
ENS Documentation
Release 0.1

Nick Johnson <nick@ethereum.org>

Jun 23, 2020

Contents:

1 Introduction 1
1.1 ENS in 5 minutes . 1
1.2 ENS on Ethereum . 3
1.3 Resources . 3

2 Quickstart 5

3 User Guide 7
3.1 Registering a name with the FIFS registrar . 7
3.2 Registering a name with the auction registrar . 8
3.3 Interacting with the ENS registry . 10

4 Implementer’s Guide 13
4.1 3 steps to add ENS to your application . 13
4.2 ENS libraries . 14
4.3 Resolving Names . 14
4.4 Reverse Resolution . 15
4.5 Writing a resolver . 15
4.6 Resolving names onchain . 16
4.7 Writing a registrar . 17
4.8 Updating ENS records . 17
4.9 Namehash . 18

5 ENS Library support 21
5.1 Javascript . 21
5.2 Python . 21
5.3 Command-line . 21

6 Deploying ENS 23
6.1 Deploy the registry . 23
6.2 Deploying a registrar . 24

7 Hosting a DNS domain on ENS 27

8 FAQ 29
8.1 Why are names registered as hashes? . 29
8.2 How do the DApp and the twitter bot know what names people are auctioning? 29

i

8.3 What is the disguise amount / extra amount? . 29
8.4 Which wallets and DApps support ENS so far? . 30
8.5 Why does it say my name isn’t available yet? . 30
8.6 How is the start time for each name determined? . 30
8.7 Why is my reveal transaction failing? . 30
8.8 I bid on an auction and didn’t win; why don’t I see the refund in my transaction list? 30
8.9 I bid on one name, but Etherscan shows me as bidding on other name(s)! Why? 31
8.10 Once I own a name, can I create my own subdomains? . 31
8.11 Can I change the address my name points to after I’ve bought it? . 31
8.12 How much do I have to deposit if I’m the only bidder? . 31
8.13 Can I register a TLD of my own in the ENS? . 31
8.14 Instead of burning funds in the auction for bidding costs and penalties, shouldn’t they be donated to

the Ethereum Foundation? . 31
8.15 Who will own the ENS rootnode? What powers does that grant them? 32
8.16 What about foreign characters? What about upper case letters? Is any unicode character valid? 32
8.17 Nameprep isn’t enforced in the ENS system, is this a security/spoofing/phishing concern? 32
8.18 How was the minimum character length of 7 chosen? . 32
8.19 What values will the permanent registrar try to optimize for? . 32
8.20 What kinds of behaviours are likely to result in losing ownership of a name? 33
8.21 Can the bids be revealed during the auction period? . 33

9 Indices and tables 35

ii

CHAPTER 1

Introduction

ENS is the Ethereum Name Service, a distributed, open, and extensible naming system based on the Ethereum
blockchain.

ENS’s job is to map human-readable names like ‘alice.eth’ to machine-readable identifiers such as Ethereum addresses,
content hashes, and metadata. ENS also supports ‘reverse resolution’, making it possible to associate metadata such
as canonical names or interface descriptions with Ethereum addresses.

ENS has similar goals to DNS, the Internet’s Domain Name Service, but has significantly different architecture, due
to the capabilities and constraints provided by the Ethereum blockchain. Like DNS, ENS operates on a system of
dot-separated hierarchial names called domains, with the owner of a domain having full control over the allocation of
subdomains.

Top-level domains, like ‘.eth’ and ‘.test’ are owned by smart contracts called registrars, which specify rules governing
the allocation of their subdomains. Anyone may, by following the rules imposed by these registrar contracts, obtain
ownership of a second-level domain for their own use.

1.1 ENS in 5 minutes

ENS has two principal components: the registry, and resolvers.

1

ENS Documentation, Release 0.1

The ENS registry consists of a single smart contract that maintains a list of all domains and subdomains, and stores
three critical pieces of information about each:

• The owner of the domain

• The resolver for the domain

• The time-to-live for all records under the domain

The owner of a domain may be either an external account (a user) or a smart contract. A registrar is simply a smart
contract that owns a domain, and issues subdomains of that domain to users that follow some set of rules defined in
the contract.

Owners of domains in the ENS registry may:

• Set the resolver and TTL for the domain

• Transfer ownership of the domain to another address

2 Chapter 1. Introduction

ENS Documentation, Release 0.1

• Change the ownership of subdomains

The ENS registry is deliberately straightforward, and exists only to map from a name to the resolver responsible for it.

Resolvers are responsible for the actual process of translating names into addresses. Any contract that implements
the relevant standards may act as a resolver in ENS. General-purpose resolver implementations are offered for users
whose requirements are straightforward, such as serving an infrequently changed address for a name.

Each record type - Ethereum address, Swarm content hash, and so forth - defines a method or methods that a resolver
must implement in order to provide records of that kind. New record types may be defined at any time via the EIP
standardisation process, with no need to make changes to the ENS registry or to existing resolvers in order to support
them.

1.2 ENS on Ethereum

ENS is deployed on mainnet at 0x314159265dd8dbb310642f98f50c066173c1259b, where users may register names
under the eth TLD, which uses an auction based registrar.

ENS is also deployed on the Ropsten testnet at 0x112234455c3a32fd11230c42e7bccd4a84e02010. Users may register
names under two top level domains:

• .eth, which uses an auction based registrar with the same functionality as the main network, and allows users to
keep names indefinitely; see Registering a name with the auction registrar.

• .test, which allows anyone to claim an unused name for test purposes, which expires after 28 days; see Register-
ing a name with the FIFS registrar.

ENS is also deployed on the Rinkeby testnet at 0xe7410170f87102df0055eb195163a03b7f2bff4a, where only the .test
top level domain is supported.

1.3 Resources

• EIP137 - Ethereum Name Service

• EIP162 - Initial ENS Registrar Specification

• ethereum-ens Javascript library

• Nick’s talk on ENS at DevCon 2: https://www.youtube.com/watch?v=pLDDbCZXvTE

• DevCon 2 talk slides: https://arachnid.github.io/devcon2/#/title

• Web interface for Ethereum enabled browsers: https://registrar.ens.domains

1.2. ENS on Ethereum 3

https://etherscan.io/address/0x314159265dd8dbb310642f98f50c066173c1259b
https://ropsten.etherscan.io/address/0x112234455c3a32fd11230c42e7bccd4a84e02010
https://rinkeby.etherscan.io/address/0xe7410170f87102df0055eb195163a03b7f2bff4a
https://github.com/ethereum/EIPs/issues/137
https://github.com/ethereum/EIPs/issues/162
https://www.npmjs.com/package/ethereum-ens
https://www.youtube.com/watch?v=pLDDbCZXvTE
https://arachnid.github.io/devcon2/#/title
https://registrar.ens.domains

ENS Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Quickstart

Just want to get a name and make it resolve to something? Here’s how.

NOTE: This quickstart uses ‘ensutils.js’, a simple Javascript file that facilitates getting started with ENS. You should
NOT use this in production code - it exists purely for interactive experimentation with the console!

