
Enrich2 Documentation
Release 1.2.0

Alan F Rubin

Sep 13, 2017

Contents

1 Getting started 3
1.1 Required packages . 3
1.2 Installation and example dataset . 3
1.3 Enrich2 executables . 4

2 Defining experiments 5
2.1 Experimental designs . 5
2.2 Elements . 6
2.3 SeqLibs . 7

3 Using the GUI 9
3.1 Configuring your analysis . 9
3.2 Saving and loading . 12
3.3 Context menus . 12
3.4 Analysis options . 13

4 SeqLib configuration details 15
4.1 General parameters . 15
4.2 Sequence file parameters . 16
4.3 Barcode parameters . 16
4.4 Variant parameters . 17
4.5 Identifier parameters . 17
4.6 Overlap parameters . 18

5 Output HDF5 files 19
5.1 Table organization . 19
5.2 List of tables by object type . 19

6 Automatically generated plots 23
6.1 Experiment plots . 23
6.2 Selection plots . 25
6.3 SeqLib plots . 31

7 Example notebooks 35
7.1 Selecting variants by input library count . 35
7.2 Selecting variants by number of unique barcodes . 38

i

8 Appendix: API documentation 43
8.1 storemanager — Abstract class for Enrich2 data . 43
8.2 seqlib — Sequencing library file handling and element counting 43
8.3 selection — Functional score calculation using SeqLib count data 45
8.4 condition — Dummy class for GUI . 45
8.5 experiment — Aggregation of replicate selections . 45
8.6 Enrich2 plotting . 45
8.7 Utility functions . 45
8.8 Enrich2 entry points . 47

Python Module Index 49

ii

Enrich2 Documentation, Release 1.2.0

Enrich2 is a general software tool for processing, analyzing, and visualizing data from deep mutational scanning
experiments.

The software is freely available from https://github.com/FowlerLab/Enrich2/ under the GPLv3 license.

For an example dataset, visit https://github.com/FowlerLab/Enrich2-Example/.

To cite Enrich2, please reference A statistical framework for analyzing deep mutational scanning data.

Enrich2 was written by Alan F Rubin http://orcid.org/0000-0003-1474-605X

Error: Important notice for users of Enrich2 v1.0 or v1.1

Enrich2 v1.2.0 corrects an error in the software that, for most datasets, resulted in the standard errors for combined
scores being over-estimated. The counts, scores, and replicate-wise standard errors are unaffected.

If you have analyzed datasets that contain replicates with a previous version of Enrich2, the easiest way to get the
correct standard error values is to delete the experiment HDF5 file (the file name ends with '_exp.h5') and re-run
the program. This will recalculate combined scores and standard errors without redoing other parts of the analysis.

Contents 1

https://github.com/FowlerLab/Enrich2/
https://www.gnu.org/licenses/gpl-3.0.txt
https://github.com/FowlerLab/Enrich2-Example/
https://doi.org/10.1186/s13059-017-1272-5
mailto:alan.rubin@wehi.edu.au
http://orcid.org
http://orcid.org/0000-0003-1474-605X
http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables

Enrich2 Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Getting started

Required packages

Enrich2 runs on Python 2.7 and has the following dependencies:

• NumPy version 1.10.4 or higher

• SciPy version 0.16.0 or higher

• pandas version 0.18 or 0.19

• PyTables version 3.2.0 or higher

• Statsmodels version 0.6.1 or higher

• matplotlib version 1.4.3 or higher

The configuration GUI requires Tkinter. Building a local copy of the documentation requires Sphinx.

Note: We recommend using a scientific Python distribution such as Anaconda or Enthought Canopy to install and
manage dependencies.

Note: PyTables may not be installed when using the default settings for your distribution. If you encounter errors,
check that the tables module is present.

Installation and example dataset

1. Make sure the required packages are installed.

(a) To set up a new Anaconda environment for Enrich2, use the following environment file (click to
download). Detailed instructions for setting up conda environments can be found in the conda documen-
tation.

3

http://www.numpy.org/
http://www.scipy.org/
http://pandas.pydata.org/
http://www.pytables.org/
http://statsmodels.sourceforge.net/
http://matplotlib.org/
https://docs.python.org/2/library/tkinter.html
http://sphinx-doc.org/
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
https://store.continuum.io/cshop/anaconda/
https://conda.io/docs/using/envs.html
https://conda.io/docs/using/envs.html

Enrich2 Documentation, Release 1.2.0

name: enrich2
dependencies:
- python=2.7
- numpy
- scipy
- pandas=0.19
- pytables
- statsmodels
- matplotlib

2. Download Enrich2 from the GitHub repository and unzip it.

3. Using the terminal, navigate to the Enrich2 directory and run the setup script by typing python setup.py
install

To download the example dataset, visit the Enrich2-Example GitHub repository. Running this preconfigured analysis
will create several Automatically generated plots. The Example notebooks demonstrate how to explore the Output
HDF5 files.

Enrich2 executables

The Enrich2 installer places two executable scripts into the user’s path. Both executables run the same analysis, but
through different interfaces.

• enrich_gui launches the Enrich2 graphical user interface. This is the recommended way to create a config-
uration file for Enrich2. See Using the GUI for a step-by-step guide.

• enrich_cmd launches the program from the command line. This is recommended for users performing analy-
ses on a remote server who have already created configuration files. For a detailed list of command line options,
type enrich_cmd --help

4 Chapter 1. Getting started

https://github.com/FowlerLab/Enrich2/archive/master.zip
https://github.com/FowlerLab/Enrich2/
https://github.com/FowlerLab/Enrich2-Example/

CHAPTER 2

Defining experiments

Experimental designs

Enrich2 represents deep mutational scanning experimental designs as a tree of objects. The hierarchy of object types
is defined below:

• Experiment

The root object for most experimental designs. Parent of at least one experimental condition.

• Condition

A single experimental condition. Parent of at least one replicate selection performed under the con-
dition.

• Selection

A single deep mutational scanning replicate. Parent of at least two sequencing libraries, one or more
for each time point/round/bin of the selection.

• Sequencing library (SeqLib)

FASTQ output or count data from a deep mutational scanning time point/round/bin. Has no children.

