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This website documents the archived prototype ELM software developed in NASA SBIR Phase I and II from 2016 to
January 2018. Current versions of this code are available at EarthML.pyviz.org; the code documented here is primarily
of historical interest.

Getting Started

• Why Elm?

• Use Cases

• Installation

• Quick Start

• Tutorials

• Examples

Getting Started 1
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CHAPTER 1

Why Elm?

Ensemble Learning Models (elm) is a set of tools for creating multiple unsupervised and supervised machine learning
models and training them in parallel on datasets too large to fit into the RAM of a single machine, with a focus on
applications in climate science, GIS, and satellite imagery.

Some reasons for using elm over scikit-learn alone:

• Parallelize ML pipelines across the cores of a single machine or compute cluster

• Use out-of-core ML algorithms to process large datasets which are too large to fit into RAM

• Analyze multidimensional climate data, extending beyond the limitations of two-dimensional arrays and matri-
ces

• Read data from file formats popular to climate science and GIS, such as netCDF, HDF4, HDF5, Shapefiles,
GeoJSON, and GeoTIFF

More use-cases can be found here.

1.1 elm is a Work in Progress

elm is immature and largely for experimental use.

The developers do not promise backwards compatibility with future versions.

1.2 Next steps

• Use Cases for elm

• Install elm

• Try the example notebooks

3
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CHAPTER 2

Use Cases

elm (Ensemble Learning Models) is a versatile set of tools for ensemble and evolutionary algorithm approaches to
training and selecting machine learning models and large scale prediction from trained models. elm has a focus on
data structures that are common in satellite and weather data analysis, such as rasters representing bands of satellite
data or cubes of weather model output.

Common computational challenges in satellite and weather data machine learning include:

• Large-Scale Model Training

• Model Uncertainty

• Hyperparameterization / Model Selection

• Data/Metadata Formats

• Preprocessing Input Data

• Predicting for Many Large Samples and/or Models

To address these challenges elm draws from existing Python packages:

• dask-distributed: elm uses dask-distributed for parallelism over ensemble fitting and prediction

• scikit-learn : elm can use unsupervised and supervised models, preprocessors, scoring functions, and postpro-
cessors from scikit-learn or any estimator that follows the scikit-learn initialize / fit / predict estimator
interface.

• xarray : elm wraps xarray data structures for n-dimensional arrays, such as 3-dimensional weather cubes, and
for collections of 2-D rasters, such as a LANDSAT sample

2.1 Large-Scale Model Training

elm offers the following strategies for large scale training:

• Use of partial_fit for incremental training on series of saemples

5
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• Ensemble modeling, training batches of models in generations in parallel, with model selection after each gen-
eration

• Use of a Pipeline with a sequence of transformation steps

• partial_fit for incremental training of transformers used in Pipeline steps, such as PCA

• Custom user-given model selection logic in ensemble approaches to training

elm can use dask to parallelize the activities above.

2.2 Model Uncertainty

Ensemble modeling can be used to account for uncertainty that arises from uncertain model parameters or uncertainty
in the fitting process. The ensemble approach in elm allows training and prediction from an ensemble where model
parameters are varied, including parameters related to preprocessing transformations, such as feature selection or PCA
transforms. See the predict_many example.

2.3 Hyperparameterization / Model Selection

elm offers two different algorithms for multi-model training with model selection:

• fit_ensemble: Running one batch of models at a time (a generation), running a user-given model selection
function after each generation

• fit_ea: Using the NSGA-2 evolutionary algorithm to select best parameters for the best fit.

In either of these algorithms elm can use most of the model scoring features of scikit-learn or a user-given
model scoring callable.

See also:

• fit_ensemble

• fit_ea

• elm.model_selection in API docs

• scikit-learn scoring classes that work with elm

2.4 Data/Metadata Formats

One challenge in satellite and weather data processing is the variety of input data formats, including GeoTiff, NetCDF,
HDF4, HDF5, and others. elm offers a function load_array which can load spatial array data in the following
formats:

• GeoTiff: Loads files from a directory of GeoTiffs, assuming each is a single-band raster

• NetCDF: Loads variables from a NetCDF file

• HDF4 / HDF5: Loads subdatasets from HDF4 and HDF5 files

load_array creates an ElmStore (read more here), a fundamental data structure in elm that is essentially an
xarray.Dataset with metadata standardization over the various file types.

6 Chapter 2. Use Cases
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2.5 Preprocessing Input Data

elm has a wide range of support for preprocessing activities. One important feature of elm is its ability to train and/or
predict from more than one sample and for each sample run a series of preprocessing steps that may include:

• Scaling, adding polynomial features, or other preprocessors from sklearn.preprocessing

• Feature selection using any class from sklearn.feature_selection

• Flattening collections of rasters to a single 2-D matrix for fitting / prediction

• Running user-given sample transformers

• Resampling one raster onto another raster’s coordinates

• In-polygon selection

• Feature extraction through transform models like PCA or ICA

See elm.pipeline.steps for more information on preprocessing.

2.6 Predicting for Many Large Samples and/or Models

elm can use dask-distributed, a dask thread pool, or serial processing for predicting over a group (ensemble) of
models and a single sample or series of samples. elm’s interface for large scale prediction, described here, is via the
predict_many method of a Pipeline instance.

2.6.1 elm Capabilities

• Ensemble learning

• Large scale prediction

• Genetic algorithms

• Common preprocessing operations for satellite imagery and climate data

These capabilities are best shown in the

• Elm introduction

• Elm clustering introduction

• Other elm examples

• Use cases

2.5. Preprocessing Input Data 7



elm Documentation, Release 0.1.0

8 Chapter 2. Use Cases



CHAPTER 3

Installation

There are two options for installing elm:

• Install with Conda

• Install from Source

3.1 Install with Conda

Conda is a package manager backed by Continuum Analytics, Inc. Notable features include first-class support for
Python and R software that depends on C extensions, cross-platform support for Windows/Mac OSX/Linux, and
standalone packages that are easy to distribute and deploy.

3.1.1 Stable

The “stable” release is more thoroughly tested, but does not include the latest experimental features:

conda create -c elm -c conda-forge -c ioam -c scitools --name earth-env elm earthio

The above command creates a conda environment with the latest stable releases of elm and earthio installed. To begin
using, activate the environment:

source activate earth-env

If you encounter any issues with installation of the latest release from conda or source, then raise a github issue in
the elm repo here or email psteinberg [at] continuum [dot] io.

3.1.2 Development

The “development” releases are less stable, but include newer features:

9
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conda create -c elm/label/dev -c conda-forge -c ioam -c scitools/label/dev --name
→˓earth-env-dev python=3.5 elm earthio

Like for the stable release, activate the environment to begin using elm:

source activate earth-env-dev

3.2 Install from Source

Installing elm from source is recommended if you want to develop elm features and iterate rapidly over your code
changes. To install elm from source:

git clone https://github.com/ContinuumIO/elm
cd elm
export ELM_EXAMPLE_DATA_PATH=~/elm-data
PYTHON_TEST_VERSION=3.5 EARTHIO_INSTALL_METHOD=conda . build_elm_env.sh

Verify the install with:

python -c "from earthio import *;from elm import *"

You may want to add the following line to your .bashrc (or equivalent shell config) to avoid >1 download of the test
data and have the test data discovered by py.test:

export ELM_EXAMPLE_DATA_PATH=~/elm-data

Do the tutorials and examples:

• K-Means with LANDSAT example

• Examples

10 Chapter 3. Installation

https://github.com/ContinuumIO/elm


CHAPTER 4

Quick Start

The following steps generate a visualization using elm on a synthetic dataset. As development on elm continues we
strive to condense this document into a smaller example. For now, it offers insight into elm’s customizability and
extensive feature set.

4.1 Step 1 - Choose Model(s)

First import model(s) from scikit-learn and Pipeline and steps from elm.pipeline:

from elm.config import client_context
from earthio.filters.make_blobs import random_elm_store
from elm.pipeline import Pipeline, steps
from sklearn.decomposition import PCA
from sklearn.cluster import AffinityPropagation

• random_elm_store is a function that returns random rasters (xarray.DataArray s) in an ElmStore, a
data structure similar to an xarray.Dataset

• steps is a module of all the transformation steps possible in a Pipeline

See the LANDSAT K-Means and other examples to see how to read an ElmStore from GeoTiff, HDF4, HDF5, or
NetCDF.

4.2 Step 2 - Define a sampler

If fitting more than one sample, then define a sampler function to pass to fit_ensemble. Here we are using a partial
of random_elm_store (synthetic data). If using a sampler , we also need to define args_list a list of tuples
where each tuple can be unpacked as arguments to sampler. The length of args_list determines the number of
samples potentially used. Here we have 2 empty tuples as args_list because our sampler needs no arguments
and we want 2 samples. Alternatively the arguments X , y , and sample_weightmay be given in place of sampler
and args_list .

11
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from functools import partial
N_SAMPLES = 2
bands = ['band_{}'.format(idx + 1) for idx in range(10)]
sampler = partial(random_elm_store,

bands=bands,
width=60,
height=60)

args_list = [(),] * N_SAMPLES

4.3 Step 2 - Define a Pipeline

The code block below will use Flatten to convert each 2-D raster ( DataArray ) to give a single 1-D column in
2-D DataArray for machine learning. The output of Flattenwill be in turn passed to sklearn.decomposition.PCA
and the reduced feature set from PCA will be passed to the sklearn.cluster.AffinityPropagation clustering model.

pipe = Pipeline([('flat', steps.Flatten()),
('pca', steps.Transform(PCA())),
('aff_prop', AffinityPropagation())])

4.4 Step 3 - Call fit_ensemble with dask

Now we can use fit_ensemble to fit to one or more samples and one more instances of the pipe Pipeline above. Below
we are passing the sampler and args_list, client, which will be a dask-distributed or ThreadPool
or None, depending on environment variables. init_ensemble_size sets the number of Pipeline instances and
models_share_sample=False means to fit all Pipeline / sample combinations (2 X 2 == 4 total mem-
bers in this case).

pipe.fit_ensemble(sampler=sampler,
args_list=args_list,
init_ensemble_size=2,
models_share_sample=False,
ngen=1)

The code block with fit_ensemble above would show the repr of the Pipeline object as follows:

>>> print(pipe)
<elm.pipeline.Pipeline> with steps:

flat: <elm.steps.Flatten>:

pca: <elm.steps.Transform>:
copy: True
iterated_power: 'auto'
n_components: None
partial_fit_batches: None
random_state: None
svd_solver: 'auto'
tol: 0.0
whiten: False

aff_prop: AffinityPropagation(affinity='euclidean', convergence_iter=15,
→˓copy=True,

damping=0.5, max_iter=200, preference=None, verbose=False)

12 Chapter 4. Quick Start
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We can confirm that we have 4 Pipeline instances in the trained ensemble:

>>> len(pipe.ensemble)
4

4.5 Step 4 - Call predict_many

predict_many will by default predict from the ensemble that was just trained (4 models in this case). pre-
dict_many takes sampler and args_list like fit_ensemble. The args_list may differ from that given to
fit_ensemble or be the same. We have 4 trained models in the .ensemble attribute of pipe and 2 samples
specified by args_list , so predict_many returns a list of 8 prediction :doc:‘ElmStore<elm-store>‘s

preds = pipe.predict_many(sampler=sampler, args_list=args_list)
example = preds[0]

import matplotlib.pyplot as plt
example.predict.plot.pcolormesh()
plt.show()

Read More : LANDSAT K-Means example

4.5. Step 4 - Call predict_many 13
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CHAPTER 5

Tutorials

This page walks through a Jupyter notebook using elm to ensemble fit K-Means and predict from all members of
the ensemble.

It demonstrates the common steps of using elm :

• Working with earthio.load_array to read NetCDF , HDF4 , HDF5 , and GeoTiff files, and controlling
how a sample is composed of bands or separate rasters with LayerSpec . See also Creating an ElmStore from
File

• Defining a Pipeline of transformers (e.g. normalization and PCA) and an estimator, where the transformers
use classes from elm.pipeline.steps and the estimator is a model with a fit / predict interface. See
also Pipeline

• Calling fit_ensemble to train the Pipeline under varying parameters with one or more input samples

• Calling predict_many to predict from all trained ensemble members to one or more input samples

5.1 LANDSAT

The LANDSAT classification is notebook from elm examples. This section walks through that notebook, pointing out:

• How to use earthio for scientific data files like GeoTiffs

• How to set up an elm.pipeline.Pipeline of transformations

• How to use dask to fit a Pipeline in ensemble and predict from many models

NOTE : To follow along, make sure you follow the Prerequisites for Examples. The LANDSAT sample used here can
be found in the AWS S3 LANDSAT bucket here.