First, make sure your client is in sync with a network (mainnet, ropsten, rinkeby, etc.). You can use eth.syncing in
your Ethereum console to track progress.

You can utilize geth: https://github.com/ethereum/go-ethereum to connect a network and begin the process of syncing
the chain.

Next, start an Ethereum console:

Mainnet: geth attach
Ropsten: geth --testnet attach
Rinkeby: geth --rinkeby attach

Download ensutils-testnet.js to your local machine, and import it into an Ethereum console on a node synced to ropsten
or rinkeby:

loadScript('/path/to/ensutils-testnet.js'); // This will connect to the ropsten
→˓testnet

If you want to use Rinkeby, you’ll need to change in ensutils-testnet.js:

contract address: 0xe7410170f87102df0055eb195163a03b7f2bff4a (line 220)
publicResolver address: 0x5d20cf83cb385e06d2f2a892f9322cd4933eacdc (line 1314)

If you need to unlock your account to execute certain transactions:

// Careful as this will record your password in your history.
// You can unlock accounts with geth as well to avoid this.

web3.personal.unlockAccount(web3.personal.listAccounts[0],"<password>", 15000) // 15,
→˓000 seconds

5

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/ens/blob/master/ensutils-testnet.js

ENS Documentation, Release 0.1

Before registering, check that nobody owns the name you want to register:

new Date(testRegistrar.expiryTimes(web3.sha3('myname')).toNumber() * 1000)

If this line returns a date earlier than the current date, the name is available and you’re good to go. You can register
the domain for yourself by running:

// This uses the .test registrar and will let you register the sub-domain myname
→˓under .test
testRegistrar.register(web3.sha3('myname'), eth.accounts[0], {from: eth.accounts[0]})

Next, tell the ENS registry to use the public resolver for your name:

ens.setResolver(namehash('myname.test'), publicResolver.address, {from: eth.
→˓accounts[0]});

Once that transaction is mined (you can use etherscan to do so), tell the resolver to resolve that name to your account:

publicResolver.setAddr(namehash('myname.test'), eth.accounts[0], {from: eth.
→˓accounts[0]});

. . . or any other address:

publicResolver.setAddr(namehash('myname.test'), '0x1234...', {from: eth.accounts[0]});

If you want, create a subdomain and do the whole thing all over again:

ens.setSubnodeOwner(namehash('myname.test'), web3.sha3('foo'), eth.accounts[1],
→˓{from: eth.accounts[0]});
ens.setResolver(namehash('foo.myname.test'), publicResolver.address, {from: eth.
→˓accounts[1]});
...

Finally, you can resolve your newly created name:

getAddr('myname.test')

which is shorthand for:

resolverContract.at(ens.resolver(namehash('myname.test'))).addr(namehash('myname.test
→˓'))

6 Chapter 2. Quickstart

https://ropsten.etherscan.io

CHAPTER 3

User Guide

This user guide is intended for anyone wanting to register, configure, and update ENS names using a Javascript console
and web3.js. Before starting, open up a geth console, download ensutils.js or ensutils-testnet.js to your local machine,
and import it into a running Ethereum console:

loadScript('/path/to/ensutils.js');

3.1 Registering a name with the FIFS registrar

The public ENS deployment on Ropsten uses a first-in-first served registrar for the ‘.test’ top level domain. Domains
on this TLD are configured to expire, allowing anyone else to claim them, 28 days after registration.

ensutils.js defines an object testRegistrar, for interacting with the registrar for the .test TLD. If you want to interact
with a different first-in-first-served registrar, you can instantiate it with:

var myRegistrar = fifsRegistrarContract.at(address);

Before registering, check that nobody owns the name you want to register:

new Date(testRegistrar.expiryTimes(web3.sha3('myname')).toNumber() * 1000)

If this line returns a date earlier than the current date, the name is available and you’re good to go.

The FIFS registrar’s interface is extremely simple, and exposes a method called register that you can call with the
(hashed) name you want to register and the address you want to own the name. To register a name, simply call that
method to send a registration transaction:

testRegistrar.register(web3.sha3('myname'), eth.accounts[0], {from: eth.accounts[0]});

Once this transaction is mined, assuming the name was not already assigned, it will be assigned to you, and you can
proceed to Interacting with the ENS registry.

7

https://github.com/ethereum/ens/blob/master/ensutils.js
https://github.com/ethereum/ens/blob/master/ensutils-testnet.js

ENS Documentation, Release 0.1

3.2 Registering a name with the auction registrar

Once deployed on mainnet, ENS names will be handed out via an auction process, on the ‘.eth’ top-level domain. A
preview of this is available on the Ropsten testnet, and you can register names via it right now. Any names you register
will persist until launch on mainnet, at which point the auction registrar on Ropsten will be deprecated and eventually
deleted.

This registrar implements a blind auction, and is described in EIP162. Names are initially required to be at least 7
characters long.

Registering a name with the auction registrar is a multi-step process.

3.2.1 Starting an auction

Before placing a bid, you need to check if the name is available. Run this code to check:

ethRegistrar.entries(web3.sha3('name'))[0];

This will return a single integer between 0 and 5. The full solidity data structure for this can be viewed here in the
Registrar contract. The numbers represent different ‘states’ a name is currently in.

• 0 - Name is available and the auction hasn’t started

• 1 - Name is available and the auction has been started

• 2 - Name is taken and currently owned by someone

• 3 - Name is forbidden

• 4 - Name is currently in the ‘reveal’ stage of the auction

• 5 - Name is not yet available due to the ‘soft launch’ of names.

If the returned value is 5, and is in the ‘soft launch’ is in effect; you can check when it will be available for auction
with:

new Date(ethRegistrar.getAllowedTime(web3.sha3('name')) * 1000);

To start an auction for a name that’s not already up for auction, call startAuction:

ethRegistrar.startAuction(web3.sha3('name'), {from: eth.accounts[0], gas: 100000});

You can also start auctions for several names simultaneously, to disguise which name you’re actually interested in
registering:

ethRegistrar.startAuctions([web3.sha3('decoy1'), web3.sha3('name'), web3.sha3('decoy2
→˓')], {from: eth.accounts[0], gas: 1000000});

Auctions normally run for 5 days: 3 days of bidding and 2 days of reveal phase. When initially deployed, there’s a
“soft start” phase during which names are released for bidding gradually; this soft start lasts 4 weeks on ropsten, and
13 weeks on mainnet.

When a name is under auction, you can check the end time of the auction as follows:

new Date(ethRegistrar.entries(web3.sha3('name'))[2].toNumber() * 1000)

8 Chapter 3. User Guide

https://github.com/ethereum/EIPs/issues/162
https://github.com/ethereum/ens/blob/master/contracts/HashRegistrarSimplified.sol#L110

ENS Documentation, Release 0.1

3.2.2 Placing a bid

Bids can be placed at any time during an auction except in the last 48 hours (the ‘reveal period’). Before trying to
place a bid, make sure an auction is currently underway, as described above, and has more than 48 hours left to run.

