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Enspara is primarily a python library, but it also contains a few applications for very common Markov-state model
related tasks.

• MSM estimation and manipulation

• Turn-key applications for clustering and analysis

• Transition path theory

• Information theory

• Ragged ndarrays

Contents:
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2 Contents



CHAPTER 1

Installation

Enspara can be installed from our github repository in the following way:

1. Create a pip/anaconda environment for enspara. For anaconda,

conda create --name enspara

or with pip,

python3 -m pip install --user virtualenv
python3 -m venv enspara
source enspara/bin/activate

2. Install enspara’s build-time dependencies:

pip install mdtraj cython

or, if you prefer anaconda,

conda install mdtraj cython

3. Use pip to clone and install enspara:

pip install git+https://github.com/bowman-lab/enspara

4. If you need MPI support, you can pip install mpi4py as well:

pip install mpi4py

1.1 Developing

To install enspara for development

1. Set up a virtual/anaconda environment, for example,

3



enspara Documentation, Release 0.0.1

python3 -m pip install --user virtualenv
python3 -m venv enspara
source enspara/bin/activate

2. Clone the git repository,

git clone https://github.com/bowman-lab/enspara

3. Install build-time dependecies,

pip install mdtraj cython

4. Build and install enspara in development mode

cd enspara && pip install -e .[dev]

4 Chapter 1. Installation



CHAPTER 2

Tutorial

In this short tutorial, we’ll walk you through a basic example using enspara to make an MSM and do a simple analysis.

2.1 Clustering Trajectories

The first step to analyzing MD data is usually clustering. For simple to moderately-complex clustering tasks, we make
this pretty straightforward in enspara.

With the Clustering CLI, you can cluster the data like so:

enspara cluster \
--trajectories trajectory-*.xtc \
--topology fs-peptide.pdb \
--algorithm khybrid \
--cluster-number 20 \
--subsample 10 \
--atoms '(name N or name C or name CA)' \
--distances ./fs-khybrid-clusters0020-distances.h5 \
--center-features ./fs-khybrid-clusters0020-centers.pickle \
--assignments ./fs-khybrid-clusters0020-assignments.h5

This will cluster all the trajectories into 20 clusters using the k-hybrid algorithm based on backbone (atoms named N,
CA or C, per the MDTraj DSL) and output the results (distance, center structures, and assignments) to files named as
specified on the command line (fs-khybrid-clusters0020*).

2.1.1 Clustering Outputs

Clustering this way will output four files,

1. fs-khybrid-clusters0020-centers.pickle is a pickle of a python list containing the frames that
were at the center of each cluster center. They are given in the order they were discovered by k-centers clustering,
with 0 being the first frame in the dataset.

5
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2. fs-khybrid-clusters0020-assignments.h5 is an h5 file containing the assignment of each frame
of all trajectories to a cluster center. The value at t, i gives which cluster center frame i in trajectory t was
assigned to. The i values match the centers file.

3. The distances file fs-khybrid-clusters0020-distances.h5 is an array (numpy in this case) where
the value at t, i gives the distance between frame i in trajectory t (matching the order of the trajectories given by
the --trajectories flag) and the closest cluster center.

Because these are usually much smaller than your inputs, you can usually drop into a ipython shell (or even better,
jupyter notebook) to inspect your values:

$ ipython
Python 3.6.0 \|Continuum Analytics, Inc.\| (default, Dec 23 2016, 12:22:00)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Then you can load up these files,

import pickle

import mdtraj as md
from enspara import ra

assigs = ra.load('fs-khybrid-clusters0020-assignments.h5')
dists = ra.load('fs-khybrid-clusters0020-distances.h5')

This uses enspara’s RaggedArray submodule to load the assignments and distances files. In this case, all your
trajectories are uniform length, so you will actually get back a numpy ndarray, but in a more realistic situation
when trajectories have different lengths, this would be a ragged array.

We can then ask how many frames got assigned to each cluster and make a plot:

import matplotlib.pyplot as plt
import numpy as np

plt.bar(x=range(0, 20), height=np.bincount(assigs.flatten()))
plt.xticks(range(assigs.max()+1))
plt.xlim(-1, assigs.max()+1)
plt.ylabel('Number of Frames Assigned')
plt.xlabel('Cluster Index')

And also ask what the distribution of frames per cluster looks like,

import matplotlib.pyplot as plt
import numpy as np

plt.hist(np.bincount(assigs.flatten()))
plt.ylabel('Number of Clusters')
plt.xlabel('Frames Assigned')

And, using the distances file, we can compute the distribution of distances to the nearest cluster center,

import matplotlib.pyplot as plt

6 Chapter 2. Tutorial
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plt.hist(dists.flatten(), bins=100)
plt.ylabel('Number of Frames')
plt.xlabel('Distance to Cluster Center')

Next, rather than counting raw frames, we can build a Markov State Model, which does a more rigorous statistical
analysis on these data.

2.2 Fitting

Once you’ve clustered your data, you’ll want to build a Markov state model.

