

Enoviah Documentation

Introduction

Bienvenue sur la documentation pour Enoviah.
Ici vous pourrez retrouver les éléments qui vous permettrons d’utiliser le plus efficacement nos services.
Le monde de la programmation n’étant pas connu de tous, nous mettrons un point d’honneur à rédiger cette docs, afin d’être
compréhensible même pour des personnes étrangères au milieu.

Note

Pour l’instant la docs n’est disponible qu’en Francais, si vous avez du temps et de solide connaissances en langues n’hésitez pas à nous contacter par mail.

Sommaire

Les Launchers

Cette section est destiné aux personnes ayant commandés ou souhaitant commander un launchers.
Divers sous partie vous permettrons de comprendre comment utiliser nos launchers, les configurers, etc...

	Première Lecture
	Commander un launcher

	Server Management

	Becoming an Expert Spongineer

Première Lecture

Enoviah réalise des launchers depuis plus d’un an, fort de son expérience nous vous proposons donc des launchers avec des nombreuses fonctionnalitées.

Note

Nous réalisons le code, pas les DESIGNS ! Merci de votre compréhension.

Sommaire

	Commander un launcher
	Installing Java

	Migrating to Sponge

	Choosing an Implementation

	Creating a Launch Script

	Port Forwarding

	Using Sponge with BungeeCord

	Configuring Sponge

	Server Management
	Managing the Whitelist

	Managing Bans

	Managing Permissions

	Installing Plugins

	Exploit Patches

	Performance Tweaks

	Becoming an Expert Spongineer
	Commands

	Troubleshooting

	Log Files

	Debugging

	Reporting Bugs

Commander un launcher

Sommaire

	Installing Java

	Migrating to Sponge

	Choosing an Implementation
	Installing SpongeForge

	Installing SpongeVanilla

	Creating a Launch Script

	Port Forwarding

	Using Sponge with BungeeCord

	Configuring Sponge
	Introduction to HOCON

	JSON Syntax

	global.conf

	server.properties

Installing Java

Java is needed to run Sponge and Minecraft. You most likely already have Java, but you may need to update it.

Sponge requires Java 8 (specifically 1.8.0_40 or above) at this time. Older Java versions are deprecated and will not
work with Sponge. The difference between major versions of Java (6, 7, 8) is significant, and older versions cannot run
Sponge properly.

Installing Java

If you have Windows or macOS for your computer, you can download Java from the official website [https://java.com/en/download/manual.jsp].

Linux users can install OpenJDK via their package manager. OpenJDK is the open source version of the Oracle version of
Java, and it should work just as well, if not better. However, it’s also possible to download the Oracle version for
Linux [https://www.oracle.com/technetwork/java/javase/downloads/index.html], but be aware that many Java-dependent
Linux packages will still install OpenJDK anyway.

32-bit vs. 64-bit

If your computer supports it, you should use 64-bit versions of Java whenever possible. The Java installers from the
linked website should detect whether your computer is ready for 64-bit.

Because the 64-bit version of Java runs considerably better, and also lets Java use more than ~3 GB of your RAM (memory),
we always recommend it over 32-bit.

Most modern computers support 64-bit.

JDK vs. JRE

The JRE (Java Runtime Environment) is used to run Java applications. The download page linked above provides the JRE.

The JDK (Java Development Kit) is used to create Java applications, and you do not need it unless you plan to make
Sponge plugins or work on Sponge. However, in some cases, you may need the JDK to diagnose a running Java application
such as Sponge. You can download the JDK from a different site [https://www.oracle.com/technetwork/java/javase/downloads/index.html].

Migrating to Sponge

The purpose of the articles within this section is to help current server owners to migrate from other server platforms
to Sponge.

	Migrating to Sponge
	Migrating from CraftBukkit or Spigot

	Migrating from Canary

	Migrating from Forge

	Migrating from Vanilla

	Installing Sponge

Avertissement

Please backup your server files before migrating. In case something goes wrong, you still have your backups!

Migrating to Sponge

To migrate to SpongeForge or SpongeVanilla, look at the sections below. Most instructions are identical for both,
differences are stated below.

Migrating from CraftBukkit or Spigot

Note

Spigot is a modified fork of CraftBukkit.

Worlds

Forge, and thus SpongeForge (and also SpongeVanilla), use the same world structure as vanilla Minecraft. Vanilla Minecraft
places the nether (typically world_nether) and the end (typically world_the_end) dimensions within the
world folder. However Bukkit and Spigot don’t use this system to save the worlds, thus migration is needed.

SpongeForge and SpongeVanilla provide a fully automated conversion script which converts your worlds for you.
This is how it works:

	Shutdown your Bukkit or Spigot server and Backup the entire folder.

	Install SpongeForge or SpongeVanilla in the folder where you ran your old server, remove the Bukkit or Spigot jars.
If you’re unsure how you’re supposed to install SpongeForge or SpongeVanilla properly, read this.

	Start the Sponge server, the migrator will be loaded automatically.

	The Migrator will look into the bukkit.yml for a config key called world-container and will search that folder for
worlds to transfer. If that file isn’t around (or something caused it to fail to read), then the migrator will use
the root folder of the server (which is CraftBukkit standard).

	Now the migration is performed. At this point, worlds are copied over from what we call the world container into
the folder defined in the server.properties file via the level-name key.
Note that the original files in the world container remain unchanged, a copy is made during migration.

	Bukkit puts things in weird places (with weird names), thus two important fixes have to be applied. Keep in mind that
these fixes are based on assumptions (due to Bukkit’s structure).
	The first fix is to rename any folder whose name starts with level-name property and ends with a Vanilla
dimension name (_nether/_the_end) to DIM-1 and DIM1 respectively.

	The second fix is to migrate up the region data within a Bukkit Vanilla nether/the_end. Bukkit puts this data
into DIM-1\region and DIM1\region respectively whereas Vanilla/Forge expect region to be in the
root of the world’s folder structure.

The migrator can’t provide all needed configuration values. This is the reason why you need to change several parameters
by hand to make the world work properly upon loading it on SpongeForge or SpongeVanilla. It is strongly advised to use a
World Management Plugin to set the right parameters and actually load the world.

Note

As already pointed out, we have to deal with several assumptions while migrating your world.
Thus Sponge does not load the world directly, you need to install a plugin to handle this.

The output generated by the migration tool should look like this, if everything went fine:

[17:32:29] [Server thread/INFO] [Sponge]: Checking for worlds that need to be migrated...
[17:32:29] [Server thread/INFO] [Sponge]: Migrating [world_lol] from [.].
[17:32:29] [Server thread/INFO] [Sponge]: Migrated world [world_lol] from [.] to [.\world\world_lol]
[17:32:29] [Server thread/INFO] [Sponge]: Migrating [world_nether] from [.].
[17:32:29] [Server thread/INFO] [Sponge]: Migrated world [world_nether] from [.] to [.\world\DIM-1]
[17:32:29] [Server thread/INFO] [Sponge]: Migrating [world_the_end] from [.].
[17:32:29] [Server thread/INFO] [Sponge]: Migrated world [world_the_end] from [.] to [.\world\DIM1]
[17:32:29] [Server thread/INFO] [Sponge]: [3] worlds have been migrated back to Vanilla's format.

When this is complete, you should have a copy of the world(s) in a structure that Sponge can load.
The original world files remain untouched in their original location, in case something went wrong.

Server and World Configuration Files

CraftBukkit and Sponge both share files that are made available by vanilla Minecraft. These files can thus be reused on
Sponge, if they are already present in your CraftBukkit installation:

	server.properties

	banned-ips.json

	banned-players.json

	ops.json

	usercache.json

	whitelist.json

The following files are used by CraftBukkit only, and can be removed because Sponge does not use them:

	bukkit.yml

	commands.yml

	help.yml

	permissions.yml

Users who are migrating from Spigot may wish to compare spigot.yml to global.conf in Sponge. Some keys in
spigot.yml have counterparts in global.conf, and it may be desirable to copy over the values of any keys that
are present in both files.

Plugins

Sponge has no native support for Bukkit plugins. However, some members of the community are re-implementing the Bukkit
API within a special Sponge plugin, which may allow Bukkit plugins to function on a Sponge server. This plugin has not
yet been slated for release.

Ore is Sponge’s official repository for finding plugins, and it is recommended to download all Sponge plugins from Ore.
When finding replacements for your Bukkit plugins, there are a few points to keep in mind:

	Not all Bukkit developers have chosen to port their plugins to Sponge. Over time, however, someone else may create a
suitable replacement.

	Not all Sponge plugins that are ported from Bukkit will automatically convert configuration files. Individual plugin
developers make the decision on whether or not to automatically convert configuration files.

	Some Sponge plugins that are ported from Bukkit may change in functionality, or may not even use the same
configuration structure.

Migrating from Canary

Worlds

Forge, and thus SpongeForge (and also SpongeVanilla), use the same world structure as vanilla Minecraft. Vanilla Minecraft
places the nether (typically world_nether) and the end (typically world_the_end) dimensions within the
world folder.

Canary relocates the nether and end dimensions outside of the world folder, which must be remedied if it is desired
to retain the nether and end dimensions when running Sponge. However, Canary provides an easy method to convert Canary
worlds to a structure usable by Sponge with the /makevanilla command. If the world conversion is successful, the
output will be placed in the vanilla folder.

Server and World Configuration Files

Sponge uses many files that are made available by vanilla Minecraft, such as server.properties. Canary, however,
does not; the only file it has in common with vanilla Minecraft is usercache.json. Thus, usercache.json is the
only file from Canary that can be reused on Sponge.

Nevertheless, it is possible to manually migrate some Canary configuration files to their Sponge counterparts, which
have been provided below.

	Canary file(s)
	Sponge counterpart(s)

	server.cfg
<world>_<dimension>.cfg
	server.properties

	<world>_<dimension>.cfg
	global.conf
<dimension>/dimension.conf

	ops.cfg
	ops.json

	db.cfg
	No counterpart

	motd.txt
	No counterpart

Plugins

SpongeVanilla and SpongeForge have no native support for Canary plugins. It may be possible to re-implement the
Canary API in a special Sponge plugin.

Ore is Sponge’s official repository for finding plugins, and it is recommended to download all Sponge plugins from Ore.
When finding replacements for your Canary plugins, there are a few points to keep in mind:

	Not all Canary developers have chosen to port their plugins to Sponge. Over time, however, someone else may create a
suitable replacement.

	Not all Sponge plugins that are ported from Canary will automatically convert configuration files. Individual plugin
developers make the decision on whether or not to automatically convert configuration files.

	Some Sponge plugins that are ported from Canary may change in functionality, or may not even use the same configuration
structure.

Migrating from Forge

Migrating from a plain Forge server to a SpongeForge or SpongeVanilla server is a fairly simple process that needs little-to-no
preparatory work.

Migrating to SpongeForge

You must first ensure you are running a version of Forge that is compatible with the version of SpongeForge your plan to
use. You may find recommended builds of Forge at Forge Downloads [http://files.minecraftforge.net]. If you are using
any other mods, they must also be updated.

When you are ready to install SpongeForge, you may proceed with the following steps:

	Stop your Forge server if it is running.

	Download SpongeForge from the Sponge website and Forge from MinecraftForge.

	Place SpongeForge.jar into your mods folder.

	Start the server and party!

Note

If SpongeForge is the only mod on your server, players will be able to log in with a vanilla client. Other mods may
require players to install Forge on their own computers.

Migration to SpongeVanilla

Avertissement

If migrating to SpongeVanilla:
You will lose all Forge mod data, blocks and entities as SpongeVanilla can’t run Forge mods.
Keep that in mind when deciding whether you go with SpongeForge or SpongeVanilla.

The process of migration is almost the same as above:

	Stop your Forge server if it is still running.

	Download SpongeVanilla and the vanilla server from Mojang.

	Place your worlds and config files in the server folder.

	Run the server by launching the spongevanilla.jar.

Migrating from Vanilla

Administrators of vanilla Minecraft servers can migrate to Sponge easily because Forge, and thus SpongeForge
(and SpongeVanilla), use the same world structure as vanilla Minecraft. Sponge also uses the same files used by
vanilla Minecraft, such as server.properties.

At first you should decide if you want to run SpongeForge or SpongeVanilla.

Note

Both flavours of Sponge are able to serve vanilla clients. Keep in mind that this only applies to SpongeForge as
long as you don’t install Forge mods which require client modifications.

	Stop your Vanilla server if it is still running

	Download SpongeVanilla or SpongeForge.

	Place your worlds and config files in the server folder.

	Run your new server.

Installing Sponge

The guides at Installing SpongeForge and Installing SpongeVanilla provide instructions for
installing Sponge while you’re migrating.

Choosing an Implementation

Something that runs Sponge plugins is called an implementation. As long as a plugin is correctly made using the
SpongeAPI, it should run correctly on any sufficiently-complete implementation.

Minecraft can’t run Sponge plugins out of the box, but you can modify it to do so.

The Sponge API itself is an open standard [https://github.com/SpongePowered/SpongeAPI].

Available Implementations

There are currently two implementations:

	Name
	Based on

	SpongeForge
	Mojang’s “vanilla” Minecraft and Minecraft Forge

	SpongeVanilla
	Mojang’s “vanilla” Minecraft

Which do I choose?

If you want to run MinecraftForge mods or you prefer to use Sponge in singleplayer, then choose SpongeForge.

If you only want to run a Mincraft server with plugins on it (but no mods), then you can choose SpongeForge or
SpongeVanilla. SpongeForge supports vanilla clients, as long as you don’t install Forge mods which require
clientside mods. If you prefer to run a server without Forge, then SpongeVanilla is your preferred option.

SpongeVanilla and SpongeForge (without mods) behave the same, so the decision between the two is a matter of preference,
not a choice of functionality or features.

Contents

	Installing SpongeForge

	Installing SpongeVanilla

Installing SpongeForge

SpongeForge integrates Minecraft Forge [http://www.minecraftforge.net/] so you can also run Minecraft Forge mods.
In fact, it’s more like Sponge itself is a Forge mod that then loads Sponge plugins, but this is a technical detail.

Users who do not want to use Minecraft Forge can consider SpongeVanilla.

Download

Grab your copy of Sponge Forge here [https://spongepowered.org/downloads].

Reading the Download Filename

When you download SpongeForge, the name of the file will provide some important version information. It includes a
Forge build number which this version of SpongeForge is compatible with. Other builds, even ones differing by only a
few build numbers are not officially supported.

However, SpongeForge usually updates to a new Forge build fairly soon after it’s released, so you needn’t
worry about always having to run an outdated Forge version in order to use SpongeForge.

The format of the filename is spongeforge-{MCVersion}-{ForgeVersion}-{SpongeAPIVersion}-{SpongeBuildId}

	MCVersion
	The Minecraft version. Only clients compatible with this version can connect.

	ForgeVersion
	The version of Forge this file is built for. Preferably your server should run this exact
version of Forge.

	SpongeAPIVersion
	The version of the SpongeAPI implemented by this file. This is what Sponge plugins depend on.

	SpongeBuildId
	The build number of Sponge. This is what you should supply when reporting bugs or seeking
support.