To bid on an open auction, you need several pieces of data:

• The name you want to register

• The account you are sending the bid from

• The maximum amount you’re willing to pay for the name

• A random ‘salt’ value

In addition, you need to decide how much Ether you want to deposit with the bid. This must be at least as much as the
value of your bid, but can be more, in order to disguise the true value of the bid.

First, start by generating a secret value. An easy way to do this is to use random.org. Store this value somewhere
secure - if you lose it, you lose your deposit, and your chance at winning the auction!

Now, you can generate your ‘sealed’ bid, with the following code:

var bid = ethRegistrar.shaBid(web3.sha3('name'), eth.accounts[0], web3.toWei(1, 'ether
→˓'), web3.sha3('secret'));

The arguments are, in order, the name you want to register, the account you are sending the bid from, your maximum
bid, and the secret value you generated earlier. Note that the bidding account will become the owner. You will lose
funds if you seal with one account and send the bid with another!

Next, submit your bid to the registrar:

ethRegistrar.newBid(bid, {from: eth.accounts[0], value: web3.toWei(2, 'ether'), gas:
→˓500000});

In the example above, we’re sending 2 ether, even though our maximum bid is 1 ether; this is to disguise the true value
of our bid. When we reveal our bid later, we will get the extra 1 ether back; the most we can pay for the name is 1
ether, as we specified when generating the bid.

Now it’s a matter of waiting until the reveal period before revealing your bid. Run the command to check the expiration
date of the auction again, and make sure to come back in the final 48 hours of the auction:

new Date(ethRegistrar.entries(web3.sha3('name'))[2].toNumber() * 1000)

3.2.3 Revealing your bid

In order to win an auction, you must ‘reveal’ your bid. This is only possible during the ‘reveal’ phase, the last 48 hours
of the auction, at which point new bids are prohibited. If you don’t reveal your bid by the time the auction ends, your
deposit is forfeit - so make sure you store your salt in a safe place, and come back before the auction ends in order to
reveal your bid.

To reveal, call the unsealBid function with the same values you provided earlier:

ethRegistrar.unsealBid(web3.sha3('name'), web3.toWei(1, 'ether'), web3.sha3('secret'),
→˓ {from: eth.accounts[0], gas: 500000});

The arguments to unsealBid have the same order and meaning as those to shaBid, described in the bidding step, except
that you don’t need to supply the account - it’s derived from your sending address.

After revealing your bid, the auction will be updated.

3.2. Registering a name with the auction registrar 9

https://www.random.org/strings/?num=1&len=20&digits=on&upperalpha=on&loweralpha=on&unique=off&format=html&rnd=new

ENS Documentation, Release 0.1

If your bid is less than a previously revealed bid, you will be refunded the whole amount of your bid.

If your bid is the largest revealed so far, you will be set as the current leading bidder. The difference between the actual
amount of your bid and the amount you sent will be refunded immediately. The remainder - the actual bid - will stay
locked. If you are later outbid it will be sent back to you.

3.2.4 Checking auctions

At any time, you can check the current winning bidder with:

deedContract.at(ethRegistrar.entries(web3.sha3('name'))[1]).owner();

and the value of the current winning bid with

web3.fromWei(ethRegistrar.entries(web3.sha3('name'))[4], 'ether');

3.2.5 Finalizing the auction

Once the auction has completed, it must be finalized in order for the name to be assigned to the winning bidder. Only
the winning bidder can do this. To finalize, call the finalizeAuction function like so:

ethRegistrar.finalizeAuction(web3.sha3('name'), {from: eth.accounts[0], gas: 500000});

Once called, the winning bidder will be refunded the difference between their bid and the next highest bidder. If you’re
the only bidder, you get back all but 0.01 eth of your bid. The winner is then assigned the name in ENS.

If you are the winning bidder, congratulations!

3.2.6 Managing Ownership

After finalizing, your account now owns both the name in ENS and the deed in the Auction Registrar.

As the name owner, your account can manage the name using examples in “Interacting with the ENS registry”. For
example, you can use ens.setOwner to transfer administration of the name to another account. The new name
owner can manage that domain and all subdomains now. None of those actions affect your ownership of the deed.

As the deed owner, your account has the right to reset name ownership back to itself at any time, by using
ethRegistrar.finalizeAuction again. You can also choose to transfer the deed to another account with:

ethRegistrar.transfer(web3.sha3('name'), newDeedOwnerAddress, {from:
→˓currentDeedOwnerAddress})

Caution: Transferring the deed is irrevocable. Be sure that you have verified the correct address for the new
owner. Additionally, the ether you paid to win the auction will be transferred with the deed to the new owner.

3.3 Interacting with the ENS registry

The ENS registry forms the central component of ENS, mapping from hashed names to resolvers, as well as the owners
of the names and their TTL (caching time-to-live).

10 Chapter 3. User Guide

ENS Documentation, Release 0.1

Before you can make any changes to the ENS registry, you need to control an account that has ownership of a name in
ENS. To obtain an ENS name on the Ropsten testnet, see Registering a name with the auction registrar for ‘.eth’, or
Registering a name with the FIFS registrar for ‘.test’. Names on ‘.test’ are temporary, and can be claimed by someone
else 28 days later.

Alternately, you can obtain a subdomain from someone else who owns a domain, or Deploying ENS. Note that while
anyone can deploy their own ENS registry, those names will only be resolvable by users who reference that registry in
their code.

3.3.1 Getting the owner of a name

You can retrieve the address of a name’s owner using the owner function:

> ens.owner(namehash('somename.eth'));
"0xa303ddc620aa7d1390baccc8a495508b183fab59"

3.3.2 Getting the resolver for a name

You can retrieve the address of a name’s resolver using the resolver function:

> ens.resolver(namehash('somename.eth'));
"0xc68de5b43c3d980b0c110a77a5f78d3c4c4d63b4"

3.3.3 Setting a name’s resolver

You can set the resolver contract for a name using setResolver:

> ens.setResolver(namehash('somename.eth'), resolverAddress, {from: eth.accounts[0]});

A resolver is any contract that implements the resolver interface specified in EIP137. You can deploy your own
resolver, or you can use a publicly available one; on the mainnet, a simple resolver that supports ‘address’ records and
is usable by anyone is available; ensutils.js exposes it as publicResolver. To use it, first set it as the resolver for your
name:

ens.setResolver(namehash('somename.eth'), publicResolver.address, {from: eth.
→˓accounts[0]});

Then, call the resolver’s setAddr method to set the address the name resolves to:

publicResolver.setAddr(namehash('somename.eth'), eth.accounts[0], {from: eth.
→˓accounts[0]})

The above example configures ‘somename.eth’ to resolve to the address of your primary account.

3.3.4 Transferring a name

You can transfer ownership of a name you own in the ENS registry to another account using setOwner:

> ens.setOwner(namehash('somename.eth'), newOwner, {from: eth.accounts[0]});

3.3. Interacting with the ENS registry 11

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-137.md

ENS Documentation, Release 0.1

Note: If the name was acquired through a registrar, such as through a ‘.eth’ auction process, this will not transfer
ownership of the locked bid. It will also not perform any administrative tasks that a registrar might want to do.