2.2.1 Implied Timescales

One way of assessing the quality of your MSM is to look at the implied timescales. In particular, this is often used to
choose a lag time. Ideally, your MSM’s behavior isn’t very dependent on your choice of lag time (i.e. it satisfies the
Markov assumption), and so this is usually a good thing to check.

from enspara import msm
import numpy as np

# make 20 different lag times (integers) evenly spaced between 10 and 750
lag_times = np.linspace(10, 750, num=20).astype(int)

implied_timescales = []
for time in lag_times:

m = msm.MSM(
lag_time=time,
method=msm.builders.transpose)

m.fit(assigs)

implied_timescales.append(
-time / np.log(msm.eigenspectrum(m.tprobs_, n_eigs=3)[0][1:3])

)

This will calculate the top 3 implied timescales across that range of lag times. Let’s plot it and see how it looks:

import matplotlib.pyplot as plt

implied_timescales = np.vstack(implied_timescales)

for i in range(implied_timescales.shape[1]):
plt.plot(lag_times, implied_timescales[:, i],

label='$\lambda_{%s}$' % (i+1))

plt.show()

2.2.2 Fitting an MSM

Once you’ve got a lagtime you’re satisfied with, make an MSM the same way as before (we also could have stored the
old one).

2.2. Fitting 7
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m = msm.MSM(
lag_time=10,
method=msm.builders.transpose))

m.fit(assigs)

You can then ask quesitons about the conformational landscape you’ve sampled. First, let’s find out what the equilib-
rium probability of each state is with the eq_probs_ parameter fit by the MSM.

import matplotlib.pyplot as plt

plt.bar(x=np.arange(m.n_states_), height=m.eq_probs_)
plt.xticks(range(0, m.n_states_+1))

plt.xlabel("State Index")
plt.ylabel("Equilibrium Probability")

Warning: Different MSM matrix builders in enspara output slightly different types. Specifically, some output a
numpy ndarray and others output a scipy sparse matrix. If you get an error calling m.tprobs_.toarray(),
check which type you are using.

The MSM also fits a probability of transition between states, which it keeps in the tprobs_ member variable.

plt.imshow(np.log(m.tprobs_.toarray()))
plt.xticks(range(0, m.n_states_+1))
plt.yticks(range(0, m.n_states_+1))
plt.colorbar(label=r'ln $P(i \rightarrow j)$')

Note: enspara makes heavy use of sparse matrices! In this case (although not always, depending on what method
is used to build it) the MSM has a sparse tprobs_. In this example, we’ll convert it to a dense array with toarray(),
but this is a potentially expensive choice for big MSMs!

Next, we’ll analyze the features of the conformational landscape to learn about our protein!

2.3 Analysis

In this section, as an example, we’re going to analyze some of the results from the simulation to give an example how
to use enspara, and how to use an MSM to generate understanding about a protein’s conformational landscape.

First, let’s load the representative centers from the clustering:

import pickle
import mdtraj as md

with open('fs-khybrid-clusters0040-centers.pickle', 'rb') as f:
ctr_structs = md.join(pickle.load(f))

The clustering application saves representative cluster centers as a pickle of mdtraj trajectory objects. In this case, they
all have the same topology, so we can get away with using md.join once pickle has loaded them. (Note, though, that
this can be pretty slow for large lists of trajectories.)

8 Chapter 2. Tutorial
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Let’s say we’re interested in hydrogen bonding patterns in this protein. First, we used the MDTraj implementation of
the Kabsch Sander hydrogen bond formulation to compute all the hydrogen bonds in each frame:

hbonds = md.kabsch_sander(ctr_structs)

This results in a list of n x n scipy sparse matrices, where the element i, j is the predicted hydrogen bond energy
between residues i and j. Combining these energies with the probability estimates from our msm, we can show the
mean energy for all possible pairs of hydrogen bonds throughout the conformational landscape:

weighted_hbond_mtx = sum(p*h for p, h in zip(m.eq_probs_, hbonds)).todense()
plt.imshow(weighted_hbond_mtx, cmap='viridis_r')
plt.colorbar()

As you can see, the highest energy hydrogen bonds are the i to i+4 hydrogen bonds. This isn’t too surprising, since
this protein is supposed to fold up into a helix.

Let’s discretize these energies into a bond formed/bond broken binary vector for each state:

all_hbonds = set()

# accumulate all the possible pairs of residues involved in hbonds
for i in range(len(ctr_structs)):

donors, acceptors = np.where(hbonds[i].todense() != 0)
all_hbonds.update([(d, a) for d, a in zip(donors, acceptors)])

# make a list so that it's ordered
all_hbonds = list(all_hbonds)

# this matrix of length n_states will have each binary feature vector
hbond_presence = np.zeros((m.n_states_, len(all_hbonds)),

dtype='uint8')

# set each value i, j to one if state i has hbond j.
for i in range(len(ctr_structs)):

donors, acceptors = np.where(hbonds[i].todense() != 0)

for a, d in zip(donors, acceptors):
hbond_id = all_hbonds.index((a, d))
hbond_presence[i, hbond_id] = 1