Example

The file name spongeforge-1.10.2-2254-5.2.0-BETA-2234.jar is compatible with Minecraft version 1.10.2,
requires build 1.10.2-12.18.3.2254 of Forge, provides SpongeAPI 5.2.0 and was build 2234 of SpongeForge.

Note

Normal Forge mods can usually run on any build of Forge for a given Minecraft version (e.g. 1.8.0) without
any problems. However, SpongeForge needs to access, among other things, internal parts of Forge, which
most mods shouldn’t be touching, let alone modifying as Sponge does. Since Forge is free to change internal
code whenever they want to, its normal guarantee of backwards-compatibility doesn’t apply to SpongeForge.

Installing SpongeForge

Note

If you use (or are planning to use) a game server host, they may have a control panel that can install Sponge for you.

Avertissement

When using the Mojang installer, Mojang makes use of their own Java version and not the one you installed on your
system. The installer currently ships with Java 1.8.0_25 for Windows and 1.8.0_60 for macOS. Note that Sponge
requires at least 1.8.0_40 or above to run properly. You can grab the Launcher without included Java here:
official Minecraft Launcher [https://minecraft.net/download]

Single Player / In-Game LAN Servers

	Download the Minecraft Forge installer from the Minecraft Forge website [http://files.minecraftforge.net/]. Make
sure to use exactly the same build number as shown above.

	Run the provided Forge installer. A new Forge profile will be created in the Minecraft launcher.

	Open the Minecraft launcher, and select the new Forge profile.

	Click “Options” and click “Open Game Dir”.

	Download SpongeForge from the Sponge website and put it into the mods folder. Create the folder if it does
not yet exist.

	Sponge should work in both in single player and if you open your world to LAN.

Next, learn how you can configure Sponge and how to
manage your instance of Sponge (including installing plugins).

Dedicated Servers

Note

If you already have a Forge server, just put the Sponge mod into your mods folder. Remember to update your Forge
version to match the one that SpongeForge requires. Have a look at the top of this page if you’re unsure which
version you need.

Installing Forge via Commandline

	Visit the Minecraft Forge website [http://files.minecraftforge.net/] and click “Show all downloads” to view the full
set of available options. Identify the version matching the one listed in the filename of the SpongeForge download, and hover over the (i) next to “Installer” to get the direct download link.

	Use your favorite download method to download the jar to its destination.
Example: wget http://url.to/forge-version-installer.jar

	From the folder in which you wish to install Forge, execute the jar with the --installServer option. Example:
java -jar forge-version-installer.jar --installServer

	Continue to Adding SpongeForge to Forge below.

Installing Forge via GUI

	Download the Minecraft Forge installer from the Minecraft Forge website [http://files.minecraftforge.net/] for the version
matching the one listed in the filename of the SpongeForge download. See above for the naming scheme of SpongeForge
and Forge.

	Run the provided Forge installer, select “Install Server”, choose an empty folder to place the server’s files,
and then click OK.

	Continue to Adding SpongeForge to Forge below.

Adding SpongeForge to Forge

	Download SpongeForge from the Sponge website and put it into the mods folder in your server directory.
Create the folder if it does not yet exist.

	You may now launch the server via command or launch script java -jar forge-version-XYZ.jar.

	If operating from home, set up Port Forwarding to ensure others can connect.

Next, learn how you can create and use a launch-script,
configure Sponge and manage your server (including installing plugins).

Links

	Homepage [https://www.spongepowered.org/]

	GitHub [https://github.com/SpongePowered/SpongeForge]

Installing SpongeVanilla

SpongeVanilla is a vanilla implementation of the Sponge API as a stand-alone server.

Overview

SpongeVanilla is an implementation of the Sponge API that is created by patching the vanilla Minecraft server. This
means it is a stand-alone server, and does not utilise nor require Minecraft Forge or Forge mod loader (FML).
SpongeVanilla is being developed in parallel to the Forge version of Sponge, as an alternative platform for users who
do not want to run a Forge server. Originally started as an independent project and named Granite, by developers
AzureusNation and VoltaSalt, the SpongeVanilla team officially joined the Sponge development team in March 2015.

Download

Grab your copy of Sponge Vanilla here [https://spongepowered.org/downloads].

Installing SpongeVanilla

SpongeVanilla only works as a dedicated server.

	Download the SpongeVanilla .jar from the Sponge website.

	Run it via command line: java -jar spongevanilla-whatever.jar

	Set up Port Forwarding to ensure others can connect.

Avertissement

Don’t double-click the .jar file!

Links

	GitHub [https://github.com/SpongePowered/SpongeVanilla]

Creating a Launch Script

Note

These instructions apply only if you plan to run your Minecraft server on your own machine. Most shared Minecraft
hosts will create a launch script for you.

Writing a Launch Script

First, open a text editor such as Atom, Sublime Text, or Notepad. Write (or paste) a launch script for your server.
Examples of simple launch scripts for Windows, macOS, and Linux have been provided below. Keep the RAM limitations
of your machine in mind.

Note

The following examples are generic. For a Forge server using Sponge (coremod), change forge-1.8-XYZ-universal.jar
to whatever your Forge version in the server directory is named. To launch a SpongeVanilla server, change
forge-1.8-XYZ-universal.jar to the name of the SpongeVanilla.jar file.

Windows

java -Xms1G -Xmx2G -jar forge-1.8-XYZ-universal.jar
pause

Save your Windows launch script as launch.bat.

macOS

#!/bin/bash
cd "$(dirname "$0")"
java -Xms1G -Xmx2G -jar forge-1.8-XYZ-universal.jar

Save your Mac launch script as launch.command.

Linux

#!/bin/sh
cd "$(dirname "$(readlink -fn "$0")")"
java -Xms1G -Xmx2G -jar forge-1.8-XYZ-universal.jar

Save your Linux launch script as launch.sh.

Running a Launch Script

Ensure you are running your launch script out of a folder created especially for your server. This is for your own
sanity; unfortunately, Spongie is unable to soak up your tears if you do not do this.

You may run your launch script by double-clicking it. If you are using a console or terminal, navigate to the directory
of the script and run it. Keep in mind that you must agree to the Mojang EULA in order to run a server.

Note

The default Minecraft server GUI console is disabled by Sponge, because it is very processor-intensive.

Avertissement

If you get a permissions error when attempting to launch your server on a Mac, try this:

	Open the Terminal.

	Type chmod a+x, with a space at the end.

	Drag your launch script to the Terminal.

	Press enter.

Port Forwarding

If you are running your Sponge server from your home, it is necessary to set up Port Forwarding on your modem or router
in order for other people to connect.

Avertissement

Ensure you take the necessary precautions when port forwarding, because it can be insecure.

Minecraft, and thus Sponge, uses port 25565 by default. Therefore, port 25565 must be port forwarded to the internal
IP address of your computer. UDP and TCP are the protocols that must be forwarded.

Astuce

You may change which port is used by editing the appropriate key in your server.properties.

Port Forwarding can be performed through your router’s administrator panel. If you do not know how to navigate to your
router’s administration panel, conduct an internet search for specific instructions on port forwarding for your router.
The instructions are typically different for every router.

If it is preferable to have your server online upon starting up, you may need to port forward your hardware.

Using Sponge with BungeeCord

BungeeCord is a piece of server proxy software written by md_5 and the SpigotMC team that allows server owners to link
Minecraft servers together so that players can jump between servers without having to disconnect and re-connect.
BungeeCord is typically used by server networks that offer many game modes.

For more information about BungeeCord, what it is, how to set it up and how it works, have a look at the
BungeeCord website [https://www.spigotmc.org/wiki/bungeecord/]. This page will focus on Sponge specific steps.

Avertissement

In order to connect servers to BungeeCord, you must run the servers in offline mode. In offline mode, without the
proper precautions, anyone can log into the server using any name they wish, including those who have admin
permissions. Make sure you protect your servers using firewalls. If you are using linux, there is an IPTables guide
at SpigotMC Firewall guide [https://www.spigotmc.org/wiki/firewall-guide/], alternatively, some distributions come
with UncomplicatedFirewall “ufw” [https://wiki.ubuntu.com/UncomplicatedFirewall].

If you are not comfortable with tinkering with Linux, or you are unsure as to how to prevent unauthorised access to
your servers, consider consulting with someone who has more experience to ensure the security of your server.

Note

Be sure that if you use SSH to make sure port 22 is ALLOWED, otherwise you run a very real risk of locking yourself
out of your server!

IP Forwarding

BungeeCord has a mode called IP Forwarding, which allows BungeeCord to pass the player’s UUID and IP address to any
connected server, even though the servers are being run in offline mode. With current builds of BungeeCord, IP
Forwarding works with SpongeVanilla, whilst IP Forwarding only supports SpongeForge when vanilla clients connect -
modded servers that require modded clients cannot natively make use of IP Forwarding with the current version of
BungeeCord. SpongeForge is only fully supported with the use of a patched version of BungeeCord, or a community
supplied BungeeCord plugin.

A pull request has been supplied to BungeeCord to allow BungeeCord to support SpongeForge natively. We are awaiting it
to be included in the main product:

	Old PR, has context: BungeeCord PR 1557 [https://github.com/SpigotMC/BungeeCord/pull/1557]

	New PR, uses a different method to avoid breakages: BungeeCord PR 1678 [https://github.com/SpigotMC/BungeeCord/pull/1678]

Using BungeeCord without IP Forwarding

While it is recommended that you use IP Forwarding wherever possible. If you do not wish to do so, simply ensure that
online-mode is set to false in your server.properties file and add the server details to Bungee’s
config.yml file. Bungee will then forward any connections to the server when required. It is a good precaution to
set the server-port to something other than 25565.

This will work with all implementations of Sponge, including with mods.

Using BungeeCord with IP Forwarding

If you wish to use IP Forwarding:

	In the BungeeCord config.yml, set ip_forward to true

	In Sponge’s config (config/sponge/global.conf), set modules.bungeecord to true and bungeecord.ip-forwarding to
true

	If you have any other server software, consult the documentation for that server.

This must be done for all servers that are connected to the BungeeCord network. Then, just follow the instructions
for using BungeeCord without IP Forwarding.

Configuring Sponge

You can find all configuration files inside the “config” folder.

Config Syntax

Most configuration files will make use of the HOCON format.

	Introduction to HOCON

	JSON Syntax

What You Can Configure

	global.conf

	server.properties

Plugins will also have their own configuration files in the “config” folder.

World Configs

There are three types of world configs:

	Global

	Dimension

	World

Global configuration files can affect all of a server’s worlds and dimensions. This is the default level for configs.
Dimension configuration files are used to affect a certain dimension or group of worlds. These types of configs will
override the global config files. World configuration files are used to modify individual worlds only. World configs
override dimension and global configs.

Modifying the Config In-Game

It is possible to modify these configs through the in-game command /sponge config. The syntax for the config
command looks like this:

/sponge config <flag> <key> <value>

There are flags for specifying the target that you would wish to change. These flags are global, dimension, and world.

	-g is the flag for global

	-d <dim> targets a dimension (replacing <dim> with the dimension you want to configure)

	-w <world> targets one world (replacing <world> with your chosen world).

The key is the value you want to change. The value is whatever you want to change the value of the key to.

Here is an example of this command in action:

/sponge config -d nether logging.chunk-load true

This will set the config to log when chunks are loaded for the nether.

If you need to check the value of a key, you would need to omit the value. Checking the value of a key such as
logging.chunk-load in the nether would be done like so:

/sponge config -d nether logging.chunk-load

Saving a World Config

Saving a world config to the file may be desired after making modifications. This would be useful in the event of an
unexpected server crash. This would be done by using the /sponge save command on the sponge server. The syntax for
this command is similar to the config command:

/sponge save <flag>

Here is an example for saving the global config:

/sponge save -g

Reloading a World Config

Sometimes it may be desired that a world config is reloaded while the server is still running. This would be useful if
you have made changes to the local config file and would like to reload it for use on the live server. This is made
possible by the command /sponge reload. The syntax for the command is as follows:

/sponge reload <flag>

Here is an example of reloading the end world config file:

/sponge reload -d the_end

Introduction to HOCON

HOCON (Human-Optimized Config Object Notation) is an easy-to-use configuration format. It is used by Sponge and
individual plugins utilizing the Sponge API to store important data, such as configuration or player data. HOCON files
typically use the suffix .conf.

Components

	a key is a string preceding a value

	a value is a string, number, object, array, or boolean following a key

	a key-value separator separates keys from values, and can be either : or =

	a comment is prefixed with # or //, typically serving to provide feedback or instructions

Example:

yellow-thing: "Sponge"

In this example, the key is yellow-thing, the value is Sponge, and the key-value separator is :.

Working with HOCON

HOCON is more flexible than the JSON (JavaScript Object Notation) format in that there are several ways to write valid
HOCON. Below are two examples of valid HOCON.

Example #1:

player: {
 name: "Steve",
 level: 30
}

Example #2:

player {
 name = "Steve"
 level = 30
}

In practice, it is best to follow the formatting conventions of the HOCON configuration you are editing. When editing
a HOCON configuration for Sponge or an individual plugin utilizing the Sponge API, the values are likely the only thing
you will be changing unless otherwise specified.

Debugging your configuration

If a HOCON configuration does not appear to be working, here are some tips.

	Curly braces must be balanced

	Quotation marks must be balanced

	Duplicate keys that appear later take precedence

Specification

More information about the HOCON format can be found here [https://github.com/typesafehub/config/blob/master/HOCON.md].

JSON Syntax

This is an example of a whitelist.json file with correct formatting (although the UUID-s are fictional). Your file
should follow the same syntax.

[
 {
 "uuid": "01234567-89ab-cdef-0123-456789abcdef",
 "name": "Notch"
 },
 {
 "uuid": "a0b1c2d3-e4f5-0617-2839-4a5b6c7d8e9f",
 "name": "sk89q"
 }
]

Format Rules

	Square braces ([]) open and close the file

	Each entry in the file is wrapped with curly braces ({})

	Each key and its corresponding value is typed on its own line

	If more than one exists, both entries and key/value pairs are comma separated

	All strings are in quotation marks

	UUID-s are 32 symbols long, and written in hexadecimal (0-9, a-f).

	the UUID symbols are grouped. First is a group of 8, then three groups of 4, then a group of 12. The groups are
separated by dashes (-)

global.conf

Global Configuration

The global.conf file contains the global configuration settings for Sponge. This file is created in the config/sponge
directory in your server folder. Many of these properties can be also overridden per-world or per-dimension type by
using the config files in the subfolders of config/worlds.

Below is a table with all available settings inside the global.conf file. Note that certain sections will not be filled
immediately, and may optionally be added to the file when the server encounters them. There’s also full example of a
unmodified global.conf file at the bottom of this page, below the following table:

Global Properties of Sponge

	Property
	Type
	Default
	Description

	Block Tracking
	

 server.properties

server.properties

Default File

Here is the default server.properties file of an unmodified Minecraft 1.8.1 server.

