
Envie Documentation
Release 0.4.37-dev

Radomir Stevanovic

Dec 04, 2017

Contents:

1 Quick start 1
1.1 Start with envie help . 1

2 Setup 3
2.1 Install . 3
2.2 Configure . 5

3 Commands Reference 9
3.1 Calling Envie . 9
3.2 envie / chenv - Interactively activate the closest virtual environment 10
3.3 envie create / mkenv - Create a new virtual environment . 11
3.4 envie remove / rmenv - Delete the active virtual environment 13
3.5 envie list / lsenv [DIR] - List virtual environments below DIR 13
3.6 envie find / findenv [DIR] - Find the closest virtual environment around DIR 14
3.7 envie python / envie SCRIPT - Run Python SCRIPT in the closest virtual environment . . . 15
3.8 envie run CMD - Run CMD in the closest virtual env . 15
3.9 envie config - Configure Envie . 16
3.10 envie index - (Re-)Index Environments . 16
3.11 envie-tmp SCRIPT - Run SCRIPT in a temporary environment 16

4 Indices and tables 17

i

ii

CHAPTER 1

Quick start

Start by installing Envie. You can install it system-wide (for all users) with:

system-wide install
sudo pip install envie

or, if you prefer keeping it user-local, or just trying it out from the source without installing, please take a look at
Install instructions.

After installing, configuring is recommended, but not required. You can run a quick interactive config with:

short step-by-step interactive configuration
envie config

At bare minimum, grant yourself at least bash completions and better experience by registering Envie (sourcing it in
your .bashrc). For details, see Configure.

After Envie is configured, open a new shell, or simply source your .bashrc:

. ~/.bashrc

1.1 Start with envie help

Your virtual environments wrangler. Holds no assumptions on virtual env dir
location in relation to code, but works best if they're near (nested or in level).

Usage:
envie [OPTIONS] [DIR] [KEYWORDS]
envie SCRIPT
envie {create [ENV] | remove | list [DIR] [KEYWORDS] | find [DIR] [KEYWORDS] |

python [SCRIPT] | run CMD | config | index | help | --help | --version}

Commands:

1

Envie Documentation, Release 0.4.37-dev

python SCRIPT run Python SCRIPT in the closest environment
run CMD execute CMD in the closest environment. CMD can be a

script file, command, builtin, alias, or a function.

create [ENV] create a new virtual environment (alias for mkenv)
remove destroy the active environment (alias for rmenv)

list [DIR] list virtual envs under DIR (alias for lsenv)
find [DIR] like 'list', but also look above, until env found (alias for

→˓findenv)

config interactively configure Envie
index (re-)index virtualenvs under custom basedir (default: $HOME)
--help, help this help
--version version info

The first form is basically an alias for 'chenv -v [DIR] [KEYWORDS]'. It interactively
activates the closest environment (relative to DIR, or cwd, filtered by KEYWORDS).
If a single closest environment is detected, it is auto-activated.

The second form is a shorthand for executing python scripts in the closest
virtual environment, without the need for a manual env activation. It's convenient
for hash bangs:

#!/usr/bin/env envie
Python script here will be executed in the closest virtual env

The third form exposes explicit commands for virtual env creation, removal, discovery,
→˓ etc.
For more details on a specific command, see its help with '-h', e.g. 'envie find -h'.
Each of these commands has a shorter alias (mkenv, lsenv, findenv, chenv, rmenv, etc).

Examples:
envie python # run interactive Python shell in the closest env
envie manage.py shell # run Django shell in the project env (auto activate)
envie run /path/to/exec # execute an executable in the closest env
envie ~ my cool project # activate the env with words my,cool,project in its

→˓path,
residing somewhere under your home dir (~)

mkenv -3r dev-requirements.txt devenv # create Python 3 virtual env in ./
→˓devenv and

install pip packages from dev-
→˓requirements.txt

mkenv -ta && pytest && rmenv -f # run tests in a throw-away env with
→˓packages

from the closest 'requirements.txt'
→˓file

Detailed commands reference is available.