Then, we can ask what the energy of each of these hydrogen bonds is by taking the dot product between the equilibrium
probability vector and the feature vector:

p_hbond = np.dot(m.eq_probs_, hbond_presence)

plt.bar(np.arange(len(all_hbonds)), height=np.log(p_hbond))
plt.ylabel("Free Energy")
plt.xlabel("HBond ID")
plt.savefig('./hbond-free-energy.svg')

Finally, we might like to know about joint behavior of hydrogen bonds. To do this, let’s use enspara’s
info_theory module:

from enspara.info_theory import weighted_mi

2.3. Analysis 9
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hbond_mi = weighted_mi(features=hbond_presence, weights=m.eq_probs_)
hbond_mi = hbond_mi - np.diag(np.diag(hbond_mi))

plt.imshow(hbond_mi - np.diag(np.diag(hbond_mi)))
plt.colorbar()

And we can ask what which pair of hydrogen bonds has the highest MI:

hbond1, hbond2 = np.unravel_index(hbond_mi.argmax(), hbond_mi.shape)

def hbond2str(pair, top):
return ''.join([str(top.residue(i)) for i in pair])

hbond2str(all_hbonds[hbond1], ctr_structs.top), hbond2str(all_hbonds[hbond2], ctr_
→˓structs.top)

which returns ('ALA14ALA18', 'ALA13ALA17'), which shouldn’t be too surprising, since the formation of one
hydrogen bond probably pays most of the entropy cost for its neighboring hydrogen bond to form.

There are lots more things you can do with enspara, including transition path theory, exposons, CARDS, and pocket
detection, so make sure to explore our API documentation!

Before you get started, however, let’s download some molecular dynamics data! This MD data is of the Fs peptide
(Ace-A_5(AAARA)_3A-NME), which is a fairly common model system for studying protein folding. It was prepared
by Robert McGibbon for MSMBuilder3.

mkdir fs_peptide && cd fs_peptide
wget https://ndownloader.figshare.com/articles/1030363/versions/1 -O fs_peptide.zip
unzip fs_peptide.zip

While you’re waiting for that download, check the textbook on MSMs, “An Introduction to Markov State Models and
Their Application to Long Timescale Molecular Simulation” edited by Greg Bowman, Vijay Pande, and Frank Noe.
That book describes the theoretical and empirical groundwork for a lot of what we’ll do.

Anyway, once your download is finished, if you ls, you should see a bunch of trajectories (*.xtc), a pdb file
fs-peptide.pdb, and a few other files. If you do, you’re ready to move on.

10 Chapter 2. Tutorial



CHAPTER 3

CARDS

One of the interesting phenomena that simulations can report on is allosteric communication. Identifying which
residues communicate with a target site of interest, like an active site, can help isolate the important regions within a
protein.

CARDS is a way of capturing this long-range communication from MD simulations, measuring coupling between
between every pair of dihedrals in an entire protein. The CARDS methodology has been published in [CARDS2017].

Using CARDS is a two-step process:

1. Using the implementation within enspara to collect cards by utilizing the command-line script.

2. Analyzing CARDS data using the CARDS-Reader library (URL) as described in the analysis section

3.1 Measure correlations with CARDS

CARDS works by decomposing each rotamer into two sets of states - rotameric states and dynamical states. Dynamical
states are determined by whether a dihedral remains in a single rotameric state (ordered) or rapidly transitions between
multiple rotameric states (disordered). It then computes pairwise correlations between every pair of dihedrals and their
rotameric and dynamical states. Thus there are four types of correlations produced by CARDS.

1. Structure-structure (between rotameric states)

2. Disorder-disorder (between dynamical states)

3. Structure-disorder (rotameric states of one dihedral with dynamical states of another)

4. Disorder-structure (dynamical states of one dihedral with rotameric states of another)

enspara features a multi-processing implementation of CARDS that is useful for large systems or datsets. Before
you get started you will need to have the following:

1. A directory containing all your trajectory files, any format recognized by MDTraj is fine

2. A topology file that corresponds to your trajectory files (if it doesn’t have the topology pre-written like in .h5
files). Again, any format recognizable by MDTraj is acceptable.

11
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Once you have these two inputs, you must consider how big of a “buffer-zone” you want to use. To prevent count-
ing spurious transitions as part of the correlated motions of your system, CARDS places a buffer-zone around each
rotameric-barrier, defining “core-regions” within each rotamer. Thus, a rotamer has only had a “true” transition if it
enters a new “core region” than the one it previously occupied. Generally we use buffer-zones that are ~15 degrees on
each side of the barrier.

You can read more about buffer zones in the publication [CARDS2017].