#Minecraft server properties
#(File modification datestamp)
spawn-protection=16
max-tick-time=60000
generator-settings=
force-gamemode=false
allow-nether=true
gamemode=0
enable-query=false
player-idle-timeout=0
difficulty=1
spawn-monsters=true
op-permission-level=4
resource-pack-hash=
announce-player-achievements=true
pvp=true
snooper-enabled=true
level-type=DEFAULT
hardcore=false
enable-command-block=false
max-players=20
network-compression-threshold=256
max-world-size=29999984
server-port=25565
server-ip=
spawn-npcs=true
allow-flight=false
level-name=world
view-distance=10
resource-pack=
spawn-animals=true
white-list=false
generate-structures=true
online-mode=true
max-build-height=256
level-seed=
use-native-transport=true
motd=A Minecraft Server
enable-rcon=false

Property Explanation

Credit goes to the editors at the Minecraft Wiki [http://minecraft.gamepedia.com] for the explanations.

Boolean properties have only two valid values: true and false.
Integer properties must be whole numbers. Where a range is specified, the number must be in that range.
String properties can consist of any symbol.

	Key
	Type
	Default
Value
	Description

	allow-flight
	boolean
	false
	Allows users to use flight on your server while in
Survival mode, if they have a mod that provides flight
installed.

With allow-flight enabled griefers will possibly be more
common, because it will make their work easier. In
Creative mode this has no effect.

false - Flight is not allowed (players in air for at
least 5 seconds will be kicked).

true - Flight is allowed.

	allow-nether
	boolean
	true
	Allows players to travel to the Nether.

false - Nether portals will not work.

true - The server will allow portals to send players
to the Nether.

	announce-player-achievements
	boolean
	true
	Allows the server to announce when a player gets an
achievement.

	difficulty
	integer
(0-3)
	1
	Defines the difficulty (such as damage dealt by mobs and
the way hunger and poison affects players) of the server.

0 - Peaceful

1 - Easy

2 - Normal

3 - Hard

	enable-query
	boolean
	false
	Enables the GameSpy4 protocol server listener. Used to get
information about the server.

	enable-rcon
	boolean
	false
	Enables remote access to the server console.

	enable-command-block
	boolean
	false
	Enables command blocks.

	force-gamemode
	boolean
	false
	Force players to join in the default game mode.

false - Players will join in the gamemode they had
when they last left.

true - Players will always join in the default
gamemode.

	gamemode
	integer
(0-3)
	0
	Defines the mode of gameplay.

0 - Survival

1 - Creative

2 - Adventure

3 - Spectator

	generate-structures
	boolean
	true
	Defines whether structures (such as villages) will be
generated in new chunks.

false - Structures will not be generated.

true - Structures will be generated.

Note: Dungeons will still generate if this is set to
false.

	generator-settings
	string
	blank
	The settings used to customize world generation. See
Superflat [http://minecraft.gamepedia.com/Superflat]
and
Customized [http://minecraft.gamepedia.com/Customized]
on the Minecraft Wiki (external links) for possible
settings and examples.

	hardcore
	boolean
	false
	If set to true, players will be permanently banned if
they die.

	level-name
	string
	world
	The “level-name” value will be used as the world name and
its folder name. You may also copy your saved game folder
here, and change the name to the same as that folder’s to
load it instead.

Characters such as ‘ (apostrophe) may need to be escaped
by adding a backslash (\) before them.

	level-seed
	string
	blank
	Add a seed for your world, as in Singleplayer.

Some examples are: minecraft, 404, 1a2b3c.

	level-type
	string
	DEFAULT
	Determines the type of map that is generated.

DEFAULT - Standard world with hills, valleys, water,
etc.

FLAT - A flat world with no features, meant for
building.

LARGEBIOMES - Same as default, but all biomes are
larger.

AMPLIFIED - Same as default, but world-generation
height limit is increased.

CUSTOMIZED - Same as default unless
generator-settings is set to a preset.

	max-build-height
	integer
	256
	The maximum height in which building is allowed. Terrain
may still naturally generate above a low height limit.

	max-players
	integer (0-
2147483647)
	20
	The maximum number of players that can play on the server
at the same time. Note that if more players are on the
server it will use more resources. Note also, op player
connections are not supposed to count against the max
players, but ops currently cannot join a full server.
Extremely large values for this field result in the
client-side user list being broken.

	max-tick-time
	integer (0-
(2^63-1))
	60000
	The maximum number of milliseconds a single tick may take
before the server watchdog stops the server with the
message: “A single server tick took 60.00 seconds (should
be max 0.05); Considering it to be crashed, server will
forcibly shutdown”. Once this criteria is met, it calls
System.exit(1).

-1 - disable watchdog entirely

	max-world-size
	integer (1-
29999984)
	29999984
	This sets the maximum possible size in blocks, expressed
as a radius, that the world border can obtain. Setting the
world border bigger causes the commands to complete
successfully, but the actual border will not move past
this block limit. Setting the max-world-size higher than
the default doesn’t appear to do anything.

Examples:

	Setting max-world-size to 1000 will allow you to have a
2000x2000 world border.

	Setting max-world-size to 4000 will give you an
8000x8000 world border.

	motd
	string
	A
Minecraft
Server
	This is the message that is displayed in the server list
of the client, below the name.

	The MOTD does support color and formatting codes.

	If the MOTD is over 59 characters, the server list will
likely report a communication error.

	network-compression-threshold
	integer
	256
	By default it allows packets that are n-1 bytes big to go
normally, but a packet that n bytes or more will be
compressed down. So, lower number means more compression
but compressing small amounts of bytes might actually end
up with a larger result than what went in.

-1 - disable compression entirely

0 - compress everything

Note: The ethernet spec requires that packets less
than 64 bytes become padded to 64 bytes. Thus, setting a
value lower than 64 may not be beneficial. It is also
not recommended to exceed the MTU (Maximum Transmission
Unit), typically 1500 bytes.

	online-mode
	boolean
	true
	Server checks connecting players against Minecraft’s
account database. Only set this to false if your server is
not connected to the Internet. Hackers with fake accounts
can connect if this is set to false! If minecraft.net is
down or inaccessible, no players will be able to connect
if this is set to true. Setting this variable to off
purposely is called “cracking” a server, and servers that
are presently in offline mode are called “cracked”
servers, allowing players with unlicensed copies of
Minecraft to join.

false - Disabled. The server will not attempt to
check connecting players.

true - Enabled. The server will assume it has an
Internet connection and check every connecting player.

	op-permission-level
	integer
(1-4)
	4
	Sets permission level for ops. Each level also contains
the permissions of the levels below it.

1 - Ops can bypass spawn protection.

2 - Ops can use /clear, /difficulty, /effect,
/gamemode, /gamerule, /give, and /tp, and can edit
command blocks.

3 - Ops can use /ban, /deop, /kick, and /op.

4 - Ops can use /stop.

	player-idle-timeout
	integer
	0
	If non-zero, players are kicked from the server if they
are idle for more than that many minutes.

Note: Idle time is reset when the server receives
one of the following packets:

	102 (0x66) WindowClick

	108 (0x6c) ButtonClick

	130 (0x82) UpdateSign

	14 (0xe) BlockDig

	15 (0xf) Place

	16 (0x10) BlockItemSwitch

	18 (0x12) ArmAnimation

	19 (0x13) EntityAction

	205 (0xcd) ClientCommand

	3 (0x3) Chat

	7 (0x7) UseEntity

	pvp
	boolean
	true
	Enable PvP on the server. Players shooting themselves with
arrows will only receive damage if PvP is enabled.

false - Players cannot kill other players (also known
as Player versus Environment (PvE)).

true - Players will be able to kill each other.

Note: Indirect damage sources spawned by players
(such as lava, fire, TNT and to some extent water, sand
and gravel) will still deal damage to other players.

	query.port
	integer (1-
65534)
	25565
	Sets the port for the query server (see enable-query).

	rcon.password
	string
	blank
	Sets the password for remote connection.

	rcon.port
	integer (1-
65534)
	25575
	Sets the port for remote connection.

	resource-pack
	string
	blank
	Optional URI to a resource pack. The player may choose to
use it.

	resource-pack-hash
	string
	blank
	Optional SHA-1 digest of the resource pack, in lowercase
hexadecimal. It’s recommended to specify this. This is not
yet used to verify the integrity of the resource pack, but
improves the effectiveness and reliability of caching.

	server-ip
	string
	blank
	Set this if you want the server to bind to a particular
IP. It is strongly recommended that you leave this blank.

	server-port
	integer (1-
65534)
	25565
	Changes the port the server is hosting (listening) on.
This port must be forwarded if the server is hosted in a
network using NAT (If you have a home router/firewall).

	snooper-enabled
	boolean
	true
	Sets whether the server sends snoop data regularly to
http://snoop.minecraft.net. (external link)

false - Disable sending of data.

true - Enable sending of data.

	spawn-animals
	boolean
	true
	Determines whether animals will be able to spawn.

false - All animals will immediately vanish, and none
will spawn.

true - Animals spawn as normal.

Tip: if you have major lag, set this to false.

	spawn-monsters
	boolean
	true
	Determines whether hostile mobs will be able to spawn.

false - All mobs will immediately vanish, and none
will spawn anywhere, or at any time of day.

true - Mobs spawn as normal; in darkness and at
night.

This will have no effect if difficulty is set to Peaceful.

Tip: if you have major lag, set this to false.

	spawn-npcs
	boolean
	true
	Determines if villagers will be spawned.

true - Enabled. Villagers will spawn.

false - Disabled. No villagers.

	spawn-protection
	integer
	16
	Determines the radius of the spawn protection. Setting
this to 0 will not disable spawn protection. 0 will
protect the single block at the spawn point. 1 will
protect a 3x3 area centered on the spawn point. 2 will
protect 5x5, 3 will protect 7x7, etc. This option is not
generated on the first server start and appears when the
first player joins. If there are no ops set on the server,
the spawn protection will be disabled automatically.

	use-native-transport
	boolean
	true
	Linux server performance improvements: optimized packet
sending/receiving on Linux.

false - Disabled. Disable Linux packet
sending/receiving optimization.

true - Enabled. Enable Linux packet
sending/receiving optimization.

	view-distance
	integer

(3-15)

	10
	Sets the amount of world data the server sends the client,
measured in chunks in each direction of the player
(radius, not diameter). It determines the server-side
viewing distance.

10 is the default/recommended. If you have major lag,
reduce this value.

	white-list
	boolean
	false
	Enables a whitelist on the server.
See ../../../server/management/whitelist.
With a whitelist enabled, users not on the whitelist will
be unable to connect. Intended for private servers, such
as those for real-life friends or strangers carefully
selected via an application process, for example.

false - No whitelist is used.

true - The file whitelist.json is used to
generate the whitelist.

Note: Ops are automatically whitelisted, and there
is no need to add them to the whitelist.

 Server Management

Server Management

Contents

	Managing the Whitelist

	Managing Bans

	Managing Permissions

	Installing Plugins

	Exploit Patches

	Performance Tweaks

 Managing the Whitelist

Managing the Whitelist

The whitelist allows you to control who can join your server. Be aware that ops will always be able to connect to the
server, regardless of whether they’re in the whitelist.

When the whitelist function is enabled, only players named on the whitelist will be allowed to login to your server.
Players can be added to the whitelist through the usage of in-game commands or by editing the whitelist.json file.
Beware, however: if you manually change the file, you will have to reload the whitelist or restart the server for the
changes to go into effect. Additionally, pay special heed to the syntax, as the whitelist won’t work if it is wrong. An
example of a correctly formatted whitelist file can be found at ../../server/getting-started/configuration/json.

	To enable the whitelist, use /whitelist on

	To disable the whitelist, use /whitelist off

	To add a player to the whitelist, use /whitelist add playername

	To remove a player from the whitelist, use /whitelist remove playername

	To show all players on the whitelist, use /whitelist list

	To reload the whitelist after a manual change to the file, use /whitelist reload

The whitelist can also be enabled or disabled by editing the
../../server/getting-started/configuration/server-properties file, although this will only affect the game after
server reload or restart.

 Managing Bans

Managing Bans

Minecraft, and consequently Sponge, has simple ban management to prevent unwanted users from joining your server.

The /ban <name> [reason] command is a native Minecraft server function that bans player name. The complete list
of banned players is available using the command /banlist players

It is also possible to ban any connections from a given IP address using /banip <address|name> [reason]. The complete
list of banned IP addresses is available using the command /banlist ips

A ban can be reversed using the command /pardon <name> or /pardon <ip-address>

More information on Bans can be found at the Minecraft Wiki [http://minecraft.gamepedia.com/Commands#ban].

 Managing Permissions

Managing Permissions

You can configure who has access to what if you are running a server by making use of permissions.
Specific permissions for Sponge, Forge and Minecraft commands are shown on the ../../server/spongineer/commands
page.

Operator Level

Minecraft comes with a simple way to give permissions: by setting users as operator (or “op” for short). General
information on op status can be found at http://minecraft.gamepedia.com/Op

The abilities of op permission may be adjusted by altering the op-permission-level setting in the
../../server/getting-started/configuration/server-properties file.

A list of native Minecraft server commands available to players with op can be found at the Minecraft Wiki [http://minecraft.gamepedia.com/Commands#Summary_of_commands].

Avertissement

Minecraft does not have any fine-grained permissions capacity, only op. This is a very high level of permission and
should be reserved for trusted players. More complicated permission setups require the use of a permissions plugin
or mod. Sponge is not a permissions-management plugin.

Note

Some plugins and mods may also grant specific permissions to ops.

 Installing Plugins

Installing Plugins

What Are Plugins

Plugins are files written in Java that change the way the server works, generally adding features. They allow server
owners to do a lot of modifications, such as adding an economy system, managing teleports and permissions, etc.

Finding Plugins

Avertissement

Do not download plugins from untrustworthy sources! Malicious plugins can be used to give others unauthorized access
to your server or computer.

SpongePowered currently runs the Ore platform [https://ore.spongepowered.org] to make it easy for plugin developers
and users to distribute and download plugins. Alternatively you can search for plugins on the
SpongePowered forums [https://forums.spongepowered.org/c/plugins].

Installation

SpongeForge

In order to install plugins, place them into the /mods/ folder of your game or server directory. If your download came
in a .zip file, then you may need to extract it to find a .jar file inside.

You can also place your plugins inside the /mods/plugins/ subfolder or even set a custom folder in the
global.conf file via the plugins-dir setting. SpongeForge will
automatically search these folders for plugins. Please note that plugins which make use of Mixins must reside
inside the mods folder.

SpongeVanilla

Note

For consistency between SpongeForge and SpongeVanilla, plugins are stored in the mods directory on SpongeVanilla.

In order to install plugins, place them into the /mods/ folder of your game or server directory. If your download
came in a .zip file, then you may need to extract it to find a .jar file inside.

You can also place your plugins inside the /mods/plugins/ subfolder or even set a custom folder in the
global.conf file via the plugins-dir setting. SpongeVanilla will
automatically search these folders for plugins. Please note that plugins which make use of Mixins must reside
inside the mods folder.

Common Problems

If you are having problems with a plugin, consider the following things:

	Is the plugin compatible with your Minecraft version? While Sponge tries to keep old plugins working, this is sometimes
not possible. In most cases, plugins based on a stable release should continue functioning without being updated.

	Do you run a current Java version? Sponge is built for Java 8 and is known to trigger a bug in the JRE 1.8.0_40, so
make sure you use a version newer than that.

	The plugin may be outdated. Is there a newer version of the plugin?