15
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5.2 earthio Walk-Through

First the notebook sets some environment variables related to usage of a dask-distributed Client and the
path to the GeoTiff example files from ‘elm-data‘_:

Each GeoTiff file has 1 raster (band of LANDSAT data):

See more inforation on ElmStore in ElmStore.

5.3 earthio.LayerSpec

Using a list of LayerSpec objects, as shown below, is how one can control which bands, or individual GeoTiff files,
become the sample dimensions for learning:

• buf_xsize: The size of the output raster horizontal dimension

• buf_ysize: The size of the output raster vertical dimension

• name: What do call the band in the ElmStore returned. For example band_1 as a name will mean you can
use X.band_1 and find band_1 as a key in X.data_vars.

• search_key: Where to look for the band identifiying info, in this case the file name

• search_value : What string token identifies a band, e.g. B1.TIF (see file names printed above)

We are using buf_xsize and buf_ysize below to downsample.

16 Chapter 5. Tutorials
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Check the repr of the LayerSpec objects to see all possible arguments controlling reading of bands:

5.4 earthio.load_array

load_array aims to find a file reader for a NetCDF, HDF4, HDF5, or GeoTiff source.

The first argument to load_array is a directory if reading GeoTiff files and it is assumed that the directory contains
GeoTiff files each with a 1-band raster.

For NetCDF, HDF4, and HDF5 the first argument is a single filename, and the bands are taken from the variables
(NetCDF) or subdatasets (HDF4 / HDF5).

band_specs (list of LayerSpec objects) is passed in to load_array (the list of LayerSpec objects from
above) to control which bands are read from the directory of GeoTiffs.

5.5 Using an ElmStore like an (xarray.Dataset)

See also xarray docs on Dataset

5.4. earthio.load_array 17
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5.6 Visualization with ElmStore

The notebook then goes through a number of examples similar to:

• X.band_1.plot.pcolormesh() - The code uses names like band_1, band_2. These are named
DataArray objects in the ElmStore X because of the name argument to the LayerSpec objects above.
The plot.pcolormesh() comes from the data viz tools with xarray.DataArray .

• The output of X.band_1.plot.pcolormesh()

5.7 Building a Pipeline

Building an elm.pipeline.Pipeline of transformations is similar to the idea of a Pipeline in scikit-learn.

• All steps but the last step in a Pipeline must be instances of classes from the elm.pipeline.steps - these are the
transformers.

• The final step in a Pipeline should be an estimator from scikit-learn with a fit/predict interface.

The notebook shows how to specify a several-step Pipeline of

• Flattening rasters

18 Chapter 5. Tutorials
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• Assigning NaN where needed

• Dropping NaN rows

• Standardizing (Z-scoring) by band means and standard deviations

• Adding polynomial interaction terms of degree two

• Transforming with PCA

• K-Means with partial_fit several times per model

Preamble - Imports

This cell show typical import statments for working with a elm.pipeline.steps that become part of a
Pipeline, including importing a transformer and estimator from scikit-learn:

5.8 Steps - Flatten

This transform-flatten step is essentially .ravel on each DataArray in X to create a single 2-D DataArray :

5.9 Steps - ModifySample - set_nans

The next step uses elm.pipeline.steps.ModifySample to run a custom callable in a Pipeline of trans-
formations. This function sets NaN for the no-data perimeters of the rasters:

5.8. Steps - Flatten 19
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5.10 Steps - DropNaRows - Drop Null / NaN Rows

The transform-dropnarows is a transformer to remove the NaN values from the DataArray flat (the flattened
(ravel) rasters as a single 2-D DataArray )

5.11 Steps - ModifySample - Log Transform (or pass through)

This usage of ModifySample will allow the Pipeline to use log transformation or not (see usage of
set_params several screenshots later)

20 Chapter 5. Tutorials
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5.12 Feature engineering in a Pipeline

Define a function that can do normalized differences between bands (raster or DataArray ), adding the normalized
differences to what will be the X data in the Pipeline of transformations.

5.13 Feature engineering - ModifySample with arguments

And here is how the function above can be used in a Pipeline (wrapping with elm.pipeline.steps.
ModifySample ):

5.12. Feature engineering in a Pipeline 21
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We are calculating:

• NDWI : Normalized Difference Water Index * (band_4 - band_5) / (band_4 + band_5)

• NDVI : Normalized Difference Vegetation Index * (band_5 - band_4) / (band_5 + band_4)

• NDSI : Normalized Difference SnowIndex * (band_2 - band_6) / (band_2 + band_6)

• NBR : Normalized Burn Ratio * (band_4 - band_7) / (band_7 + band_4)

Using pcolormesh on normalized differences of bands

Here are the NDWI and NDVI plotted with the ‘xarray-pcolormesh‘_ method of the predict DataArray

22 Chapter 5. Tutorials
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False Color with normalized differences of bands

The image below has an RGB (red, green, blue) matrix made up of the NBR , NDSI , NDWI normalized differences:

5.14 Normalization and Adding Polynomial Terms

The following snippets show how to use a class from sklearn.preprocessing or sklearn.
feature_selection with Pipeline :

24 Chapter 5. Tutorials
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Custom Feature Selection

By defining the function below, we will be able to choose among random combinations of the original data or normal-
ized differences

5.15 PCA

Use steps.Transform to wrap PCA or another method from sklearn.decomposition for elm.
pipeline.Pipeline .

Read more on sklearn.decomposition models here.

5.16 Use an estimator from scikit-learn

Use a model with a fit / predict interface, such as KMeans.

Most scikit-learn models described here are supported.

5.15. PCA 25
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5.17 Create Pipeline instance

The following uses all the steps we have created in sequence of tuples and configures scoring for K-Means with the
Akaike Information Criterion.

The next steps deal with controlling fit_ensemble (fitting with a group of models of different parameters)

See more info on Pipeline here.

5.18 ensemble_init_func

This is an example ensemble_init_func to pass to fit_ensemble, using pipe.
new_with_params(**new_params) to create a new unfitted Pipeline instance with new parameters.

26 Chapter 5. Tutorials
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The fit_ensemble docs also show an example of an ensemble_init_func.

5.19 More fit_ensemble control

The following sets the number of generations ( ngen ) and the model_selection callable after each generation.

5.20 Parallelism with dask-distributed

fit_ensemble , to fit a group of models in generations with model selection after each generation, and predict_many
each take a client keyword as a dask Client (dask). predict_many parallelizes over multiple models and samples,
though here only one sample is used.

5.19. More fit_ensemble control 27
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5.21 Using an ElmStore from predict_many

predict_many has called transform-inverseflatten to reshape the 1-D numpy array from the sklearn.cluster.
KMeans.predict method to a 2-D raster with the coordinates of the original data. Note also the
inverse_flatten is typically able to preserve NaN regions of the original data (the NaN borders of this image are
preserved).

Using the xarray’s pcolormesh on the predict attribute ( DataArray ) of an ElmStore returned by predict_many
:

The best prediction in terms of AIC :

28 Chapter 5. Tutorials
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5.21. Using an ElmStore from predict_many 29
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CHAPTER 6

Examples

This page provides examples of Python sessions using elm code and yaml config files that can be run with elm-main.

6.1 Prerequisites for Examples

Follow the instructions for installation of elm and the elm-env conda environment ( Install ):

• https://github.com/ContinuumIO/elm/tree/master/examples

• https://github.com/ContinuumIO/elm-data/

Also, define the environment variable ELM_EXAMPLE_DATA_PATH to be your full path to local clone of elm-data

6.2 Jupyter (IPython) Notebooks with elm

Two notebooks provide worked out examples of using elm with time series of spatial weather data from NetCDF files.

The notebook then goes through how to build true and false color images with an ElmStore and matplotlib.
pyplot.imshow

6.3 Notebooks using elm

• Clustering of temperature probability distributions in time

• Land cover clustering with K-Means, PCA, and other transformations

6.4 yaml config files for elm-main

• ‘Examples with SGD and K-Means in Elm examples‘_

31

https://github.com/ContinuumIO/elm/tree/master/examples
https://github.com/ContinuumIO/elm-data/
https://github.com/ContinuumIO/elm/tree/master/examples/temperature-PDFs-clustering.ipynb
https://github.com/ContinuumIO/elm/tree/master/examples/LANDSAT_Example.ipynb


elm Documentation, Release 0.1.0

User Guide

• ElmStore

• Pipeline

• Customizable Pipeline Steps

• Multi-Model Fitting I: Ensemble Fitting

• Multi-Model Fitting II: Evolutionary Algorithms

• Multi-Model Prediction

• elm yaml Specs - Deprecated Temporarily

• elm-main Entry Point Deprecated Temporarily

32 Chapter 6. Examples



CHAPTER 7

ElmStore

ElmStore, from earthio, is a fundamental data structure in elm and is the data structure used to pass arrays
and metadata through each of the steps in an Pipeline (series of transformations). An ElmStore is oriented around
multi-band rasters and cubes stored in HDF4 / 5, NetCDF, or GeoTiff formats. ElmStore is a light wrapper around
xarray.Dataset.

This page discusses:

• Creating an ElmStore from File

• Creating an ElmStore - Contructor

• Attributes of an ElmStore

• Common ElmStore Transformations

See also API docs.

7.1 Creating an ElmStore from File

An ElmStore can be created from HDF4 / HDF5 or NetCDF file with load_array from earthio. The simple
case is to load all bands or subdatasets from an HDF or NetCDF file:

from earthio import load_array
filename = '3B-HHR-E.MS.MRG.3IMERG.20160708-S153000-E155959.0930.V03E.HDF5.nc'
es = load_array(filename)

For GeoTiffs the argument is a directory name rather than a file name and each band is formed from individual GeoTiff
files in the directory. The following is an example with LANDSAT GeoTiffs for bands 1 through 7:

In [1]: from earthio import LayerSpec, load_array

In [2]: ls
LC80150332013207LGN00_B1.TIF LC80150332013207LGN00_B5.TIF
LC80150332013207LGN00_B2.TIF LC80150332013207LGN00_B6.TIF

(continues on next page)

33



elm Documentation, Release 0.1.0

(continued from previous page)

LC80150332013207LGN00_B3.TIF LC80150332013207LGN00_B7.TIF
LC80150332013207LGN00_B4.TIF logfile.txt

In [3]: es = load_array('.')
In [4]: es.data_vars
Out[4]:
Data variables:

band_0 (y, x) uint16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_1 (y, x) uint16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_2 (y, x) uint16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_3 (y, x) uint16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_4 (y, x) uint16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_5 (y, x) uint16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_6 (y, x

The example above for GeoTiffs loaded the correct bands, but labeled them in a way that may be confusing downstream
in the analysis. The following section shows how to control which bands are loaded and what they are named.

7.2 Controlling Which Bands Are Loaded

Use the band_specs keyword to load_array to

• Control which subdatasets, or bands typically, are loaded into the ElmStore and/or

• To standardize the names of the bands (DataArrays) in the ElmStore.

The band_specs work slightly differently for each file type:

• HDF4 / HDF5: The band_specs determine matching against one of the HDF4 file’s subdatasets
(see also GDAL subdatasets).

• NetCDF: The band_specs determine matching against one of the NetCDF file’s variables
metadata (NetCDF4 python variables interface).

• GeoTiff: When calling load_array for GeoTiffs, the argument is a directory (of GeoTiff files)
not a single GeoTiff file. The band_specs for a GeoTiff file determine matching based on the
gdal metadata for each GeoTiff in the directory. GeoTiffs are read using rasterio , a wrapper
around GDAl.

In simple cases band_specs can be a list of strings to match a NetCDF variable name, subdataset name, or GeoTiff
file name, as shown below:

In [4]: from earthio import load_array
In [5]: filename = '3B-HHR-E.MS.MRG.3IMERG.20160708-S153000-E155959.0930.V03E.HDF5.nc'
In [6]: es = load_array(filename, band_specs=['HQobservationTime'])
In [7]: es.data_vars
Out[7]:
Data variables:

HQobservationTime (lon, lat) timedelta64[ns] NaT NaT NaT NaT NaT NaT ...

With GeoTiffs, giving a list of strings as band_specs finds matching GeoTiff files (bands) by testing if each string
is in a GeoTiff file name of the directory. Here is an example:

from earthio import load_array
dir_of_tifs = '.'
load_array(dir_of_tifs, band_specs=["B1.TIF", "B2.TIF","B3.TIF"])
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band_specs can be given as a list of earthio.LayerSpec objects. The following shows an example of loading
4 bands from an HDF4 file where the band name, such as "Band 1 " is found in the long_name key/value of the
subdataset (band) metadata and the band names are standardized to lower case with no spaces.