2 Chapter 1. Quick start

CHAPTER 2

Setup

2.1 Install

For convenience, Envie is packaged and distributed via PyPI as a Python package named envie. Full source code is
available on GitHub.

You can install Envie in several ways.

2.1.1 1. System-wide install via pip

The simplest and in most cases the recommended way of installing Envie is via pip global install:

sudo pip install envie

All executable Envie scripts (envie, envie-tmp and envie-tools) will be installed in system /usr/local/
bin/ directory and will be available to all users of the system.

Tip: You can check if Envie is properly installed with:

$ envie --version
Envie 0.4.33 command from /usr/local/bin/envie

Actually, with this command you can also check if Envie is being run as a command, or as a function. Almost always
you want envie to be a function – otherwise you won’t be able to easily activate virtual environments discovered.
See Configure.

2.1.2 2. User-local install via pip

To install to the Python user install directory (typically ~/.local):

3

https://pypi.python.org/pypi/envie
https://github.com/randomir/envie

Envie Documentation, Release 0.4.37-dev

pip install --user envie

This is as a good option if you do not wish to (or can not) install Envie for all users. Executable scripts will be located
in your $HOME/.local/bin/ directory.

If you’re not already using other CLI tools installed this way, you’ll have to configure your PATH to make envie
executable accessible. Add this to your ~/.bashrc:

export PATH="$PATH:$HOME/.local/bin"

2.1.3 3. Manual install from source

Clone with git:

git clone https://github.com/randomir/envie.git ~/Downloads/envie-master

or download a zip archive.

After cloning/downloading, you have to either:

1. Source scripts/envie, like this:

. ~/Downloads/envie-master/scripts/envie

Now you’ll be running Envie as a function, check it out:

$ envie --version
Envie 0.4.33 function from /home/stevie/Downloads/envie-master/scripts/envie

To ensure envie function is always available, add the sourcing statement to your .bashrc, or simply run:

envie config --register

Also, be sure to check how to Configure other aspects of Envie.

or

2. Symlink scripts/envie executable to your (local) bin directory, for example:

ln -s ~/Downloads/envie-master/scripts/envie ~/bin/envie

This assumes your PATH already includes ~/bin/. If not, add it just like above, by appending export
PATH="$PATH:$HOME/bin" to your ~/.bashrc.

Important: When manually installing Envie as a command – and not a function, symlinking envie executable to
a PATH-discoverable location is a MUST. Otherwise Envie command will not function properly.

The reason you have to symlink, and not just copy is, ultimately, cross-platform support and fuzzy environment name
filtering. Namely, cross-platform implementation of some basic tools (GNU readlink, realpath) and fuzzy-
filtering is provided via Python package envie (module envie.filters). When Envie is pip-installed, this
package is available – but when running from source, Envie has to be able to locate it (relative to the envie exe-
cutable).

4 Chapter 2. Setup

https://github.com/randomir/envie/archive/master.zip

Envie Documentation, Release 0.4.37-dev

Hint: An important exception to the symlinking note above is when you know you’ll be running Envie only as a
function, never as a command (Hint: you probably only want it as a function).

2.2 Configure

Envie configuration is stored in a config file: $HOME/.config/envie/envierc, as a series of shell variables
assignments. It is read once per sourcing or execution. In the default setup (when Envie is sourced from .bashrc),
that means the configuration is read once per Bash session.

Configuration file can be (re-)generated with a guided quick-start script:

envie config

If you are installing/configuring Envie on a dev machine, you’re probably safe to answer all questions with the default
(pressing Enter):

Add to ~/.bashrc (strongly recommended) [Y/n]?
Use locate/updatedb for faster search [Y/n]?
Common ancestor dir of all environments to be indexed [/home/stevie]:
Update index periodically (every 15min) [Y/n]?
Refresh stale index before each search [Y/n]?

Envie added to /home/stevie/.bashrc.
Config file written to /home/stevie/.config/envie/envierc.
Crontab updated.
Indexing environments in '/home/stevie'...Done.