3.1.1 Running CARDS

Let’s run a simple example of the collect_cards.py script. In our case we have some directory containing a
series of .xtc files that are MD Trajectories. We can catch them all using the wild-card *.xtc. We also have our
topology.top file to load in alongside the trajectories.

python /home/username/enspara/enspara/apps/collect_cards.py \
--trajectories /path/to/input/*.xtc \
--topology /path/to/input/topology.top \
--buffer-size 15 \
--processes 1 \
--matrices /home/username/output_path/cards.pickle \
--indices /home/username/output_path/inds.csv \

This is a CARDS run that will use a buffer-width of 15 degrees, and a single core. The outputs are 1) a single pickle
file containing a dictionary of the four types of matrices that CARDS generates, and 2) An inds.csv file that contains
the atom indices that correspond to each row/column in the CARDS matrices.

Specifically, the cards.pickle output is a dictionary that contains four matrices. The dictionary keys identify
which matrix measures which type of correlation,

3.2 Analyze CARDS data

Analysis of CARDS data can be done using the CARDS-Reader library As published in CARDS-using papers, there
are multiple ways CARDS data can be analyzed, including:

1. Extracting Shannon entropies to measure residue disorder

2. Computing a holistic correlations matrix.

3. Target site analysis

3.2.1 Extracting Shannon entropy to measure residue disorder

The Shannon entropy is an information-theoretic metric that can be used to measure disorder in a dataset. It is com-
puted across a dataset by looking at the population of each bin:

𝐻(𝑋) = −Σ𝑥𝑃 (𝑥)𝑙𝑜𝑔(𝑃 (𝑥))

In CARDS, it provides a useful insight into how much any single dihedral moves around across the simulation dataset.

Computing Shannon entropy of how a dihedral moves in inherently a structural phenomena, and conveniently is
equivalent to the diagonal of the CARDS matrix corresponding to Structure_Structure correlation (between rotameric
states). We also want to be able to understand motion on an amino-acid level, rather than a dihedral level.

In CARDS-Reader we can use the apps/extract_dihedral_entropy.py found inside the CARDS-Reader
library.

12 Chapter 3. CARDS
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python /home/username/cardsReader/apps/extract_dihedral_entropy.py \
--matrices /home/username/output_path/cards.pickle \
--indices /home/username/output_path/inds.csv \
--topology /path/to/input/topology.top \

In this script you are simply inputing the same topology file as used in collect_cards.py and the outputs from
collect_cards.py.

The output will be two files, dihedral_entropy.csv and residue_entropy.csv that will have the entropy
for each dihedral (AKA just the diagonal), and the residue-level entropy, which is normalized by the maximum amount
of entropy a residue can have. In other words, a residue-level entropy of 0.3 means a residue has ~30% of the maximum
possible Shannon entropy value it can have.

3.2.2 Computing holistic correlations

To capture the full pattern of communication into a single dihedral matrix, we can sum the four matrices in cards.
pickle directly into a single Holistic communication matrix.

This is a relatively trivial task, but for convenience, CARDS-Reader has an apps script apps/
generate_holistic_matrix.py that computes this matrix and saves it.

python /home/username/cardsReader/apps/generate_holistic_matrix.py \
--directory /home/username/output_path/cards.pickle \

At it’s core, CARDS is built on the fundamental idea that the overall communication pattern of a system is based on
the combined communication of rotameric and disordered states.

𝐼𝐻𝑜𝑙𝑖𝑠𝑡𝑖𝑐 = 𝐼𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 + 𝐼𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑

The generate_holistic_matrix.py script computes both the Structural-Structural matrix
(Structural_MI.csv), as well as a single disorder-disorder matrix (totalDisorder_MI.csv), which
is the sum of the other three matrices. It also outputs the total Holistic communication matrix (holistic_MI.csv)

This holistic communication matrix is what we can use to probe overall communication patterns in our system, using
techniques like Target site analysis, or other methods.

3.2. Analyze CARDS data 13
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CHAPTER 4

CLI

These apps make it easy to do the common tasks associated with building an MSM.

4.1 Clustering

Once you have your simulations run, the first thing you’ll want to do is cluster your trajectories based on a parameter
of interest. Commonly, you’ll want to look at the root mean square deviation of the states or the euclidean distance
between some sort of feature vector. You can do this using apps/cluster.py

This app is documented in Clustering App.

4.2 Implied Timescales

Once you’ve clustered, you might want to know what lag time is appropiate to use to create your MSM. You can can
plot eigenvalue motion spped as a function of lag time by using implied_timescales.py

The app only requires the assignment files.

--assignments path/to/directory/with/file.h5
# This is the file containing assignments

However, there are many other parameters that can be set as well.

--n-eigenvalues integer
# This is the number of eigenvalues that will be computed for each lag time.
# The default is five.
--lag-times min:max:step
# This is the list of lag times (in frames).
# The default is 5:100:2.
--symmetrization method name
# This is the method to use to enforce detailed balance in the counts matrix.
# The default is transpose.