In [1]: from earthio import LayerSpec, load_array

In [2]: band_specs = list(map(lambda x: LayerSpec(**x),
[{'search_key': 'long_name', 'search_value': "Band 1 ", 'name': 'band_1'},
{'search_key': 'long_name', 'search_value': "Band 2 ", 'name': 'band_2'},
{'search_key': 'long_name', 'search_value': "Band 3 ", 'name': 'band_3'},
{'search_key': 'long_name', 'search_value': "Band 4 ", 'name': 'band_4'}]))

In [3]: filename = 'NPP_DSRF1KD_L2GD.A2015017.h09v05.C1_03001.2015018132754.hdf'

In [4]: es = load_array(filename, band_specs=band_specs)

In [5]: es.data_vars
Out[5]:
Data variables:

band_1 (y, x) uint16 877 877 767 659 920 935 935 918 957 989 989 789 ...
band_2 (y, x) uint16 899 899 770 659 954 973 973 935 994 1004 1004 841 ...
band_3 (y, x) uint16 1023 1023 880 781 1115 1141 1141 1082 1155 1154 ...
band_4 (y, x) uint16 1258 1258 1100 1009 1374 1423 1423 1341 1408 1405 ...

Note the LayerSpec objects could have also used the keyword arguments key_re_flags and
value_re_flags with a list of flags passed to re for regular expression matching.

7.3 LayerSpec - File Reading Control

Here are a few more things a LayerSpec can do:

• A LayerSpec can control the resolution at which a file is read (and improve loading speed). To con-
trol resolution when loading rasters, provide buf_xsize and buf_ysize keyword arguments (integers)
to LayerSpec.

• A LayerSpec can provide a window that subsets the file. See this rasterio demo that shows how window is
effectively interpreted in load_array.

• A LayerSpec with a meta_to_geotransform callable attribute can be used to construct a
geo_transform array from band metadata (e.g. when GDAL fails to detect the geo_transform ac-
curately)

• A LayerSpec can control whether a raster is loaded with (“y”, “x”) pixel order (the default behavior that
suits most top-left-corner based rasters) or (“x”, “y”) pixel order.

See also the definition of LayerSpec in earthio showing all the recognized fields (snippet taken from earthio.util).

@attr.s
class LayerSpec(object):

search_key = attr.ib()
search_value = attr.ib()
name = attr.ib()
key_re_flags = attr.ib(default=None)
value_re_flags = attr.ib(default=None)
buf_xsize = attr.ib(default=None)
buf_ysize = attr.ib(default=None)
window = attr.ib(default=None)

(continues on next page)
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meta_to_geotransform = attr.ib(default=None)
stored_coords_order = attr.ib(default=('y', 'x'))

7.4 Creating an ElmStore - Contructor

Here is an example of creating an ElmStore from numpy arrays and xarray.DataArrays. In most ways, an
ElmStore is interchangeable with an xarray.Dataset (see also docs on working with a Dataset.

from collections import OrderedDict
import numpy as np
import xarray as xr
from earthio import ElmStore

rand_array = lambda: np.random.normal(0, 1, 1000000).reshape(-1,10)

def sampler(**kwargs):
bands = ['b1', 'b2', 'b3', 'b4']
es_data = OrderedDict()
for band in bands:

arr = rand_array()
y = np.arange(arr.shape[0])
x = np.arange(arr.shape[1])
es_data[band] = xr.DataArray(arr, coords=[('y', y), ('x', x)], dims=('y', 'x

→˓'), attrs={})
return ElmStore(es_data, add_canvas=False)

Calling sampler above gives:

<elm.ElmStore>
Dimensions: (x: 10, y: 100000)
Coordinates:

* y (y) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

* x (x) int64 0 1 2 3 4 5 6 7 8 9
Data variables:

b1 (y, x) float64 1.772 -0.414 1.37 2.107 -1.306 0.9612 -0.0696 ...
b2 (y, x) float64 0.07442 1.908 0.5816 0.06838 -2.712 0.4544 ...
b3 (y, x) float64 -2.597 -1.893 0.05608 -0.5394 1.406 -0.6185 ...
b4 (y, x) float64 1.054 -1.522 -0.03202 -0.02127 0.02914 -0.6757 ...

Attributes:
_dummy_canvas: True
band_order: ['b1', 'b2', 'b3', 'b4']

ElmStore has the initialization keyword argument add_canvas that differs from xarray.Dataset. If
add_canvas is True (default), it expected that the band metadata in the DataArrays each contain a
geo_transform key with a value that is a sequence of length 6. See the GDAL data model for more informa-
tion on geo transforms. In the example above each DataArray did not have a geo_transform in attrs so
add_canvas was set to False. The limitation of not having a canvas attribute is inability to use some spatial
reindexing transformations (e.g. elm.pipeline.steps.SelectCanvas described further below)
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7.5 Attributes of an ElmStore

If an ElmStore was initialized with add_canvas (the behavior in load_array), then it is expected each band,
or DataArray, will have a geo_transform in its metadata. The geo_transform information, in combination
with the array dimensions and shape, create the ElmStore’s canvas attribute.

In [4]: es.canvas

Out[5]: Canvas(geo_transform=(-180.0, 0.1, 0, -90.0, 0, 0.1), buf_xsize=3600, buf_
→˓ysize=1800, dims=('lon', 'lat'), ravel_order='C', zbounds=None, tbounds=None,
→˓zsize=None, tsize=None, bounds=BoundingBox(left=-180.0, bottom=-90.0, right=179.
→˓90000000000003, top=89.9))

The canvas is used in the Pipeline for transformations like elm.pipeline.steps.SelectCanvas which
can be used to reindex all bands onto coordinates of one of the band’s in the ElmStore.

An ElmStore has a data_vars attribute (inherited from xarray.Dataset - described here), and also has an
attribute band_order. When elm.pipeline.steps.Flatten flattens the separate bands of an ElmStore,
band_order becomes the order of the bands in the single flattened 2-D array.

In [5]: filename = '3B-MO.MS.MRG.3IMERG.20160101-S000000-E235959.01.V03D.HDF5'
In [6]: es = load_array(filename)
In [7]: es.data_vars
Out[7]:
Data variables:

band_0 (y, x) int16 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ...
band_1 (y, x) float32 -9999.9 -9999.9 -9999.9 -9999.9 -9999.9 -9999.9 ...
band_2 (y, x) int16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
band_3 (y, x) float32 -9999.9 -9999.9 -9999.9 -9999.9 -9999.9 -9999.9 ...

In [8]: es.band_order
Out[8]: ['band_0', 'band_1', 'band_2', 'band_3']

7.6 Common ElmStore Transformations

Flatten

elm.pipeline.steps.Flatten will convert an ElmStore of 2-D rasters in bands (each band as a
DataArray ) to an ElmStore with a single DataArray called flat. *Note: elm.pipeline.steps.
Flatten() must be included in a Pipeline before scikit-learn based transforms on an ElmStore, where the
scikit-learn transforms expect a 2-D array.

Here is an example of Flatten that continues the example above that defined sampler, a function returning a
random ElmStore of 2-D DataArray bands:

es = sampler()
X_2d, y, sample_weight = steps.Flatten().fit_transform(es)

In [17]: X_2d.flat
Out[17]:
<xarray.DataArray 'flat' (space: 1000000, band: 4)>
array([[ 1.13465339, -0.1533531 , 1.72809878, -0.7746218 ],

[-0.12378515, -1.72588715, 0.07752273, -1.19004227],
[ 2.16456385, -0.58083733, 0.03706811, 0.26274225],
...,

(continues on next page)
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[ 0.45586256, -1.87248571, 1.27793313, 0.19892153],
[ 2.11702651, -0.05300853, -0.92923591, -1.07152977],
[-0.10245425, -1.27150399, -1.48745754, 1.00873062]])

Coordinates:

* space (space) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

* band (band) <U2 'b1' 'b2' 'b3' 'b4'
Attributes:

old_dims: [('y', 'x'), ('y', 'x'), ('y', 'x'), ('y', 'x')]
_dummy_canvas: True
canvas: Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_

→˓ysize=100000, dims=('y', 'x'), ravel_order='C', zbounds=None, tbounds=None,
→˓zsize=None, tsize=None, bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1,
→˓top=-9909.900000000001))

old_canvases: [Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10,
→˓buf_ysize=100000, dims=('y', 'x'), ravel_order='C', zbounds=None, tbounds=None,
→˓zsize=None, tsize=None, bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1,
→˓top=-9909.900000000001)), Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_
→˓xsize=10, buf_ysize=100000, dims=('y', 'x'), ravel_order='C', zbounds=None,
→˓tbounds=None, zsize=None, tsize=None, bounds=BoundingBox(left=-180.0, bottom=90.0,
→˓right=-179.1, top=-9909.900000...

flatten_data_array: True
band_order: ['b1', 'b2', 'b3', 'b4']

InverseFlatten

elm.pipeline.steps.InverseFlatten converts an ElmStore that is flattened (typically the output of
transform-flatten above) back to separate 2-D raster bands.

es = sampler()
X_2d, y, sample_weight = steps.Flatten().fit_transform(es)
restored, _, _ = steps.InverseFlatten().fit_transform(X_2d)
np.all(restored.b1.values == es.b1.values)

DropNaRows

elm.pipeline.steps.DropNaRows is a transformer that will drop any null rows from an ElmStore that has
a DataArray called flat (see transform-flatten). It drops the null rows while keeping metadata to allow transform-
inverseflatten in predict_many . An example usage of DropNaRows is given in the K-Means LANDSAT ‘‘elm‘
introduction<cluster_example>‘

Here is an example of using DropNaRows with the sampler function defined above.

es = sampler()
X_2d, _, _ = steps.Flatten().fit_transform(es)
X_2d.flat.values[:2, :] = np.NaN
X_no_na, _, _ = steps.DropNaRows().fit_transform(X_2d)
assert X_no_na.flat.shape[0] == X_2d.flat.shape[0] - 2
restored = inverse_flatten(X_no_na)
assert restored.b1.shape == es.b1.shape
val = restored.b1.values
assert val[np.isnan(val)].size == 2

Agg

Aggregation along a dimension can be done with elm.pipeline.steps.Agg, referencing either a dim or axis
.
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In [44]: es = sampler()

In [45]: agged, _, _ = steps.Agg(dim='y', func='median').fit_transform(es)

In [46]: agged
Out[46]:
ElmStore:
<elm.ElmStore>
Dimensions: (x: 10)
Coordinates:

* x (x) int64 0 1 2 3 4 5 6 7 8 9
Data variables:

b1 (x) float64 -0.00231 -0.00294 -0.002797 0.002472 -0.006088 ...
b2 (x) float64 8.965e-06 0.0001929 -0.007133 0.001447 -0.001846 ...
b3 (x) float64 -0.0009686 -0.003632 -0.0007322 -0.002221 -0.0039 ...
b4 (x) float64 0.00667 0.001018 0.002702 0.009274 0.001481 ...

Attributes:
_dummy_canvas: True
band_order: ['b1', 'b2', 'b3', 'b4']

In the example above, median could have been replaced by any of the following:

• all

• any

• argmax

• argmin

• max

• mean

• median

• min

• prod

• sum

• std

• var

Read more on the implementation of the functions above in the xarray.DataArray methods here.

7.7 ElmStore and Metadata

This section describes elm functions useful for deriving information from file metadata.

set_na_from_meta: This function searches the attrs of each DataArray in an ElmStore or xarray.
Dataset and sets NaN values in each DataArray where metadata indicates it is necessary. Currently
set_na_from_meta searches attrs for the following keys using a case-, space- and punctuation-insenstive reg-
ular expression:

• missing_value: Any values in the DataArray equal to the missing value will be set to NaN.

• valid_range and invalid_range: If attrs have a key like valid_range or invalid_range, the
function will check to see if it is a sequence of length 2 or a string that can be split on comma or spaces to form
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a sequnce of length 2. If a sequence of length 2, then the invalid / valid ranges will be used to set NaN values
appropriately.

from earthio.tests.util import HDF4_FILES
from earthio import load_array, set_na_from_meta
es = load_array(HDF4_FILES[0])
set_na_from_meta(es) # modifies ElmStore instance in place

meta_is_day: This function takes a single argument, a dict that is typically the attrs of an ElmStore, and searches
for keys/values indicating whether the attrs correspond to a day or night sample.

from earthio.tests.util import HDF4_FILES
from earthio import load_array
from earthio.metadata_selection import example_meta_is_day
from scipy.stats import describe
es3 = load_array(HDF4_FILES[0])
es3.DayNightFlag # prints "Day"
meta_is_day(es3) # prints True
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Pipeline

8.1 Overview of Pipeline in elm

elm.pipeline.Pipeline allows a sequence of transformations on samples before fitting, transforming, and/or
predicting from an scikit-learn estimator. elm.pipeline.Pipeline is similar to the concept of the Pipeline
in scikit-learn (sklearn.pipeline.Pipeline) but differs in several ways described below.