2.2.1 Find vs. Locate (aka The faster search)

By default, envie uses the find command to search for environments. That approach is pretty fast when searching
shallow trees. However, if you have deeper directory trees, it’s often faster to use a pre-built directory index (i.e. the
locate command). To enable a combined locate/find approach to search, you must run envie config and
answer Yes when asked about the locate/updatedb usage.

Tip: In a production/server environment, you might not want to use locate method and run cron updatedb jobs every
15min.

Actually, you can still use locate, but rebuild the index manually with envie index (when deemed necessary), or
instruct Envie to “refresh stale index before each search”.

Note: When locate is enabled (and index built), the combined approach is used by default (if not overriden with
-f or -l switches). In the combined approach, if find doesn’t finish within 400ms, search via find is aborted and
locate is allowed to finish (faster).

2.2.2 The unconfigured mode

When you run Envie without explicitly configuring it, a set of safe defaults will be used. Most notably, only find
method will be used for environments discovery.

2.2. Configure 5

Envie Documentation, Release 0.4.37-dev

2.2.3 Sourcing vs. Executing

Envie can be run directly (by executing envie script), or as a shell function (which is defined when envie script is
sourced).

Either way you chose to run Envie, it will behave the same – with one notable exception:

Warning: If Envie is not run as a function, it will not be able to activate a virtual environment.

The effects of this will be visible in two scenarios:

envie create/mkenv Environment will be created, and requirements/packages will be installed, but virtualenv
will not be activated in your current shell.

envie/chenv Environments will be listed/selected, but it will not be activated in the current shell.

2.2.4 A reasonable minimum

However you decide on locate and crontab index updating, the simplest fully functional (bash completions included)
and minimal-performance-overhead configuration is achieved with:

envie config --register

This will add Envie sourcing statement to your .bashrc and ensure you have a working envie function, along with
the accompanying shorthand aliases like mkenv, lsenv, etc.

2.2.5 The defaults

cat $HOME/.config/envie/envierc:

_ENVIE_DEFAULT_ENVNAME="env"
_ENVIE_DEFAULT_PYTHON="python"
_ENVIE_CONFIG_DIR="$HOME/.config/envie"
_ENVIE_USE_DB="1"
_ENVIE_DB_PATH="$HOME/.config/envie/locate.db"
_ENVIE_INDEX_ROOT="$HOME"
_ENVIE_CRON_INDEX="1"
_ENVIE_CRON_PERIOD_MIN="15"
_ENVIE_LS_INDEX="1"
_ENVIE_FIND_LIMIT_SEC="0.4"
_ENVIE_LOCATE_LIMIT_SEC="4"
_ENVIE_UUID="28d0b2c7bc5245d5b1278015abc3f0cd"

2.2.6 Config variables

_ENVIE_DEFAULT_ENVNAME Name of the virtual environment base directory. The usual values are: env, .env,
.venv, and pythonenv.

_ENVIE_DEFAULT_PYTHON Preferred Python interpreter. Use something like python (the system default),
python3 (the default version of Python 3), or /usr/local/bin/python3.6.

_ENVIE_USE_DB Should Envie use locate/updatedbwhen looking for virtual environments on disk? (boolean:
0/1). Defaults to yes, but in server environments you may be inclined to fall-back to find-only approach.
Please note you still may use the locate approach with manual or on-demand indexing.

6 Chapter 2. Setup

Envie Documentation, Release 0.4.37-dev

_ENVIE_DB_PATH Path to Envie’s local updatedb database.

_ENVIE_INDEX_ROOT Root dir for updatedb index. Set it to a common ancestor of all virtual environments you
wish to index. Defaults to $HOME, but you may want to set it to something like /srv, /var/www, or even /.
Note that this setting does not affect the find search.

_ENVIE_CRON_INDEX Should Envie refresh its updatedb database with a periodic cron job? (boolean: 0/1).
If the appropriate question during envie config is answered affirmatively, an user-local cron job is added
with crontab.

_ENVIE_CRON_PERIOD_MIN Database refresh period (1-60 minutes).