In general, to perform a complete transfer of a name acquired through a registrar, that particular registrar should be
used as the interface. For the ‘.eth’ registrar, see Managing Ownership.

3.3.5 Creating a subdomain

You can assign ownership of subdomains of any name you own with the setSubnodeOwner function. For instance, to
create a subdomain ‘foo.somename.eth’ and set yourself as the owner:

> ens.setSubnodeOwner(namehash('somename.eth'), web3.sha3('foo'), eth.accounts[0],
→˓{from: eth.accounts[0]});

Or, to assign someone else as the owner:

> ens.setSubnodeOwner(namehash('somename.eth'), web3.sha3('foo'), someAccount, {from:
→˓eth.accounts[0]});

Note the use of web3.sha3() instead of namehash() when specifying the subdomain being allocated.

The owner of a name can reassign ownership of subdomains at any time, even if they’re owned by someone else.

Note: When you first create your registry, the only domain is ‘.’ (the root domain) and the root domain creates
subdomains like the ‘test’ and ‘eth’ top-level domains.

3.3.6 Resolving Names

Now you’re ready to resolve your newly created name. For details how, read Resolving Names.

3.3.7 Interacting with ENS from a DApp

An NPM module, ethereum-ens, is available to facilitate interacting with the ENS from Javascript-based DApps.

3.3.8 Interacting with ENS from a contract

The ENS registry interface provides a Solidity definition of the methods available for interacting with the ENS. Using
this, and the address of the ENS registry, contracts can read and write the ENS registry directly.

A Solidity library to facilitate this will be available soon.

12 Chapter 3. User Guide

https://www.npmjs.com/package/ethereum-ens
https://github.com/ethereum/ens/blob/master/contracts/ENS.sol

CHAPTER 4

Implementer’s Guide

This section is intended to provide guidance for anyone wanting to implement tools and applications that use ENS, or
custom resolvers within ENS.

4.1 3 steps to add ENS to your application

ENS integration in an application encompasses several critical features, each of which can be implemented indepen-
dently. While comprehensive ENS integration is ideal, even basic support can be a huge benefit to users. Below,
we outline the three main ways you can add ENS support to your application, starting with the simplest and highest
impact.

4.1.1 1. Accept ENS names anywhere your app accepts addresses

The first step to supporting ENS in your application is making your application understand ENS names, and accepting
them anywhere an address is accepted. To understand how to do this, see Resolving Names.

If possible, when a user enters an ENS name instead of an address, remember the ENS name, not the address it
currently resolves to. This makes it possible for users to update their ENS names and have applications they used the
name in automatically resolve to the new address, in the same way that you would expect your browser to automatically
direct you to the new IP address if a site you use changes servers.

If your application deals with user funds or other critical resources, you may want to keep track of the address a name
resolves to and warn them when it changes, to ensure they are aware of the change.

4.1.2 2. Display ENS names anywhere your app shows addresses

The second step is to display ENS names wherever your app currently displays addresses.

If a user entered an ENS name in step 1, you should retain this name and show it to them whenever you would normally
show the address.

13

ENS Documentation, Release 0.1

If a user entered an address, or the address was obtained from elsewhere, you may still be able to show an ENS
name, by doing Reverse Resolution. This permits you to find the canonical name for an address and display that when
possible. If no canonical name is provided, your application can fall back to displaying the address as it did previously.

4.1.3 3. Permit users to register names for their resources

The final step for comprehensive ENS integration is to facilitate associating ENS names with resources created by or
managed with your application. This can take two forms:

1. Providing users with an easy way to register an ENS name and associate it with their resources (eg, wallet
address); see Writing a registrar.

2. Providing users with an easy way to update a name they own to point at your application’s resources; see
Updating ENS records.

4.2 ENS libraries

The following sections describe how to interact with ENS directly. Chances are, there is already an ENS library for
your language of choice, that will do the heavy lifting for you. To find one, see ENS Library support.

4.3 Resolving Names

Resolving names in ENS is a three step process:

1. Normalise and hash the name you want to resolve (see Namehash).

2. Query the ENS registry for the address of the resolver responsible for the name.

3. Query the resolver for the resource you want to look up.

14 Chapter 4. Implementer’s Guide

ENS Documentation, Release 0.1

To query the registry, call the resolver(bytes32) method on the ENS registry contract (see ENS on Ethereum for details
on where to find the registry), passing it the namehash of the normalised name you are querying for. The registry will
return the address of the resolver responsible for that name, or 0 if no resolver is configured or the name does not exist.

If the registry returned a nonzero resolver address, you can then query the resolver for the resource you want to resolve.
For instance, to look up the Ethereum address associated with the name, you would call the resolver’s addr(bytes32)
method, again passing in the namehash. The resolver will then return the resource requested, if it’s available.

A list of currently recognised resource types are defined in EIP137, but you can also define your own if you need. For
details on how to do that, see Writing a resolver.

4.4 Reverse Resolution

In addition to mapping names to resources (forward resolution), ENS also supports mapping from addresses to names
and other metadata (reverse resolution).

Reverse records are named <ethereum address>.addr.reverse - for instance, the official registry would have its reverse
records at 314159265dd8dbb310642f98f50c066173c1259b.addr.reverse.

Reverse resolution follows the same three-step process as forward resolution; the only change is that the name you are
resolving has the special format defined above. To find the canonical name for an address, then, you would first query
the ENS registry for the resolver responsible for (address).addr.reverse, then call name(bytes32) on that resolver in
order to obtain its canonical name.

addr.reverse has a registrar with claim(address), claimWithResolver(address, address), and setName(string) functions.

The claim function takes one argument, the Ethereum address that should own the reverse record.

This permits a very simple pattern for contracts that wish to delegate control of their reverse record to their creator;
they simply need to add this function call to their constructor:

reverseRegistrar.claim(msg.sender)

External accounts can also call this function to claim ownership of their reverse record. For simplicity, the set-
Name(string) function permits claiming a record and configuring a canonical name all in one step.

4.5 Writing a resolver

Resolvers are specified in EIP137. A resolver must implement the following method:

function supportsInterface(bytes4 interfaceID) constant returns (bool)

supportsInterface is defined in EIP165, and allows callers to determine if a resolver supports a particular record type.
Record types are specified as a set of one or more methods that a resolver must implement together. Currently defined
record types include:

Record type Function(s) Interface ID Defined in
Ethereum address addr 0x3b3b57de EIP137
ENS Name name 0x691f3431 EIP181
ABI specification ABI 0x2203ab56 EIP205
Public key pubkey 0xc8690233 EIP619

supportsInterface must also return true for the interfaceID value 0x01ffc9a7, which is the interface ID of supportsIn-
terface itself.

4.4. Reverse Resolution 15

https://github.com/ethereum/EIPs/issues/137
https://github.com/ethereum/EIPs/issues/137
https://github.com/ethereum/EIPs/issues/165
https://github.com/ethereum/EIPs/issues/137
https://github.com/ethereum/EIPs/issues/181
https://github.com/ethereum/EIPs/pull/205
https://github.com/ethereum/EIPs/pull/619

ENS Documentation, Release 0.1

Additionally, the content() interface is currently used as a defacto standard for Swarm hashes, pending standardisation,
and has an interface ID of 0xd8389dc5.