• Data sources for a Pipeline: In elm, the fitting expects X to be an ElmStore or xarray.Dataset rather than a
numpy array as in scikit-learn. This allows the Pipeline of transformations to include operations on cubes
and other data structures common in satellite data machine learning.

• Transformations: In scikit-learn each step in a Pipeline passes a numpy array to the next step by way of a
fit_transform method. In elm, a Pipeline always passes a tuple of (X, y, sample_weight) where X is
an ElmStore or xarray.Dataset and y and sample_weight are numpy arrays or None.

• Partial Fit for Large Samples: In elm a transformer with a partial_fit method, such as sklearn.
decomposition.IncrementalPCA may be partially fit several times as a step in a Pipeline and the
final estimator may also use partial_fit several times with dask-distributed for parallelization.

• Multi-Model / Multi-Sample Fitting: In elm, a Pipeline can be fit with:

– fit_ensemble: This method repeats model fitting over a series of samples and/or a ensemble of
Pipeline instances. The Pipeline instances in the ensemble may or may not have the same
initialization parameters. fit_ensemble can run in generations, optionally applying user-given model
selection logic between generations. This fit_ensemble method is aimed at improved model fitting in
cases where a representative sample is large and/or there is a need to account for parameter uncer-
tainty.

– fit_ea: This method uses Distributed Evolutionary Algorithms in Python (deap) to run a genetic
algorithm, typically NSGA-2, that selects the best Pipeline instance(s). The interface for fit_ea
and fit_ensemble are similar, but fit_ea takes an evo_params argument to configure the genetic
algorithm.

• Multi-Model / Multi-Sample Prediction: elm’s Pipeline has a method predict_many that can use dask-
distributed to predict from one or more Pipeline instances and/or one or more samples (ElmStore will predict
for all models in the final ensemble output by fit_ensemble.
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The following discusses each step of making a Pipeline that uses most of the features described above.

8.2 Data Sources for a Pipeline

Pipeline can be used for fitting / transforming / predicting from a single sample or series of samples. For the fit_ensemble, fit_ea or predict_many methods of a Pipeline instance:

• To fit to a single sample, use the X keyword argument, and optionally y and sample_weight keyword
arguments.

• To fit to a series of samples, use the args_list and sampler keyword arguments.

If X is given it is assumed to be an ElmStore or xarray.Dataset

If sampler is given with args_list, then each element of args_list is unpacked as arguments to the callable
sampler. There is a special case of giving sampler as earthio.band_selection.select_from_file
which allows using the functions from earthio for reading common formats and selecting bands from files (the
band_specs argument). Here is an example that uses select_from_file to load multi-band HDF4 arrays:

from earthio import LayerSpec
from earthio.metadata_selection import meta_is_day
band_specs = list(map(lambda x: LayerSpec(**x),

[{'search_key': 'long_name', 'search_value': "Band 1 ", 'name': 'band_1'},
{'search_key': 'long_name', 'search_value': "Band 2 ", 'name': 'band_2'},
{'search_key': 'long_name', 'search_value': "Band 3 ", 'name': 'band_3'},
{'search_key': 'long_name', 'search_value': "Band 4 ", 'name': 'band_4'},
{'search_key': 'long_name', 'search_value': "Band 5 ", 'name': 'band_5'},
{'search_key': 'long_name', 'search_value': "Band 6 ", 'name': 'band_6'},
{'search_key': 'long_name', 'search_value': "Band 7 ", 'name': 'band_7'},
{'search_key': 'long_name', 'search_value': "Band 9 ", 'name': 'band_9'},
{'search_key': 'long_name', 'search_value': "Band 10 ", 'name': 'band_10'},
{'search_key': 'long_name', 'search_value': "Band 11 ", 'name': 'band_11'}]))

HDF4_FILES = [f for f in glob.glob(os.path.join(ELM_EXAMPLE_DATA_PATH, 'hdf4', '*hdf
→˓'))

if meta_is_day(load_hdf4_meta(f))]
data_source = {

'sampler': select_from_file,
'band_specs': band_specs,
'args_list': HDF4_FILES,

}

Alternatively, to train on a single HDF4 file, we could have done:

from earthio import load_array
from earthio.metadata_selection import example_meta_is_day
HDF4_FILES = [f for f in glob.glob(os.path.join(ELM_EXAMPLE_DATA_PATH, 'hdf4', '*hdf
→˓'))

if example_meta_is_day(load_hdf4_meta(f))]
data_source = {'X': load_array(HDF4_FILES[0], band_specs=band_specs)}

8.3 Transformations

A Pipeline is created by giving a list of steps - the steps before the final step are known as transformers and the
final step is the estimator. See also the full docs on elm.pipeline.steps.
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• Transformer steps must be taken from one of the classes in elm.pipeline.steps. The purpose
of elm.pipeline.steps is to wrap preprocessors and transformers from scikit-learn for use with
:doc:‘ElmStore<elm-store>‘s or ‘‘xarray.Dataset‘‘s.

Here is an example Pipeline of transformations before K-Means

from elm.pipeline import steps, Pipeline
pipeline_steps = [steps.Flatten(),

('scaler', steps.StandardScaler()),
('pca', steps.Transform(IncrementalPCA(n_components=4), partial_fit_

→˓batches=2)),
('kmeans', MiniBatchKMeans(n_clusters=4, compute_labels=True)),]

The example above calls:

• steps.Flatten first (See transformers-flatten) first, as utility for flattening our multi-band raster HDF4
sample(s) into an ElmStore with a single xarray.DataArray, called flat, with each band as a column in flat.

• StandardScaler with default arguments from sklearn.prepreprocessing (all other transformers from
sklearn.preprocessing and sklearn.feature_selection are also attributes of elm.pipeline.steps and could
be used here)

• PCA with elm.pipeline.steps.Transform to wrap scikit-learn transformers to allow multiple calls to
partial_fit within a single fitting task of the final estimator - steps.Transform is initialized with:

– A scikit-learn transformer as an argument

– partial_fit_batches as a keyword, defaulting to 1. Note: using partial_fit_batches !=
1 requires a transformer with a partial_fit method

• Finally MiniBatchKMeans

8.4 Multi-Model / Multi-Sample Fitting

There are two multi-model approaches to fitting that can be used with a Pipeline: fit_ensemble or fit_ea. The
examples above with a data source to a Pipeline and the transformation steps within one Pipeline instance
work similarly in fit_ensemble and fit_ea.

Other similarities between fit_ea and fit_ensemble include the following common keyword arguments:

• scoring a callable with a signature like elm.model_selection.kmeans.kmeans_aic (See
API docs ) or a string like f_classif attribute name from sklearn.metrics

• scoring_kwargs kwargs passed to the scoring callable if needed

• saved_ensemble_size an integer indicating how many Pipeline estimators to retain in the final
ensemble

Read more on controlling ensemble or evolutionary algorithm approaches to fitting:

• fit_ensemble

• fit_ea

• Controlling Ensemble Initialization
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8.5 Multi-Model / Multi-Sample Prediction

After fit_ensemble or fit_ea has been called on a Pipeline instance, the instance will have the attribute ensemble
a list of (tag, pipeline) tuples which are the final Pipeline instances selected by either of the fitting functions
(see also saved_ensemble_size - See Controlling Ensemble Initialization). With a fitted Pipeline instance,
predict_many can be called on the instance to predict from every ensemble member (Pipeline instance) on a single
X sample or from every ensemble member and every sample if sampler and args_list are given in place of X.

Read more on controlling predict_many.
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CHAPTER 9

Customizable Pipeline Steps

The examples below assume you have created a random ElmStore as follows:

from earthio.filters.make_blobs import random_elm_store
X = random_elm_store()

9.1 Operations to reshape an ElmStore

• Flatten - Flatten each 2-D DataArray in an ElmStore to create an ElmStore with a single DataArray
called flat that is 2-D (each band raster is raveled from 2-D to a 1-D column in flat). Example:

steps.Flatten().fit_transform(X)

• Agg - Aggregate over a dimension or axis. Example:

steps.Agg(axis=0, func='mean').fit_transform(X)

• DropNaRows - Remove null / NaN rows from an ElmStore that has been through steps.Flatten():

steps.DropNaRows().fit_transform(*steps.Flatten().fit_transform(X))

• InverseFlatten - Convert a flattened ElmStore back to 2-D rasters as separate DataArray values in an
ElmStore. Example:

steps.InverseFlatten().fit_transform(*steps.Flatten().fit_transform(X)

9.2 Use an unsupervised feature extractor

• Transform - steps.Transform allows one to use any sklearn.decomposition method in an elm Pipeline.
Partial fit of the feature extractor can be accomplished by giving partial_fit_batches at initialization:
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from sklearn.decomposition import IncrementalPCA
X, y, sample_weight = steps.Flatten().fit_transform(X)
pca = steps.Transform(IncrementalPCA(),

partial_fit_batches=2)
pca.fit_transform(X)

9.3 Run a user-given callable

There are two choices for running a user-given callable in a Pipeline . Using ModifySample is the most gen-
eral, taking any shape of X, y and sample_weight arguments, while FunctionTransformer requires that the
ElmStore has been through steps.Flatten()

• ModifySample - The following shows an example function with the required signature for use with
ModifySample . It divides all the values in each DataArray by their sum. Note the function always returns
a tuple of (X, y, sample_weight) , even if y and sample_weight are not used by the function:

def modifier(X, y=None, sample_weight=None, **kwargs):
for band in X.data_vars:

arr = getattr(X, band)
if kwargs.get('normalize'):

arr.values /= arr.values.max()
return X, y, sample_weight

steps.ModifySample(modifier, normalize=True).fit_transform(X)

• FunctionTransformer - Here is an example using the FunctionTransformer from sklearn :

import numpy as np
Xnew, y, sample_weight = steps.Flatten().fit_transform(X)
Xnew, y, sample_weight = steps.FunctionTransformer(func=np.log).fit_transform(Xnew)

9.4 Preprocessing - Scaling / Normalization

Each of the following classes from scikit-learn have been wrapped for usage as a Pipeline step. Each requires that the
ElmStore

The examples below continue with Xnew a flattened ElmStore :

Xnew, y, sample_weight = steps.Flatten().fit_transform(X)

• KernelCenterer - See also KernelCenterer scikit-learn docs.

steps.KernelCenterer().fit_transform(Xnew)

• MaxAbsScaler - See also MaxAbsScaler scikit-learn docs.

steps.MaxAbsScaler().fit_transform(*steps.Flatten().fit_transform(X))

• MinMaxScaler - See also MinMaxScaler scikit-learn docs.

steps.MinMaxScaler().fit_transform(Xnew)

• Normalizer - See also Normalizer scikit-learn docs.
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steps.Normalizer().fit_transform(Xnew)

• RobustScaler - See also RobustScaler scikit-learn docs.

steps.RobustScaler().fit_transform(Xnew)

• PolynomialFeatures - See also PolynomialFeatures scikit-learn docs.

step = steps.PolynomialFeatures(degree=3,
interaction_only=False)

step.fit_transform(Xnew)

• StandardScaler - See also StandardScaler scikit-learn docs.

steps.StandardScaler().fit_transform(Xnew)

9.5 Encoding Preprocessors from sklearn

Each method here requires that the ElmStore has been through steps.Flatten() as follows:

Xnew, y, sample_weight = steps.Flatten().fit_transform(X)

• Binarizer - Binarize features. See also Binarizer docs from sklearn .

steps.Binarizer().fit_transform(Xnew)

• Imputer - Impute missing values. See also Imputer docs from sklearn .

steps.Imputer().fit_transform(Xnew)

9.6 Feature selectors

The following list shows the feature selectors that may be used in a Pipeline . The methods, with the exception of
VarianceThreshold each require y to be not None.

Setup for the examples:

X, y = random_elm_store(return_y=True)
X = steps.Flatten().fit_transform(X)[0]

• RFE - See also RFE in sklearn docs. Example:

steps.RFE(estimator=LinearRegression()).fit_transform(X, y)

• RFECV - See also RFECV in sklearn docs. Example:

steps.RFECV(estimator=LinearRegression()).fit_transform(X, y)

• SelectFdr - See also SelectFdr in sklearn docs. Example:

steps.SelectFdr().fit_transform(X, y)

• SelectFpr - See also SelectFpr in sklearn docs. Example:
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steps.SelectFpr().fit_transform(X, y)

• SelectFromModel - See also SelectFromModel in sklearn docs. Example:

steps.SelectFromModel(estimator=LinearRegression()).fit_transform(X, y)

• SelectFwe - See also SelectFwe in sklearn docs. Example:

steps.SelectFwe().fit_transform(X, y)

• SelectKBest - See also SelectKBest in sklearn docs. Example:

steps.SelectKBest(k=2).fit_transform(X, y)

• SelectPercentile - See also SelectPercentile in sklearn docs. Example:

steps.SelectPercentile(percentile=50).fit_transform(X, y)

• VarianceThreshold - See also VarianceThreshold in sklearn docs. Example:

steps.VarianceThreshold(threshold=6.92).fit_transform(X)

9.7 Normalizing time dimension of 3-D Cube

The following two functions take an ElmStore with a DataArray of any name that is a 3-D cube with a time
dimension. The functions run descriptive stats along the time dimension and flatten the spatial (x, y) dims to space
(essentially a ravel of the (x, y) points).