15
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--trj-ids trajs
# This will only use given trajectories to compute the implied timescales.
# This is useful for handling assignments for shared state space clusterings.
# The deafult is none.
--processes integer
# This will set the number of cores to use.
# Because eigenvector decompositions are thread-parallelized, this should
# usually be several times smaller than the number of cores availiable on
# your machine.
# The deafult is max(1, cpu_count()/4).
--trim truth statement
# This will turn on ergodic trimming
# The default is False.
--plot path/to/directory/file_name.png
# This is how the plot will save.
--logscale
# This will put the y-axis of the plot on a log scale.

Your final submit script should be formatted something like this.

python /home/username/enspara/enspara/apps/implied_timescales.py \
--assignments assignments.h5 \
--n-eigenvalues 5 \
--processes 2 \
--plot implied_timescales.png \
--logscale

16 Chapter 4. CLI



CHAPTER 5

Clustering

Once you have your simulations run, generally the first step in building an MSM is clustering your trajectories based
on a parameter of interest. Commonly, you’ll want to look at the root mean square deviation of the states or the
euclidean distance between some sort of feature vector.

In enspara, this functionality is availiable at three levels of detail.

1. Apps. Clustering code is availiable in a command-line application that is capable of handling much of the book-
keeping necessary for more complex clustering operations.

2. Objects. Clustering code is wrapped into sklearn-style objects that offer simple API access to clustering algorithms
and their parameters.

3. Functions. Clustering code is ultimately implemented as functions, which offer the highest degree of control over
the function’s behavior, but also require the most work on the user’s part.

5.1 Clustering App

Clustering functionality is availiable in enspara in the script apps/cluster.py. Its help output explains at a
granular level of detail what it is capable of, and so here we will seek to provide a high-level discussion of how it can
be used.

When clustering, you will need to make a few important choices:

1. What type of data will you be clustering? The app accepts trajectories of coordinates as well as arrays of vectors.

2. Which clustering algorithm will you use? We currently implement k-centers and k-hybrid.

3. How “much” clustering will you do? Both k-centers and k-hybrid require the choice of k-centers stopping criteria,
and k-hybrid additionally requires the choice of number of k-medoids refinements.

4. How will you compare frames to one another (i.e. what is your distance function)? Options include RMSD (for
coordinates), as well as euclidean and manhattan distances.

17
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5.1.1 A Simple Example

One thing enspara excels as is generating fine-grained state spaces by clustering using RMSD as a criterion. This
is very fast, and is not only thread-parallelized to use all cores on a single computer (hat tip to MDTraj’s blazing fast
RMSD calculations), but also can be parallelized across many computers with MPI.

In a simple case, such a clustering will look something like this:

python /home/username/enspara/enspara/apps/cluster.py \
--trajectories /path/to/input/trj1.xtc /path/to/input/trj2.xtc \
--topology /path/to/input/topology.top \
--algorithm khybrid \
--cluster-number 1000 \
--distances /path/to/output/distances.h5 \
--center-features /path/to/output/centers.pickle \
--assignments /path/to/output/assignments.h5

This will make 1000 clusters using the k-hybrid clustering algorithm based on all the atomic coordinates in trj1.xtc
and trj2.xtc. Based on the clusters it discovers, it will generate three files:

1. Centers file (centers.pickle). This file, which is a python list of mdtraj.Trajectory trajectory objects,
contains the atomic coordinates that were at the center of each center. If 1000 clusters are discovered, this list will
have length 1000.

2. Assignments file (assignments.h5). This file assigns each frame in the input to each cluster center (even if sub-
sampling is specified). If (i, j) in this array has value n, then the j`th frame of trajectory :code:`i
above was found to belong to center n (found in the centers file).

3. Distances file (distance.h5). This file gives the distance between each frame (i, j) and the center it is
assigned to (found in the assignments file).

5.1.2 Atom Selection and Shared State Spaces

It is also possible to cluster proteins with differing topologies into the same state space. To do this, we rely on the
--atoms flag to select matching atoms between the two topologies. The --atoms flag uses the MDTraj DSL
selection syntax to specify which atoms will be loaded from each trajectory.

Imagine we have simulations of a wild-type and point mutant. To specify the the different trajectories and topologies,
we pass --trajectories and --topology more than once. Then, we pass --atoms to indicate which atoms
should be taken. In this example, we will take just the alpha carbons.

python /home/username/enspara/enspara/apps/cluster.py \
--trajectories wt1.xtc wt2.xtc \
--topology wt.top \
--trajectories mut1.xtc mut.xtc \
--topology mut.top \
--atoms 'name CA' \
--algorithm khybrid \
--cluster-number 1000 \
--distances /path/to/output/distances.h5 \
--center-features /path/to/output/centers.pickle \
--assignments /path/to/output/assignments.h5

18 Chapter 5. Clustering
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5.1.3 Feature Clustering

Enspara can also operate on inputs that are “features” rather than coordinates. For example, we have published work
that uses clusters based on the solvent accessibility of each sidechain, rather than their position. In that featurization
each frame is represented by a one-dimensional vector, and the distances between vectors is computed using some dis-
tance function, often the euclidean or manhattan distance (both of which have fast implementations in :code‘enspara‘).