Each experimental design has a single root object, which can be an Experiment, Selection, or SeqLib. With the
exception of Conditions, each experimental design object has its own HDF5 file containing its data.

Note: Conditions do not have their own HDF5 file. If there is only one condition, use an Experiment as the root.

5

http://en.wikipedia.org/wiki/FASTQ_format

Enrich2 Documentation, Release 1.2.0

The above diagram illustrates an experimental design with two conditions, each with three replicates sampled at three
time points (including the input).

Elements

Enrich2 counts elements to quantify their enrichment or depletion in a complex population. The four element types
are defined below:

• Barcode

A short DNA barcode sequence often used for tagging variants. Stored as the barcode DNA sequence.
Barcodes are counted directly from sequencing data.

• Variant

A DNA-level variant of the wild type sequence, which can be coding or non-coding. Stored as an
HGVS string describing the nucleotide and any amino acid differences from the wild type sequence.
Variants can be counted either directly from sequencing data or as the sum of counts for linked
barcodes as defined by a barcode-variant map.

• Synonymous

A protein-level variant of the wild type sequence. Stored as an HGVS string describing the amino
acid differences from the wild type sequence. Synonymous elements are counted as the sum of counts
for variant elements with the same amino acid sequence. Variant elements with the wild type amino
acid sequence but a non-wild type DNA sequence are assigned to a special variant.

• Identifier

An arbitrary label (such as a target gene name) for barcode assignment. Stored as the label string.
Identifiers are counted as the sum of counts for associated barcodes as defined by a barcode-identifier
map or specified as counts.

6 Chapter 2. Defining experiments

http://www.hgvs.org/mutnomen/recs.html
http://www.hgvs.org/mutnomen/recs.html

Enrich2 Documentation, Release 1.2.0

SeqLibs

Enrich2 implements five types of SeqLib, each supporting different element types and/or methods of sequencing deep
mutational scanning populations.

Note: Synonymous elements are only present if the wild type sequence is protein coding.

• Barcoded Variant

Contains barcode, variant, and synonymous elements. Each DNA variant in the experiment is linked
to one or more DNA barcode sequences. A barcode-variant map describes which barcodes map to
each variant. The FASTQ file contains only barcode sequences.

• Barcoded Identifier

Contains barcode and identifier elements. Each identifier in the experiment is associated with one
or more DNA barcode sequences. A barcode-identifier map describes which barcodes map to each
identifier. The FASTQ file contains only barcode sequences.

• Overlap

Contains variant and synonymous elements. DNA variants are sequenced directly using overlapping
paired-end reads. Requires FASTQ files for both forward and reverse reads.

• Basic

Contains variant and synonymous elements. DNA variants are sequenced directly using single-end
reads.

• Barcodes Only

Contains barcode elements. The FASTQ file contains only barcode sequences.

• Identifiers Only

Contains identifier elements. No FASTQ file is processed, so the counts must be provided by the
user.

For more information, see SeqLib configuration details.

2.3. SeqLibs 7

http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format

Enrich2 Documentation, Release 1.2.0

8 Chapter 2. Defining experiments

CHAPTER 3

Using the GUI

The graphical user interface makes it easy to specify an experimental design that Enrich2 can understand. For more
information about how these are organized, see Experimental designs.

Configuring your analysis

The Enrich2 installer places the graphical user interface (GUI) entry point in your path. Type enrich_gui from the
command line to launch the program.

Error: Mac OS X users running the Enrich2 GUI in a virtualenv may encounter the following error:

2016-10-10 12:34:56.789 python[12345:12345678] -[NSApplication _setup:]:
→˓unrecognized selector sent to instance 0x12345abcd

This is caused by an interaction between Tkinter and the matplotlib backend. To fix the issue, edit (or create) the
“~/.matplotlib/matplotlibrc” file and add the line:

backend: TkAgg

Note: Once you have created your configuration file, you can also run the program in command line mode. Type
enrich_cmd --help for usage and a list of command line options.

9

http://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Enrich2 Documentation, Release 1.2.0

Click “New...” to create the root object.

Enter a short but descriptive object name that will not conflict with other objects in the analysis.

Choose the output directory for the HDF5, plot, and tab-separated files generated by the analysis.

Select the appropriate object type: Experiment, Selection if there are no replicates, or SeqLib if you only want to count
a single sequencing library.

If you created a Selection or Experiment root object, select it and click “New...” to add a child object.

10 Chapter 3. Using the GUI

http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables

Enrich2 Documentation, Release 1.2.0

Conditions and Selections do not have any parameters beyond their names.

Continue adding child objects until the entire experimental design is represented. When creating a new SeqLib, choose
the appropriate type depending on how the experiment was performed (see SeqLibs).

Note: To avoid re-counting the reads when multiple Selections share the same input library, use the same object name
for the input library in each Selection.

Most parameters are specified in SeqLib objects, such as the wild type sequence, filtering options, and the location of
the sequencing files or counts files (see SeqLib configuration details).

Note: Time points can have multiple sequencing libraries, which are added together before scores are calculated.

3.1. Configuring your analysis 11

Enrich2 Documentation, Release 1.2.0

Clicking “New...” with a SeqLib object selected will add a sibling SeqLib to the Selection that shares the same FASTQ
filtering and other options.

Saving and loading

After you have configured the analysis, you can save a configuration file by selecting “Save” or “Save As...” from the
File menu. You can also use the File menu to load an existing configuration file by selecting “Open.”

Note: If you encounter an error when loading a configuration file, try using a validator such as JSONLint to identify
any issues.

Context menus

Right-clicking on an object will open a context menu with additional actions not covered by the New/Edit/Delete
buttons.

12 Chapter 3. Using the GUI

http://en.wikipedia.org/wiki/FASTQ_format
http://jsonlint.com/

Enrich2 Documentation, Release 1.2.0

• Apply FASTQ...

Copy the FASTQ filtering options from the chosen SeqLib to every highlighted SeqLib of the same
type.

Analysis options

These choices are not saved in the configuration file and should be reviewed before running each analysis. For further
information about the scoring and normalization methods below, see the Enrich2 manuscript.