For example, a simple resolver that supports only the addr type might look something like this:

contract SimpleResolver {
function supportsInterface(bytes4 interfaceID) constant returns (bool) {

return interfaceID == 0x3b3b57de;
}

function addr(bytes32 nodeID) constant returns (address) {
return address(this);

}
}

This trivial resolver always returns its own address as answer to all queries. Practical resolvers may use any mechanism
they wish to determine what results to return, though they should be constant, and should minimise gas usage wherever
possible.

NOTE: If you are resolving addr() records, you MUST treat a return value from the resolver of 0x00. . . 00 as that
record being unset. Failing to do so could result in users accidentally sending funds to the null address if they have
configured a resolver in ENS, but not set the resolver record!

4.6 Resolving names onchain

Solidity libraries for onchain resolution are not yet available, but ENS resolution is straightforward enough it can be
done trivially without a library. Contracts may use the following interfaces:

contract ENS {
function owner(bytes32 node) constant returns (address);
function resolver(bytes32 node) constant returns (Resolver);
function ttl(bytes32 node) constant returns (uint64);
function setOwner(bytes32 node, address owner);
function setSubnodeOwner(bytes32 node, bytes32 label, address owner);
function setResolver(bytes32 node, address resolver);
function setTTL(bytes32 node, uint64 ttl);

}

contract Resolver {
function addr(bytes32 node) constant returns (address);

}

For resolution, only the resolver() function in the ENS contract is required; other methods permit looking up owners,
and updating ENS from within a contract that owns a name.

With these definitions, looking up a name given its node hash is straightforward:

contract MyContract {
ENS ens;

function MyContract(address ensAddress) {
ens = ENS(ensAddress);

}

function resolve(bytes32 node) constant returns(address) {
var resolver = ens.resolver(node)

(continues on next page)

16 Chapter 4. Implementer’s Guide

ENS Documentation, Release 0.1

(continued from previous page)

return resolver.addr(node);
}

}

While it is possible for a contract to process a human-readable name into a node hash, we highly recommend working
with node hashes instead, as they are easier to work with, and allow contracts to leave the complex work of normalising
the name to their callers outside the blockchain. Where a contract always resolves the same names, those names may
be converted to a node hash and stored in the contract as a constant.

4.7 Writing a registrar

A registrar in ENS is simply any contract that owns a name, and allocates subdomains of it according to some set of
rules defined in the contract code. A trivial first in first served contract is demonstrated below, using the ENS interface
definition defined earlier.

contract FIFSRegistrar {
ENS ens;
bytes32 rootNode;

function FIFSRegistrar(address ensAddr, bytes32 node) {
ens = ENS(ensAddr);
rootNode = node;

}

function register(bytes32 subnode, address owner) {
var node = sha3(rootNode, subnode);
var currentOwner = ens.owner(node);

if (currentOwner != 0 && currentOwner != msg.sender) throw;

ens.setSubnodeOwner(rootNode, subnode, owner);
}

}

You may wish to set custom rules for the allocation of new names to your users; the rules you set are entirely up to
you.

You should also bear in mind that as long as you retain ownership of the parent name - either directly or through
another contract - your users have no guarantee that you will not take back ownership of their names and change what
they resolve to. You may wish to consider committing ownership of the name to a contract that restricts your ability
to control it. For an example of this, see ENSNow.

4.8 Updating ENS records

Your application may wish to provide users with a means of updating names they own to point to resources your
application provides or manages. Doing so follows a similar process to Resolving Names:

1. Normalise and hash the name you want to resolve (see Namehash).

2. Query the ENS registry for the address of the resolver responsible for the name.

3. Call the appropriate update method on the resolver.

4.7. Writing a registrar 17

https://github.com/ensdomains/subdomain-registrar

ENS Documentation, Release 0.1

Steps 1 and 2 are the same as in Resolving Names. If step 2 fails to return a valid resolver address, you will need to
inform your user and offer them alternatives - for instance, you can check if they own the name in question, and if they
do, offer to configure a default resolver for them by calling setResolver on the ENS registry.

In step 3, call the method defined by the resolver profile - standard profiles are listed in EIP137. For instance, to set
the address associated with the name, call setAddr(bytes32, address), passing in the name hash of the name to update
and the address you wish it to point to.

4.9 Namehash

Names in ENS are represented as 32 byte hashes, rather than as plain text. This simplifies processing and storage,
while permitting arbitrary length domain names, and preserves the privacy of names onchain. The algorithm used to
translate domain names into hashes is called namehash. The Namehash algorithm is defined in EIP137.

In order to preserve the hierarchal nature of names, namehash is defined recursively, making it possible to derive the
hash of a subdomain from the namehash of the parent domain and the name or hash of the subdomain label.

4.9.1 Terminology

• domain - the complete, human-readable form of a name; eg, ‘vitalik.wallet.eth’.

• label - a single component of a domain; eg, ‘vitalik’, ‘wallet’, or ‘eth’. A label may not contain a period (‘.’).

• label hash - the output of the keccak-256 function applied to a label; eg, keccak256(‘eth’) =
0x4f5b812789fc606be1b3b16908db13fc7a9adf7ca72641f84d75b47069d3d7f0.

• node - the output of the namehash function, used to uniquely identify a name in ENS.

4.9.2 Algorithm

First, a domain is divided into labels by splitting on periods (‘.’). So, ‘vitalik.wallet.eth’ becomes the list [‘vitalik’,
‘wallet’, ‘eth’].

The namehash function is then defined recursively as follows:

namehash([]) = 0x00
namehash([label, ...]) = keccak256(namehash(...), keccak256(label))

A sample implementation in Python is provided below.

def namehash(name):
if name == '':
return '\0' * 32

else:
label, _, remainder = name.partition('.')
return sha3(namehash(remainder) + sha3(label))

4.9.3 Normalising and validating names

Before a name can be converted to a node hash using Namehash, the name must first be normalised and checked for
validity - for instance, converting fOO.eth into foo.eth, and prohibiting names containing forbidden characters such as
underscores. It is crucial that all applications follow the same set of rules for normalisation and validation, as otherwise

18 Chapter 4. Implementer’s Guide

https://github.com/ethereum/EIPs/issues/137
https://github.com/ethereum/EIPs/issues/137

ENS Documentation, Release 0.1

two users entering the same name on different systems may resolve the same human-readable name into two different
ENS names.

Applications using ENS and processing human-readable names must follow UTS46 for normalisation and validation.
Processing should be done with non-transitional rules, and with UseSTD3ASCIIRules=true.

The ethereum-ens Javascript library incorporates compliant preprocessing into its validate and namehash functions,
so users of this library avoid the need to handle this manually.