	Does the plugin need a specific Implementation and/or Build of Sponge? Some plugins may bypass the Sponge API, or
otherwise rely on details that change between versions or platforms. Check at the site you downloaded it from.

 Exploit Patches

Exploit Patches

In recent Sponge builds (SpongeForge 974+), SpongeForge and SpongeVanilla patch a few client-server exploits. Whenever
the implementations detect a user performing an exploit, they are kicked from the server with a message explaining why
they were kicked. If enabled, a log message is also sent to the console. More exploit patches may be added in the
future.

Note

If you know about an exploit we currently don’t cover, please let us know! You can contact us via
exploits@spongepowered.org or PM a staff member on the forums. Please DO NOT post
exploits publicly on IRC, our GitHub repos or the forums, if they’re still unknown. This prevents abuse until we
get the issues fixed.

Exploits Patched implemented in Sponge

	Sign command exploit where a client could run a command such as ‘op’

	Client could force the server to make the user respawn invisible

	Client could set an itemstack’s display name and cause it to exceed the character limit

Note that these patches can’t be disabled, only the logging is configurable as of now.

Avertissement

The invisibility exploit patch has been disabled in recent Sponge builds due to the detection method falsely
accusing users of performing the exploit.

Log Message Control

Log messages for the exploit patches can be individually controlled in the Sponge config file. Please read the
../getting-started/configuration/sponge-conf page for more information. Here’s a short overview of available
options:

Log when server receives exploited packet with itemstack name exceeding string limit.
exploit-itemstack-name-overflow=false

Log when player attempts to respawn invisible to surrounding players.
exploit-respawn-invisibility=false

Log when server receives exploited packet to update a sign containing commands from player with no permission.
exploit-sign-command-updates=false

Astuce

Log messages can also be controlled via a command, instead of directly editing the config file. For example, to
enable the sign command exploit logging, type sponge config -g logging.exploit-sign-command-updates true in
the console (You can also type the commands in-game if you are an op).

 Performance Tweaks

Performance Tweaks

Sponge provides several performance enhancing and tweaking options to help you run a lag-free server, even
under heavy load.

Note

While we try to improve the performance of every server, the performance gains depend on your setup. Please run some
tests to ensure you configured your Sponge server to get the most out of it!

Entity Activation Range

This setting will alter the loading behaviour of entities around players. Lowering the value will only load close
entities, while raising it will also load entities that are far away from the player. Lower this to improve your
servers performance, especially with high entity and player counts.

Astuce

It’s possible to specify the activation range per mob. You can set auto-populate to true and Sponge
will then add all available mobs to the activation range list, it is advised to disable it after the list is filled.
If you add new mobs to the game, just repeat the procedure and those new mobs will also be added to the list below.

entity-activation-range {
 # If enabled, newly discovered entities will be added to this config with
 # a default value.
 auto-populate=false

 # Default activation ranges used for all entities unless overidden.
 defaults {
 ambient=32
 aquatic=32
 creature=32
 misc=16
 monster=32
 }

Async Lighting

This setting will run lighting checks on a separate thread to improve performance.

optimizations {
 # Runs lighting updates async.
 async-lighting=true
 }

Cache Tameable Owners

This setting will cache tameable entities owners’ UUID to save constant lookups from the data watcher.

optimizations {
 # Caches tameable entities owners to avoid constant lookups against data watchers. If mods cause issue, disable.
 cache-tameable-owners=true
 }

Drops Pre Merge

This setting will pre-process and potentially merge item drops to avoid spawning extra entities that are then merged
post-spawning.

optimizations {
 # If enabled, block item drops are pre-processed to avoid
 # having to spawn extra entities that will be merged post spawning.
 # Usually, Sponge is smart enough to determine when to attempt an item pre-merge
 # and when not to, however, in certain cases, some mods rely on items not being
 # pre-merged and actually spawned, in which case, the items will flow right through
 # without being merged.
 drops-pre-merge=true
 }

Auto-Saving Interval Adjustment

Vanilla Minecraft defaults to saving all chunks every 900 ticks (45 seconds). If you wish to raise or
lower this interval, then change it in the servers global.conf file:

world {
 # The auto-save tick interval used when saving global player data.
 # Set to 0 to disable. (Default: 900) Note: 20 ticks is equivalent to 1 second.
 auto-player-save-interval=900

 # The auto-save tick interval used to save all loaded chunks in a world.
 # Set to 0 to disable. (Default: 900) Note: 20 ticks is equivalent to 1 second.
 auto-save-interval=900
 }

Reducing this interval increases the load on your server’s CPU and storage, but reduces the data loss that might occur
if the server locks up or the power fails. Conversely, increasing the auto-save interval reduces the load on the
hardware, but at the expense of increasing the amount of in-game progress that could be lost in case of server failure.

 Becoming an Expert Spongineer

Becoming an Expert Spongineer

Contents

	Commands

	Troubleshooting

	Log Files

	Debugging

	Reporting Bugs

 Commands

Commands

Commands are one method in which server operators can administer their server, and in which players can interact with
the server.

In Sponge, commands follow a system of permissions. Permissions allow server operators to control who can access what
commands. By default, all commands are granted to players with OP status. Players without operator status do not have
access to administrative commands or commands that require an assigned permission node. A server operator can fine-tune
who can access what commands by adding/negating permission nodes through a permissions plugin.

Note

Sponge is not a permissions-management plugin. To add and negate permissions for individual players or groups, you
will need to find a permissions-management plugin.

Operator Commands

These commands, in addition to regular player commands, are available to server operators.

Sponge

The following commands are available to players with operator status (or the correct permission node) on servers powered
by Sponge.

	Command
	Description
	Permission

	/sponge audit
	Forces loading of unloaded classes to
enable mixin debugging.
	sponge.command.audit

	/sponge chunks
	Prints out the chunk data for a world, a
dimension, or globally.
	sponge.command.chunks

	/sponge config
	Alters a global, world, or a dimension
config.
	sponge.command.config

	/sponge heap
	Dumps the JVM heap.
	sponge.command.heap

	/sponge plugins
	Lists currently installed plugins.
	sponge.command.plugins

	/sponge plugins reload
	Asks plugins to perform their own reload
procedures.
	sponge.command.plugins.reload

	/sponge reload
	Reloads the global, world, or dimension
config.
	sponge.command.reload

	/sponge save
	Saves the global, world, or dimension
config.
	sponge.command.save

	/sponge timings
	The main command for the timings module.
	sponge.command.timings

	/sponge tps
	Display ticks per second for each world.
	sponge.command.tps

	/sponge version
	Prints the Sponge/SpongeAPI versions to
the console.
	sponge.command.version

Sponge Command Parameters

	/sponge chunks [-g] [-d dim] [-w world]

	/sponge config [-g] [-d dim] [-w world] key value

	/sponge save [-g] [-d dim|*] [-w world|*]

	/sponge reload [-g] [-d dim|*] [-w world|*]

Note

The /sponge audit command forces loading of any classes which have not yet been loaded, allowing the full output
from all mixin debugging environment variables to be captured. This also requires the mixins.checks variable, see
the Mixin wiki [https://github.com/SpongePowered/Mixin/wiki/Mixin-Java-System-Properties] for more information.

Astuce

Here are a few simple examples of the sponge config command in action. Please see
../getting-started/configuration/index for a more detailed explanation.

	/sponge config logging.chunk-load true

Since no dimension was specified, the dimension would default to the sender(player) dimension. So if you were in a
mystcraft dimension, this would alter the mystcraft dimension config.

	/sponge config -d nether logging.chunk-load true

Since a dimension type was specified, this would alter the nether dimension config (and hence all nether worlds).

	/sponge config -w DIM1 logging.chunk-load true

This would alter the config of world named DIM1.

Timings

Timings are a tool built into Sponge that allows server administrators to monitor the performance of their server.
Timings will collect information about a server so that a report may later be generated on the data. Information that
is recorded by timings include the server motd, version, uptime, memory, installed plugins, tps, percent of tps loss,
amount of players, tile entities, entities, and chunks.
Below is a list of sub-commands to /sponge timings:

	Command
	Description

	/sponge timings on
	Enables timings. Note that this will
also reset timings data.

	/sponge timings off
	Disables timings. Note that most timings
commands will not function and timings
will not be recorded if timings are
disabled.

	/sponge timings reset
	Resets all timing data and begins
recording timing data after the time
this command was done.

	/sponge timings report
	Generates the timings report on your
server performance at
https://timings.aikar.co

	/sponge timings verbon
	Enables timings monitoring at the
verbose level.

	/sponge timings verboff
	Disables timings monitoring at the
verbose level. Note that high-frequency
timings will not be available.

	/sponge timings cost
	Gets the cost of using timings.

Forge

The following commands are available only when using the SpongeForge coremod on Forge. Other implementations of the
Sponge API, such as SpongeVanilla, do not include these commands.

	Command
	Description
	Permission

	/forge tps
	Display ticks per second for each world.
	forge.command.forge

	/forge track
	Enable tile entity tracking.
	forge.command.forge

For any Forge mods that use the vanilla command API, command permissions are provided in the form <modid>.command.<commandname>.

Vanilla

There are several commands built-in to vanilla Minecraft that are also available on servers powered by Sponge. The list
below is not comprehensive, but it includes the most commonly used commands. These commands are available to players with
operator status (or the correct permission node). In general, permissions for vanilla Minecraft commands on a Sponge
server are of the structure minecraft.command.<command>, as shown below.

	Command
	Description
	Permission

	/ban
	Ban a player.
	minecraft.command.ban

	/ban-ip
	Ban a player’s IP address.
	minecraft.command.ban-ip

	/banlist
	View all banned players.
	minecraft.command.banlist

	/clear
	Clear an inventory.
	minecraft.command.clear

	/deop
	Remove OP from a player.
	minecraft.command.deop

	/difficulty
	Set the game difficulty.
	minecraft.command.difficulty

	/gamemode
	Set the gamemode of a player.
	minecraft.command.gamemode

	/gamerule
	Set a gamerule.
	minecraft.command.gamerule

	/give
	Give an item to a player.
	minecraft.command.give

	/kill
	Kill a player or entity.
	minecraft.command.kill

	/op
	Give Operator status to a player.
	minecraft.command.op

	/pardon
	Remove a player from the ban list.
	minecraft.command.pardon

	/save-all
	Save the server.
	minecraft.command.save-all

	/save-off
	Disable automatic server saving.
	minecraft.command.save-off

	/save-on
	Enable automatic server saving.
	minecraft.command.save-on

	/setidletimeout
	Define how long players can be idle
before getting kicked.
	minecraft.command.setidletimeout

	/setworldspawn
	Set the spawnpoint for the world.
	minecraft.command.setworldspawn

	/stop
	Stop the server.
	minecraft.command.stop

	/toggledownfall
	Toggle between sunny and rainy weather.
	minecraft.command.toggledownfall

	/tp
	Teleport players and entities.
	minecraft.command.tp

	/weather
	Set the weather to a defined condition.
	minecraft.command.weather

	/whitelist
	Manage the server whitelist.
	minecraft.command.whitelist

	/worldborder
	Manage the world border.
	minecraft.command.worldborder

Sponge also creates a spawn-protection bypass permission, and two permissions for controlling the
ability to edit commandblocks. Note that these permissions use the actual name of the commandblock,
which is normally @ by default.

	Allow player to bypass spawn-protection on all worlds: minecraft.spawn-protection.override

	Allow editing an ordinary commandblock of the given name: minecraft.commandblock.edit.block.<name>

	Allow editing a minecart commandblock of the given name: minecraft.commandblock.edit.minecart.<name>

Player Commands

The following commands are available as part of vanilla Minecraft to players without operator status.

	Command
	Description
	Permission

	/help
	View information on commands used on the
server
	minecraft.command.help

	/me
	Tell everyone what you are doing.
	minecraft.command.me

	/say
	Display a message to everyone (or, if
using selectors, specific players).
	minecraft.command.say

	/tell
	Privately message another player.
	minecraft.command.tell

A full list of vanilla commands can be found at: http://minecraft.gamepedia.com/Commands#List_of_commands. Permissions
for vanilla Minecraft commands on a Sponge server are of the structure minecraft.command.<command>.

 Troubleshooting

Troubleshooting

You’re probably here because something went wrong with your Sponge server. Let’s see if we can figure out what it was,
and what to do about it.

Potential Sources of Trouble

	Java Is Not Installed On Your Computer

	Network Connection Failure (or DDoS Attack)

	Not Enough Free Memory

	Malformed Config File (eg. Bad Editing)

	A Plugin (or Mod) Has Malfunctioned

	Operating System Unstable (eg. Virus Infection)

	Corrupted Data

	Problem Between Keyboard and Chair

	There is a Bug in Sponge

	There is Something Wrong With the Universe

Java Is Not Installed On Your Computer

Solution: Get Java. Visit the ../../server/getting-started/jre for more information.

Network Connection Failure (or DDoS Attack)

Symptoms: Network connection is very laggy, drops in and out, or absent.

Solutions: Check your connection to the modem or router. See if your browser has similar troubles. You can use
a free service like speedtest.net to check your connection speed. Other services running on your computer or local
network may the cause. Make sure that you have enabled Port Forwarding on your router. A DDoS attack, while unlikely,
will probably completely kill your connectivity, and you should contact your ISP if you believe this to be the case.

Not Enough Free Memory

Symptoms: Server crashes, often accompanied with “Out of Memory” messages.

Solutions: Expand the maximum Perm memory size with the startup argument -XX:MaxPermSize=128. Expand your
server heap memory (if possible) with startup arguments eg. -Xms1024M (1GB starting memory) and -Xmx2048M
(2GB maximum). Monitor your free memory on the computer and see if there is some locked up in other processes.
You may need to kill frozen java processes, or restart your machine. Memory leaks sometimes occur with bugs in
plugins, which can take time to isolate.

Still an issue?: If you are still having issues despite the above and cannot increase the Heap Size, check in
your Task Manager to see if you are using all available Memory. If you are, the only solution is to add more RAM
to your system. If there is still plenty of memory available, you are running 32-bit Java. If you are using 32-bit
Java, we recommend an upgrade to 64-bit Java, provided that your Operating System is also 64-bit.

Malformed Config File (eg. Bad Editing)

Symptom: One (or more) plugins refuse to load, or behave in unexpected ways. The server log files will contain
messages about unreadable files on startup. The server may crash, and data may be corrupted.

Solution: Stop the server, and check your edited files. Load backup files of any corrupted data. You may need to
delete a config file entirely and allow it to regenerate upon server startup.

A Plugin (or Mod) Has Malfunctioned

Symptom: This could be almost anything - whatever your plugins do, plus the X-factor. Commonly the server crashes
with a train of error messages in the server log files.

Solution: Stop the server, and check to see nothing has been corrupted. Be sure to check that it isn’t from an
incorrectly edited config file (above). Remove suspect plugins and add them again one by one, restarting the server
each time. The problem may originate from one plugin that is out of date - check for updates. Plugin conflict may also
be the cause, having two incompatible plugins.

Operating System Unstable (eg. Virus Infection)

Symptom: The server keeps crashing or timing out, and other parts of your operating system are also having problems.