Scoring method

• Weighted Least Squares

Recommended for selections with at least three time points (including the input).

• Log Ratios (Enrich2)

Recommended for selections with two time points (input and selected). For selections with more
than two time points, the last time point is used as the selected time point. Intermediate time points
not used.

• Counts Only

No element scores are calculated. The output contains only element counts.

• Ordinary Least Squares

Provided for comparison and legacy support.

• Log Ratios (Old Enrich)

Provided for comparison and legacy support. This method is a re-implementation of the previously
published Enrich software. Standard errors are not calculated. For selections with more than two
time points, the last time point is used as the selected time point. Intermediate time points not used.

3.4. Analysis options 13

http://en.wikipedia.org/wiki/FASTQ_format
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1272-5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232369/

Enrich2 Documentation, Release 1.2.0

Normalization method

• Wild Type

Recommended if your selection has a wild type sequence. Normalizes counts by the wild type count
as described in the Enrich2 manuscript. For designs with identifiers instead of variants, the special
wild type identifier “_wt” can be used.

• Library Size (Complete Cases)

Normalizes counts by the library size. Only elements present in all time points within a selection
contribute to the library size.

• Library Size (All Reads)

Normalizes counts by the library size. All elements contribute to the library size.

Other options

• Force Recalculation

Discards all data that are not raw counts before performing the analysis. See Table organization for
more about raw counts.

• Component Outlier Statistics

Tests whether the score of each barcode differs significantly from that of its assigned variant or
identifier. Performs an analogous calculation for variant and synonymous scores.

Warning: Testing for outliers is experimental and very computationally inefficient.

• Make Plots

Creates plots for this analysis.

• Write TSV Files

Outputs tab-separated files for this analysis.

Once you’ve finished selecting your options, click Run Analysis!

The output directory will contain Output HDF5 files, Automatically generated plots, and tab-separated files.

14 Chapter 3. Using the GUI

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1272-5

CHAPTER 4

SeqLib configuration details

Most parameters are specified within SeqLib objects. Experiment, Condition, and Selection objects have only a name
(and output directory if at the root). Analysis options, such as scoring method, are chosen at run time.

Sequencing libraries have General parameters, Sequence file parameters, and other parameter groups depending on
the type:

SeqLib type Barcode Variant Identifier Overlap
Barcoded Variant X X
Barcoded Identifier X X
Overlap X X
Basic X
Barcodes Only X
Identifiers Only X

See SeqLibs for descriptions of each type.

General parameters

• Name

The object name should be short, descriptive, and not conflict with other object names in the analysis.

• Output Directory

Path to the output directory. This field only appears for the root object.

• Time Point

The time point must be an integer. All Selections require an input library as time point 0. Time point
values may refer to the round of selection or hour of sampling.

• Counts File

Required for Counts File Mode. Path to an HDF5 file or tab-separated value file that contains counts
for this time point. Raw counts from that file will be used for this SeqLib. If an HDF5 file is provided,

15

Enrich2 Documentation, Release 1.2.0

all tables in the “raw/” group are copied. Sequence file parameters will be ignored. The file must
have the suffix ”.h5” for HDF5 or one of ”.txt” ”.tsv” or ”.csv” for tab-separated value files.

Note: Tab-separated value files must have exactly two columns separated by a tab. The first line of
the file must have the column heading “counts” preceded by a single tab character. The first column
contains the barcode, identifier, or HGVS variant string depending on the type of raw counts required
by the SeqLib type. The second column contains the count for that element.

Sequence file parameters

Enrich2 accepts sequence files in FASTQ format. These files may be processed while compressed with gzip or bzip2.
The file must have the suffix ”.fq” or ”.fastq” before compression.

• Reads

Required for FASTQ File Mode. Path to a FASTQ file containing the sequencing reads. For overlap
SeqLibs, there are fields for Forward Reads and Reverse Reads.

• Reverse

Checking this box will reverse-complement reads before analysis. Not present for Overlap SeqLibs.

Read filtering parameters

Filters are applied after read trimming and any read merging.

• Minimum Quality

Minimum single-base quality. If a single base in the read has a quality score below this value, the
read will be discarded.

• Average Quality

Average read quality. If the mean quality score of all bases in the read is below this value, the read
will be discarded.

• Maximum N’s

Maximum number of N nucleotides. If the read contains more than this number of bases called as N,
the read will be discarded. This should be set to 0 in most cases.

• Remove Unresolvable Overlaps

Present for Overlap SeqLibs only. Checking this box discards merged reads with unresolvable dis-
crepant bases (see Overlap parameters).

• Maximum Mutations

Present for SeqLibs with variants only. Maximum number of mutations. If the variant contains more
than this number of differences from wild type, the variant is discarded (or aligned if that option is
enabled under Variant parameters).

Barcode parameters

• Barcode-variant File

16 Chapter 4. SeqLib configuration details

http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format

Enrich2 Documentation, Release 1.2.0

Not present for barcode-only SeqLibs. Path to a tab-separated file in which each line contains a
barcode followed by its identifier or linked variant DNA sequence. This file may be processed while
compressed with gzip or bzip2.

• Minimum Count

Minimum barcode count. If the barcode has fewer counts than this value, it will not be scored and
will not contribute to counts of its variant or identifier.

• Trim Start

Position of the first base to keep when trimming barcodes. All subsequent bases are kept if Trim
Length is not specified. Reverse-complementing occurs before trimming. Bases are numbered start-
ing at 1.

• Trim Length

Number of bases to keep when trimming barcodes. Starts at the first base if Trim Start is not specified.
Reverse-complementing occurs before trimming.

Variant parameters

• Wild Type Sequence

The wild type DNA sequence. This sequence will be compared to reads or the barcode-variant map
when calling variants. All sequences must have the same length and starting position.

• Wild Type Offset

Integer added to every variant nucleotide position. Used to place variants in the context of a larger
sequence.

• Protein Coding

Checking this box will interpret the wild type sequence as protein coding. The wild type sequence
must be in frame.

• Use Aligner

Checking this box will enable Needleman-Wunsch alignment. Insertion and deletion events will be
called.

Warning: Using the aligner will dramatically increase run time, and is not recommended for most users.