In this case, your cluster.py invocation will look something like:

python /home/username/enspara/enspara/apps/cluster.py \
--features features.h5 \
--algorithm khybrid \
--cluster-radius 1.0 \
--cluster-distance euclidean \
--distances /path/to/output/distances.h5 \
--centers /path/to/output/centers.pickle \
--assignments /path/to/output/assignments.h5

Here, clusters will be generated until the maximum distance of any frame to its cluster center is 1.0 using a Euclidean
distance (the --cluster-number flag is also accepted). You can also specify a list of npy files

5.1.4 Subsampling and Reassignment

Sometimes, it is useful not to load every frame of your trajectories. This can be necessary for large datasets, where
the data exceeds the memory capacity of the computer(s) being used for clustering, and often does not substantially
diminish the quality of the clustering. As a general rule of thumb, it is usually safe to subsample such that frames are
1 ns apart. Thus, if frames have been saved every 10 ps, subsampling by a factor 100 is usually safe. This can be
achieved with the --subsample flag.

python /home/username/enspara/enspara/apps/cluster.py \
--trajectories /path/to/input/trj1.xtc /path/to/input/trj2.xtc \
--topology /path/to/input/topology.top \
--algorithm khybrid \
--subsample 10 \
--cluster-number 1000 \
--distances /path/to/output/distances.h5 \
--center-features /path/to/output/centers.pickle \
--assignments /path/to/output/assignments.h5

However, when clustering is produced with a subset of the data, it is still valuable to use all frames to build a Markov
state model, because it improves the statistics in the transition counts matrix. Consequently, even when clustering
uses some subset of frames, it is useful to assign every frame in the dataset to a cluster. This process is called
“reassignment”.

By default, reassignment automatically occurs after clustering (it can be suppressed with --no-reassign). It
sequentially loads subsets of the input data (the size of the subset depends on the size of main memory) and uses the
cluster centers to determine cluster membership before purging the subset from memory and loading the next.

Notably, reassignment is embarassingly parallel, whereas clustering is fundamentally less scalable. As a result, one
can provide the --no-reassign flag to suppress this behavior and use the centers in some other script to do the
reassignment (see the reassign.py app).
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5.2 Clustering Object

Rather than relying on a pre-built script to cluster data, there is also a scikit-learn-like object for the two major cluster-
ing algorithms we use, k-hybrid and k-centers. They are enspara.cluster.hybrid.KHybrid and enspara.
cluster.kcenters.KCenters, respectively.

An example of a script that clusters data using this object is:

import mdtraj as md

from enspara.cluster import KHybrid
from enspara.util.load import load_as_concatenated

top = md.load('path/to/trj_or_topology').top

# loads a giant trajectory in parallel into a single numpy array.
lengths, xyz = load_as_concatenated(

['path/to/trj1', 'path/to/trj2', ...],
top=top,
processes=8)

# configure a KHybrid (KCenters + KMedoids) clustering object
# to use rmsd and stop creating new clusters when the maximum
# RMSD gets to 2.5A.
clustering = KHybrid(

metric=md.rmsd,
dist_cutoff=0.25)

# md.rmsd requires an md.Trajectory object, so wrap `xyz` in
# the topology.
clustering.fit(md.Trajectory(xyz=xyz, topology=top))

# the distances between each frame in `xyz` and the nearest cluster center
print(clustering.distances_)

# the cluster id for each frame in `xyz`
print(clustering.labels_)

# a list of the `xyz` frame index for each cluster center
print(clustering.center_indices_)

5.3 Clustering Functions

Finally, for the finest-grained control over the clustering process, we implement functions that execute the cluster-
ing algorithm over given data, often with very detailed control over stopping conditions and calculations. They are
enspara.cluster.hybrid.hybrid and enspara.cluster.kcenters.kcenters, respectively.
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CHAPTER 6

Exposons

Exposons [EXP2019] are a method for identifying cooperative changes at a protein’s surface. They have been shown
to identify cryptic pockets (potentially-druggable concavities on a protein’s surface that are not easily identified by
traditional structural techniques), as well as other types of allosteric rearrangement at a protein’s surface.

We have included a method for computing exposons on an MSM in enspara, although some of the computational costs
of doing so may require additional work to make scalable to large systems.

6.1 Quick and Dirty Exposons

For small systems, exposons can be quickly calculated with the enspara.info_theory.exposons.
exposons method:

mi, exposons = exposons(trj, damping=0.9, weights=eq_probs)

Warning: In enspara.info_theory.exposons.exposons_from_sasas, assumptions are made
about the name of your atoms. See A Note on Atoms’ Names for details.

The key decisions here are which trajectory to use (typically you’ll want to use a representative conforma-
tion for each state in a sufficiently fine-grained MSM), the damping parameter (for sklearn.cluster.
AffinityPropagation), and the weights parameter. In the case of an MSM, the weights are the equilibrium
probabilities for each state. Otherwise, it can be omitted, and is just assumed to be 1/𝑛, where 𝑛 is the length of trj.