Setup - make a compatible ElmStore:

from earthio import ElmStore
import numpy as np
import xarray as xr
def make_3d():

arr = np.random.uniform(0, 1, 100000).reshape(100, 10, 100)
return ElmStore({'band_1': xr.DataArray(arr,

coords=[('time', np.arange(100)),
('x', np.arange(10)),
('y',np.arange(100))],

dims=('time', 'x', 'y'),
attrs={})}, attrs={}, add_canvas=False)

X = make_3d()

• TSDescribe - Run scipy.stats.describe and other stats along the time axis of a 3-D cube
DataArray . Example:

s = steps.TSDescribe(band='band_1', axis=0)
Xnew, y, sample_weight = s.fit_transform(X)
Xnew.flat.band

The above code would show the band dimension of Xnew consists of different summary statistics, mostly from
scipy.stats.describe :
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<xarray.DataArray 'band' (band: 8)>
array(['var', 'skew', 'kurt', 'min', 'max', 'median', 'std', 'np_skew'],

dtype='<U7')
Coordinates:

* band (band) <U7 'var' 'skew' 'kurt' 'min' 'max' 'median' 'std' 'np_skew'

• TSProbs - TSProbs will run bin, count and return probabilities associated with bin counts. An example:

fixed_bins = steps.TSProbs(band='band_1',
bin_size=0.5,
num_bins=152,
log_probs=True,
axis=0)

Xnew, y, sample_weight = fixed_bins.fit_transform(X)

The above would create the DataArray Xnew.flat with 152 columns consisting of the log transformed bin
probabilities (152 bins of 0.5 width).

And the following would use irregular ( numpy.histogram ) bins rather than fixed bins and return probabilities
without log transform first:

irregular_bins = steps.TSProbs(band='band_1',
num_bins=152,
log_probs=False,
axis=0)

Xnew, y, sample_weight = irregular_bins.fit_transform(X)
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CHAPTER 10

Multi-Model Fitting I: Ensemble Fitting

Ensemble fitting may be helpful in cases where the representative sample is large and/or model parameter or fitting
uncertainty should be considered.

Ensemble fitting may:

• Use one or more samples,

• Use one or more models (Pipeline instances), and/or

• Use one or more generations of fitting, with model selection logic on each generation

It is helpful to first read the section Data Sources for a Pipeline showing how to use either a single X matrix or a series
of samples from a sampler callable.

10.1 Define a Sampler

The example below uses a sampler function and args_list (list of unpackable args to sampler) to fit to many
samples. The full script can be found here. First the script does some imports and sets up a sampler function that
uses band_specs (see also ElmStore) to select a subset of bands in HDF4 files.

import os
from sklearn.cluster import MiniBatchKMeans
from sklearn.decomposition import IncrementalPCA
import numpy as np
from elm.config.dask_settings import client_context
from elm.model_selection.kmeans import kmeans_model_averaging, kmeans_aic
from elm.pipeline import steps, Pipeline
from earthio import *
from earthio.filters.band_selection import select_from_file
from earthio.metadata_selection import example_meta_is_day

ELM_EXAMPLE_DATA_PATH = os.environ['ELM_EXAMPLE_DATA_PATH']

band_specs = list(map(lambda x: LayerSpec(**x),
(continues on next page)
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(continued from previous page)

[{'search_key': 'long_name', 'search_value': "Band 1 ", 'name': 'band_1'},
{'search_key': 'long_name', 'search_value': "Band 2 ", 'name': 'band_2'},
{'search_key': 'long_name', 'search_value': "Band 3 ", 'name': 'band_3'},
{'search_key': 'long_name', 'search_value': "Band 4 ", 'name': 'band_4'},
{'search_key': 'long_name', 'search_value': "Band 5 ", 'name': 'band_5'},
{'search_key': 'long_name', 'search_value': "Band 6 ", 'name': 'band_6'},
{'search_key': 'long_name', 'search_value': "Band 7 ", 'name': 'band_7'}]))

# Just get daytime files
HDF4_FILES = [f for f in glob.glob(os.path.join(ELM_EXAMPLE_DATA_PATH, 'hdf4', '*hdf
→˓'))

if example_meta_is_day(load_hdf4_meta(f))]
data_source = {

'sampler': select_from_file,
'band_specs': band_specs,
'args_list': HDF4_FILES,

}

10.2 Define Pipeline Steps

Next a Pipeline is configured that flattens the separate band rasters to a single 2-D DataArray (See also transform-
flatten, uses standard scaling from scikit-learn, then transforms with IncrementalPCA with 2 partial_fit
batches before K-Means. The Pipeline constructor also takes a scoring callable and optional scoring_kwargs.

pipeline_steps = [steps.Flatten(),
('scaler', steps.StandardScaler()),
('pca', steps.Transform(IncrementalPCA(n_components=4), partial_fit_

→˓batches=2)),
('kmeans', MiniBatchKMeans(n_clusters=4, compute_labels=True)),]

pipe = Pipeline(pipeline_steps, scoring=kmeans_aic, scoring_kwargs=dict(score_
→˓weights=[-1]))

See the signature for kmeans_aic here to write a similar scoring function, otherwise scoring defaults to calling the
estimator’s .score callable or exception if .score is not defined.

10.3 Configure Ensemble

Now we can call fit_ensemble after choosing some controls on the size of the ensemble, the number of genera-
tions, and the logic for selecting models after each generation.

Here’s an example:

ensemble_kwargs = {
'model_selection': kmeans_model_averaging,
'model_selection_kwargs': {

'drop_n': 2,
'evolve_n': 2,

},
'init_ensemble_size': 4,
'ngen': 3,
'partial_fit_batches': 2,
'saved_ensemble_size': 4,

(continues on next page)
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'models_share_sample': True,
}

In the example above:

• ngen sets the number of generations to 3

• There are 4 initial ensemble members (init_ensemble_size),

• After each generation kmeans_model_averaging (See API docs) is called on the ensemble with
model_selection_kwargs are passed.

• There are 3 partial_fit batches for MiniBatchKMeans on every Pipeline instance (partial_fit
within the IncrementalPCA was configured in the initialization of steps.Transform above)

• models_share_sample is set to True so in each generation every ensemble member is fit to the same sam-
ple, then on the next generation, every model is fit to the next sample determined by sampler and args_list
in this case. If models_share_sample were False, then in each generation every ensemble member
would be copied and fit to every sample, repeating the process on each generation.

10.4 Fitting with Dask-Distributed

In the snippets above, we have a data_source dictwith sampler,‘‘band_specs‘‘ and args_list key / values.
We can pass this with the ensemble_kwargs ensemble configuration to fit_ensemble as well as predict_many
. The data source for predict_many does not necessarily have to be the same one given to fit_ensemble or
fit_ea).

Note : If you want dask-distributed as a client, first make sure you are running a dask-scheduler and
dask-worker . Read more here on dask-distributed and follow instructions in environment variables .

with client_context() as client:
ensemble_kwargs['client'] = client
pipe.fit_ensemble(**data_source, **ensemble_kwargs)
pred = pipe.predict_many(client=client, **data_source)

Fitting with dask parallelizes over the ensemble members (Pipeline instances) and over the calls to partial_fit
- currently transformers in the Pipeline are not parallelized with dask .

10.5 Controlling Ensemble Initialization

To initialize the ensemble with Pipeline instances that do not all share the same parameters (as above), we could
replace init_ensemble_size above with ensemble_init_func

n_clusters_choices = tuple(range(4, 9))
def ensemble_init_func(pipe, **kwargs):

models = []
for c in n_clusters_choices:

new_pipe = pipe.new_with_params(kmeans__n_clusters=c)
models.append(new_pipe)

return models
ensemble_kwargs = {

'model_selection': kmeans_model_averaging,
'model_selection_kwargs': {

(continues on next page)
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'drop_n': 2,
'evolve_n': 2,

},
'ensemble_init_func': ensemble_init_func,
'ngen': 3,
'partial_fit_batches': 2,
'saved_ensemble_size': 4,
'models_share_sample': True,

}
with client_context() as client:

ensemble_kwargs['client'] = client
pipe.fit_ensemble(**data_source, **ensemble_kwargs)
pred = pipe.predict_many(client=client, **data_source)

In the example above, Pipeline.new_with_params(kmeans__n_clusters) uses the scikit-learn syntax
for parameter modifications of named steps in a pipeline. In the initialization of Pipeline in the example above, the
MiniBatchMeans step was named kmeans, so kmeans__n_clusters=c sets the n_clusters parameter to
the K-Means step and the ensemble in this case consists of one Pipeline for each of n_clusters choices in (4, 5, 6,
7, 8).
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CHAPTER 11

Multi-Model Fitting II: Evolutionary Algorithms

elm can use an evolutionary algorithm for hyperparameterization. This involves using the fit_ea method of
Pipeline. It is helpful at this point to first read about Pipeline and how to configure a data source for the multi-
model approaches in elm. That page summarizes how fit_ea and fit_ensemble may be fit to a single X matrix (when
the keyword X is given) or a series of samples (when sampler and args_list are given).

The example below walks through configuring an evolutionary algorithm to select the best K-Means model with
preprocessing steps inclusive of standard scaling and PCA. First it sets up a sampler from HDF4 files (note the set up
of a data source is the same as in fit_ensemble)

11.1 Example

import os

from sklearn.cluster import MiniBatchKMeans
from sklearn.feature_selection import SelectPercentile, f_classif
import numpy as np

from elm.config.dask_settings import client_context
from elm.model_selection.evolve import ea_setup
from elm.model_selection.kmeans import kmeans_model_averaging, kmeans_aic
from elm.pipeline import Pipeline, steps
from earthio import *
from earthio.filters.band_selection import select_from_file
from earthio.metadata_selection import example_meta_is_day

ELM_EXAMPLE_DATA_PATH = os.environ['ELM_EXAMPLE_DATA_PATH']

band_specs = list(map(lambda x: LayerSpec(**x),
[{'search_key': 'long_name', 'search_value': "Band 1 ", 'name': 'band_1'},
{'search_key': 'long_name', 'search_value': "Band 2 ", 'name': 'band_2'},
{'search_key': 'long_name', 'search_value': "Band 3 ", 'name': 'band_3'},
{'search_key': 'long_name', 'search_value': "Band 4 ", 'name': 'band_4'},

(continues on next page)
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{'search_key': 'long_name', 'search_value': "Band 5 ", 'name': 'band_5'},
{'search_key': 'long_name', 'search_value': "Band 6 ", 'name': 'band_6'},
{'search_key': 'long_name', 'search_value': "Band 7 ", 'name': 'band_7'}]))

# Just get daytime files
HDF4_FILES = [f for f in glob.glob(os.path.join(ELM_EXAMPLE_DATA_PATH, 'hdf4', '*hdf
→˓'))

if example_meta_is_day(load_hdf4_meta(f))]
data_source = {

'sampler': select_from_file,
'band_specs': band_specs,
'args_list': HDF4_FILES,

}

Next the example sets up a Pipeline of transformations

def make_example_y_data(X, y=None, sample_weight=None, **kwargs):
fitted = MiniBatchKMeans(n_clusters=5).fit(X.flat.values)
y = fitted.predict(X.flat.values)
return (X, y, sample_weight)

pipeline_steps = [steps.Flatten(),
steps.ModifySample(make_example_y_data),
('top_n', steps.SelectPercentile(percentile=80,score_func=f_

→˓classif)),
('kmeans', MiniBatchKMeans(n_clusters=4))]

pipeline = Pipeline(pipeline_steps, scoring=kmeans_aic, scoring_kwargs=dict(score_
→˓weights=[-1]))

The example above uses elm.pipeline.steps.ModifySample to return a y data set corresponding to X
ElmStore so that the example can show SelectPercentile for feature selection.