• Minimum Count

Minimum variant count. If the variant has fewer counts than this value, it will not be scored and will
not contribute to counts of any synonymous elements.

Identifier parameters

• Minimum Count

Minimum identifier count. If the identifier has fewer counts than this value, it will not be scored.

4.4. Variant parameters 17

Enrich2 Documentation, Release 1.2.0

Overlap parameters

Overlapping read pairs reduce the likelihood of calling sequencing errors as variants. Paired-end Illumina reads are
generated such that they overlap in the target region.

When Enrich2 combines forward and reverse reads into merged reads, base quality values in the overlapping region
are defined as the higher quality value at each position. Mismatches are resolved by assuming the base with the higher
quality value is correct. If mismatched bases have the same quality value, the position is considered unresolvable and
replaced by an ‘X’ base.

• Forward Start

Position of the first overlapping base in the forward read. Bases are numbered starting at 1.

• Reverse Start

Position of the first overlapping base in the reverse read before reverse complementing. Bases are
numbered starting at 1.

• Overlap Length

Number of bases in the overlapping region.

• Maximum Mismatches

Maximum number of mismatches in the overlapping region. If a merged read has more than this
number of mismatches, the read pair will be discarded.

• Overlap Only

Checking this box will trim the merged reads to the overlapping region.

18 Chapter 4. SeqLib configuration details

CHAPTER 5

Output HDF5 files

Enrich2 stores data in an HDF5 file for each Experiment, Selection, and SeqLib analysis object. The name of the
HDF5 file is the object’s name plus the suffix “_<obj>.h5”, where <obj> is the object type (“exp”, “sel”, or “lib”).
Each file has multiple tables that can be queried and retrieved as pandas data frames (see Example notebooks).

Each Experiment, Selection, and SeqLib has its own directory inside “Results/tsv/” containing tab-separated value
files for users who want to work with other tools, such as R or Excel.

Table organization

HDF5 files organize tables into groups like directories in a file system. Enrich2 has two top-level groups, “/main”
(used for most tables) and “/raw” (used exclusively in SeqLibs to store raw counts). The first subgroup is typically the
element type (variant, barcode, etc.), followed by the kind of data (counts, scores, etc.).

Note: When the “Force recalculation” analysis option is chosen, the “/main” tables are deleted from all HDF5 files
in this analysis, and regenerated based on the “/raw” count data.

Enrich2 uses NaN (Not a Number) values to represent missing data, such as zero counts or scores that could not be
calculated.

List of tables by object type

Experiment

Most experiment tables use a pandas MultiIndex for column names. The MultiIndex levels are: condition, selection (if
applicable), and data value. See the pandas advanced indexing documentation for more information on how to work
with these objects.

• “/main/<element>/counts”

19

http://pandas.pydata.org/pandas-docs/stable/advanced.html

Enrich2 Documentation, Release 1.2.0

Counts of elements that appear in at least one time point in the experiment.

• “/main/<element>/scores”

Condition-level scores, standard errors, and epsilon (change in the standard error after the last itera-
tion of the random-effects model) for all elements scored in all selections of at least one condition.

• “/main/<element>/scores_shared”

Selection-level scores and standard errors for each element with at least one condition-level score.

• “/main/<element>/scores_shared_full”

Selection-level scores and standard errors for each element scored in at least one selection.

• “/main/<element>/scores_pvalues_wt”

z-scores and p-values for each variant or synonymous element with a condition-level score. The null
hypothesis is that the element’s score is equal to wild type.

• “/main/barcodemap”

Barcode-variant or barcode-identifier map for all barcodes that appear in the Experiment. Only
present for Barcoded Variant or Barcoded Identifier SeqLibs.

Selection

• “/main/<element>/counts”

Counts of elements that appear in all time points in the selection.

• “/main/<element>/counts_unfiltered”

Counts of elements that appear in at least one time point in the selection.

• “/main/<element>/scores”

Scores, standard errors, standard error percentiles, and method-specific values (e.g. regression slope
and intercept) for all elements counted in all time points in the selection.

• “/main/<element>/weights”

Regression weights for each element at each time point in weighted least squares regression.

• “/main/<element>/log_ratios”

Y-values for each element at each time point in weighted and ordinary least squares regression.

• “/main/barcodemap”

Barcode-variant or barcode-identifier map for all barcodes that appear in the Selection. Only present
for Barcoded Variant or Barcoded Identifier SeqLibs.

SeqLib

• “/main/<element>/counts”

Counts of elements after minimum count filtering and barcode mapping.

• “/raw/<element>/counts”

Counts of elements taken directly from the FASTQ data.

• “/raw/filter”

20 Chapter 5. Output HDF5 files

http://en.wikipedia.org/wiki/FASTQ_format

Enrich2 Documentation, Release 1.2.0

Number of reads removed for each FASTQ filtering option.

• “/raw/barcodemap”

Barcode-variant or barcode-identifier map for barcodes that appear in this SeqLib. Only present for
Barcoded Variant or Barcoded Identifier SeqLibs.

5.2. List of tables by object type 21

http://en.wikipedia.org/wiki/FASTQ_format

Enrich2 Documentation, Release 1.2.0

22 Chapter 5. Output HDF5 files

CHAPTER 6

Automatically generated plots

In addition to providing structured output to allow users to create their own plots, Enrich2 produces default visu-
alizations for each analysis. Experiment, Selection, and SeqLib objects each have their own directory inside “Re-
sults/plots/”. Plots are saved in PDF format, and many of the files contain multiple pages.

Experiment plots

• Sequence-function map

23

Enrich2 Documentation, Release 1.2.0

24 Chapter 6. Automatically generated plots

Enrich2 Documentation, Release 1.2.0

Visualization of scores and standard errors for single changes from wild type. Separate protein- and
nucleotide-level sequence-function maps are generated.