4.9.4 Handling of ambiguous names

Because of the large number of characters in unicode, and the wide variety of scripts represented, inevitably there are
different Unicode characters that are similar or even identical when shown in common fonts. This can be abused to
trick users into thinking they are visiting one site or resource, when in fact they are visiting another. This is known as
a homoglyph attack.

User agents and other software that display names to users should take countermeasures against these attacks, such as
by highlighting problematic characters, or showing warnings to users about mixed scripts. Chromium’s IDNA strategy
may serve as a useful reference for user-agent behaviour around rendering IDNA names.

4.9. Namehash 19

http://unicode.org/reports/tr46/
https://www.npmjs.com/package/ethereum-ens
https://en.wikipedia.org/wiki/Internationalized_domain_name#ASCII_spoofing_concerns
https://www.chromium.org/developers/design-documents/idn-in-google-chrome

ENS Documentation, Release 0.1

20 Chapter 4. Implementer’s Guide

CHAPTER 5

ENS Library support

This page lists libraries that support ENS in different languages, for your convenience. If you know of a library that is
not listed here, please send us a PR.

5.1 Javascript

• ethereum-ens

• ethjs-ens

5.2 Python

• ens.py

• web3.py

5.3 Command-line

• ethers-ens

21

https://github.com/ensdomains/ens/compare
https://www.npmjs.com/package/ethereum-ens
https://www.npmjs.com/package/ethjs-ens
https://github.com/carver/ens.py
https://github.com/ethereum/web3.py
https://github.com/ethers-io/ethers-ens

ENS Documentation, Release 0.1

22 Chapter 5. ENS Library support

CHAPTER 6

Deploying ENS

If you’d like to deploy ENS on your own network, or deploy your own copy of ENS on a public network, this guide
shows you how. If you want to use an existing ENS deployment, read Interacting with the ENS registry instead. If you
want to register a name on the Ropsten (testnet) ENS deployment, read Registering a name with the FIFS registrar or
Registering a name with the auction registrar.

6.1 Deploy the registry

First, you need to deploy ENS’s central component, the registry. To do so, paste this code into an Ethereum console:

23

ENS Documentation, Release 0.1

var ensContract = web3.eth.contract([{"constant":true,"inputs":[{"name":"node","type":
→˓"bytes32"}],"name":"resolver","outputs":[{"name":"","type":"address"}],"payable
→˓":false,"type":"function"},{"constant":true,"inputs":[{"name":"node","type":"bytes32
→˓"}],"name":"owner","outputs":[{"name":"","type":"address"}],"payable":false,"type":
→˓"function"},{"constant":false,"inputs":[{"name":"node","type":"bytes32"},{"name":
→˓"label","type":"bytes32"},{"name":"owner","type":"address"}],"name":"setSubnodeOwner
→˓","outputs":[],"payable":false,"type":"function"},{"constant":false,"inputs":[{"name
→˓":"node","type":"bytes32"},{"name":"ttl","type":"uint64"}],"name":"setTTL","outputs
→˓":[],"payable":false,"type":"function"},{"constant":true,"inputs":[{"name":"node",
→˓"type":"bytes32"}],"name":"ttl","outputs":[{"name":"","type":"uint64"}],"payable
→˓":false,"type":"function"},{"constant":false,"inputs":[{"name":"node","type":
→˓"bytes32"},{"name":"resolver","type":"address"}],"name":"setResolver","outputs":[],
→˓"payable":false,"type":"function"},{"constant":false,"inputs":[{"name":"node","type
→˓":"bytes32"},{"name":"owner","type":"address"}],"name":"setOwner","outputs":[],
→˓"payable":false,"type":"function"},{"anonymous":false,"inputs":[{"indexed":true,
→˓"name":"node","type":"bytes32"},{"indexed":false,"name":"owner","type":"address"}],
→˓"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name
→˓":"node","type":"bytes32"},{"indexed":true,"name":"label","type":"bytes32"},{
→˓"indexed":false,"name":"owner","type":"address"}],"name":"NewOwner","type":"event"},
→˓{"anonymous":false,"inputs":[{"indexed":true,"name":"node","type":"bytes32"},{
→˓"indexed":false,"name":"resolver","type":"address"}],"name":"NewResolver","type":
→˓"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"node","type":"bytes32
→˓"},{"indexed":false,"name":"ttl","type":"uint64"}],"name":"NewTTL","type":"event"}
→˓]);
var ens = ensContract.new({

from: web3.eth.accounts[0],
data:

→˓"0x33600060000155610220806100146000396000f3630178b8bf60e060020a600035041415610023576020600435015460405260206040f35b6302571be360e060020a600035041415610047576000600435015460405260206040f35b6316a25cbd60e060020a60003504141561006b576040600435015460405260206040f35b635b0fc9c360e060020a6000350414156100b8576000600435015433141515610092576002565b6024356000600435015560243560405260043560198061020760003960002060206040a2005b6306ab592360e060020a6000350414156101165760006004350154331415156100df576002565b6044356000600435600052602435602052604060002001556044356040526024356004356021806101e660003960002060206040a3005b631896f70a60e060020a60003504141561016357600060043501543314151561013d576002565b60243560206004350155602435604052600435601c806101ca60003960002060206040a2005b6314ab903860e060020a6000350414156101b057600060043501543314151561018a576002565b602435604060043501556024356040526004356016806101b460003960002060206040a2005b6002564e657754544c28627974657333322c75696e743634294e65775265736f6c76657228627974657333322c61646472657373294e65774f776e657228627974657333322c627974657333322c61646472657373295472616e7366657228627974657333322c6164647265737329
→˓",

gas: 4700000
}, function (e, contract){

console.log(e, contract);
if (typeof contract.address !== 'undefined') {

console.log('Contract mined! address: ' + contract.address + '
→˓transactionHash: ' + contract.transactionHash);

}
});

Once successfully mined, you will have a fresh ENS registry, whose root node is owned by the account that created
the transaction (in this case, the first account on your node). This account has total control over the ENS registry - it
can create and replace any node in the entire tree.

For instructions on how to interact with the registry, see Interacting with the ENS registry.

6.2 Deploying a registrar

A registrar is a contract that has ownership over a node (name) in the ENS registry, and provides an interface for users
to register subnodes (subdomains). You can deploy a registrar on any name; in this example we’ll deploy a simple
first-in-first-served registrar for the root node.