_ENVIE_LS_INDEX Should Envie initiate updatedb upon each environment search with lsenv/envie
list/findenv/envie find/chenv/envie if the index is older than _ENVIE_LOCATE_LIMIT_SEC
seconds? (boolean: 0/1).

_ENVIE_FIND_LIMIT_SEC Limit in seconds on execution time for find when searching for environments, if a
locate database is used.

_ENVIE_LOCATE_LIMIT_SEC Max. allowed age for locate database, in seconds. If database is older than this,
index rebuild is called if _ENVIE_LS_INDEX=1, or a warning message is displayed otherwise.

2.2. Configure 7

Envie Documentation, Release 0.4.37-dev

8 Chapter 2. Setup

CHAPTER 3

Commands Reference

3.1 Calling Envie

The envie script (or a shell function) has three calling forms – two “shortcut” forms, and general/all-purpose form:

3.1.1 1. find & activate

envie [OPTIONS] [DIR] [KEYWORDS]

The first form interactively activates the closest environment (relative to DIR, or the current working
directory, filtered by KEYWORDS). If a single closest environment is detected, it is auto-activated. This
calling form is basically an alias for chenv -v [DIR] [KEYWORDS]. For options and details on
environments discovery/selection, see chenv below.

3.1.2 2. run python script

envie SCRIPT

The second form is a shorthand for executing python scripts in the closest virtual environment, without the
need for a manual env activation. It’s identical in behaviour to envie python SCRIPT (see below),
but more convenient for a hash bang use:

#!/usr/bin/env envie
Python script here will be executed in the closest virtual env

3.1.3 3. general

9

Envie Documentation, Release 0.4.37-dev

envie {create [ENV] | remove |
list [DIR] [KEYWORDS] | find [DIR] [KEYWORDS] |
python [SCRIPT] | run CMD |
index | config | help | --help | --version}

The third is a general form as it explicitly exposes all commands (for virtual env creation, removal,
discovery, etc.) Most of these commands have a shorter alias you’ll probably prefer in everyday use (like
mkenv, lsenv, findenv, chenv, rmenv, etc).

3.2 envie / chenv - Interactively activate the closest virtual environ-
ment

Interactively activate the closest Python virtual environment relative to DIR (or .)
A list of the closest environments is filtered by KEYWORDS. Separate KEYWORDS with --
if they start with a dash, or a dir with the same name exists.

Usage:
chenv [-1] [-f|-l] [-v] [-q] [DIR] [--] [KEYWORDS]
envie ...

Options:
-1 activate only if a single closest env found, abort otherwise
-f, --find use only 'find' for search
-l, --locate use only 'locate' for search
-v be verbose: show info messages (path to activated env)
-q be quiet: suppress error messages

chenv command uses findenv to discover all virtual environments in DIR‘s vicinity (searching below DIR, then dir-
by-dir up until at least one virtual env is found), and then fuzzy-filters that list with a list of KEYWORDS given. If a
single virtual environment is found, it’s automatically activated. If multiple environments are found, user chooses the
environment from a list.

3.2.1 Examples

Suppose you have a directory structure like this:

work
- plucky
| - env
| | - dev
| | - prod
| - src
- jsonplus
| - pythonenv
| - src
| - var

Starting from base directory work, we can activate jsonplus environment with:

~/work$ envie js
Activated virtual environment at 'jsonplus/pythonenv'.

Or, starting from a project root at work/jsonplus/src, just type:

10 Chapter 3. Commands Reference

Envie Documentation, Release 0.4.37-dev

~/work/jsonplus/src$ envie
Activated virtual environment at '../pythonenv'.

When your query matches multiple environments, you’ll get a prompt:

~/work$ envie plucky
1) plucky/env/dev
2) plucky/env/prod
#? 2
Activated virtual environment at 'plucky/env/prod'.

But you can avoid it by being a bit more specific:

~/work$ envie prrrod
Activated virtual environment at 'plucky/env/prod'.

(Notice we had a typo here, prrrod.)