Cell color indicates the score for the single change (row) at the given position (column). Positive
scores (in red) indicate better performance in the assay, and negative scores (in blue) indicate worse
performance. Grey squares denote changes that were not measured. Diagonal lines in each cell
represent the standard error for the score, and are scaled such that the highest standard error on the
plot covers the entire diagonal. Standard errors that are less than 2% of this maximum value are
not plotted. Cells containing circles have the wild type residue at that position. Custom amino
acid ordering and groups can be specified by running Enrich2 in command line mode and using the
--sfmap-aa-file option. Each line of the file begins with an optional label followed by a single
tab character and then a comma-separated list of single-letter amino acid codes. All amino acid codes
must be present exactly once.

The following amino acid grouping files are provided:

Default (click to download)

This grouping is used when no file is specified. Reference

(+) H,K,R
(-) D,E
Polar-neutral C,M,N,Q,S,T
Non-polar A,I,L,V
Aromatic F,W,Y
Unique G,P

*

Helical Propensity (click to download)

Reference

High helical propensity A,L,R,M,K,Q,E,I,W
Low helical propensity S,Y,F,V,H,N,T,C,E
Disruptive G,P

*

Selection plots

• Sequence-function map

As above.

• Diversity map

6.2. Selection plots 25

http://www.sigmaaldrich.com/life-science/metabolomics/learning-center/amino-acid-reference-chart.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299714/

Enrich2 Documentation, Release 1.2.0

26 Chapter 6. Automatically generated plots

Enrich2 Documentation, Release 1.2.0

Variant frequencies are visualized in the style of a sequence-function map. Separate protein- and
nucleotide-level diversity maps for each time point are generated.

Custom amino acid ordering and groups can be specified by running Enrich2 in command line mode
and using the --sfmap-aa-file option. See above for more details.

• Counts per time point

Bar plots showing the total element count in each time point. One plot for each element type.

• Representative regression fits

6.2. Selection plots 27

Enrich2 Documentation, Release 1.2.0

28 Chapter 6. Automatically generated plots

Enrich2 Documentation, Release 1.2.0

Present for linear regression scoring methods only. Linear fits for the element closest to each 5th
percentile (0, 5, 10, ..., 95, 100). Used for diagnostic purposes and setting standard error filtering
cutoffs. One plot for each element type.

• Regression weights

Present for weighted linear regression scoring method only. Boxplot of regression weights for each
time point. Dashed line indicates uniform weight. One plot for each element type.

• Volcano plot

6.2. Selection plots 29

Enrich2 Documentation, Release 1.2.0

Present for linear regression scoring methods with variants only. Volcano plot of the raw p-value from
a z-test under the null hypothesis that the element behaves the same as wild type vs. the element’s
score. One plot for each element type.

• Wild type shape

30 Chapter 6. Automatically generated plots

Enrich2 Documentation, Release 1.2.0

Present for linear regression scoring methods with variants only. Plot of the non-normalized linear
fit of the wild type. Used to assess the effect of wild type correction.

SeqLib plots

• Counts per element

6.3. SeqLib plots 31

Enrich2 Documentation, Release 1.2.0

Histogram of element counts. Two plots for each element type, one with log-transformed x-axis and
one without.

• Unique barcodes per element

32 Chapter 6. Automatically generated plots

Enrich2 Documentation, Release 1.2.0

Present for Barcoded Variant and Barcoded Identifier SeqLibs only. Histogram of unique barcodes
per variant or identifier.

• Mismatches in overlapping reads

Present for Overlap SeqLibs only. Barplot of the number of resolved and unresolved mismatches at
each position in the overlap region, and the number of times the first mismatch in a read pair occured
at each position. Used for diagnosing misalignment of overlapping reads.

6.3. SeqLib plots 33

Enrich2 Documentation, Release 1.2.0

34 Chapter 6. Automatically generated plots

CHAPTER 7

Example notebooks

Begin exploring Enrich2 datasets with the following notebooks. They rely on the Enrich2 example dataset, so please
perform that analysis before running any of these notebooks locally.

The notebooks can be run interactively by using the command line to navigate to the “Enrich2/docs/notebooks” di-
rectory and enter jupyter notebook <notebook.ipynb> where <notebook.ipynb> is the notebook file
name.

The first two notebooks demonstrate using pandas to open an HDF5 file, extract its contents into a data frame, and
perform queries on tables in the HDF5 file. For more information, see the pandas HDF5 documentation.

Selecting variants by input library count

This notebook gets scores and standard errors for the variants in a Selection that exceed a minimum count cutoff in the
input time point, and plots the relationship between each variant’s score and input count.

% matplotlib inline

from __future__ import print_function
import os.path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from enrich2.variant import WILD_TYPE_VARIANT
import enrich2.plots as enrich_plot
pd.set_option("display.max_rows", 10) # rows shown when pretty-printing

Modify the results_path variable in the next cell to match the output directory of your Enrich2-Example dataset.

results_path = "/path/to/Enrich2-Example/Results/"

Open the Selection HDF5 file with the variants we are interested in.

35

https://github.com/FowlerLab/Enrich2-Example/
http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables

Enrich2 Documentation, Release 1.2.0

my_store = pd.HDFStore(os.path.join(results_path, "Rep1_sel.h5"))

The pd.HDFStore.keys() method returns a list of all the tables in this HDF5 file.

my_store.keys()

['/main/barcodemap',
'/main/barcodes/counts',
'/main/barcodes/counts_unfiltered',
'/main/barcodes/log_ratios',
'/main/barcodes/scores',
'/main/barcodes/weights',
'/main/synonymous/counts',
'/main/synonymous/counts_unfiltered',
'/main/synonymous/log_ratios',
'/main/synonymous/scores',
'/main/synonymous/weights',
'/main/variants/counts',
'/main/variants/counts_unfiltered',
'/main/variants/log_ratios',
'/main/variants/scores',
'/main/variants/weights']

We will work with the “/main/variants/counts” table first. Enrich2 names the columns for counts c_n where n is the
time point, beginning with 0 for the input library.