To deploy a first-in-first-served registrar on the root node of an ENS registry you control, execute this code in an
Ethereum console:

var registrarContract = web3.eth.contract([{"constant":false,"inputs":[{"name":
→˓"subnode","type":"bytes32"},{"name":"owner","type":"address"}],"name":"register",
→˓"outputs":[],"payable":false,"type":"function"},{"inputs":[{"name":"ensAddr","type":
→˓"address"},{"name":"node","type":"bytes32"}, {"name": "_startDate", "type": "uint256
→˓"}],"type":"constructor"}]);

(continues on next page)

24 Chapter 6. Deploying ENS

ENS Documentation, Release 0.1

(continued from previous page)

var registrar = registrarContract.new(
ens.address,
0,
0,
{from: web3.eth.accounts[0],
data:

→˓"0x60606040818152806101c4833960a0905251608051600080546c0100000000000000000000000080850204600160a060020a0319909116179055600181905550506101768061004e6000396000f3606060405260e060020a6000350463d22057a9811461001e575b610002565b34610002576100f4600435602435600154604080519182526020808301859052815192839003820183206000805494830181905283517f02571be3008152600481018390529351879592949193600160a060020a03909316926302571be3926024808201939182900301818787803b156100025760325a03f11561000257505060405151915050600160a060020a038116158015906100ea575033600160a060020a031681600160a060020a031614155b156100f657610002565b005b60008054600154604080517f06ab5923008152600481019290925260248201899052600160a060020a03888116604484015290519216926306ab59239260648084019382900301818387803b156100025760325a03f11561000257505050505050505056
→˓",

gas: 4700000
}, function (e, contract){

console.log(e, contract);
if (typeof contract.address !== 'undefined') {

console.log('Contract mined! address: ' + contract.address + '
→˓transactionHash: ' + contract.transactionHash);

}
});

Once that transaction is mined, you can transfer ownership of the root node to the newly created registrar:

ens.setOwner(0, registrar.address, {from: web3.eth.accounts[0]});

Users can now register names with the registrar; for instructions read Registering a name with the FIFS registrar.

6.2. Deploying a registrar 25

ENS Documentation, Release 0.1

26 Chapter 6. Deploying ENS

CHAPTER 7

Hosting a DNS domain on ENS

Experimental support is available for hosting DNS domains on the Ethereum blockchain via ENS. This works by
configuring the domain’s nameserver records to point to gateway DNS servers; these DNS servers resolve lookups by
consulting an ENS registry which points to resolvers containing the zone data for the relevant domain.

The steps to host your own domain on the blockchain are:

1. deploy your own ENS registry

2. Deploy an instance of DNSResolver

3. Update your ENS registry to set your newly deployed DNSResolver as the resolver for your domain name (eg,
by calling setSubnodeOwner and setResolver; see Interacting with the ENS registry for details). Don’t forget to
set the TTL on this record to a reasonable value, or your DNS data may not get cached.

4. Write a zonefile. The zonefile must include an NS record for your domain that specifies the resolver as ad-
dress.ns1.ens.domains, where address is the address of the ENS registry you deployed in step 1, without the
leading ‘0x’. An example zonefile is available for reference.

5. Clone and build ensdns. Start a local node, and run ‘ensdns upload –keystore=path/to/keystore zonefile’ to
upload the zone to the blockchain.

6. Update your NS records with your registrar to point to the name above (address.ns1.ens.domains).

Please note that this feature is still experimental, and shouldn’t be used for anything production critical; the DNS
gateway is lightly tested, and only a single instance is running at present, providing no backup or failover in case of
server issues. The API and configuration may change in backwards-incompatible ways, breaking your nameserver!

27

deploying.html
https://github.com/ethereum/ens/blob/master/contracts/DNSResolver.sol
https://github.com/ethereum/ens/blob/master/ens.domains.zone
https://github.com/arachnid/ensdns/

ENS Documentation, Release 0.1

28 Chapter 7. Hosting a DNS domain on ENS

CHAPTER 8

FAQ

8.1 Why are names registered as hashes?

Hashes are used for two main reasons. First, to prevent trivial enumeration of the entire set of domains, which helps
preserve privacy of names (for instance, so you can register the domain for your startup before you publicly launch).
Second, because hashes provide a fixed length identifier that can easily be passed around between contracts with fixed
overhead and no issues around passing around variable-length strings.

8.2 How do the DApp and the twitter bot know what names people
are auctioning?

The DApp and the twitter bot have built in lists of common names, drawn from an English dictionary and Alexa’s list of
top 1 million internet domain names. They use these lists to show you when common names are being auctioned. We
do this because if the app didn’t reveal these names, anyone with a little technical skill could find them out anyway,
giving them an advantage over those who don’t have the capacity to build their own list and code to check names
against it.

8.3 What is the disguise amount / extra amount?

Although it’s difficult for someone to determine what name you are bidding on, in some circumstances it’s possible to
either determine the exact name, or narrow it down to one of several. The disguise amount allows you to send extra
ether along with your bid, to disguise the true amount of your bid. This ether is returned to you as soon as you reveal
your bid.

29

ENS Documentation, Release 0.1

8.4 Which wallets and DApps support ENS so far?

MyEtherWallet supports both registering names via the auction process and sending funds and interacting with con-
tracts identified by their names.

Metamask supports sending funds to ENS names.

Mist is working on ENS support and should announce it soon.

LEth is working on ENS support and should announce it soon.

Status is working on ENS support and should announce it soon.

8.5 Why does it say my name isn’t available yet?

ENS names are released gradually over a ‘slow start’ period of 8 weeks starting on May 4th 2017. The time at which
any given name becomes available for auction during that period is effectively random. If you enter your desired name
into the DApp, it will let you know when the first time you can auction it is.

8.6 How is the start time for each name determined?

Internally, we hash the name using keccak256, and express the result as a number between 0 and 1. Then, we multiply
that by the duration of the launch period (8 weeks) and add that to the start date (May 4th 2017 1100 UTC) to generate
the time at which that name can first be auctioned. You can see the code for this here.

8.7 Why is my reveal transaction failing?

Confirm all the values you put in during the bid, and try using a blockchain explorer to confirm the state of the ENS
auction. These are situations that cause errors during the reveal transaction:

• You never successfully bid

• You’re trying to reveal too early

• The domain name is wrong

• The amount is wrong

• The secret phrase is wrong

• You already revealed

8.8 I bid on an auction and didn’t win; why don’t I see the refund in
my transaction list?

Refunds are sent as part of reveal transactions - when you reveal, if someone already outbid you, or when you’re outbid
later, if not - and as part of finalise transactions. They’re not separate transactions, so they don’t show up as such. If
you’re using etherscan, check the ‘internal transctions’ tab to find your refund information.

30 Chapter 8. FAQ

https://github.com/ethereum/ens/blob/13f3aa431f1e90ace80c510251a906f018fc7cc1/contracts/HashRegistrarSimplified.sol#L263

ENS Documentation, Release 0.1

8.9 I bid on one name, but Etherscan shows me as bidding on other
name(s)! Why?

The registrar DApp opens up to three randomly selected auctions as ‘chaff’ every time you place a bid, to make it more
difficult for people to guess what you are bidding on. The names you see are not necessarily the one you’re bidding
on; that’s contained in the sealed bid hash that was submitted.

8.10 Once I own a name, can I create my own subdomains?

Yes! You can create whatever subdomains you wish, and assign ownership of them to other people if you desire. You
can even set up your own registrar for your domain!

8.11 Can I change the address my name points to after I’ve bought
it?

Yes, you can update the addresses and other resources pointed to by your name at any time.

8.12 How much do I have to deposit if I’m the only bidder?

If only one bid is revealed, that bidder deposits 0.01 ether, the minimum bid. The remainder of their bid is refunded
as soon as they finalise the auction.