3.3 envie create / mkenv - Create a new virtual environment

Create Python (2/3) virtual environment in DEST_DIR based on PYTHON.

Usage:
mkenv [-2|-3|-e PYTHON] [-r PIP_REQ] [-p PIP_PKG] [-a] [-t] [DEST_DIR] [-- ARGS_

→˓TO_VIRTUALENV]
mkenv2 [-r PIP_REQ] [-p PIP_PKG] [-a] [-t] [DEST_DIR] ...
mkenv3 [-r PIP_REQ] [-p PIP_REQ] [-a] [-t] [DEST_DIR] ...
envie create ...

Options:
-2, -3 use Python 2, or Python 3
-e PYTHON use Python accessible with PYTHON name,

like 'python3.5', or '/usr/local/bin/mypython'.
-r PIP_REQ install pip requirements in the created virtualenv,

e.g. '-r dev-requirements.txt'
-p PIP_PKG install pip package in the created virtualenv,

e.g. '-p "Django>=1.9"', '-p /var/pip/pkg', '-p "-e git+https://gith..
→˓."'

-a autodetect and install pip requirements
(search for the closest 'requirements.txt' and install it)

-t create throw-away env in /tmp
-v[v] be verbose: show virtualenv&pip info/debug messages
-q[q] be quiet: suppress info/error messages

This command creates a new Python virtual environment (using the virtualenv tool) in the optionally supplied
destination directory DEST_DIR. Default destination is env in the current directory, but that default can be overriden
via config variable _ENVIE_DEFAULT_ENVNAME).

The default Python interpreter (executable used in a new virtual env) is defined with the config variable
_ENVIE_DEFAULT_PYTHON and if not specified otherwise, it defaults to system python. Python executable
can always be explicitly specified with -e parameter, e.g: -e /path/to/python, or -e python3.5. The
shorthand flags -2 and -3 will select the default Python 2 and Python 3 interpreters available, respectively.

Tip: You can use aliases mkenv2 and mkenv3 instead of mkenv -2 and mkenv -3, respectively.

3.3. envie create / mkenv - Create a new virtual environment 11

Envie Documentation, Release 0.4.37-dev

To (pre-)install a set of Pip packages (requirements) in the virtual env created, you can use -r and -p options, like:
-r requirements.txt and -p package/archive/url. The former will install requirements from a given
file (or files, if option is repeated), and the latter will install a specific Pip package (or packages, if option repeated).
The -p option supports all pip-supported formats: requirement specifier, VCS package URL, local package path, or
archive path/URL:

• -p requests, -p "jsonplus>=0.6",

• -p /path/to/my/local/package,

• -p "-e git+https://github.com/randomir/plucky.git#egg=plucky".

If a standard name for requirements file is used in your project (requirements.txt), you can use the -a flag to
find and auto-install the closest requirements below the CWD.

Throw-away or temporary environment is created with -t flag. The location and name of the virtual environment
are chosen randomly with the mktemp (something like /tmp/tmp.4Be8JJ8OJb). When done with hacking in a
throw-away env, simply destroy it with rmenv -f.

Tip: Throw-away environments are great for short-lived experiments, for example:

$ mkenv3 -t -p requests -p plucky && python && rmenv -fv
Creating Python virtual environment in '/tmp/tmp.ial0H5kZvu'.
Using Python 3.5.2+ (/usr/bin/python3).
Virtual environment ready.
Installing Pip requirements: requests plucky
Pip requirements installed.
Python 3.5.2+ (default, Sep 22 2016, 12:18:14)
[GCC 6.2.0 20160927] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests, plucky
>>> plucky.pluck(requests.get('https://api.github.com/users/randomir/repos').json(),
→˓'name')
['blobber', 'dendritic-growth-model', 'envie', 'joe', 'jsonplus', 'python-digitalocean
→˓', ...]
>>> exit()
VirtualEnv removed: /tmp/tmp.ial0H5kZvu

3.3.1 Examples

Starting from a base directory ~/work, let’s create Python 2 & 3 virtual environments for our new project yakkety:

~/work$ mkenv3 yakkety/env/dev
Creating Python virtual environment in 'yakkety/env/dev'.
Using Python 3.5.2+ (/usr/bin/python3).
Virtual environment ready.
(dev) ~/work$

(dev) ~/work$ mkenv2 yakkety/env/dev
Creating Python virtual environment in 'yakkety/env/prod'.
Using Python 2.7.12+ (/usr/bin/python2).
Virtual environment ready.
(prod) ~/work$

Note here (1) directory structure is recursively created, and (2) active environment does not interfere with Python
interpreter discovery.