We can use a query to extract the subset of variants in the table that exceed the specified cutoff. Since we’re only
interested in variants, we’ll explicitly exclude the wild type. We will store the data we extract in the variant_count
data frame.

read_cutoff = 10

variant_counts = my_store.select('/main/variants/counts', where='c_0 > read_cutoff
→˓and index != WILD_TYPE_VARIANT')
variant_counts

The index of the data frame is the list of variants that exceeded the cutoff.

variant_counts.index

Index([u'c.10G>A (p.Ala4Arg), c.11C>G (p.Ala4Arg), c.12T>A (p.Ala4Arg)',
u'c.10G>A (p.Ala4Asn), c.11C>A (p.Ala4Asn)',
u'c.10G>A (p.Ala4Asn), c.11C>A (p.Ala4Asn), c.12T>C (p.Ala4Asn)',
u'c.10G>A (p.Ala4Ile), c.11C>T (p.Ala4Ile)',
u'c.10G>A (p.Ala4Ile), c.11C>T (p.Ala4Ile), c.12T>A (p.Ala4Ile)',
u'c.10G>A (p.Ala4Ile), c.11C>T (p.Ala4Ile), c.12T>C (p.Ala4Ile)',
u'c.10G>A (p.Ala4Lys), c.11C>A (p.Ala4Lys), c.12T>A (p.Ala4Lys)',
u'c.10G>A (p.Ala4Met), c.11C>T (p.Ala4Met), c.12T>G (p.Ala4Met)',
u'c.10G>A (p.Ala4Ser), c.11C>G (p.Ala4Ser)',
u'c.10G>A (p.Ala4Ser), c.11C>G (p.Ala4Ser), c.12T>C (p.Ala4Ser)',
...
u'c.8C>T (p.Ser3Phe), c.60C>T (p.=)',
u'c.8C>T (p.Ser3Phe), c.9T>C (p.Ser3Phe)', u'c.90C>A (p.=)',
u'c.90C>G (p.Ile30Met)', u'c.90C>T (p.=)', u'c.9T>A (p.=)',
u'c.9T>C (p.=)',
u'c.9T>C (p.=), c.49A>T (p.Met17Ser), c.50T>C (p.Met17Ser), c.51G>A (p.

→˓Met17Ser)',

36 Chapter 7. Example notebooks

Enrich2 Documentation, Release 1.2.0

u'c.9T>C (p.=), c.62T>C (p.Leu21Ser), c.63A>T (p.Leu21Ser)',
u'c.9T>G (p.=)'],

dtype='object', length=1440)

We can use this index to get the scores for these variants by querying the “/main/variants/scores” table. We’ll store the
result of the query in a new data frame named variant_scores, and keep only the score and standard error (SE)
columns.

variant_scores = my_store.select('/main/variants/scores', where='index in variant_
→˓counts.index')
variant_scores = variant_scores[['score', 'SE']]
variant_scores

Now that we’re finished getting data out of the HDF5 file, we’ll close it.

my_store.close()

To more easily explore the relationship between input count and score, we’ll add a column to the variant_scores
data frame that contains input counts from the variant_counts data frame.

variant_scores['input_count'] = variant_counts['c_0']
variant_scores

Now that all the information is in a single data frame, we can make a plot of score vs. input count. This example
uses functions and colors from the Enrich2 plotting library. Taking the log10 of the counts makes the data easier to
visualize.

fig, ax = plt.subplots()
enrich_plot.configure_axes(ax, xgrid=True)
ax.plot(np.log10(variant_scores['input_count']),

variant_scores['score'],
linestyle='none', marker='.', alpha=0.6,
color=enrich_plot.plot_colors['bright4'])

ax.set_xlabel("log10(Input Count)")
ax.set_ylabel("Variant Score")

<matplotlib.text.Text at 0x9e796a0>

7.1. Selecting variants by input library count 37

Enrich2 Documentation, Release 1.2.0

Selecting variants by number of unique barcodes

This notebook gets scores for the variants in an Experiment that are linked to multiple barcodes, and plots the relation-
ship between each variant’s score and number of unique barcodes.

% matplotlib inline

from __future__ import print_function
import os.path
from collections import Counter
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from enrich2.variant import WILD_TYPE_VARIANT
import enrich2.plots as enrich_plot
pd.set_option("display.max_rows", 10) # rows shown when pretty-printing

Modify the results_path variable in the next cell to match the output directory of your Enrich2-Example dataset.

results_path = "/path/to/Enrich2-Example/Results/"

Open the Experiment HDF5 file.

my_store = pd.HDFStore(os.path.join(results_path, "BRCA1_Example_exp.h5"))

The pd.HDFStore.keys() method returns a list of all the tables in this HDF5 file.

my_store.keys()

38 Chapter 7. Example notebooks

Enrich2 Documentation, Release 1.2.0

['/main/barcodemap',
'/main/barcodes/counts',
'/main/barcodes/scores',
'/main/barcodes/scores_shared',
'/main/barcodes/scores_shared_full',
'/main/synonymous/counts',
'/main/synonymous/scores',
'/main/synonymous/scores_pvalues_wt',
'/main/synonymous/scores_shared',
'/main/synonymous/scores_shared_full',
'/main/variants/counts',
'/main/variants/scores',
'/main/variants/scores_pvalues_wt',
'/main/variants/scores_shared',
'/main/variants/scores_shared_full']

First we will work with the barcode-variant map for this analysis, stored in the “/main/barcodemap” table. The index
is the barcode and it has a single column for the variant HGVS string.

bcm = my_store['/main/barcodemap']
bcm

To find out how many unique barcodes are linked to each variant, we’ll count the number of times each variant appears
in the barcode-variant map using a Counter data structure. We’ll then output the top ten variants by number of unique
barcodes.

variant_bcs = Counter(bcm['value'])
variant_bcs.most_common(10)

[('_wt', 5844),
('c.63A>T (p.Leu21Phe)', 109),
('c.39C>A (p.=)', 91),
('c.61T>A (p.Leu21Ile), c.63A>T (p.Leu21Ile)', 77),
('c.62T>A (p.Leu21Tyr), c.63A>T (p.Leu21Tyr)', 77),
('c.63A>G (p.=)', 73),
('c.72C>A (p.=)', 72),
('c.62T>G (p.Leu21Cys), c.63A>T (p.Leu21Cys)', 71),
('c.13C>A (p.Leu5Ile)', 70),
('c.62T>A (p.Leu21Ter)', 63)]

Next we’ll turn the Counter into a data frame.

bc_counts = pd.DataFrame(variant_bcs.most_common(), columns=['variant', 'barcodes'])
bc_counts

The data frame has the information we want, but it will be easier to use later if it’s indexed by variant rather than row
number.

bc_counts.index = bc_counts['variant']
bc_counts.index.name = None
del bc_counts['variant']
bc_counts

We’ll use a cutoff to choose variants with a minimum number of unique barcodes, and store this subset in a new index.
We’ll also exclude the wild type by dropping the first entry of the index.