Next evo_params need to be called by passing a param_grid dict to elm.model_selection.evolve.
ea_setup. The param_grid uses scikit-learn syntax for parameter replacement (i.e. a named step like “kmeans”
then a double underscore then a parameter name for that step [“n_clusters”]), so this param_grid could potentially
run models with n_clusters in range(3, 10) and percentile in range(20, 100, 5). The control
dict sets parameters for the evolutionary algorithm (described below).

param_grid = {
'kmeans__n_clusters': list(range(3, 10)),
'top_n__percentile': list(range(20, 100, 5)),
'control': {

'select_method': 'selNSGA2',
'crossover_method': 'cxTwoPoint',
'mutate_method': 'mutUniformInt',
'init_pop': 'random',
'indpb': 0.5,
'mutpb': 0.9,
'cxpb': 0.3,
'eta': 20,
'ngen': 2,
'mu': 4,
'k': 4,
'early_stop': {'abs_change': [10], 'agg': 'all'},
# alternatively early_stop: {percent_change: [10], agg: all}
# alternatively early_stop: {threshold: [10], agg: any}

}

(continues on next page)
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}

evo_params = ea_setup(param_grid=param_grid,
param_grid_name='param_grid_example',
score_weights=[-1]) # minimization

Running with dask to parallelize over the individual solutions (Pipeline instances) and their calls to partial_fit
.

Note : If you want dask-distributed as a client, first make sure you are running a dask-scheduler and
dask-worker . Read more here on dask-distributed and follow instructions in environment variables .

with client_context() as client:
fitted = pipeline.fit_ea(evo_params=evo_params,

client=client,

**data_source)
preds = pipeline.predict_many(client=client, **data_source)

11.2 Reference param_grid - control

In the example above the param_grid has a control dictionary specifying parameters of the evolutionary al-
gorithm. The control dict names the functions to be used for crossover, mutation, and selection, and the other
arguments are passed to the those methods as needed. The following section describes each key/value of a control
dictionary.

Note While it is possible to change the select_method, crossover_method and mutate_method below
from the example shown, it is important to use methods that are consistent with how fit_ea expresses parameter
choices. For each parameter in the param_grid, such as kmeans__n_clusters=list(range(3, 10)),
fit_ea optimizes with indices into kmeans__n_clusters list, i.e. choosing among list(range(7)), not
optimizing an integer parameter between 3 and 10. This allows fit_ea to avoid custom treatment of string, float, or
integer data types in the parameters’ lists of choices. If changing the mutate_method keep in mind that it needs to
take individuals that are sequences of integers as arguments and return the same.

• select_method: Selection method on each generation of evolutionary algorithm. The selection method is typi-
cally selNSGA2 but can be any deap.tools selection method (see the ‘list of selection methods here‘_)

• crossover_method: Crossover method between two individuals, e.g. cxTwoPoint, or any crossover method
from deap.tools

• mutate_method: Mutation method, typically mutUniformInt, or another mutation method from deap.
tools mutation methods

• init_pop: Placeholder for initialization features- must always be random (random initialization of solutions)

• indpb: Proability each attribute (feature) is mutated when an individual is mutated, e.g. 0.5 (passed to mutation
methods in deap.tools)

• mutpb: When two individuals crossover, this is the probability they will mutate immediately after crossover,
e.g. 0.9

• cxpb: Probabity of crossover 0.3

• eta: Tuning parameter in NSGA-2 - passed to mutate and mate methods. With a higher eta crowding is
penalized and offspring are more different from their parents

• ngen: Number of generations in genetic algorithm

• mu: Size of the population of solutions (individuals) initially
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• k: Select the top k on each generation

• early_stop: Control stopping of algorithm before ngen number of generations is completed. Examples are
below (note agg refers to aggregation as all or any in the case it is a multi-objective problem)

– Stop on absolute change in objective: {'abs_change': [10], 'agg': 'all'}

– Stop on percent change in objective: early_stop: {percent_change: [10], agg:
all}

– Stop on reaching objective threshold: early_stop: {threshold: [10], agg: any}

11.3 More Reading

fit_ea relies on deap for Pareto sorting and the genetic algorithm components described above. Read more about
deap:

• deap Docs

• deap source code

• deap NSGA-2 example on which fit_ea is based
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CHAPTER 12

Multi-Model Prediction

elm’s predict_many predicts for each estimator in a trained ensemble for one or more samples. predict_many takes
some of the same data source keyword arguments that fit_ea and fit_ensemble use. See also Data Sources for a Pipeline
- it discusses using a single sample by giving the keyword arguments X or giving a sampler and args_list (list
of unpackable args to the sampler callable). The same logic applies for predict_many.

predict_many has a feature to_cube argument that is useful in prediction for spatial data. to_cube=True (True
by default) means to convert the 1-D numpy array of predictions from the estimator of a Pipeline instance to a 2-D
raster with the coordinates of the input data before the input data were flattened for training. This makes it easy to
make xarray-pcolormesh plots of predictions in spatial coordinates that are derived from models trained on spatial
satellite and weather data.

12.1 Example - SGDClassifier

The following example shows fitting a stochastic gradient descent classifier in ensemble with partial_fit, varying
the alpha and penalty parameters to sklearn.linear_model.SGDClassifier and finally predicting
from the best models of the ensemble over several input samples.

12.2 Import from elm and sklearn

This is a common set of import statements when working with elm

from collections import OrderedDict
from elm.pipeline import Pipeline, steps
from earthio import *
from sklearn.datasets import make_blobs
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import accuracy_score
import numpy as np
import xarray as xr
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12.3 Define model selection

We can define a callable with a signature like model_selection below to control which models are passed from
generation to generation in an ensemble. This function just uses best_idxes (Pareto sorted model fitness from the
accuracy_score):

def model_selection(models, best_idxes=None, **kwargs):
top_n = kwargs['top_n']
return [models[idx] for idx in best_idxes[:top_n]]

See also model_selection in Controlling Ensemble Initialization.

12.4 Define initial ensemble

To vary the parameters of the initial ensemble of Pipeline instances, provide an ensemble_init_func . pipe.
new_with_params is used here to create a variety of Pipeline objects that have different SGDClassifier
alpha and penalty parameters.

def ensemble_init_func(pipe, **kwargs):
models = []
for penalty in ('l1', 'l2'):

for alpha in (0.0001, 0.001, 0.01):
new_pipe = pipe.new_with_params(sgd__penalty=penalty, sgd__alpha=alpha)
models.append(new_pipe)

return models

See also ensemble_init_func in Controlling Ensemble Initialization.

12.5 Control partial_fit and ensemble

The following dict are keywords to pass to fit_ensemble, including setting the number of generations ngen, using
partial_fit twice per fitting of each model, and retaining finally the 2 best models (saved_ensemble_size).
Note also that partial_fit requires giving the keyword argument classes, a sequence of all known classes, so
this is passed via method_kwargs:

ensemble_kwargs = {
'model_selection': model_selection,
'model_selection_kwargs': {

'top_n': 2,
},
'ensemble_init_func': ensemble_init_func,
'ngen': 3,
'partial_fit_batches': 2,
'saved_ensemble_size': 2,
'method_kwargs': {'classes': np.arange(5)},
'models_share_sample': True,

}

See also ensemble_kwargs in Controlling Ensemble Initialization.
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12.6 Define a sampler

The following lines of code use the synthetic data helper make_blobs from sklearn.datasets to create an
ElmStore with 5 bands (each band is a DataArray )

rand_X_y = lambda n_samples: make_blobs(centers=[[1,2,3,4,5], [2,3,6,8,9], [3,4,5,10,
→˓12]], n_samples=n_samples)
def sampler_train(width, height, **kwargs):

X, y = rand_X_y(width * height)
bands = ['band_{}'.format(idx + 1) for idx in range(X.shape[1])]
es_data = OrderedDict()
for idx, band in enumerate(bands):

arr = xr.DataArray(X[:, idx].reshape(height, width),
coords=[('y', np.arange(height)),

('x', np.arange(width))],
dims=('y', 'x'))

es_data[band] = arr
# No geo_transform in attrs of arr, so add_canvas = False
es = ElmStore(es_data, add_canvas=False)
sample_weight = None
return es, y, sample_weight

Testing out sampler_train:

In [42]: X, y, _ = sampler_train(10, 12)

In [43]: X, y
Out[43]:
(ElmStore:
<elm.ElmStore>
Dimensions: (x: 10, y: 12)
Coordinates:

* y (y) int64 0 1 2 3 4 5 6 7 8 9 10 11

* x (x) int64 0 1 2 3 4 5 6 7 8 9
Data variables:

band_1 (y, x) float64 0.5343 -1.21 1.241 2.191 3.364 2.115 3.579 3.086 ...
band_2 (y, x) float64 3.657 3.575 1.164 4.786 4.354 3.74 1.924 3.674 ...
band_3 (y, x) float64 4.909 2.258 2.761 4.313 5.379 4.145 6.515 5.137 ...
band_4 (y, x) float64 9.872 5.329 4.786 10.41 10.96 6.878 7.356 10.11 ...
band_5 (y, x) float64 7.343 5.88 3.924 11.82 11.53 10.16 10.78 11.74 ...

Attributes:
_dummy_canvas: True
band_order: ['band_1', 'band_2', 'band_3', 'band_4', 'band_5'],

array([1, 0, 0, 2, 2, 1, 1, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 0,
0, 0, 2, 1, 0, 2, 0, 2, 2, 1, 2, 1, 2, 0, 2, 2, 0, 0, 2, 1, 1, 2, 2,
0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 1, 1, 2, 2, 2, 0, 1, 1,
2, 0, 2, 2, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 2, 1, 0, 2, 1, 0, 1, 2, 0,
0, 2, 1, 1, 0, 1, 2, 2, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 0, 2, 1, 1, 1,
2, 2, 1, 0, 2]))

12.7 Pipeline with scoring

The example below sets up accuracy_score for scoring a Pipeline that will flatten the sample and
run SGDClassifier. The scoring_kwargs include greater_is_better (passed to sklearn.
model_selection.make_scorer and score_weights determining whether sort models from minimum to
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maximum fitness (-1) or maximum to minimum (1). Here we are maximimizing the accuracy_score:

pipe = Pipeline([steps.Flatten(),
('sgd', SGDClassifier())],
scoring=accuracy_score,
scoring_kwargs=dict(greater_is_better=True, score_weights=[1]))

Read more documentation here on all the options available in elm.pipeline.steps .

12.8 Call fit_ensemble

Calling fit_ensemble with an args_list of length 3, we are fitting all models in the ensemble to the same sample in
one generation, then proceeding to fitting all models against the next sample in the next generation. In this case we have
3 generations (ngen above) and 3 samples (len(args_list) below) and models_share_sample=True.
Each generation will have be a different sample and all models in a generation will be fitted to that sample.

data_source = dict(sampler=sampler_train, args_list=[(100, 120)] * 3)
fitted = pipe.fit_ensemble(**data_source, **ensemble_kwargs)

12.9 Call predict_many

We currently have 2 models in the ensemble (see saved_ensemble_size above that set the top N models to keep)
and an args_list that will generate 3 samples: predict_many will predict 6 sample - model combinations.

preds = pipe.predict_many(**data_source)

Checking the number of predictions returned:

In [7]: len(preds)
Out[7]: 6

Each item in preds is an ElmStore with a DataArray called predict. In this case that DataArray is a 2-D
raster because we used the default keyword argument to_raster=True when predict_many was called. The next
snippet shows using the plot attribute of the predict DataArray:

See also documentation on plotting with xarray

p = preds[0]
p.predict.plot.pcolormesh()

12.10 Predicting from an Ensemble Subset

By default predict_many will look for an attribute on the Pipeline instance called .ensemble, which is expected to be
a list of (tag, pipeline) tuples, and predict from each trained Pipeline instance in .ensemble. Alternatively
you can pass a list of (tag, pipeline) tuples as ensemble keyword argument. The example below predicts
only from the best model in the ensemble (the final ensemble is sorted by model score if scoring was given to
Pipeline initialization). There are 3 predictions because there are 3 samples.
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In [16]: subset = pipe.ensemble[:1]
In [17]: preds = pipe.predict_many(ensemble=subset, **data_source)
In [18]: len(preds)
Out[18]: 3

12.11 Predictions Too Large For Memory

In the examples above, predict_many has returned a list of ElmStore objects. If the number of samples and/or
models is large then keeping them all predictions in memory in a list is infeasible. In these cases, pass a serialize
argument (callable) to predict_many to serialize prediction ElmStore outputs as they are generated. serialize
should have a signature exactly like the example below:

import os
from sklearn.externals import joblib
def serialize(y, X, tag, elm_predict_path):

dirr = os.path.join(elm_predict_path, tag)
if not os.path.exists(dirr):

os.mkdir(dirr) # assuming ELM_PREDICT_PATH in environment
base = "_".join('{:.02f}'.format(_) for _ in sorted(X.canvas.bounds))
joblib.dump(y, os.path.join(dirr, base + '.xr'))
return X.canvas

preds = pipe.predict_many(ensemble=pipe.ensemble[:1], serialize=serialize,**data_
→˓source)