Solution: Stop everything. Thoroughly check your system and storage devices for malware and viruses. Good tools
for this include AdwCleaner, Junkware Removal Tool, MalwareBytes, and most antivirus ware. Check your server files
for corruption after a clean restart of your system. Examine the hardware for damage too if the problems persist - eg. a
faulty power supply.

Corrupted Data

Symptom: World files fail to load or cause server to crash when players enter certain chunks. Database corruption.

Solution: Load backup files of corrupted data. Software for repairing damaged worlds is available, and missing
regions may be regenerated. Investigate the cause of corruption - was it a malformed plugin, database driver, power
failure or something else? Always make sure you make regular backups of important data onto a secure device.

Problem Between Keyboard and Chair

Symptom: Everything was working fine yesterday. It went strange today after I did XYZ ...

Solution: SpongeDocs is not large enough to encompass the things people may do that will cause software to fail
in unpredictable ways. It is always worth thinking long and hard about what you may have done recently that could
have affected the smooth running of your server. A memory card may be loose after dusting, a shortcut may be broken...

There is a Bug in Sponge

Symptom: None of the above apply, and it still doesn’t work as it should.

Solution: Time to get out the big guns. File a report on the
SpongeForge [https://github.com/spongepowered/SpongeForge/issues] or
SpongeVanilla [https://github.com/spongepowered/SpongeVanilla/issues] issue tracker, remembering to include details
of the version of Forge and Sponge you are using, and a link to the relevant server log file.

There is Something Wrong With the Universe

We can’t help you with this one. You’re on your own.

 Log Files

Log Files

Logfiles are an essential part when it comes to debugging your server and figuring what went wrong. This pages contains
logfiles from SpongeForge and SpongeVanilla servers including short descriptions.

Provided Logfiles

	SpongeForge logfiles
	fml-junk-earlystartup.log

	fml-server-latest.log

	latest.log

	SpongeVanilla logfiles
	latest.log

	Reading logfiles

	Common errors

SpongeForge logfiles

SpongeForge writes several logfiles to the /logs folder located inside your servers directory. As of Forge 1521
these are:

	fml-junk-earlystartup.log

	fml-server-latest.log

	latest.log

fml-junk-earlystartup.log

Note

Only a few example lines are shown here. To read the full example log, follow this link:
SpongeForge 1521 fml-junk-earlystartup.log file

fml-server-latest.log

Note

Only a few example lines are shown here. To read the full example log, follow this link:
SpongeForge 1521 fml-server-latest.log

[main/INFO] [FML/]: Forge Mod Loader version 11.14.3.1521 for Minecraft 1.8 loading
[main/INFO] [FML/]: Java is Java HotSpot(TM) 64-Bit Server VM, version 1.8.0_51, running on Windows 8.1:amd64:6.3, installed at ##PATH_TO_JAVA_HERE##
[main/DEBUG] [FML/]: Java classpath at launch is forge.jar
[main/DEBUG] [FML/]: Java library path at launch is ##PATH_TO_JAVA_HERE##

The example log indicates that we’re running:

	Forge 11.14.3.1521 (Version 1521)

	Java 8 64bit Update 51

	Windows 8.1 x64

	the directory Java was installed to (Line 4)

Avertissement

SpongeForge won’t run on Java 6 (1.6.x) or Java 7 (1.7.x). If you encounter an error stating that you run
an older Java build than Java 8, please update your JRE to 1.8.x and try again!

[main/DEBUG] [FML/]: Examining for coremod candidacy spongeforge-1.8-1521-2.1-DEV-750.jar
[main/INFO] [FML/]: Loading tweaker org.spongepowered.asm.launch.MixinTweaker from spongeforge-1.8-1521-2.1-DEV-750.jar

This indicates that SpongeForge 750 was found and loaded by Forge. For further help regarding the SpongeForge
naming scheme, have a look here: ../getting-started/implementations/spongeforge/.

latest.log

Note

Only a few example lines are shown here. To read the full example log, follow this link:
SpongeForge 1521 latest.log

This is the output that you would see in the Minecraft server GUI.

SpongeVanilla logfiles

latest.log

Note

Only a few example lines are shown here. To read the full example log, follow this link:
SpongeVanilla 47 latest.log

This is the output that you would see in the Minecraft server GUI.

Reading logfiles

If you’re unsure on how to read a common crashlog, you’ll find help here, but first we need a crashlog. For this short
introduction we will just use an example crash from the Debugging page:
Example crashlog of an outdated SpongeForge build.

WARNING: coremods are present:
SpongeCoremod (sponge-1.8-1499-2.1DEV-575.jar)
Contact their authors BEFORE contacting forge

The first thing you’ll notice is a Warning that coremods are present. Nothing to worry about here, that’s not an
error, just a warning to contact Sponge support, not Forge.

java.lang.NoClassDefFoundError: org/spongepowered/api/event/game/state/GameStartingServerEvent

A few lines below the actual error is found. In this case it’s a NoClassDefFoundError If you’re unsure what that
means, head over to our Debugging page. If it’s a common error, it will be listed there. If it isn’t, you can
always ask on the forums for help! Make sure you provide the full crashlog.

Luckily your systems details are included at the bottom of the crashlog:

Minecraft Version: 1.8
Operating System: Windows 8.1 (amd64) version 6.3
Java Version: 1.8.0_51, Oracle Corporation
Java VM Version: Java HotSpot(TM) 64-Bit Server VM (mixed mode), Oracle Corporation
Memory: 515666256 bytes (491 MB) / 782761984 bytes (746 MB) up to 1847590912 bytes (1762 MB)
JVM Flags: 0 total;
IntCache: cache: 0, tcache: 0, allocated: 0, tallocated: 0
FML: MCP v9.10 FML v8.0.99.99 Minecraft Forge 11.14.3.1521 5 mods loaded, 5 mods active
States: 'U' = Unloaded 'L' = Loaded 'C' = Constructed 'H' = Pre-initialized 'I' = Initialized 'J' = Post-initialized 'A' = Available 'D' = Disabled 'E' = Errored
UC mcp{9.05} [Minecraft Coder Pack] (minecraft.jar)
UC FML{8.0.99.99} [Forge Mod Loader] (forge.jar)
UC Forge{11.14.3.1521} [Minecraft Forge] (forge.jar)
UC Sponge{1.8-1499-2.1DEV-575} [SpongeForge] (minecraft.jar)
U Core{unknown} [Core Plugin] (Core.jar)
Loaded coremods (and transformers):
SpongeCoremod (sponge-1.8-1499-2.1DEV-575.jar)

This indicates that

	Minecraft 1.8 with Forge 1521 was running on

	Java 8 Update 51 (64bit version) and that

	2 additional mods were installed

	SpongeForge 1.8-1499-2.1DEV-575 (which is build #575) and

	Core

Note

Please note that the other three installed mods (mcp, FML, Forge) are required on every Forge server and necessary to
run properly.

Now the following assumptions can be made:

	maybe the plugin crashed the server

	SpongeForge doesn’t match the Forge version: 1499 required, 1521 installed

If you want to know how to solve this, head over to our checklist on the Debugging page.

Common errors

Head over to Debugging to read about common errors and exceptions.

 Debugging

Debugging

Logs are an essential part when it comes to debugging your server and figuring what went wrong. This page will show
some basic logging examples and will try to explain what you can do to fix your issues, when encountering them.

Checklist

Whenever you encounter a crash or warning make sure you set SpongeForge or SpongeVanilla up correctly. Here’s a short
checklist to help you out. If you’re unsure on how to aquire the information needed, have a look at the Log Files page.
It explains how you get the desired answers out of your logfiles.

	Is Java 8 installed and is Sponge using it?

Sponge requires Java 8 and will crash when using Java 7 or older.

	Is the recommended Forge version installed?

Usually SpongeForge will run on older or newer Forge builds than the recommended build.
However it is strongly advised to run the recommended build only.
If you encounter a crash and your versions are mismatching, match them first and try again.
If you’re unsure which Forge build you need, take a look at /server/getting-started/implementations/spongeforge

	Are there any other coremods (besides SpongeForge) installed?

Some coremods modify Forge in a way that makes it impossible to run SpongeForge properly. If you have coremods installed
and Sponge crashes, try to remove them and test again. Please report any incompatible Coremods on
GitHub [https://github.com/SpongePowered] or the Sponge Forums [https://forums.spongepowered.org]. This allows
staff to solve these issues as soon as possible.

	Is every plugin you’re using built against your desired Sponge build?

The Sponge API is subject to change sometimes. When you try to use an older plugin on the most recent Sponge build and
a crash occurs, try downgrading Sponge or contact the plugin author to get an updated plugin. If you’re on an older
Sponge build and a recent plugin crashes, try to update Sponge first. If that doesn’t fix the issue, contact the
plugin author and ask for a fix.

	Separating a faulty plugin

If the problem still persists, try to remove all plugins and re-add them one by one while trying to start the server
every time you added a plugin.

If you’re still unsure why and what exactly crashed, have a look at your crashlog. Some common crashes and common
solutions are listed below.

General Warnings

A common source of errors and bugs is a version mismatch between either SpongeForge and Forge or
SpongeForge and Plugins. First we’ll have a look at the general warning Forge gives us upon crashing:

WARNING: coremods are present:
 SpongeForge (sponge-1.8-1521-2.1DEV-750.jar)
Contact their authors BEFORE contacting forge

This isn’t a bug or error, it’s just Forge telling you that a Coremod (here: SpongeForge) is installed. Forge advises
you to contact the Sponge developers first, before asking the Forge support for help. Nothing to worry about.

Common Exceptions

Here are some common exceptions and some reasons why you might encounter them.

Note

If you encountered a crash, error or any other malfunction not listed here, please report it on the
Sponge Forums [https://forums.spongepowered.org/] or on GitHub [https://github.com/spongepowered/].
This will help others, who are running into the same issue.

Mismatched SpongeForge and Forge

[12:59:21] [main/ERROR] [mixin/]: @Mixin target net.minecraftforge.event.world.BlockEvent$NeighborNotifyEvent was not found mixins.forge.core.json:event.block.MixinEventNotifyNeighborBlock

This is a common crash when you try to run SpongeForge on the wrong Forge build. Note that the target/Mixin can vary.
Always match Forge against SpongeForge! If you’re unsure which version of Forge is required and you already got your
SpongeForge build, take a look at: ../getting-started/implementations/spongeforge/

Other common errors

Caused by: java.lang.ClassNotFoundException: org.spongepowered.api.event.state.ServerStartedEvent
Caused by: java.lang.NullPointerException

The first error indicates that a Class is missing, the second is a NullPointer Exception which indicated that the
plugin you’re trying to use relies on missing parameters. This happens when you try to run and older plugin on a newer
SpongeForge or SpongeVanilla build and vice versa.

java.lang.AbstractMethodError: net.minecraft.entity.player.EntityPlayerMP.getTabList()Lorg/spongepowered/api/entity/living/player/tab/TabList;
at (...)

An AbstractMethodError occurs when a plugin tries to call a method which isn’t implemented yet. Please check if you’re
running the most current build of Sponge and update if a newer version is available. If the problem still exists, either
report it on the official Issuetracker, on the forums or on IRC. You can request the implementation of the missing
feature too.

[Server thread/INFO]: Starting minecraft server version 1.8
[Server thread/ERROR]: Encountered an unexpected exception
java.lang.NoClassDefFoundError: org/spongepowered/api/event/game/state/GameStartingServerEvent

Note

Read the full example crashlog here:
SpongeForge 575 crashlog with a plugin built against build 750

A NoClassDefFoundError occurs when the plugin tries to access a class that isn’t on the classpath. This happens
when the API got adjusted or refactored lately and you’re trying to run an older plugin on a newer build of Sponge
and vice versa. Always try to use the correct version! Either ask the Plugin author which Sponge version he build
against or try updating/downgrading your SpongeForge or SpongeVanilla to solve this.

 Reporting Bugs

Reporting Bugs

If you’ve encountered a bug and you’re unsure on how to report it, this is the page to look at.
We’re currently handling all bug reports through our issue trackers on GitHub and via the forums.

If there’s an issue with SpongeForge, report it on the SpongeForge issue tracker [https://github.com/spongepowered/SpongeForge/issues].
The same applies for SpongeVanilla (SpongeVanilla issue tracker [https://github.com/spongepowered/SpongeVanilla/issues])
and even the Docs (SpongeDocs issue tracker [https://github.com/spongepowered/SpongeDocs/issues]).

Whenever you report a bug, please include the following:

	Sponge version used (SpongeForge or SpongeVanilla build number)

	Forge version (if applicable)

	any other mods or plugins installed including their versions

	your Log Files

	please use a service like GitHubs gist [https://gist.github.com/] or pastebin [http://pastebin.com/] to provide
logs, don’t paste them into the post directly

	your crash report (optional, not necessarily created)

Please make sure you already read through our Debugging, Troubleshooting and Log Files sections. If the
problem still persists, then file a bug report.

Here’s a short example, you may copy and use it when opening a ticket on GitHub. Note that this is just a suggestion,
its usage is optional and you may modify it to suit your needs:

Build number: #buildnumber here#
Forge version: #Forgeversion here#

Log files: #link to pastebin here#
Crash report: #link to pastebin here#

Description:

#short description of the bug you found here#

 Index

Index

 Effects

Effects

Using the effect API in Sponge, we can create special effects to be used on a server. Using a
Viewer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/Viewer.html], we can play sounds or spawn particles on the server.

Playing Sounds

With any given Viewer, we can simply play a sound at a location:

import org.spongepowered.api.effect.Viewer;
import org.spongepowered.api.effect.sound.SoundTypes;

import com.flowpowered.math.vector.Vector3d;

viewer.playSound(SoundTypes.ENTITY_CREEPER_PRIMED, new Vector3d(1, 65, 1), 1);

Now let’s break this down. First, we have the SoundType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/sound/SoundType.html] being played. This is simply the sound that will be
played. Next we have a Vector3d position. This position can be constructed, or it can be retrieved from a
Location using the Location#getPosition() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#getPosition–] method. In the example above, the sound will be played at the
coordinates 1, 65, 1. Lastly, we have the volume that the sound will be played at. The volume is a double, that
ranges from zero to two.

Now that we can play basic sounds, we can go further in-depth with our sounds. Let’s say we wanted to play our sound at
a specified pitch. We can use the PitchModulation [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/sound/PitchModulation.html] class to modulate the pitch to a specified note. We can
also use a SoundCategory [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/sound/SoundCategory.html] to specify what sound category we are playing. An example of these are shown below:

import org.spongepowered.api.effect.sound.PitchModulation;
import org.spongepowered.api.effect.sound.SoundCategories;

viewer.playSound(SoundTypes.ENTITY_CREEPER_PRIMED, SoundCategories.HOSTILE,
 new Vector3d(1, 65, 1), 1, PitchModulation.AFLAT0);

If a SoundCategory isn’t specified when playing a sound, SoundCategories#MASTER [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/sound/SoundCategories.html#MASTER] will be used.

Spawning Particles

Similarly to sounds, we can use the Viewer class to spawn particles within the world:

import org.spongepowered.api.effect.particle.ParticleEffect;
import org.spongepowered.api.effect.particle.ParticleTypes;

ParticleEffect effect = ParticleEffect.builder()
 .type(ParticleTypes.LAVA).count(50).build();
viewer.spawnParticles(effect, position);

Using a ParticleEffect.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/particle/ParticleEffect.Builder.html], we can specify the type of particle we
would like to spawn. With this, we also specify that fifty particles will be in the particle effect.