7.2. Selecting variants by number of unique barcodes 39

https://docs.python.org/2/library/collections.html#counter-objects

Enrich2 Documentation, Release 1.2.0

bc_cutoff = 10

multi_bc_variants = bc_counts.loc[bc_counts['barcodes'] >= bc_cutoff].index[1:]
multi_bc_variants

Index([u'c.63A>T (p.Leu21Phe)', u'c.39C>A (p.=)',
u'c.61T>A (p.Leu21Ile), c.63A>T (p.Leu21Ile)',
u'c.62T>A (p.Leu21Tyr), c.63A>T (p.Leu21Tyr)', u'c.63A>G (p.=)',
u'c.72C>A (p.=)', u'c.62T>G (p.Leu21Cys), c.63A>T (p.Leu21Cys)',
u'c.13C>A (p.Leu5Ile)', u'c.62T>A (p.Leu21Ter)',
u'c.63A>C (p.Leu21Phe)',
...
u'c.88A>C (p.Ile30Arg), c.89T>G (p.Ile30Arg), c.90C>T (p.Ile30Arg)',
u'c.76T>A (p.Cys26Lys), c.77G>A (p.Cys26Lys), c.78C>G (p.Cys26Lys)',
u'c.22G>A (p.Glu8Ile), c.23A>T (p.Glu8Ile), c.24A>T (p.Glu8Ile)',
u'c.49A>T (p.Met17Ser), c.50T>C (p.Met17Ser), c.51G>A (p.Met17Ser)',
u'c.64G>A (p.Glu22Arg), c.65A>G (p.Glu22Arg)',
u'c.77G>C (p.Cys26Ser), c.78C>G (p.Cys26Ser)',
u'c.29T>A (p.Val10Glu), c.30A>G (p.Val10Glu)',
u'c.50T>A (p.Met17Asn), c.51G>T (p.Met17Asn)',
u'c.61T>A (p.Leu21Thr), c.62T>C (p.Leu21Thr), c.63A>G (p.Leu21Thr)',
u'c.49A>G (p.Met17Ala), c.50T>C (p.Met17Ala)'],

dtype='object', length=504)

We can use this index to get condition-level scores for these variants by querying the “/main/variants/scores” table.
Since we are working with an Experiment HDF5 file, the data frame column names are a MultiIndex with two levels,
one for experimental conditions and one for data values (see the pandas documentation for more information).

multi_bc_scores = my_store.select('/main/variants/scores', where='index in multi_bc_
→˓variants')
multi_bc_scores

There are fewer rows in multi_bc_scores than in multi_bc_variants because some of the variants were
not scored in all replicate selections, and therefore do not have a condition-level score.

Now that we’re finished getting data out of the HDF5 file, we’ll close it.

my_store.close()

We’ll add a column to the bc_counts data frame that contains scores from the multi_bc_scores data frame.
To reference a column in a data frame with a MultiIndex, we need to specify all column levels.

bc_counts['score'] = multi_bc_scores['E3', 'score']
bc_counts

Many rows in bc_counts are missing scores (displayed as NaN) because those variants were not in
multi_bc_scores. We’ll drop them before continuing.

bc_counts.dropna(inplace=True)
bc_counts

Now that we have a data frame containing the subset of variants we’re interested in, we can make a plot of score vs.
number of unique barcodes. This example uses functions and colors from the Enrich2 plotting library.

fig, ax = plt.subplots()
enrich_plot.configure_axes(ax, xgrid=True)
ax.plot(bc_counts['barcodes'],

40 Chapter 7. Example notebooks

http://pandas.pydata.org/pandas-docs/stable/advanced.html

Enrich2 Documentation, Release 1.2.0

bc_counts['score'],
linestyle='none', marker='.', alpha=0.6,
color=enrich_plot.plot_colors['bright5'])

ax.set_xlabel("Unique Barcodes")
ax.set_ylabel("Variant Score")

<matplotlib.text.Text at 0xd91fe80>

For more information on Enrich2 data tables, see Output HDF5 files.

7.2. Selecting variants by number of unique barcodes 41

Enrich2 Documentation, Release 1.2.0

42 Chapter 7. Example notebooks

CHAPTER 8

Appendix: API documentation

This page contains automatically generated documentation from the Enrich2 codebase. It is intended for developers
and advanced users.

storemanager — Abstract class for Enrich2 data

This module contains the class definition for the StoreManager abstract class, the shared base class for most classes
in the Enrich2 project. This class provides general behavior for the GUI and for handling HDF5 data files.

StoreManager class

seqlib — Sequencing library file handling and element counting

This module provides class definitions for the various types of sequencing library designs usable by Enrich2. Data for
each FASTQ file (or pair of overlapping FASTQ files for overlapping paired-end data) is read into its own SeqLib
object. If necessary, FASTQ files should be split by index read before being read by a SeqLib object. SeqLib
objects are coordinated by Selection objects.

SeqLib and VariantSeqLib are abstract classes.

43

http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format
http://en.wikipedia.org/wiki/FASTQ_format

Enrich2 Documentation, Release 1.2.0

SeqLib class

VariantSeqLib class

BarcodeSeqLib class

BcvSeqLib class

BcidSeqLib class

BasicSeqLib class

OverlapSeqLib class

IdOnlySeqLib class

SeqLib helper classes

Aligner class

WildTypeSequence class

class enrich2.wildtype.WildTypeSequence(parent_name)
Container class for wild type sequence information. Used by VariantSeqLib objects and Selection or
Experiment objects that contain variant information.

Requires a parent_name that associates this object with a StoreManager object for the purposes of error reporting
and logging.

duplicate(new_parent_name)
Create a copy of this object with the new_parent_name.