The output is a 2-tuple of an MI matrix, which gives the mutual information between the solvent accessibility state of
each pair of residues 𝑖 and 𝑗, and a numpy array, which gives the assignment of each residue to an exposon.
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6.2 Exposons for Larger Systems

If you find that exposons take too long to calculate with the convenience wrapper above, you will likely need to split the
calcuation up into multiple parts. Early stages of exposons calcuation (such as SASA calculations) are embarassingly
parallel in the number of trajectory frames.

Exposons are calculated in three primary phases:

1. Atomic solvent acessible surface area (SASA) calculation, which relies entirely on MDTraj’s implementation
of the Shrake-Rupley algorithm:

sasas = md.shrake_rupley(trj, probe_radius=probe_radius, mode='atom')

2. Condensation of the atomic SASA into sidechain SASA:

from enspara.info_theory.exposons import condense_sidechain_sasas

sasas = condense_sidechain_sasas(sasas, trj.top)

3. Calculation of exposons from sasa-featuized data:

from enspara.info_theory.exposons import exposons_from_sasas

exposons = exposons_from_sasas(sasas, damping, weights, threshold)

6.3 A Note on Atoms’ Names

As you are likely aware, there are numerous schemes for naming atoms in protein topologies. The code in enspara.
info_theory.exposons.condense_sidechain_sasas code does not do anything sophisticated with re-
spect to this and, indeed, is only aware of the GROMACS naming scheme. Specifically, sidechains are classified as
any resdue matching the following query:

Because different softwares name their atoms differently, there are no guarantees whatsoever that this matches for
your protein. Please be aware of this. Users interested in improving to the intelligence of this code are encouraged to
propose (or better submit) solutions on GitHub.
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CHAPTER 7

Cookbook

This group of handy recipies might be helpful if you’re looking to do something pretty specific and pretty common.

7.1 Building an MSM

Using the object-level interface

from enspara.msm import MSM, builders

# build the MSM fitter with a lag time of 100 (frames) and
# using the transpose method
msm = MSM(lag_time=100, method=builders.transpose)

# fit the MSM to your assignments (a numpy ndarray or ragged array)
msm.fit(assignments)

print(msm.tcounts_)
print(msm.tprobs_)
print(msm.eq_probs_)

Using the function-level interface

from enspara.msm import builders
from enspara.msm.transition_matrices import assigns_to_counts, TrimMapping, \

eq_probs, trim_disconnected

lag_time = 100

tcounts = assigns_to_counts(assigns, lag_time=lag_time)

#if you want to trim states without counts in both directions:
mapping, tcounts = trim_disconnected(tcounts)
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tprobs = builders.transpose(tcounts)
eq_probs_ = eq_probs(tprobs)

7.2 Coarse-graining with BACE

Danger: Be warned that our BACE implementaiton is still experimental, and you should be careful to check your
output.

BACE is an algorithm for converting a large, fine-grained Markov state model into a smaller, coarser-grained model.

from enspara import array as ra
from enspara import msm

assigs = ra.load('path/to/assignments.h5')

m = msm.MSM(lag_time=20, method=msm.builders.transpose)
m.fit(assigs)

bayes_factors, labels = msm.bace.bace(m.tcounts_, n_macrostates=2, n_procs=8)

This code will create two dictionaries, bayes_factors, which contains a mapping from number of microstates (up
to n_microstates as specified in the call to bace()) to a the Bayes’ factor for the model with that number of
microstates, and labels, a mapping from number of microstates to a labeling of the initial microstates of m into a
that number of microstates.

7.3 Changing logging

Enspara uses python’s logging module. Each file has its own logger, which are usually set to output files
with the module name (e.g. enspara.cluster.khybrid).

They can be made louder or quieter on a per-file level by accessing the logger and running log-
ger.setLevel(). So the following code sets the log level of util.load to DEBUG.

import logging

logging.getLogger('enspara.util.load').setLevel(logging.DEBUG)
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CHAPTER 8

Pocket Detection

We’ve implemented the classic pocket detection algorithm LIGSITE in enspara, and it can also be used to detect
exposons.

8.1 Finding pockets with LIGSITE

Enspara packages an implementaiton of the classic pocket-detection algorithm LIGSITE. LIGSITE builds
a grid over the protein, and searches for concavities in the protein by extending a number of rays from
each grid vertex, and then counts what fraction of them interact with protein. Points that are not inside the
protein, but with rays that intersect the protein, are considered to be ‘pocket vertices’.

import mdtraj as md
from enspara import geometry

pdb = md.load('reagents/m182t-a243-exposon-open.pdb')

# run ligsite
pockets_xyz = enspara.geometry.pockets.get_pocket_cells(struct=pdb)

# build a pdb of hydrogen atoms for each grid point so it can be
# examined in a visualization program (e.g. pymol)
import pandas as pd

top_df = pd.DataFrame()
top_df['serial'] = list(range(pockets_xyz.shape[0]))
top_df['name'] = 'PK'
top_df['element'] = 'H'
top_df['resSeq'] = list(range(pockets_xyz.shape[0]))
top_df['resName'] = 'PCK'
top_df['chainID'] = 0

pocket_top = md.Topology.from_dataframe(top_df, np.array([]))
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pocket_trj = md.Trajectory(xyz=pockets_xyz, topology=pocket_top)
pocket_trj.save('./pockets.pdb')
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CHAPTER 9

Transition Path Theory

Transition path theory is a mathematical framework to analyze MSMs to find transition pathways.