Now if we wanted to make a more specific particle, say the particle of a block, then we can use one of the serveral
classes found in the org.spongepowered.api.effect.particle [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/particle/package-summary.html] package. For example, let’s say we wanted to
spawn the particle of a sand, ParticleTypes#BLOCK_CRACK [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/particle/ParticleTypes.html#BLOCK_CRACK]. We would need to use the BlockParticle [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/particle/BlockParticle.html]
class and specify that we would like to use a sand block. This can be done like so:

import org.spongepowered.api.effect.particle.BlockParticle;

BlockParticle blockParticle = BlockParticle.builder()
 .type(ParticleTypes.BLOCK_CRACK).block(BlockTypes.SAND.getDefaultState()).build();
viewer.spawnParticles(blockParticle, position);

Creating Potions

Similarly to potions and sounds, we need to use a builder to create our potion effect:

import org.spongepowered.api.effect.potion.PotionEffect;
import org.spongepowered.api.effect.potion.PotionEffectTypes;

PotionEffect potion = PotionEffect.builder().potionType(PotionEffectTypes.HASTE)
 .duration(10).amplifier(5).build();

Using this, we can create a haste PotionEffect [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/potion/PotionEffect.html] that will last for ten ticks and have an amplifier of five.
Unlike particles and sounds, potions cannot be applied to a Viewer. Instead, we need an entity that supports
PotionEffectData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/PotionEffectData.html], such as a player.

import org.spongepowered.api.data.manipulator.mutable.PotionEffectData;
import org.spongepowered.api.entity.living.player.Player;

PotionEffectData effects = player.getOrCreate(PotionEffectData.class).get();
effects.addElement(potion);
player.offer(effects);

This will get or create a PotionEffectData from a player. We then add our previous potion effect to the list and
offer it back to the player.

 Plugin Lifecycle

Plugin Lifecycle

Prior to any states that make the plugin visible, the plugin loader first sorts through the available plugins, determines
if all dependencies are present, and sorts plugins by dependency order. Lifecycle events are given to plugins in this
order. For example, plugin A containing “[required-]after:B” will get each event after plugin B has completed work for
the given state. Additionally, lifecycle states are global. This means that all plugins visible to each other must be
transitioned through all states at once.

Avertissement

The Sponge Server object is not always available. Availability can be checked using the method
Sponge.isServerAvailable() or Game.isServerAvailable().

State Events

There are three categories of state events:

	Initialization: When Sponge and plugins are loading, before the actual game has started. Initialization states
only occur once.

	Running: When the game and world are loading. Running states may occur multiple times.

	Stopping: When the game is shutting down. Stopping states, like initialization states, only occur once.

Initialization States

Initialization states only occur once during a single run.

CONSTRUCTION

The GameConstructionEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameConstructionEvent.html] is triggered.
During this state, the @Plugin class instance for each plugin is triggered.

PRE_INITIALIZATION

The GamePreInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GamePreInitializationEvent.html] is triggered.
During this state, the plugin gets ready for initialization. Access to a default logger instance and access to
information regarding preferred configuration file locations is available.

INITIALIZATION

The GameInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameInitializationEvent.html] is triggered.
During this state, the plugin should finish any work needed in order to be functional. Global event handlers should get
registered in this stage.

POST_INITIALIZATION

The GamePostInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GamePostInitializationEvent.html] is triggered.
By this state, inter-plugin communication should be ready to occur. Plugins providing an API should be ready to accept
basic requests.

LOAD_COMPLETE

The GameLoadCompleteEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameLoadCompleteEvent.html] is triggered.
By this state, all plugin initialization should be completed.

Running States

Running States can occur multiple times during a single run. SERVER_ABOUT_TO_START may follow SERVER_STOPPED,
and SERVER_STOPPED may occur at any point during the process if there is an error.

SERVER_ABOUT_TO_START

The GameAboutToStartServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameAboutToStartServerEvent.html] event is triggered.
The server instance exists, but worlds are not yet loaded.

SERVER_STARTING

The GameStartingServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStartingServerEvent.html] is triggered.
The server instance exists, and worlds are loaded. Command registration is handled during this state.

SERVER_STARTED

The GameStartedServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStartedServerEvent.html] event is triggered.
The server instance exists, and worlds are loaded.

SERVER_STOPPING

The GameStoppingServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStoppingServerEvent.html] is triggered.
This state occurs immediately before the final tick, before the worlds are saved.

SERVER_STOPPED

The GameStoppedServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStoppedServerEvent.html] is triggered.
During this state, no players are connected and no changes to worlds are saved.

Stopping States

Stopping states never occur more than once during a single run. They occur when the game stops normally. (On Servers:
the /stop command is typed. On Clients: The “Close” button or the “Quit Game” button are clicked)

Avertissement

Stopping states are not guaranteed to be run during shutdown. They may not fire if the game is force-stopped via
Ctrl-C, Task Manager, a computer crash, or similar situations.

GAME_STOPPING

The GameStoppingServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStoppingServerEvent.html] is triggered.
This state occurs immediately before GAME_STOPPED. Plugins providing an API should still be capable of accepting
basic requests.

GAME_STOPPED

The GameStoppedServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStoppedServerEvent.html] is triggered.
Once this event has finished executing, Minecraft will shut down. No further interaction with the game or other plugins
should be attempted at this point.

 The Asset API

The Asset API

The AssetManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/asset/AssetManager.html] allows developers to retrieve resources from a plugin JAR.

A plugin’s assets resides in a directory named assets/myplugin/ where myplugin is the plugin ID.

Once properly configured you can retrieve a resource for your (or any) plugin using the following code:

import org.spongepowered.api.asset.Asset;

Asset asset = plugin.getAsset("myfile.txt").get();

Alternatively, you can retrieve assets through the AssetManager class:

import org.spongepowered.api.Sponge;

Asset asset = Sponge.getAssetManager().getAsset(plugin, "myfile.txt").get();

Astuce

The AssetManager can be used to retrieve assets defined in the Sponge implementation itself simply by omitting
the plugin parameter.

Note

The examples above assume that myfile.txt exists as an Asset [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/asset/Asset.html]. If it does not, then getAsset()
will return Optional#empty().

Working with Assets

The Asset class is essentially just a wrapper around a URL with some common I/O operations built in. The use
cases of Assetss is essentially unbounded but one common use case is to generate a default configuration file if
your plugin’s configuration file is not found. You can achieve this using a PluginContainer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginContainer.html] with the
following code:

import java.nio.file.Files;

if (Files.notExists(configPath)) {
 plugin.getAsset("default.conf").copyToFile(configPath);
}

Note

Developers coming from Bukkit or some other Java background might be familiar with the getResource and
getResourceAsStream methods in Classes and ClassLoaders. These methods should generally be avoided
within the SpongeAPI environment in favor of the AssetManager in order to provide a more confluent way of
retrieving resources not only within your own plugin, but for other plugins as well.

 Logging and Debugging

Logging and Debugging

There are a few logging frameworks available for use in Java. Logging is preferable to printing to stdout or stderr with
System.out.println() for a number of reasons:

	Logged messages are labeled with a source name, making it easier to figure out where the logged messages are coming from.

	Logged messages have a severity level which allows for simple filtering (e.g. disable all non-critical notices).

	The available logger frameworks allow you to enable or disable messages from certain sources.

Sponge uses org.slf4j.Logger, not java.util.logging.Logger.

Getting a Logger

The Guice module used during the initialization of plugins has a plugin-scoped logger. This allows you to annotate a
field, method, or constructor with @Inject to get the logger for your plugin, which is pre-configured with the
correct plugin ID.

Note

See Main Plugin Class for information on configuring your plugin ID.

Example - Field

import com.google.inject.Inject;
import org.slf4j.Logger;

@Inject
private Logger logger;

Example - Method

private Logger logger;

@Inject
private void setLogger(Logger logger) {
 this.logger = logger;
}

Example - Constructor

// For the purpose of this example, "Banana" is the class name

private Logger logger;

@Inject
public Banana(Logger logger) {
 this.logger = logger;
}

It is recommended to set your logger in your main plugin class, as it is instantiated with the Guice injector when the
plugin is loaded.

Creating a getter method for your logger in the same class in which it was set is also ideal, although optional. An
example getter method is illustrated below.

public Logger getLogger() {
 return logger;
}

Emitting Messages

Emitting a message with your logger is very simple.

Note

The following example assumes that the getter method for your logger is named getLogger(), as shown in the
previous section. This may differ for you depending on what you named your getter method.

getLogger().info(String);
getLogger().debug(String);
getLogger().warn(String);
getLogger().error(String);

The String is the message you wish to emit. For example:

getLogger().warn("This is a warning!");

 Plugin Debugging

Plugin Debugging

When bugs in your plugin’s code are hard to pinpoint, you are tired of recompiling after every single change
and logger outputs are cluttering your code, debugging can be very tedious. Therefore, this section will
explain how to set up your plugin to utilize Java’s debugging capabilities.

Preparing your workspace

Since we will be running both Sponge and your plugin from within your IDE, you’ll need to import either
SpongeForge [https://github.com/SpongePowered/SpongeForge] or SpongeVanilla [https://github.com/SpongePowered/SpongeVanilla], depending on which you want to use, as a project into your
workspace. The instructions to do so are found on the respective project’s GitHub page. Follow those instructions
carefully before proceeding here.

Now you need to make sure your plugin project is visible to the SpongeForge/SpongeVanilla project you just created.
The steps necessary depend on your IDE.

IntelliJ IDEA

In IntelliJ, every project has its own workspace(s). To make your project visible to the Sponge(Vanilla) project,
it needs to be a Module. Assuming you already created your project as described in
Setting Up IntelliJ IDEA, import it using the following steps.

	Open the SpongeVanilla/SpongeForge project.

	Click File, followed by New, then Module from Existing Sources....

	Navigate to the directory of your plugin project.
	If you’re using Gradle, select the build.gradle file, in the next dialog check Use auto-import and confirm.

	Otherwise, just select the whole directory and click Finish.

	Click Finish.

Astuce

If you have not yet created your plugin, click Module... instead of Module from Existing Sources...,
then create your project in the following dialogue.

Eclipse

Just create your project as described here: Setting Up Eclipse. As long as it is in the same workspace
as your SpongeVanilla/SpongeForge project, it will be visible.

Adding Plugin to Sponge classpath

The idea behind this is that we’ll launch Sponge from within your IDE, like normal. However, the difference is that
we’ll be adding your plugin to the classpath. Since Sponge will per default load all plugins found in the classpath,
adding the plugin project to Sponge’s classpath will rid you of the necessity to rebuild and copy the artifact
file into your server directory after every change.

First you need to ensure that you have your Run/Debug Configuration(s) set appropriately, as shown in the Sponge
README.md [https://github.com/SpongePowered/SpongeForge/blob/stable-6/README.md#Running]

Then you’ll need to edit that Run/Debug Configuration so that it will include your project on the class path.
How to do this, depends on your IDE again:

IntelliJ IDEA

	Open your Project Structure.
	Click File, followed by Project Structure....

	OR, click the Project Structure icon, in the upper right-hand corner of the IDE, next to the Search icon.

	Click Modules. Expand the SpongeForge or SpongeVanilla group (depending on what you chose).

	Make sure SpongeForge_main or SpongeVanilla_main is selected.

	On the right column, select the Dependencies tab.

	Click the + symbol (Add) on the bottom of the column, and select Module Dependency.

	Select yourplugin_main.

	Do NOT check the Export option on the module, after it is added to the list.

Eclipse

	Find your Run/Debug Configuration
	Click Run, followed by Run Configurations...

	OR, click the drop-down arrow beside the Run/Debug icons and then Run Configurations... or
Debug Configurations..., respectively.

	Select your Run/Debug Configuration for Sponge (Server) on the left side.

	Switch to the Classpath tab.

	Select User Entries, followed by the Add Projects... button.

	Select the appropriate Project for your Plugin.

	Click the OK button.

	Click the Apply button on the bottom right corner.

Running the Configuration

After you’ve followed the previous steps, you should be ready to start debugging.
If you start your server from your IDE, its working directory will be the run directory in your
SpongeForge/SpongeVanilla project. All the files usually created by a server (worlds, configs etc) will be stored in
that run directory and persist over multiple runs of your local test server, just as if you manually copied a
server .jar to the run directory and started it from there.

IntelliJ IDEA

Rather than pressing the Green right-pointing arrow to run your Run/Debug configuration, click the Green icon to the
right of it, Debug.

Eclipse

Rather than pressing the green right-pointing arrow to run your Run/Debug configuration, click the drop down arrow of
the Debug icon (the one displaying a bug) and click your Test (Server) configuration. If it doesn’t appear in the
drop-down menu, click Debug Configurations. Select Test (Server) configuration and hit the Debug button
on the bottom left.

Using the Debugger

Now that your server (and your Plugin) are running in the Debugger, you can make use of the features it holds.
The most prominently used are explained below in short, though they are not features of Sponge, but the Java
Debugger your IDE makes use of.

Breakpoints

Breakpoints are a useful tool to take a closer look at the code. A breakpoint can be set at the beginning of a
line of code or a function. When reaching a breakpoint, the debugger will halt the code execution and your IDE
will open up a view allowing you to inspect the content of all variables in the current scope. Code execution
will not resume unless you press the according button in your IDE’s debugging view.

Breakpoints may also be added, removed or temporarily disabled while the debugging is in process.

Astuce

Once a single server tick takes more than a given amount of time, the watchdog will consider the server crashed
and forcefully shut it down. When working with breakpoints this might occur, so it is recommended that you
edit your test environments server.properties file and set the value of max-tick-time to either a
very large number (the amount of milliseconds a tick may take) or -1 (to disable the Watchdog completely).

IntelliJ IDEA

To add or remove a breakpoint, just left click in the blank space just to the left of your editor.

Alternatively, have your cursor be in the line where you want the breakpoint added or removed and then click
Run followed by Toggle Line Breakpoint.

Eclipse

To add or remove a breakpoint, just right click in the blank space just to the left of your editor and click
Toggle Breakpoint.

Alternatively, have your cursor be in the line where you want the breakpoint added or removed and then click Run
followed by Toggle Breakpoint.

Code Hotswapping

The other major feat of the debugger is that you will not have to restart your server for every small change you
make, thanks to code hotswapping. This means that you can just recompile portions of your code while it is
running in the debugger. However, there are a couple of limitations, the most important of which are:

	You cannot create or remove methods.

	Changes to methods are limited to code within the method. You cannot modify its signature (that means its name,
return type and parameter types)

	You cannot remove classes.

	You cannot modify a class’ name, superclass or the list of interfaces it implements.

	You can add classes. However, once it’s been built and hotswapped, the class follows the above rules.

You can test this functionality: Introduce a simple command to your plugin that just writes a word, like Sponge
Then save it and start the server as described above. Run the command. It will output Sponge. Now change the
command to write a different word to console, save the file. After a change, do as follows to hotswap the changes to
the running program:

IntelliJ IDEA

	Open the Run menu, from the top of the IDE.