In predicting over 3 samples and one model, we have created 3 joblib dump prediction files and returned three
Canvas objects

In [27]: preds
Out[27]:
(Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_ysize=10, dims=(
→˓'y', 'x'), ravel_order='C', zbounds=None, tbounds=None, zsize=None, tsize=None,
→˓bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1, top=89.1)),
Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_ysize=10, dims=(
→˓'y', 'x'), ravel_order='C', zbounds=None, tbounds=None, zsize=None, tsize=None,
→˓bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1, top=89.1)),
Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_ysize=10, dims=(
→˓'y', 'x'), ravel_order='C', zbounds=None, tbounds=None, zsize=None, tsize=None,
→˓bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1, top=89.1)))
(Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_ysize=10, dims=(
→˓'y', 'x'), ravel_order='C', zbounds=None, tbounds=None, zsize=None, tsize=None,
→˓bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1, top=89.1)),
Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_ysize=10, dims=(
→˓'y', 'x'), ravel_order='C', zbounds=None, tbounds=None, zsize=None, tsize=None,
→˓bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1, top=89.1)),
Canvas(geo_transform=(-180, 0.1, 0, 90, 0, -0.1), buf_xsize=10, buf_ysize=10, dims=(
→˓'y', 'x'), ravel_order='C', zbounds=None, tbounds=None, zsize=None, tsize=None,
→˓bounds=BoundingBox(left=-180.0, bottom=90.0, right=-179.1, top=89.1)))

Here are some notes on the arguments passed to serialize if given:

• y is an ElmStore either 1-D or 2-D (see to_raster keyword to predict_many)

• X is the X ElmStore that was used for prediction (the Pipeline will preserve attrs in X useful for serializing
y as in the example above which used the .canvas attribute of X)

• tag is a unique tag of sample and Pipeline instance
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• elm_predict_path is the root dir for serialization output - ELM_PREDICT_PATH from environment variables.

12.12 Parallel Prediction

To run predict_many (or fit_ensemble or fit_ea) in parallel using a dask-distributed client or dask ThreadPool
client, use elm.config.client_context as shown here (continuing with the namespace defined by the snippets
above)

First make sure you are running a dask-scheduler and dask-worker . Read more here on dask-distributed.

with client_context(dask_executor='DISTRIBUTED', dask_scheduler='10.0.0.10:8786') as
→˓client:

ensemble_kwargs['client'] = client
fitted = pipe.fit_ensemble(**data_source, **ensemble_kwargs)
preds = pipe.predict_many(client=client, **data_source)

In the example above, client_context could have been called with no arguments if DASK_EXECUTOR and
DASK_SCHEDULER environment variables.

With parallel predict_many , each ensemble member / sample combination is a separate task - there is no paral-
lelism within transformations of the Pipeline .
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CHAPTER 13

elm yaml Specs - Deprecated Temporarily

elm-main is deprecated temporarily while ‘‘elm‘‘ and ‘‘earthio‘‘ undergo significant churn and changes
in usage patterns. Around August 1, 2017 ‘‘elm-main‘‘ will be revisited as it provides a ‘‘yaml‘‘ based
interface to ‘‘elm‘‘ and may assist in ‘‘elm‘‘ UI contexts or in interoperability.

Workflows involving ensemble and evolutionary methods and predict_many can also be specified in a yaml config
file for running with the elm-main console entry point. The yaml config can refer to functions from elm or user-given
packages or modules. Read more the yaml configuration file format here

The repository elm examples has a number of example yaml configuration files for GeoTiff and HDF4 files as input
to K-Means or stochastic gradient descent classifiers.

This page walks through each part of a valid yaml config.

13.1 ensembles

The ensembles section creates named dicts of keyword arguments to fit_ensemble. The example below
creates example_ensemble, an identifier we can use elsewhere in the config. If passing the keyword
ensemble_init_func in an ensemble here, then it should be given in “package.subpackage.module:callable”
notation like a setup.py console entry point, e.g. "my_kmeans_module:make_ensemble".

ensembles: {
example_ensemble: {
init_ensemble_size: 1,
saved_ensemble_size: 1,
ngen: 3,
partial_fit_batches: 2,

},
}
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13.2 data_sources

The dicts in data_sources create a named sampler with their keyword arguments.

In the config, args_list can be a callable. In this case, it is iter_files_recursively a function which
takes top_dir and file_pattern as arguments. The filenames returned by iter_files_recursively
will be filtered by example_meta_is_day an example function for detecting whether a satellite data file is night
or day based on its metadata. If args_list is callable, it should take a variable number of keyword arguments
(**kwargs).

This examples creates ds_example which selects from files to get bands 1 through 6, iterating recursively over
.hdf files in ELM_EXAMPLE_DATA_PATH from the environment (env:SOMETHING means take SOMETHING
from environment variables).

band_specs in the data source are passed to earthio.LayerSpec (See also ElmStore and LANDSAT Example
) and determine which bands (subdatasets in this HDF4 case) to include in a sample.

data_sources: {
ds_example: {
sampler: "earthio.filters.band_selection:select_from_file",
band_specs: [{search_key: long_name, search_value: "Band 1 ", name: band_1},
{search_key: long_name, search_value: "Band 2 ", name: band_2},
{search_key: long_name, search_value: "Band 3 ", name: band_3},
{search_key: long_name, search_value: "Band 4 ", name: band_4},
{search_key: long_name, search_value: "Band 5 ", name: band_5},
{search_key: long_name, search_value: "Band 6 ", name: band_6},],
args_list: "earthio.local_file_iterators:iter_files_recursively",
top_dir: "env:ELM_EXAMPLE_DATA_PATH",
metadata_filter: "earthio.metadata_selection:example_meta_is_day",
file_pattern: "\\.hdf",

},
}

See also Creating an ElmStore from File

13.3 model_scoring

Each dict in model_scoring has a scoring callable and the other keys/values are passed as scoring_kwargs.
These in turn become the scoring and scoring_kwargs to initialize a Pipeline instance. This example
creates a scorer called kmeans_aic

model_scoring: {
kmeans_aic: {
scoring: "elm.model_selection.kmeans:kmeans_aic",
score_weights: [-1],

}
}

13.4 transform

This section allows using transform model, such as IncrementalPCA from sklearn.decomposition.
model_init_kwargs can include any keyword argument to the model_init_class, as well as
partial_fit_batches (partial_fit operations on each Pipeline fit or partial_fit).
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transform: {
pca: {
model_init_class: "sklearn.decomposition:IncrementalPCA",
model_init_kwargs: {"n_components": 2, partial_fit_batches: 2},

}
}

13.5 sklearn_preprocessing

This section configures scikit-learn preprocessing classes (sklearn.preprocessing), such as
PolynomialFeatures, for use elsewhere in the config. Each key is an identifer and each dictionary con-
tains a method (imported from sklearn.preprocessing) and keyword arguments to that method.

sklearn_preprocessing: {
min_max: {
method: MinMaxScaler,
feature_range: [0, 1],

},
poly2_interact: {
method: PolynomialFeatures,
degree: 2,
interaction_only: True,
include_bias: True,

},
}

13.6 train

The train dict configures the final estimator in a Pipeline, in this case MiniBatchKMeans. This example
shows how to run that estimator with the example_ensemble keyword arguments from above, model scoring
section from above (kmeans_aic), passing drop_n and evolve_n to the model_selection callable.

train: {
train_example: {
model_init_class: "sklearn.cluster:MiniBatchKMeans",
model_init_kwargs: {
compute_labels: True

},
ensemble: example_ensemble,
model_scoring: kmeans_aic,
model_selection: "elm.model_selection.kmeans:kmeans_model_averaging",
model_selection_kwargs: {

drop_n: 4,
evolve_n: 4,

}
}

}
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13.7 feature_selection

Each key in this section is an identifier and the each dict is a feature selector configuration, naming a method to be
imported from sklearn.preprocessing and keyword arguments to that method.

feature_selection: {
top_half: {

method: SelectPercentile,
percentile: 50,
score_func: f_classif

}

}

13.8 run

The run section names fitting and prediction jobs to be done by using identifiers created in the config’s dictionaries
reviewed above.

About the run section:

• It is a list of actions

• Each action in the list is a dict

• Each action should have the key pipeline that is a list of dictionaries specifying steps (analogous to the
interactive session Pipeline )

• Each action should have a data_source key pointing to one of the data_sources named above

• Each action can have predict and/or train key/value with the value being one of the named train
dicts above

run:
- {pipeline: [{select_canvas: band_1},

{flatten: True},
{drop_na_rows: True},
{sklearn_preprocessing: poly2_interact},
{sklearn_preprocessing: min_max},
{transform: pca}],

data_source: ds_example,
predict: train_example,
train: train_example}

The example above showed a run configuration with a pipeline of transforms inclusive of flattening rasters,
dropping null rows, adding polynomial interaction terms, min-max scaling, and PCA.

13.9 Valid steps for run - pipeline

This section shows all of the valid steps that can be a config’s run - pipeline lists (items that could have appeared
in teh pipeline list in preceding example).

flatten

Flattens 2-D each DataArray raster to a column within a single DataArray called flat in an ElmStore.
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{flatten: True}

See also transform-flatten.

See also: :docs:‘elm.pipeline.steps<pipeline-steps>‘

drop_na_rows

Drops null rows from an ElmStore or xarray.Datasetwith a DataArray called flat (often this step follows
{flatten: True} in a ``pipeline).

{drop_na_rows: True}

See also transform-dropnarows.

modify_sample

Provides a callable and optionally keyword arguments to modify X and optionally y and sample_weight. See
example of interactive use of elm.pipeline.steps.ModifySample here - TODO LINK and the function
signature for a modify_sample callable here - TODO LINK. This example shows how to run normalizer_func
imported from a package and subpackage, passing keyword_1 and keyword_2.

{modify_sample: "mypackage.mysubpkg.mymodule:normalizer_func", keyword_1: 4, keyword_
→˓2: 99}

See also ModifySample usage in a K-Means LANDSAT example .

transpose

Transpose the dimensions of the ElmStore, like this example for converting from ("y", "x") dims to ("x",
"y") dims.

{transpose: ['x', 'y']}

sklearn_preprocessing

If a config has a dict called sklearn_preprocessing as in the example above, then named preprocessors in that
dict can be used in the run - pipeline lists as follows:

{sklearn_preprocessing: poly2_interact}

where poly2_interact is a key in sklearn_preprocessing

See also: elm.pipeline.steps.PolynomialFeatures in elm.pipeline.steps

feature_selection

If a config has a dict called feature_selection as in the example above, then named feature selectors there can
be used in the run - pipeline section like this:

{feature_selection: top_half}

where top_half is a named feature selector in feature_selection.

transform

Note the config’s transform section configures transform models like PCA but they are not used unless the config’s
run - pipeline lists have a transform action (dict) in them. Here is an example:

{transform: pca}

where pca is a key in the config’s transform dict.
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CHAPTER 14

elm-main Entry Point Deprecated Temporarily

elm-main is deprecated temporarily while ‘‘elm‘‘ and ‘‘earthio‘‘ undergo significant churn and changes
in usage patterns. Around August 1, 2017 ‘‘elm-main‘‘ will be revisited as it provides a ‘‘yaml‘‘ based
interface to ‘‘elm‘‘ and may assist in ‘‘elm‘‘ UI contexts or in interoperability.

elm-main runs the training and prediction steps configured in a yaml file, as described in the yaml config examples. If
you have not used yaml before, read about yaml here first.

The simple use of elm-main is to run one yaml config:

elm-main --config elmexamples/configs/kmeans_hdf4.yaml

elm-main uses the environment variables described here, many of which may be overriden by optional arguments to
elm-main (see below).

The next section goes over all the command line options for elm-main

14.1 Config(s) To Run

elm-main can run a single yaml config or a directory of yaml config files. To run with a single yaml file, use the
--config argument as above, or to run with a directory of config yaml files, use --config-dir

14.2 Controlling Train vs. Predict

The following arguments control which parts of the config are being run:

• --train-only: Run only the training actions specified in the run section of config

• --predict-only: Run only the predict actions specified in config
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14.3 Overriding Arguments to fit_ensemble

The following arguments, if given, will override similarly named values in the yaml config that are associated with
the train section (configuration of a final estimator in an Pipeline:

• --partial-fit-batches: Number of partial_fit batches for final estimator (this does not control
partial_fit batches within a transform step in run - pipeline steps)

• --init-ensemble-size: Initial ensemble size (ignored if ensemble_init_func is given in config(s))

• --saved-ensemble-size: Final number of trained models to serialize in each train action of the run
section

14.4 Use Dask Client

To use a dask-distributed or dask ThreadPool client, use the environment variables described here - or
override them with command line arguments to elm-main:

• --dask-executor: One of [DISTRIBUTED SERIAL or THREAD_POOL ]

• --dask-scheduler: Dask-distributed scheduler url, e.g. 10.0.0.10:8786

14.5 Directories for Serialization

The following arguments control where trained models and predictions are saved:

• --elm-train-path: Trained Pipeline instances are saved here - see also ELM_TRAIN_PATH in envi-
ronment variables.