8.13 Can I register a TLD of my own in the ENS?

No, TLDs are restricted to only .eth (on mainnet), or .eth and .test (on Ropsten), plus any special purpose TLDs such
as those required to permit reverse lookups. There are no immediate plans to invite proposals for additional TLDs. In
large part this is to reduce the risk of a namespace collision with the IANA DNS namespace.

8.14 Instead of burning funds in the auction for bidding costs and
penalties, shouldn’t they be donated to the Ethereum Founda-
tion?

Burning is fairly rare in the current registrar; it only burns fees if you reveal an illegal bid, or fail to reveal a bid
during the reveal period. In all other circumstances they’re refunded to users, either when you’re outbid or when you
relinquish the name. A small portion (0.5%) of the bids are burned with the intent of creating a cost for a large amount
of domains or for highly valuable domains without the intention of buying them.

Burning fees is impartial, and avoids both political concerns over the destination of the funds, and perverse incentives
for the beneficiary of the fees. The value of the ether burned is not destroyed, but rather equally distributed among all
ether holders.

8.9. I bid on one name, but Etherscan shows me as bidding on other name(s)! Why? 31

ENS Documentation, Release 0.1

8.15 Who will own the ENS rootnode? What powers does that grant
them?

The root node will initially be owned by a multisig contract, with keys held by trustworthy individuals in the Ethereum
community. The exact makeup of this has not yet been decided on. We expect that this will be very hands-off, with
the root ownership only used to effect administrative changes, such as the introduction of a new TLD, or to recover
from an emergency such as a critical vulnerability in a TLD registrar.

In the long term, the plan is to define a governance process for operations on the root node, and transfer ownership to
a contract that enforces this process.

Since the owner of a node can change ownership of any subnode, the owner of the root can change any node in the
ENS tree.

8.16 What about foreign characters? What about upper case letters?
Is any unicode character valid?

Since the ENS contracts only deal with hashes, they have no direct way to enforce limits on what can be registered;
character length restrictions are implemented by allowing users to challenge a short name by providing its preimage
to prove it’s too short.

This means that you can in theory register both ‘foo.eth’ and ‘FOO.eth’, or even <picture of my cat>.eth. However,
resolvers such as browsers and wallets should apply the nameprep algorithm to any names users enter before resolving;
as a result, names that are not valid outputs of nameprep will not be resolvable by standard resolvers, making them
effectively useless. DApps that assist users with registering names should prevent users from registering unresolvable
names by using nameprep to preprocess names being requested for registration.

8.17 Nameprep isn’t enforced in the ENS system, is this a secu-
rity/spoofing/phishing concern?

It’s not enforced by the ENS contracts, but as described, resolvers are expected to use it before resolving names. This
means that non-nameprep names will not be resolvable.

8.18 How was the minimum character length of 7 chosen?

By an informal survey of common ‘high value’ short names. This restriction is intended to be lifted once the permanent
registrar is in place.

8.19 What values will the permanent registrar try to optimize for?

This is something that the community will have to decide as part of the standardisation process for the permanent
registrar. A few possible principles to consider include:

• Accessibility: Registering a new name should be as easy and straightforward as possible.

• Correct valuation: registering a known or popular name should be costly and intentional, not a matter of luck

• Fairness: The system should not unduly favor people who happen to be in the right place at the right time.

32 Chapter 8. FAQ

ENS Documentation, Release 0.1

• Stability: Names should only be reallocated with the express will of the owner or according to objective rules
that will be discussed and set with the whole community.

• Principle of least surprise: Wherever possible, names should resolve to the resource most users would expect it
to resolve to.

8.20 What kinds of behaviours are likely to result in losing ownership
of a name?

This is the most important aspect to be decided on the Permanent registrar and the one we want more open debate. At
minimum we want the owner of a name to have to execute some periodical transaction, just to prove that name hasn’t
been abandoned or keys have been lost. This transaction would probably also require additional ether to be locked or
burned. The method to which that amount is calculated is yet to be determined but would probably be dependent on
some (but not necessarily all) of these factors:

• The amount of ethers the domain was bought for originally

• The average cost of a domain back when it was first bought

• The average cost of a domain at the moment of renewal

• The current market value of the domain (to be calculated with some auction method)

• Other factors to be discussed

Just like the current model, this “fee” would not go to the Ethereum Foundation or any third party, but be locked or
burned. Ideally, this financial (opportunity and liquidity) cost will make name squatting unprofitable – or at least make
the name reselling market a dynamic and competitive one, focused on quick turnout and not on holding names long
term for as much money as possible.

Another very possible option creating some sort of dispute resolution process for names, to ensure the “principle of
least surprise” but this is a controversial idea and there are no clear ideas on how this process could be achieved in a
fair way without risks of centralization and abuse of power.

8.21 Can the bids be revealed during the auction period?

No, you can’t reveal during the auction period, only during the reveal period. Bids revealed during the auction period
will have no effect and wouldn’t count for the reveal period.

This document is licensed under the @emph{Creative Commons Attribution License}. To view a copy of this license,
visit http://creativecommons.org/licenses/by/2.0/

8.20. What kinds of behaviours are likely to result in losing ownership of a name? 33

http://creativecommons.org/licenses/by/2.0/

ENS Documentation, Release 0.1

34 Chapter 8. FAQ

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

35

	Introduction
	ENS in 5 minutes
	ENS on Ethereum
	Resources

	Quickstart
	User Guide
	Registering a name with the FIFS registrar
	Registering a name with the auction registrar
	Interacting with the ENS registry

	Implementer’s Guide
	3 steps to add ENS to your application
	ENS libraries
	Resolving Names
	Reverse Resolution
	Writing a resolver
	Resolving names onchain
	Writing a registrar
	Updating ENS records
	Namehash

	ENS Library support
	Javascript
	Python
	Command-line

	Deploying ENS
	Deploy the registry
	Deploying a registrar

	Hosting a DNS domain on ENS
	FAQ
	Why are names registered as hashes?
	How do the DApp and the twitter bot know what names people are auctioning?
	What is the disguise amount / extra amount?
	Which wallets and DApps support ENS so far?
	Why does it say my name isn’t available yet?
	How is the start time for each name determined?
	Why is my reveal transaction failing?
	I bid on an auction and didn’t win; why don’t I see the refund in my transaction list?
	I bid on one name, but Etherscan shows me as bidding on other name(s)! Why?
	Once I own a name, can I create my own subdomains?
	Can I change the address my name points to after I’ve bought it?
	How much do I have to deposit if I’m the only bidder?
	Can I register a TLD of my own in the ENS?
	Instead of burning funds in the auction for bidding costs and penalties, shouldn’t they be donated to the Ethereum Foundation?
	Who will own the ENS rootnode? What powers does that grant them?
	What about foreign characters? What about upper case letters? Is any unicode character valid?
	Nameprep isn’t enforced in the ENS system, is this a security/spoofing/phishing concern?
	How was the minimum character length of 7 chosen?
	What values will the permanent registrar try to optimize for?
	What kinds of behaviours are likely to result in losing ownership of a name?
	Can the bids be revealed during the auction period?

	Indices and tables