	Below the first category break, click Reload Changed Classes.

Eclipse

No action needed. As soon as you save the file, it will be rebuilt and automatically hotswapped with the
currently running debug. Unless you changed this particular default behavior, you will not have to trigger a manual
hotswap.

 Best Practices

Best Practices

There are many ways to create a plugin, and many pitfalls for an unwary developer. Here we describe the plugin
development practices that will make the most of the Sponge API, setting sensible boundaries for the benefit of
compatibility. This information may change and expand as the Sponge project matures.

Plugin Development Guidelines

The following guidelines have been prepared to aid Sponge plugin developers. It is not a definitive or comprehensive
list, merely an attempt to detail some issues that are likely to arise during plugin development, and propose our best
solutions.

Note

We reserve the use of Sponge for official SpongePowered works. Please don’t use Sponge as part of your plugin
name, unless (1) your plugin primarily concerns the Minecraft block “Sponge”, or (2) your plugin also has versions
for other APIs (in which case you may append “for Sponge” to the title).

Economy API

The Economy API is used to link economy plugins with other plugins that use the economy (i.e. shops). You can read
about the Economy API here, which details everything you need to know about the API.

Packets

Anything to do with intercepting packets, or introducing custom items/blocks/entities/etc, is not planned to be part
of the Sponge API. Note that using packets may be looking at the problem the wrong way, as there may be a solution
achievable with the existing Sponge API. In some cases it may be possible to add whatever is needed to the Sponge API;
otherwise, the alternative is to use the Forge API and create a Mod instead.

Using Forge or NMS Classes

We do not recommend working with Forge or Minecraft base classes at all, unless it is to provide compatibility with a
mod for Sponge API. Most uses of NMS (net.minecraft.server) code in plugins do not fail gracefully, making
troubleshooting very difficult. Maintaining NMS modifications is also more difficult than using the Sponge API. Mods that
add to the Sponge API using code internals will have to specifically write an API, which does not rely on underlying
Minecraft code, to be usable by Sponge plugins. However, plugins can be created that load separate “compatibility”
modules to interact with the underlying implementation (SpongeForge or SpongeVanilla).

Plugins using implementation-specific code are very likely to break between versions, and should be clearly labelled
as such wherever they are hosted. These may more appropriately labelled as “Mods”.

Mixins

Mixins are specifically for transforming classes before other mods/plugins start. ForgeModLoader calls these mods
“Coremods”. SpongeForge is a Coremod, and deploys mixins on startup. Mixins can be used by plugins, but be aware of the
additional complexities involved.

Hybrid Mods

Sponge plugins which leverage mixins may also be a considered core mods, based on content.

	To use mixins in FML, it must be a coremod. The jar may also contain a Sponge plugin,
so most properly the container is a “hybrid mod”.

	To use mixins in SpongeVanilla, intentions must be declared in the manifest.
SpongeVanilla then injects the mixins.

	Having both types in a single jar is entirely possible. (Indeed, a single jar could
easily contain a tweaker, FML mod, coremod, bukkit plugin, sponge plugin, and/or litemod.)

Some definitions may be helpful here.

	Tweak Mod (aka Tweaker)

	a subsystem-level mod which hooks directly into the game using LaunchWrapper, usually used for
ModSystems (eg. LiteLoader, FML) and stand-alone mods (eg. Optifine). Can interact with any aspect
of the game environment directly. Generally breaks every version.

	Core Mod

	has almost equivalent power of a Tweak Mod but must be bootstrapped by a ModSystem.
Can interact with any aspect of the game environment directly. Generally breaks on every new Game version.

	Mod

	interacts with the game only via a ModSystem, the mod is exposed to game objects directly but will
generally only hook into the game via hooks provided by the ModSystem. Generally breaks every major
version of the Game (depending on features used). The term mod is also used as an umbrella term for
anything which modifies the game, though for the sake of clarity we’ll use this definition.

	Plugin

	interacts with the game only via an API, does not interact with game objects directly in any way,
only leverages objects exposed by the API. Generally breaks only when the API is revised
(and sometimes not even then).

It’s also important to distinguish the container from the contents. Issues with terminology tends to
arise because a jar containing a mod tends to get referred to as a “mod”.
Any plugin which is not fully decoupled via the API puts itself into the category of Mod.
This type of “plugin” may be prevalent where there are shortcomings in an API.

Advantages of Hybrid Mods

A hybrid mod leverages both a plugin component which interacts via the API, and a mod (or even coremod)
in the same package. This has the disadvantages of a mod (breaks every version) but also the power of a
mod (can interact with the game directly) coupled with some of the benefits of a Plugin (high-level
abstract access to the game, and can also interact with other plugins as a peer).

The primary benefit of this system is that the maintenance burden is reduced when updating the mod,
because any features accessed via the API are likely to be much more stable.

This type of mod can be used to implement plugins whose needs overflow the capability of the API (in
the case of a plugin which needs to leverage mixins for a particular feature); but can also be used
for mods which want to leverage services afforded by the API (eg. a mod which wants to provide direct
support for permissions or chat channels).

Unlike NMS-exploiting “plugins”, a hybrid mod makes its nature clear.

Plugin Interoperability

An explanation of how to communicate with other plugins, TBA.

 Creating a Plugin

Creating a Plugin

This section is intended for developers who wish to develop plugins with the Sponge API. The articles cover various
aspects of the Sponge API and the concepts behind it. It is important to understand that the intent of this section is
to help developers get started with the Sponge API, not to cover every concept. The
Javadocs [https://jd.spongepowered.org/] will be of great help to you once you are comfortable with the API.

Note

It is recommended to have prior experience with developing in Java! Copying-and-pasting examples from the
documentation likely will not work, especially without modification.

Astuce

The Cookbook [https://github.com/SpongePowered/Cookbook] is a collection of fully functional plugins that each
demonstrate a specific part of the SpongeAPI. These plugin “recipes” are standalone and are compilable via Gradle
or Maven. Some of them demonstrate how to create plugins using other JVM languages such as Scala and Kotlin.

Contents

	Build Systems

	Setting Up Your Workspace
	Setting Up IntelliJ IDEA

	Setting Up Eclipse

	Setting Up Your Project
	Setting Up Gradle

	Setting Up Maven

	Plugin Identifiers

	Main Plugin Class

	Plugin Lifecycle

	Dependency Injection

	Best Practices

	Optionals
	Optionals Explained

	Usage Examples

	Logging and Debugging

	Commands
	Building a Command

	Argument Parsing

	Command Flags

	Child Commands

	The Command Manager

	Low-Level Command API

	Events
	Event Listeners

	Event Causes

	Event Filters

	Custom Events

	The Asset API

	Configuring Plugins
	Configuration Loaders

	Configuration Nodes

	Serializing Objects

	Text
	Creating Text

	Text Serializers

	The Pagination Service

	Message Channels

	TextTemplates

	The Data API
	Custom Data

	Using Keys

	Data Manipulators

	Transactions

	Serializing Data

	Blocks
	Concepts

	Accessing Blocks

	Modifying Blocks

	Tile Entities

	Virtual Block Changes

	Entities
	Spawning an Entity

	Modifying an Entity

	Items
	Basic Item Usage

	Creating an ItemStack

	Trade-Offers

	Effects

	Scheduler

	Services

	Databases

	Permissions

	Bans

	Book Views

	Economy
	Basic Concepts

	Using the Economy API

	Economy API Best Practices

	Implementing the Economy API

	World Generation
	WorldGeneratorModifiers

	Modifying World Generation

	Plugin Manager

	Game Profile Manager

	Offline Player Data

	Plugin Debugging

	Tab Lists

	Plugin Metadata

	Ray Tracing

	Tutorials

	Implementation-dependent Plugins
	MCP (Mod Coder Pack)

	Using MCP in Plugins

	Access Transformers

	Plugin Mixins

	Internal Sponge Classes

 Plugin Metadata

Plugin Metadata

Adding plugin metadata helps users to identify your plugin more easily by giving them the ability to check the name,
version, description, or even the authors of a plugin at runtime. It will also be used when publishing plugins on a plugin
portal like Ore [https://github.com/SpongePowered/Ore].

Currently, Sponge supports the following types of plugin metadata:

	Plugin ID, Plugin Name, Version

	Description

	URL (e.g. Website)

	Authors

	Plugin dependencies

Plugin annotation

You can define the additional (optional) plugin metadata on your @Plugin annotation:

import org.spongepowered.api.plugin.Plugin;

@Plugin(id = "myplugin", name = "My Plugin", version = "1.0",
 description = "This is a very cool plugin I made for me",
 url = "http://example.com",
 authors = {"Spongie", "FLARD"},
 dependencies = @Dependency(id = "otherplugin", optional = true))

File metadata

Additionally to plugin metadata defined in the plugin annotation we also recommend plugins to include this metadata in
an extra file in the JAR, which has several advantages:

	Easier integration for build systems (e.g. contributing the version from the build system into plugin metadata)

	Easier for plugin portals to obtain the plugin metadata (no parsing of class files necessary)

Note

We strongly recommend public plugins to include file metadata. Plugin portals such as Ore [https://github.com/SpongePowered/Ore] may require
file metadata. See Using the Annotation Processor for a simple way to generate it. The
implementation may print a warning if a plugin is missing file metadata.

The mcmod.info format

For Sponge plugins, we use a file called mcmod.info, which is included in the root of your plugin JAR. The format
originates from Forge, and has been used by several projects in the Minecraft community, so we have chosen to use the same.

mcmod.info is basically a simple JSON [https://en.wikipedia.org/wiki/JSON] file which defines the plugin metadata as simple fields. Here is an example
file that could be used by a Sponge plugin:

[{
 "modid": "myplugin",
 "name": "My Plugin",
 "version": "1.0",
 "description": "This is a very cool plugin I made for me",
 "authorList": [
 "Spongie",
 "FLARD"
],
 "dependencies": [
 "otherplugin"
]
}]

Using the Annotation Processor

Writing an extra file is quite annoying. Fortunately, usually there is nothing extra you need to do. When compiling
your plugin, SpongeAPI is able to generate this file automatically based on the information provided in your
@Plugin annotation.

Enabling

If you’re using a build system such as Gradle or Maven and have not explicitly disabled annotation processing there is
nothing extra you need to do. By default the annotation processor will automatically run and generate a mcmod.info
file based on the contents of your @Plugin annotation.

If you’re not using a build system you need to manually enable annotation processing.

Build system integration

If you’re using Gradle, SpongeGradle will provide additional integration for Gradle and
plugin metadata. For example, it will automatically include the project version defined in the Gradle build script in
your plugin metadata. See Setting Up Gradle for details.

 Databases

Databases

SQL

Sponge provides a convenient abstraction for establishing JDBC database connections that handles the complexities of
establishing an efficient pooled connection from a JDBC URL.

While the SQL service supports any JDBC connector, the Forge implementation of Sponge only ships with the most common:

	MySQL

	Sqlite

	H2

Avertissement

Because Sqlite has many limitations, its usage is strongly discouraged except in cases where legacy compatibility
is required. H2 is our recommended file-backed database implementation.

Usage

A data source can be accessed through the plugin’s service manager:

import org.spongepowered.api.Sponge;
import org.spongepowered.api.service.sql.SqlService;

import java.sql.Connection;
import java.sql.SQLException;

private SqlService sql;
public javax.sql.DataSource getDataSource(String jdbcUrl) throws SQLException {
 if (sql == null) {
 sql = Sponge.getServiceManager().provide(SqlService.class).get();
 }
 return sql.getDataSource(jdbcUrl);
}

// Later on
public void myMethodThatQueries() throws SQLException {
 Connection conn = getDataSource("jdbc:h2:imalittledatabaseshortandstout.db").getConnection();
 try {
 conn.prepareStatement("SELECT * FROM test_tbl").execute();
 } finally {
 conn.close();
 }

}

The SQL service provides a pooled connection, so getting a connection from the returned DataSource is not expensive.
Therefore, we recommended not keeping connections around, and closing them soon after use instead, as shown in the
above example. (Proper resource management means you do have to close connections).

NoSQL

Sponge does not currently provide any special abstraction over NoSQL databases (MongoDB etc). Plugins that wish to use
NoSQL databases must provide their own connectors.

 Bans

Bans

The BanService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ban/BanService.html] is a service built into the SpongeAPI that adds the functionality for you to ban or pardon
users in your plugin. The BanService provides several methods to do things such as banning users, pardoning users,
or even getting a Ban [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/ban/Ban.html] and the information on the Ban.

Astuce

For a basic understanding of services, make sure you read Services first.

Getting the BanService

You will need to get the BanService to actually add bans to the server. Fortunately, this can be done similarly to
other services in the Sponge API:

import org.spongepowered.api.Sponge;
import org.spongepowered.api.service.ban.BanService;

BanService service = Sponge.getServiceManager().provide(BanService.class).get();

Now with the BanService, we can perform additional operations. For example, if we want to check if a provided
User [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/User.html] is already banned, we can use the BanService#isBanned(GameProfile) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ban/BanService.html#isBanned-org.spongepowered.api.profile.GameProfile-] method. Or perhaps if we
wanted to get information on a ban from a User, we can use the BanService#getBanFor(GameProfile) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ban/BanService.html#getBanFor-org.spongepowered.api.profile.GameProfile-] method.
An example of this is shown below:

import java.util.Optional;

import org.spongepowered.api.entity.living.player.User;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.util.ban.Ban;

if (service.isBanned(user.getProfile())) {
 Optional<Ban.Profile> optionalBan = service.getBanFor(player.getProfile());
 if (optionalBan.isPresent()) {
 Ban.Profile profileBan = optionalBan.get();
 Optional<Text> optionalReason = profileBan.getReason();
 if (optionalReason.isPresent()) {
 Text banReason = optionalReason.get();
 }
 }
}

Creating a Ban

So now we can obtain the BanService and the information on a Ban, but what if we wanted to create our own bans?
We can use a Ban.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/ban/Ban.Builder.html] to create our own Ban. To get a Ban.Builder, simply call the
Ban#builder() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/ban/Ban.html#builder–] method. Using our builder, we can specify things such as the type of the ban, the reason for
the ban, or the User we wish to ban. An example of all of these things is shown below:

import org.spongepowered.api.util.ban.BanTypes;

Ban ban = Ban.builder().type(BanTypes.PROFILE).profile(user.getProfile())
 .reason(Text.of("The Sponge Council has Spoken!")).build();

Alternatively, you can specify an ip ban on an online player:

Ban ban = Ban.builder().type(BanTypes.IP)
 .address(player.getConnection().getAddress().getAddress())
 .reason(Text.of("The Sponge Council has Spoken!")).build();

Note that if you wish to create a simple, indefinite ban on a User, you can use the Ban#of(GameProfile) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/ban/Ban.html#of-org.spongepowered.api.profile.GameProfile-]
method or the Ban#of(GameProfile, Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/ban/Ban.html#of-org.spongepowered.api.profile.GameProfile-org.spongepowered.api.text.Text-] method to quickly construct a ban.

Adding a Ban

Now that we have created our ban, we can now register it to be used in Sponge. Using our BanService from before, we
can use the BanService#addBan(Ban) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ban/BanService.html#addBan-org.spongepowered.api.util.ban.Ban-] method to accomplish this. Note that adding a ban will remove any
previously existing ban.