9.1 Computing Mean First Passage Times (MFPTs)

Enspara implements fast, raw-matrix transition path theory (i.e. there is no dependence on any enspara-
specific objects) for use in extracting various parameters derived in TPT. Among these parameters are
Mean First Passage Times, which represent the mean time required to reach a particular state from some
other specific state.

First, you’ll need a transition probability matrix and (optionally) equilibrium probabilities. For this recipe,
we’ll use the enspara MSM class, but any transition probability matrix and equilibrium probability distri-
bution (as a numpy array) works.

from enspara import tpt
from enspara.msm import MSM, builders

msm = MSM(lag_time=10, method=builders.transpose)
msm.fit(a)

# mfpts is an array where mfpts[i, j] gives you the mfpt from i to j
mfpts = tpt.mfpts(tprob=msm.tprobs_, populations=msm.eq_probs_)

9.2 Extracting maximum flux pathways

You can also extract a maximum flux pathway. First need a transition probability matrix and (optionally)
equilibrium probabilities.

# assuming we've fit an MSM, as above in the MFPT example
source_state = 1
sink_state = 100
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# compute the net flux matrix from our msm
nfm = tpt.net_fluxes(

msm.tprobs_,
source_state, sink_state,
populations=msm.eq_probs_)

path, flux = tpt.top_path(maximizer_ind, minimizer_ind, nfm.todense())
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CHAPTER 10

API

enspara.apps
enspara.cards
enspara.cluster
enspara.geometry
enspara.info_theory
enspara.mpi
enspara.msm
enspara.tpt
enspara.util
enspara.exception Custom enspara-only exceptions.
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10.1 enspara.apps

10.1.1 enspara.apps.implied_timescales

10.1.2 enspara.apps.reassign

10.1.3 enspara.apps.cluster

10.1.4 enspara.apps.util module

10.2 enspara.cards

10.3 enspara.cluster

10.3.1 enspara.cluster.hybrid module

10.3.2 enspara.cluster.kcenters module

10.3.3 enspara.cluster.kmedoids module

10.3.4 enspara.cluster.util module

10.4 enspara.geometry

10.4.1 enspara.geometry.libdist module

10.4.2 enspara.geometry.pockets module

10.4.3 enspara.geometry.rotamer module

10.5 enspara.info_theory

10.5.1 enspara.info_theory.entropy module

10.5.2 enspara.info_theory.exposons module

10.5.3 enspara.info_theory.libinfo module

10.5.4 enspara.info_theory.mutual_info module

10.6 enspara.mpi

10.6.1 enspara.mpi.io module

10.6.2 enspara.mpi.ops module

10.7 enspara.msm

10.7.1 enspara.msm.bace module
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Danger: Our BACE implementation is still experimental. Use only if you are an expert and know what you are
doing.

10.7.2 enspara.msm.bootstrap module

10.7.3 enspara.msm.builders module

10.7.4 enspara.msm.libmsm module

10.7.5 enspara.msm.msm module

10.7.6 enspara.msm.synthetic_data module

10.7.7 enspara.msm.timescales module

10.7.8 enspara.msm.transition_matrices module

10.8 enspara.tpt

10.8.1 enspara.tpt.core module

10.8.2 enspara.tpt.tpt module

10.9 enspara.util

10.9.1 enspara.util.array module

10.9.2 enspara.util.log module

10.9.3 enspara.util.load module

10.9.4 enspara.util.parallel module

10.9.5 enspara.util.preprocessing module

10.10 enspara.exception

Custom enspara-only exceptions.

exception enspara.exception.ConvergenceWarning
Bases: UserWarning

An iterative procedure has failed to converge after the maximum allowed number of iterations.

exception enspara.exception.DataInvalid
Bases: Exception

The data looks structurally invalid (mismatched array lengths, negative numbers were natural numbers are ex-
pected, etc).
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exception enspara.exception.ImproperlyConfigured
Bases: Exception

The given configuration is incomplete or otherwise not usable.

exception enspara.exception.InsufficientResourceError
Bases: Exception

The data is structurally valid, but insufficient computational resources were availiable to complete the operation
or request.

exception enspara.exception.PerformanceWarning
Bases: UserWarning

Something has happened that may have substantial performance implications and may be easy to avoid.

exception enspara.exception.SuspiciousDataWarning
Bases: UserWarning

The data is usable, but is has a structure or type that is suspicious, and may cause bad behavior down the road.
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CHAPTER 11

Indices and tables

• genindex

• modindex

• search
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