finally, the correlation of the chains can also be inspected if we use the option ACF. This includes
all the cross- and auto-correlations.

4.5 Running PT-MCMC

Alternatively, we can use the Parallel Tempering algorithm. This is specially useful when the pos-
terior distribution is likely to present more than one peak and these peaks are well separated. In
such cases, the standard MCMC sampler is not efficient and may even fail to detect peaks away
from where the chain begun. With Parallel Tempering, the ground-temperature chain that samples
the true posterior distribution is more likely to jump between separate peaks, more efficiently vis-
iting the entire parameter space. This is possible thanks to a mechanism providing state exchange
between chains following a temperature ladder, in which the posterior is progressively flattened so



Fig. 4: Results for two different analyses.

as to reduce the differences of probability density amplitude that otherwise would keep the chains
locally stuck.

In order to illustrate the potential of this method, we will run a PT-MCMC on an artificial dis-
tribution. A test model is created with a likelihood given as a combination of various univariate
Gaussian distributions. We will see in the following how we are able to recover the exact marginal-
ized posterior distributions. The function reserved for this is the disttest in the likelihood.py
file. In our example, this model has three free parameters, a, b, c, all with flat priors between 0 and
1. The likelihood consists of the Gaussian functions Na(0.5, 0.01), Nb(0.2, 0.03) and two Gaussian



Fig. 5: Chain sequences along each parameter axis, for all chains.

Fig. 6: Multivariate convergence analysis.

functions for the third parameter, Nc(0.3, 0.02) and Nc(0.75, 0.02), giving two distant peaks several
sigmas apart, with respective weights 0.7, 0.3.

Initializing the chains

This works pretty much in the same way as the previous method. Just run:

python initialize_chains.py disttest.ini chains=4 mode=PT

mode=PT is mandatory to specify that you want to use PT and not the default sampler, standard
MCMC. You will be prompted about after how many steps the algorithm should propose a state
swap:

Please specify after how many steps should propose a swap: 30

or you can bypass the information with nswap=30. At every step a random number u between
0 and 1 is generated and a swap will be proposed if u < 1/ns. The default temperature ladder
is between β = 1 (ground chain) and 210, evenly distributed over the log scale over the number



Fig. 7: Individual parameter convergence monitoring.

of chains given. This can be changed with betascale=linear, for example (it will actually be
linear for whatever given value different than log) and betamax=6 (instead of 10), for example.

Sampling the posterior distribution

Next, we run as we would a standard MCMC set of chains:

python epic.py <FULL-PATH-TO>/disttest/PT-171022-185848/ steps=3000 limit=90000

Unlike the standard method, convergence will not be checked automatically (remember only the
ground temperature chain corresponds to the true posterior distribution). We thus need to specify
a limit so it stops after some large number of states. Because the higher-temperature distribu-
tions are wider, in this code I try to guarantee an efficient sampling for all chains by dividing the
variances in the proposal function in each chain by their respective value of β.



Fig. 8: Correlations in a chain.

Analyzing the chains

In the PT method, convergence is not assessed automatically, since each chain has a different
temperature, thus not sampling from the same distribution. We could think of comparing the
different chains after taking the frequencies of each bin to the power 1/β, but I believe this could
lead to inaccuracies due to statistical noise amplification in the higher-temperature chains, so I
have not tested nor implemented this yet. In order to determine if you can already stop evolving
your chains, I recommend running a second similar simulation so you can compare the ground
temperature chains of the two (or more, but two is enough). To do this, create and run a second
simulation with:

python epic.py disttest.ini chains=4 mode=PT steps=9000 limit=90000 nswap=30

and then:

python analyze.py <FULL-OR-RELATIVE-PATH-TO-FIRST-SIMULATION> calculate_R=<FULL-
↪→OR-RELATIVE-PATH-TO-SECOND-SIMULATION>

You can do this at any time while the simulations are still running, even if they have different
lengths. The only requirement is that the one in the calculate_R argument is the longer one. The
minimum of the lengths of the two ground temperature chains will be used, the rest is disregarded.
The directory of the main argument (the shorter chain) will contain the convergence results.



Fig. 9: Convergence between two chains from two Parallel Tempering simulations.

Fig. 10: Sequences of a Parallel Tempering MCMC simulation

During the simulation, the code will print the acceptance rates of the chains every 10 iterations.
The acceptance rate of the ground temperature chain and the swap rate are printed every iteration.
After limit steps, the code outputs the Akaike and Bayesian information criteria, AIC and BIC,
and generates the usual plots.