12 Chapter 3. Commands Reference

Envie Documentation, Release 0.4.37-dev

We can create a temporary environment with dev version of package installed from GitHub source:

$ mkenv -tp "-e git+https://github.com/randomir/plucky.git#egg=plucky"

3.4 envie remove / rmenv - Delete the active virtual environment

Remove (delete) the base directory of the active virtual environment.

Usage:
rmenv [-f] [-v]
envie remove ...

Options:
-f force; don't ask for permission
-v be verbose

rmenv will remove a complete virtual env directory tree of the active environment (defined with shell variable
$VIRTUAL_ENV), or fail otherwise. To avoid prompting for confirmation, supply the -f flag, and to print the
directory removed, use the -v switch.

3.5 envie list / lsenv [DIR] - List virtual environments below
DIR

Find and list all virtualenvs under DIR, optionally filtered by KEYWORDS.

Usage:
lsenv [-f|-l] [DIR [AVOID_SUBDIR]] [--] [KEYWORDS]
envie list ...

Options:
-f, --find use only 'find' for search
-l, --locate use only 'locate' for search

(by default, try find for 0.4s, then failback to locate)
-v be verbose: show info messages
-q be quiet: suppress error messages

envie list searches down only, starting in DIR (defaults to .). The search method is defined with config, but it
can be overriden with -f and -l to force find or locate methods respectively. Fuzzy filtering. To narrow down
the list of virtualenv paths, you can filter it by supplying KEYWORDS. Filtering algorithm is not strict and exclusive
(like grep), but fuzzy and typo-forgiving.

It works like this: (1) all virtualenv paths discovered are split into directory components; (2) we try to greedily match
all keywords to components by maximum similarity score; (3) paths are sorted by total similarity score; (4) the best
matches are passed-thru – if there’s a tie, all best matches are printed.

When calculating similarity between directory name (path component) and a keyword, we assign: (1) maximum
weight to a complete match (identity), (2) smaller, but still high, weight to a prefix match, and (3) the smallest (and
variable) weight to a diff-metric similarity.

3.5.1 Examples

For an example, suppose you have a directory tree like this one:

3.4. envie remove / rmenv - Delete the active virtual environment 13

Envie Documentation, Release 0.4.37-dev

- trusty-tahr
| - dev
| - prod
- zesty-zapus
| - dev
| - prod

To get all environments containing dev word:

$ lsenv dev
trusty-tahr/dev
zesty-zapus/dev

To get all trusty envs, you can either filter by trusty (or tahr, or hr, or t):

$ lsenv hr
trusty-tahr/dev
trusty-tahr/prod

or, list envs in ./trusty-tahr dir:

$ lsenv ./trusty-tahr
trusty-tahr/dev
trusty-tahr/prod

Combine it:

$ lsenv trusty-tahr pr
trusty-tahr/prod

or with several keywords:

$ lsenv z d
zesty-zapus/dev

3.6 envie find / findenv [DIR] - Find the closest virtual environ-
ment around DIR

Find and list all virtualenvs below DIR, or above if none found below.
List of virtualenv paths returned is optionally filtered by KEYWORDS.

Usage:
findenv [-f|-l] [DIR] [--] [KEYWORDS]
envie find ...

Options:
-f, --find use only 'find' for search
-l, --locate use only 'locate' for search

(by default, try find for 0.4s, then failback to locate)
-v be verbose: show info messages
-q be quiet: suppress error messages

Similar to envie list, but with a key distinction: if no environments are found below the starting DIR, the search
is being expanded – level by level up – until at least one virtual environment is found.