Uses the configure and serialize methods to perform the copy.

position_tuples(protein=False)
Return a list of tuples containing the position number (after offset adjustment) and single-letter symbol
(nucleotide or amino acid) for each position the wild type sequence.

serialize()
Format this object as a config object suitable for dumping to a config file.

BarcodeMap class

class enrich2.barcodemap.BarcodeMap(mapfile, is_variant=False)
Dictionary-derived class for storing the relationship between barcodes (keys) and variants (values). Requires
the path to a mapfile, containing lines in the format 'barcode<whitespace>variant' for each barcode
expected in the library. This file can be plain text or compressed (.bz2 or .gz).

Barcodes must only contain the characters ACGT and variants must only contain the characters ACGTN (lower-
case characters are converted to uppercase).

Blank lines and lines that begin with # (comments) are ignored.

44 Chapter 8. Appendix: API documentation

Enrich2 Documentation, Release 1.2.0

is_variant is a boolean that is True if the barcodes are assigned to variant DNA sequences, or False if the
barcodes are assigned to arbitrary identifiers. If this is True, additional error checking is performed on the
variant DNA sequences.

selection — Functional score calculation using SeqLib count data

This module provides class definitions for the Selection class. This is where functional scores are calculated from
the SeqLib count data. For time series data, each time point in the selection can have multiple SeqLib assigned to
it, in which case the counts for each element will be added together. Each time series selection must have a time point
0 (the “input library”).

Selection class

Selection helpers

condition — Dummy class for GUI

This module provides class definitions for the Condition classes. This class is required for proper GUI operation.
All condition-related behaviors are in the Experiment class.

Condition class

experiment — Aggregation of replicate selections

This module provides class definitions for the Experiment. Functional scores for selections within the same condi-
tion are combined to generate a single functional score (and associated error) for each element in each experimental
condition.

Experiment class

Enrich2 plotting

Text goes here.

Sequence-function map plotting

Text goes here.

Utility functions

Configuration object type detection

Functions for identifying the type of StoreManager derived object associated with a given configuration object
(decoded from a JSON file as described here).

8.3. selection — Functional score calculation using SeqLib count data 45

https://docs.python.org/2/library/json.html

Enrich2 Documentation, Release 1.2.0

enrich2.config_check.element_type(cfg)
Get the type of StoreManager derived object specified by the configuration object.

Parameters cfg (dict) – decoded JSON object

Returns The class name of the StoreManager derived object specified by cfg.

Return type str

Raises ValueError – If the class name cannot be determined.

enrich2.config_check.is_condition(cfg)
Check if the given configuration object specifies a Condition.

Parameters cfg (dict) – decoded JSON object

Returns True if cfg if specifies a Condition, else False.

Return type bool

enrich2.config_check.is_experiment(cfg)
Check if the given configuration object specifies an Experiment.

Parameters cfg (dict) – decoded JSON object

Returns True if cfg if specifies an Experiment, else False.

Return type bool

enrich2.config_check.is_selection(cfg)
Check if the given configuration object specifies a Selection.

Parameters cfg (dict) – decoded JSON object

Returns True if cfg if specifies a Selection, else False.

Return type bool

enrich2.config_check.is_seqlib(cfg)
Check if the given configuration object specifies a SeqLib derived object.

Parameters cfg (dict) – decoded JSON object

Returns True if cfg if specifies a SeqLib derived object, else False.

Return type bool

enrich2.config_check.seqlib_type(cfg)
Get the type of SeqLib derived object specified by the configuration object.

Parameters cfg (dict) – decoded JSON object

Returns The class name of the SeqLib derived object specified by cfg.

Return type str

Raises ValueError – If the class name cannot be determined.

Dataframe and index helper functions

Variant helper functions

46 Chapter 8. Appendix: API documentation

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

Enrich2 Documentation, Release 1.2.0

HGVS variant regular expressions

Enrich2 entry points

8.8. Enrich2 entry points 47

Enrich2 Documentation, Release 1.2.0

48 Chapter 8. Appendix: API documentation

Python Module Index

c
condition, 45

e
enrich2.config_check, 45
experiment, 45

p
plots, 45

s
selection, 45
seqlib, 43
sfmap, 45
storemanager, 43

49

Enrich2 Documentation, Release 1.2.0

50 Python Module Index

Index

B
BarcodeMap (class in enrich2.barcodemap), 44

C
condition (module), 45

D
duplicate() (enrich2.wildtype.WildTypeSequence

method), 44

E
element_type() (in module enrich2.config_check), 45
enrich2.config_check (module), 45
experiment (module), 45

I
is_condition() (in module enrich2.config_check), 46
is_experiment() (in module enrich2.config_check), 46
is_selection() (in module enrich2.config_check), 46
is_seqlib() (in module enrich2.config_check), 46

P
plots (module), 45
position_tuples() (enrich2.wildtype.WildTypeSequence

method), 44

S
selection (module), 45
seqlib (module), 43
seqlib_type() (in module enrich2.config_check), 46
serialize() (enrich2.wildtype.WildTypeSequence

method), 44
sfmap (module), 45
storemanager (module), 43

W
WildTypeSequence (class in enrich2.wildtype), 44

51

	Getting started
	Required packages
	Installation and example dataset
	Enrich2 executables

	Defining experiments
	Experimental designs
	Elements
	SeqLibs

	Using the GUI
	Configuring your analysis
	Saving and loading
	Context menus
	Analysis options

	SeqLib configuration details
	General parameters
	Sequence file parameters
	Barcode parameters
	Variant parameters
	Identifier parameters
	Overlap parameters

	Output HDF5 files
	Table organization
	List of tables by object type

	Automatically generated plots
	Experiment plots
	Selection plots
	SeqLib plots

	Example notebooks
	Selecting variants by input library count
	Selecting variants by number of unique barcodes

	Appendix: API documentation
	storemanager — Abstract class for Enrich2 data
	seqlib — Sequencing library file handling and element counting
	selection — Functional score calculation using SeqLib count data
	condition — Dummy class for GUI
	experiment — Aggregation of replicate selections
	Enrich2 plotting
	Utility functions
	Enrich2 entry points

	Python Module Index