• --elm-predict-path: Predictions are saved here - see also ELM_PREDICT_PATH in environment vari-
ables.

14.6 Help for elm-main

Here is the full help for elm-main:

$ elm-main --help
usage: elm-main [-h] [--config CONFIG | --config-dir CONFIG_DIR]

[--train-only | --predict-only]
[--partial-fit-batches PARTIAL_FIT_BATCHES]
[--init-ensemble-size INIT_ENSEMBLE_SIZE]
[--saved-ensemble-size SAVED_ENSEMBLE_SIZE] [--ngen NGEN]
[--dask-threads DASK_THREADS]
[--max-param-retries MAX_PARAM_RETRIES]
[--dask-executor {DISTRIBUTED,SERIAL,THREAD_POOL}]
[--dask-scheduler DASK_SCHEDULER]
[--elm-example-data-path ELM_EXAMPLE_DATA_PATH]
[--elm-train-path ELM_TRAIN_PATH]
[--elm-predict-path ELM_PREDICT_PATH]
[--elm-logging-level {INFO,DEBUG}]

Pipeline classifier / predictor using ensemble and partial_fit methods

(continues on next page)
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(continued from previous page)

optional arguments:
-h, --help show this help message and exit
--train-only Run only the training, not prediction, actions

specified by config
--predict-only Run only the prediction, not training, actions

specified by config
--echo-config Output running config as it is parsed

Inputs:
Input config file or directory

--config CONFIG Path to yaml config
--config-dir CONFIG_DIR

Path to a directory of yaml configs

Run:
Run options

Control:
Keyword arguments to elm.pipeline.ensemble

--partial-fit-batches PARTIAL_FIT_BATCHES
Partial fit batches (for estimator specified in
config's "train"

--init-ensemble-size INIT_ENSEMBLE_SIZE
Initial ensemble size (ignored if using
"ensemble_init_func"

--saved-ensemble-size SAVED_ENSEMBLE_SIZE
How many of the "best" models to serialize

--ngen NGEN Number of ensemble generations, defaulting to ngen
from ensemble_kwargs in config

Environment:
Compute settings (see also help on environment variables)

--dask-threads DASK_THREADS
See also env var DASK_THREADS

--dask-processes DASK_PROCESSES
See also env var DASK_PROCESSES

--max-param-retries MAX_PARAM_RETRIES
See also env var MAX_PARAM_RETRIES

--dask-executor {DISTRIBUTED,SERIAL,THREAD_POOL}
See also DASK_EXECUTOR

--dask-scheduler DASK_SCHEDULER
See also DASK_SCHEDULER

--elm-example-data-path ELM_EXAMPLE_DATA_PATH
See also ELM_EXAMPLE_DATA_PATH

--elm-train-path ELM_TRAIN_PATH
See also ELM_TRAIN_PATH

--elm-predict-path ELM_PREDICT_PATH
See also ELM_PREDICT_PATH

--elm-logging-level {INFO,DEBUG}
See also ELM_LOGGING_LEVEL

--elm-configs-path ELM_CONFIGS_PATH
See also ELM_CONFIGS_PATH

--elm-large-test ELM_LARGE_TEST
See also ELM_LARGE_TEST

(continues on next page)
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Pipeline classifier / predictor using ensemble and partial_fit methods

optional arguments:
-h, --help show this help message and exit
--config CONFIG Path to yaml config
--config-dir CONFIG_DIR

Path to a directory of yaml configs
--dask-threads DASK_THREADS

See also env var DASK_THREADS
--dask-processes DASK_PROCESSES

See also env var DASK_PROCESSES
--max-param-retries MAX_PARAM_RETRIES

See also env var MAX_PARAM_RETRIES
--dask-executor {DISTRIBUTED,SERIAL,THREAD_POOL}

See also DASK_EXECUTOR
--dask-scheduler DASK_SCHEDULER

See also DASK_SCHEDULER
--ladsweb-local-cache LADSWEB_LOCAL_CACHE

See also LADSWEB_LOCAL_CACHE
--hashed-args-cache HASHED_ARGS_CACHE

See also HASHED_ARGS_CACHE
--elm-example-data-path ELM_EXAMPLE_DATA_PATH

See also ELM_EXAMPLE_DATA_PATH
--elm-train-path ELM_TRAIN_PATH

See also ELM_TRAIN_PATH
--elm-transform-path ELM_TRANSFORM_PATH

See also ELM_TRANSFORM_PATH
--elm-predict-path ELM_PREDICT_PATH

See also ELM_PREDICT_PATH
--elm-logging-level {INFO,DEBUG}

See also ELM_LOGGING_LEVEL
--elm-configs-path ELM_CONFIGS_PATH

See also ELM_CONFIGS_PATH
--echo-config Output running config as it is parsed

Help & Reference

• API

• Environment Variables

• py.test Unit Tests

• Contributing to elm

• Release Procedure
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CHAPTER 15

API

The API help information in this page is autogenerated from comments in the source.

The packages include:

• earthio, a collection of tools for reading HDF4, HDF5, NetCDF and GeoTiff files and directories of files

• elm.pipeline, the public interface for ensemble learning models (elm) and its Pipeline class for preprocessing
transform steps before fitting in ensemble or in an evolutionary algorithm

• elm.model_selection, tools for scoring models, Pareto sorting models, and selecting the best ensemble
members

• earthio.filters, modules of helper functions to define classes / functions for elm.pipeline.steps (the pos-
sible steps in a Pipeline)

15.1 earthio

15.2 elm.pipeline

15.3 elm.model_selection

15.4 earthio.filters
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CHAPTER 16

Environment Variables

The following are environment variables control elm-main and are also inputs to other elm functions like elm.
config.client_context (a dask client context):

• DASK_EXECUTOR: Dask executor to use. Choices [DISTRIBUTED, SERIAL, THREAD_POOL] (default:
SERIAL)

• DASK_SCHEDULER: Dask scheduler URL, such as 10.0.0.10:8786, if using
DASK_EXECUTOR=DISTRIBUTED

• DASK_THREADS: Number of threads if using DASK_EXECUTOR==THREAD_POOL

• ELM_EXAMPLE_DATA_PATH: Path to local clone of hhttps://github.com/ContinuumIO/elm/tree/master/examples
(used for py.test)

• ELM_LOGGING_LEVEL: Either INFO (default) or DEBUG

• ELM_PREDICT_PATH: Base path for saving prediction output

• ELM_TRAIN_PATH: Base path for saving trained ensembles

• MAX_PARAM_RETRIES: How many times to retry in genetic algorithm when parameters are repeatedly infea-
sible

• IS_TRAVIS: If IS_TRAVIS=1 , then dask’s distributed client is not used (the client if started in CI tests can
cause hanging)

Testing elm
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CHAPTER 17

py.test Unit Tests

These testing instructions assume you have cloned the elm repository locally and installed from source.

Note: Many tests are skipped if you have not defined the environment variable ELM_EXAMPLE_DATA_PATH (refer-
ring to your local clone of ‘elm-examples‘_)

Run the faster running tests:

py.test -m "not slow"

Running all tests:

py.test

or get the verbose test output

py.test -v

and cut and paste a test mark to run a specific test:

py.test -k test_bad_train_config

When running py.test the environment variables related to dask determine whether dask-distributed or thread pool
client or serial evaluation is used (See also dask-distributed).
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CHAPTER 18

Longer Running Tests

Deprecated with elm-main temporarily

The elm-run-all-tests console entry point can automate running of some or all python scripts and yaml
elm-main config files in elm's examples and/or the py.test unit tests.

Here is an example that is run from inside the cloned elm repository with elm-examples cloned in the current
directory (see the first two arguments: ./ - cloned elm repo and examples - the location of cloned elm-examples)

ELM_LOGGING_LEVEL=DEBUG elm-run-all-tests ./ elm-examples/ --skip-pytest --skip-
→˓scripts --dask-clients SERIAL DISTRIBUTED --dask-scheduler 10.0.0.10:8786

Here is the full help on elm-run-all-tests entry point:

$ elm-run-all-tests --help
usage: elm-run-all-tests [-h] [--pytest-mark PYTEST_MARK]

[--dask-clients {ALL,SERIAL,DISTRIBUTED,THREAD_POOL} [{ALL,
→˓SERIAL,DISTRIBUTED,THREAD_POOL} ...]]

[--dask-scheduler DASK_SCHEDULER] [--skip-pytest]
[--skip-scripts] [--skip-configs]
[--add-large-test-settings]
[--glob-pattern GLOB_PATTERN]
[--remote-git-branch REMOTE_GIT_BRANCH]
repo_dir elm_examples_path

Run longer-running tests of elm

positional arguments:
repo_dir Directory that is the top dir of cloned elm repo
elm_examples_path Path to a directory which contains subdirectories

"scripts", "scripts", and "example_data" with yaml-
configs, python-scripts, and example data,
respectively

optional arguments:
-h, --help show this help message and exit

(continues on next page)

81



elm Documentation, Release 0.1.0

(continued from previous page)

--pytest-mark PYTEST_MARK
Mark to pass to py.test -m (marker of unit tests)

--dask-clients {ALL,SERIAL,DISTRIBUTED,THREAD_POOL} [{ALL,SERIAL,DISTRIBUTED,THREAD_
→˓POOL} ...]

Dask client(s) to test: ['ALL', 'SERIAL',
'DISTRIBUTED', 'THREAD_POOL']

--dask-scheduler DASK_SCHEDULER
Dask scheduler URL

--skip-pytest Do not run py.test (default is run py.test as well as
configs)

--skip-scripts Do not run scripts from elm-examples
--skip-configs Do not run configs from elm-examples
--add-large-test-settings

Adjust configs for larger ensembles / param_grids
--glob-pattern GLOB_PATTERN

Glob within repo_dir
--remote-git-branch REMOTE_GIT_BRANCH

Run on a remote git branch
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CHAPTER 19

Contributing to elm

The goals for elm over the next 12 to 18 months are described in the NASA Phase II SBIR summary here regarding
elm funding. We welcome pull requests to elm from the community following the github forking model. Please
use the [github issues](https://github.com/ContinuumIO/elm/issues) for reporting problems or suggestions related to
elm and see the Waffle Board issue tracking system for the status of several repositories related to elm . Feel free to
contact us (Continuum Analytics) for more information:

• Peter Steinberg psteinberg [at] continuum [dot] io

• Greg Brener gbrener [at] continuum [dot] io

Related Information:

• Installation

• Releasing elm packcages

• Testing

• Use Cases
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CHAPTER 20

Release Procedure

• Ensure all tests pass.

• Tag commit and push to github

git tag -a x.x.x -m 'Version x.x.x'
git push upstream master --tags

• Build conda packages

Define platform/setup specific environment variables (fill in with your specifics)

# Location of your conda install. For me it's `~/anaconda/`
CONDA_DIR=~/anaconda/

# Platform code. For me it's `osx-64`
PLATFORM=osx-64

# Version number of elm being released (e.g. 0.2.0)
VERSION=0.2.0

# requires conda-build (conda install conda-build)
conda build conda.recipe/ --python 3.5 --no-anaconda-upload -c conda-forge

Next, cd into the folder where the builds end up.

cd $CONDA_DIR/conda-bld/$PLATFORM

Use conda convert to convert over the missing platforms (skipping the one for the platform you’re currently on):

conda convert --platform osx-64 elm-$VERSION*.tar.bz2 -o ../
conda convert --platform linux-64 elm-$VERSION*.tar.bz2 -o ../
conda convert --platform linux-32 elm-$VERSION*.tar.bz2 -o ../
conda convert --platform win-64 elm-$VERSION*.tar.bz2 -o ../
conda convert --platform win-32 elm-$VERSION*.tar.bz2 -o ../
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Use anaconda upload to upload the build to the elm channel. This requires you to be setup on anaconda.org,
and have the proper credentials to push to the elm channel.

# requires anaconda-client (conda install anaconda-client)
anaconda login
anaconda upload $CONDA_DIR/conda-bld/*/elm-$VERSION*.tar.bz2 -u elm

• Repeat conda build and anaconda upload steps above for --python 3.4 as well

• Write the release notes:

1. Run git log to get a listing of all the changes

2. Remove any covered in the previous release

3. Summarize the rest to focus on user-visible changes and major new features

4. Paste the notes into github, under n releases, then Tags, then Edit release notes.
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