14 Chapter 3. Commands Reference

Envie Documentation, Release 0.4.37-dev

Description of discovery methods (--find/--locate), as well as keywords filtering behaviour given for envie
list/lsenv apply here also.

3.7 envie python / envie SCRIPT - Run Python SCRIPT in the clos-
est virtual environment

Run a Python SCRIPT, or an interactive Python interpreter session in the closest virtual environment. Three calling
forms are supported:

envie SCRIPT [ARGS] The SCRIPT is explicitly executed with python from the closest environment. If mul-
tiple environments are found in the vicinity, operation is aborted.

envie python SCRIPT [ARGS] Identical in behaviour to the above, but more explict.

envie python A special no-script case, where an interactive Python session is started instead.

Hint: This command is basically a shortcut for:

chenv -1v && exec python [SCRIPT [ARGS]]

3.7.1 Examples

envie manage.py migrate

envie python tests.py --fast

3.8 envie run CMD - Run CMD in the closest virtual env

As a generalization of the envie python command above, this command will run anything that can be run, in the
closest virtual environment. The CMD can be an executable (script) file, shell command, shell builtin, alias, or a shell
function.

envie run CMD [ARGS] Runs any executable construct CMD, optionally passing-thru arguments ARGS, inside
the closest virtual environment. Fails when multiple environments are found in the vicinity.

Hint: Similarly to envie python, this command is basically a shortcut for:

chenv -1v && exec CMD [ARGS]

3.8.1 Examples

We can emulate the envie python command with:

envie run python /path/to/my/script

but also run shell functions which are sensitive to the Python virtual env:

3.7. envie python / envie SCRIPT - Run Python SCRIPT in the closest virtual environment 15

Envie Documentation, Release 0.4.37-dev

envie run my_function

Moreover, we can run the apropriate python in the command mode:

envie run python -c 'import os; print(os.getenv("VIRTUAL_ENV"))'

3.9 envie config - Configure Envie

Listed here for completeness, configuration is described in detail under the Configure section.

3.10 envie index - (Re-)Index Environments

If Envie is configured to use locate for environments discovery, index can be rebuilt (updated via updatedb) with
envie index. For more on find vs. locate methods, see here.

3.11 envie-tmp SCRIPT - Run SCRIPT in a temporary environment

Create a new temporary (throw-away) virtual environment, install requirements
specified, run the SCRIPT, and destroy the environment afterwards.

Usage:
envie-tmp SCRIPT

Hashbang examples:

1) no requirements (mkenv -t)

#!/usr/bin/env envie-tmp

2) installs reqs from the closest "requirements.txt" (mkenv -ta):

#!/usr/bin/env envie-tmp
-*- requirements: auto -*-

3) installs reqs from the specific Pip requirements files (relative to SCRIPT's dir)
(mkenv -t -r REQ ...):

#!/usr/bin/env envie-tmp
-*- requirements: ../base-requirements.txt ./dev-requirements.txt -*-

4) specify the Python version to use, and install some Pip packages
(mkenv -t -e PYTHON -p PKG ...):

#!/usr/bin/env envie-tmp
-*- python-version: python3 -*-
-*- packages: plucky requests>=2.0 flask==0.12 -e/path/to/pkg -e. -*-

16 Chapter 3. Commands Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

	Quick start
	Start with envie help

	Setup
	Install
	Configure

	Commands Reference
	Calling Envie
	envie / chenv - Interactively activate the closest virtual environment
	envie create / mkenv - Create a new virtual environment
	envie remove / rmenv - Delete the active virtual environment
	envie list / lsenv [DIR] - List virtual environments below DIR
	envie find / findenv [DIR] - Find the closest virtual environment around DIR
	envie python / envie SCRIPT - Run Python SCRIPT in the closest virtual environment
	envie run CMD - Run CMD in the closest virtual env
	envie config - Configure Envie
	envie index - (Re-)Index Environments
	envie-tmp SCRIPT - Run SCRIPT in a temporary environment

	Indices and tables