Analyzing the resulting posterior and even checking convergence is fast since only the ground
temperature chains need to be loaded. However, since this is Parallel Temperature, we can use the
information of the higher-temperature chains to compute the Bayesian evidence, we just need to
specify that we want so with the option evidence. If we ask to plot_sequences or the correla-
tions (with ACF), since all chains will have to be loaded the evidence will also be computed anyway
even without the argument evidence. It is interesting to inspect the sequences of the different
temperatures. We can clearly see the jumps between the peaks occurring in the lower-temperature
chains and the good mixing of the high-temperature chains, where the peaks are smoothed out.

The evidence is calculated from the area under the following curve

Of course, the more chains we use the more precise this calculation will be. So let us now see how
accurate is our simulation. In the following triangle plot, we show the exact curves of the Gaussian



Fig. 11: Log-evidence calculated by thermo-integration of the PT chains.

distributions superposing the histograms.

Notice how the resulting histograms approximate very well the true functions, including the sep-
arated peaks given by the sum of two Gaussians. In standard MCMC, we would very probably
obtain only one of the peaks. Which one depends on where the chain starts.

Let us improve this a little. These histograms with 20 bins are ok for the first two the param-
eters, but because of the wider range of data along the c axis, it is too little. Using a higher
number of bins helps but most bins would be wasted since the division spans uniformly over the
entire range of data and there are practically no points inside a large interval between the two
peaks. The standard kernel density estimates with the bandwidth tuned for Gaussian-like distri-
butions does not work well with multi-peaked distributions because the standard deviation will
be rather large. We circumvented this limitation in this program by allowing the calculation of
KDE on separate subsets of data. For this case, instead of running make_kde([array,]) we can
do make_kde([array[array < 0.5], array[array > 0.5]]), since the peak separation is
very clear and there will probably be no points above c = 0.5 belonging to the first peak and no
points below this value belonging to the second peak (when the peaks are closer together this may
be much more complicated to accomplish). This will make KDE for the two subsets separately and



Fig. 12: Triangle plot for the PT simulation with the true marginalized probabilities in blue.

then join them together again, resulting in an accurate representation of the data. The make_kde
function already receives a list of arrays to make this possible when we have separate arrays of
data. In this case, we just need to tell the program where to split the single array in two. This
is done by saving a file disttest.true_fit containing the weight, µ and σ parameters of the
separated true distributions (only Gaussian is supported):

1 0.5 0.01
1 0.2 0.03
0.7 0.3 0.02 0.3 0.75 0.02

Notice how the KDE curves match very well the true functions, in blue lines:

The confidence levels are extracted from this marginalized distributions. The precision in the
determination of the intervals is then limited by the resolution of the histograms (the number of
bins). I recommend using KDE whenever is possible. Using more bins is also an option but
requires having very long chains so this number can be raised considerably. KDE provides very
good precision without needing too much data points (as long as there is enough for the chains to
have converged). It is clear from these images how the KDE curves match much better 1σ and



Fig. 13: Triangle plot for the PT simulation with KDE smoothed distributions and true density
probabilities.

2σ confidence intervals. The shaded regions are not expected to match the dashed lines in the
marginalized distribution of the third parameter (unless the two Gaussians had equal weights and
widths), however, as they are calculated globally rather than locally.

At this moment, more than two separated peaks are not supported for this splitting by the analyze.
py routine, although it can be done directly with any number of separated arrays in a list in the
make_kde function.

Finally, let us see the results from this simulation. The image below is a screenshot of the
kde_table.pdf file obtained compiling the kde_table.tex file saved in the kde_estimates
directory:

Since the parameter c has two peaks of high density probability, the resulting confidence regions
are composed of two intervals. The union symbol ∪ is used to represent this configuration. The
result for the parameter b may look different from the true Gaussian function because of an artifact
in the peak, showing doubled tips. The reported result considers the highest of the tips as the
central value, the error bars being calculated from that value. For cases like this, it is interesting to
simply report the Gaussian fits instead. They can be inserted automatically in the tables if we save



Fig. 14: Summary of the results of our analysis with the test distribution.

a file named normal_kde.txt in the simulation directory informing the name of the parameters
(one per line) that look Gaussian. Then the mean and standard deviation will be printed in the table
when drawhistograms.py is run again. This has been done for the result shown above.

Adaptation (beta)

An adaptive routine is implemented following the ideas in Łącki & Miasojedow 20161, but this
needs more tests and is still in beta. Come back later to check.
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