Pardoning

Now let’s say we wanted to remove a ban from a user. We can use the BanService#pardon(GameProfile) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ban/BanService.html#pardon-org.spongepowered.api.profile.GameProfile-] method.
This method returns a boolean, which specifies if the user had a ban in place previously.

Putting it All Together

We can create a Ban using a Ban.Builder that is obtained using the Ban#builder() method. We can specify
things such as the type, the User to be banned, or the reason for the ban. We then simply grab our BanService
and use it to add our Ban. Here is the full code for doing this:

BanService service = Sponge.getServiceManager().provide(BanService.class).get();
Ban ban = Ban.builder().type(BanTypes.PROFILE).profile(user.getProfile())
 .reason(Text.of("The Sponge Council has Spoken!")).build();
service.addBan(ban);

 Services

Services

Pretty much everything (events, permissions, etc.) is handled through services. All services are accessed through the
service manager:

import org.spongepowered.api.Sponge;

Sponge.getServiceManager().provide(EventManager.class);

If you need to get an object reference to something, just get it off the service manager.

Service Guidelines

	Services should be registered during the POST_INITIALIZATION game state at the latest.

	Services should be fully operational by the SERVER_ABOUT_TO_START game state.

You can read more about game states on the Plugin Lifecycle page.

Note

It is a good practice to register services as soon as possible so that other plugins can note that the service will
be provided.

Providing your own service

Your plugin can provide the implementation for a core interface like PermissionService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/PermissionService.html], or for a custom
interface that is not part of the Sponge API (e.g. economy, web server):

Sponge.getServiceManager().setProvider(Object plugin, Class<T> service, T provider);

The provider object has to implement the service interface or class.

Designing the API this way makes Sponge extremely modular.

Note

Plugins should provide options to not install their providers if the plugin is not dedicated to a single function.

Example: Providing a simple warp service

The first step is optional, but recommended. You specify the public methods of your service class in an interface:

import org.spongepowered.api.world.Location;
import org.spongepowered.api.world.World;
import java.util.Optional;

public interface WarpService {
 void setWarp(String name, Location<World> location);
 Optional<Location<World>> getWarp(String name);
}

Now you can write the class that implements your interface:

import java.util.HashMap;

public class SimpleWarpService implements WarpService {
 HashMap<String, Location<World>> warpMap = new HashMap<String, Location<World>>();

 @Override
 public Optional<Location<World>> getWarp(String name) {
 if(!warpMap.containsKey(name)) {
 return Optional.empty();
 } else {
 return Optional.of(warpMap.get(name));
 }
 }

 @Override
 public void setWarp(String name, Location<World> location) {
 warpMap.put(name, location);
 }
}

Now we can register a new instance of the class in the service manager. We are using the interface
WarpService.class as the service key.

This makes it possible for other plugin developers to write their own implementation of your service (that implements
the interface) and replace your version.

Sponge.getServiceManager().setProvider(yourPluginInstance, WarpService.class, new SimpleWarpService());

Other plugins can now access your service through the service manager:

Sponge.getServiceManager().provide(WarpService.class);

Astuce

If you don’t want to use interfaces,
just replace the service key with your class (SimpleWarpService.class in the example).

 Tab Lists

Tab Lists

Tab lists are used in Minecraft to display the list of players currently on a server. The SpongeAPI allows for
manipulation of the tab list on a per-player basis.

To get a player’s TabList [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html], you simply need to call the Player#getTabList() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/Player.html#getTabList–] method:

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.entity.living.player.tab.TabList;

TabList tablist = player.getTabList();

Now that we have obtained the TabList, we can modify several components of it. For example, to set the header or
the footer of the TabList, we simply need to call their appropriate methods:

import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.format.TextColors;

tablist.setHeader(Text.of(TextColors.GOLD, "The tab list header"));
tablist.setFooter(Text.of(TextColors.RED, "The tab list footer"));

We can call the TabList#setHeaderAndFooter(Text, Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#setHeaderAndFooter-org.spongepowered.api.text.Text-org.spongepowered.api.text.Text-] method if we want to alter both of them at once:

tablist.setHeaderAndFooter(Text.of("header"), Text.of("footer"));

Note

If you are wanting to alter the tab list header and footer, it is recommended to use the setHeaderAndFooter()
method over individually calling the TabList#setHeader(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#setHeader-org.spongepowered.api.text.Text-] and TabList#setFooter(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#setFooter-org.spongepowered.api.text.Text-]
methods, as it only sends one packet instead of two separate packets for the header and the footer.

Tab List Entries

Now that we have set the header and footer of the TabList, we can also add our own entries to the list. An example
of this is shown below:

import org.spongepowered.api.entity.living.player.gamemode.GameModes;
import org.spongepowered.api.entity.living.player.tab.TabListEntry;
import org.spongepowered.api.profile.GameProfile;

TabListEntry entry = TabListEntry.builder()
 .list(tablist)
 .gameMode(GameModes.SURVIVAL)
 .profile(gameProfile)
 .build();
tablist.addEntry(entry);

Now let’s break this down. We set the list associated with the TabListEntry [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabListEntry.html] to our specified TabList
using the TabListEntry.Builder#list(TabList) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabListEntry.Builder.html#list-org.spongepowered.api.entity.living.player.tab.TabList-] method. We then set the game mode of our entry to
GameModes#SURVIVAL [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/gamemode/GameModes.html#SURVIVAL]. The game mode of our entry is used to determine various things. On the client, it is
used to determine if a player is in creative or perhaps a spectator. If the game mode is spectator, then their name
will also appears gray and italicized. We then need to specify the GameProfile that the entry is associated with.
The GameProfile may be constructed using the GameProfile#of() method, or it can be obtained from a real
profile, such as a player. For more information, see the Game Profile Manager article. To apply the entry to the
tab list, we simply need to call the TabList#addEntry(TabListEntry) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#addEntry-org.spongepowered.api.entity.living.player.tab.TabListEntry-] method.

We can flesh out our basic example by specifying things such as the display name or latency of the entry:

TabListEntry entry = TabListEntry.builder()
 .list(tablist)
 .displayName(Text.of("Spongie"))
 .latency(0)
 .profile(gameProfile)
 .build();
tablist.addEntry(entry);

Here, we set the display name that our entry will appear under to Spongie using the
TabListEntry.Builder#displayName(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabListEntry.Builder.html#displayName-org.spongepowered.api.text.Text-] method. We then set the latency for our TabListEntry to five bars.
See the TabListEntry#setLatency(int) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabListEntry.html#setLatency-int-] method for more information on how to specify other types of bars for
our entry.

Modifying Current Entries

Using the TabList, we can obtain entries currently on the TabList for our own modification. To obtain a
specific entry, use the TabList#getEntry(UUID) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#getEntry-java.util.UUID-] method. This method will return Optional.empty() if the
specified UUID cannot be found. An example is shown below:

import java.util.Optional;

Optional<TabListEntry> optional = tablist.getEntry(uuid);
if (optional.isPresent()) {
 TabListEntry entry = optional.get();
}

With this, we can use the methods on TabListEntry to modify the game mode, latency, and the display name of the
entry:

entry.setDisplayName(Text.of("Pretender Spongie"));
entry.setLatency(1000);
entry.setGameMode(GameModes.SPECTATOR);

Alternatively to getting entries, we can also remove a specified entry. We must simply call the
TabList#removeEntry(UUID) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#removeEntry-java.util.UUID-] method, specifying the UUID of the entry that we wish to remove. As with
getEntry(UUID), this will return Optional.empty() if the specified UUID cannot be found.

If we don’t have a specific entry to modify, then we can iterate through all TabListEntrys in a TabList. We
just need to call the TabList#getEntries() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/tab/TabList.html#getEntries–] method to obtain a Collection<TabListEntry> that we may
iterate through.

 Plugin Identifiers

Plugin Identifiers

Sponge plugins are identified using a unique plugin ID, and a human-readable plugin name. It is important that
you choose a proper name for your project now, because later plugins will interact with your plugin under your chosen
plugin ID (e.g. when defining plugin dependencies). The plugin ID is also used for creating the default configuration
folders for your plugin.

Note

The plugin ID must be lowercase and start with a alphabetic character. It may only contain alphanumeric characters,
dashes or underscores. The plugin name does not have such a limitation and can even contain spaces or
special characters.

Keep in mind your plugin ID will be the main identification of your plugin, used in other plugins as dependencies, for
your configuration files, as well as other properties stored for your plugin. That’s why it is important you always
choose a proper plugin ID directly, because changing it again later will be difficult.

Continue at Main Plugin Class for an introduction how to set up your plugin class.

 Ray Tracing

Ray Tracing

Generically, ray tracing is a method of determining the path of a particle through a coordinate system. In SpongeAPI,
this is implemented with the BlockRay [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.html] class to discover blocks in the path of an arbitrary line in space. A
common use case could be to find the block that a Player [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/Player.html] is looking at.

You can specify the origin of the ray using the BlockRay#from method, passing in either a Location [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html], an
Extent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/extent/Extent.html] and a Vector3d, or an Entity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/Entity.html]. The method will return a
BlockRay.BlockRayBuilder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.BlockRayBuilder.html].

Astuce

If you specify the origin of the ray to be an Entity, the default direction will be the direction in which the
Entity is pointing.

To specify the end point, you can use the BlockRay.BlockRayBuilder#to(Vector3d) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.BlockRayBuilder.html#to-com.flowpowered.math.vector.Vector3d-] method, which will set both
the direction and ending location. Alternatively, you can specify a direction using
BlockRay.BlockRayBuilder#direction(Vector3d) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.BlockRayBuilder.html#direction-com.flowpowered.math.vector.Vector3d-] and also a block limit using
BlockRay.BlockRayBuilder#blockLimit(int) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.BlockRayBuilder.html#blockLimit-int-].

Note

The default block limit is 1000 blocks as a safeguard to prevent infinite iteration. To disable the block limit,
use a negative value with BlockRayBuilder#blockLimit(int).

Filtering

Filters determine what blocks are accepted by the BlockRay. To add a filter, use the BlockRayBuilder#filter
method, passing in one or many Predicate<BlockRayHit<E>>s (where E extends Extent). For convenience,
BlockRay contains the following methods for common filter use cases:

	allFilter: returns a filter accepting all blocks

	onlyAirFilter: returns a filter accepting only air

	blockTypeFilter(BlockType): returns a filter accepting only the specified BlockType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockType.html]

	maxDistanceFilter(Vector3d, double): returns a filter that stops at certain distance from the given Vector3d

	continueAfterFilter(Predicate<BlockRayHit<E>>, int): returns a filter that continues past the given filter by
the specified number of blocks.

Of course, you can also write your own Predicate<BlockRayHit<E>> filter.

Finally, use BlockRay.BlockRayBuilder#build() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.BlockRayBuilder.html#build–] to finish building the BlockRay. An example usage of
BlockRayBuilder to get the first non-air block a Player is looking at is provided below.

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.util.blockray.BlockRay;
import org.spongepowered.api.world.World;

Player player;
BlockRay<World> blockRay = BlockRay.from(player)
 .filter(BlockRay.continueAfterFilter(BlockRay.onlyAirFilter(), 1)).build();

Using BlockRay

Since BlockRay implements Iterator, you can use such methods as hasNext and next (but not remove)
to iterate through the BlockRayHit [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRayHit.html]s generated by the BlockRay. Additionally, you can use the
BlockRay#reset() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.html#reset–] method to reset the iterator to the starting location. Rather than iterating through the
BlockRayHits, you can also use the BlockRay#end() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/blockray/BlockRay.html#end–] method to trace the block ray to the end of its path
to get the last block accepted by the filter (or none if the block limit was reached).

Using BlockRayHit

BlockRayHit contains information about each block intersected by the ray. It contains the location of the block, the
direction of the ray, the coordinates of the intersection of the ray and the block, and other similar data. The
following code uses the BlockRay from the previous example to print out the location of the first non-air block
in front of the player.

import org.spongepowered.api.util.blockray.BlockRayHit;
import java.util.Optional;

BlockRay<World> blockRay;
Optional<BlockRayHit<World>> hitOpt = blockRay.end();
if (hitOpt.isPresent()) {
 BlockRayHit<World> hit = hitOpt.get();
 System.out.println("Found " + hit.getLocation().getBlockType() + " block at "
 + hit.getLocation() + " with intersection at " + hit.getPosition());
}

 Tutorials

Tutorials

This section is a repository of links to instructional videos about sponge plugin development, prepared by trusted
developers. We hope these help guide you to great heights in sponge plugin development.

Intellij IDEA

Long-time Sponge Contributor Sibomots has prepared a series of instructional videos using Intellij IDEA.

	Setting up SpongeForge with IntelliJ IDEA [https://www.youtube.com/playlist?list=PLGqUurDwlOGfmRM_UkAVR0xrvIi9B6BQN]

More information and discussion on these topics can be found on the Sponge Forums.

We hope there are many more to come!

 Plugin Manager

Plugin Manager

The Plugin Manager is what your plugin gets sent to after being loaded by the server at startup. The server loads
your plugin by finding its main class, annotated by the Plugin [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/Plugin.html] annotation that holds its general information,
and sends a new instance of it to the manager. The manager then keeps that instance in its own collection that you can
look into and pull from using methods provided by itself, thus allowing you to easily interact with another loaded
plugin if you so desire.

The PluginManager Class

Public methods inside the PluginManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginManager.html] are used to grab information about the current collection of loaded
plugins, alongside their instances. The plugins are stored inside a PluginContainer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginContainer.html] (discussed in next
section) to allow for an easy center of information about the specific plugin. As an example, you can use the
PluginManager to communicate with another plugin, grabbing its instance and using the methods it offers to provide
compability or extended features by means of your calling plugin.

Obtaining the Plugin Manager

You can get an instance of the server’s PluginManager using a few different ways.

1. Dependency Injection

Astuce

See the Dependency Injection guide for help on using dependency injection.

The PluginManager is one of the few API instances that are injected into the main class upon being loaded. To ask
for a reference, create a new variable to hold the PluginManager instance and simply annotate it with @Inject.

import com.google.inject.Inject;
import org.spongepowered.api.plugin.PluginManager;

@Inject
private PluginManager pluginManager;

2. The Service Manager

Astuce

See Services for a full guide about the Service Manager.

The service manager also holds an instance of the server’s PluginManager. Simply use the method
ServiceManager#provide(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ServiceManager.html#provide-java.lang.Class-], passing the PluginManager‘s class (PluginManager.class) as a
parameter.

private PluginManager pluginManager = serviceManager.provide(PluginManager.class);

3. The Game Instance

Astuce

See the JavaDocs for Game [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Game.html] for full information about the class, as well as its methods and their usage.

A game instance can provide a reference to the server’s PluginManager as well for convenience.

private PluginManager pluginManager = game.getPluginManager();

Now that you have an instance to the plugin manager, let’s use it.

4. Using the Sponge Class

The Sponge [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Sponge.html] class works similarly to Game, with the exception that since Sponge contains static
methods. It can be accessed anywhere throughout your plugin. You also do not need to store an instance of it, as you
would need to do with Game.

import org.spongepowered.api.Sponge;

private PluginManager pluginManager = Sponge.getPluginManager();

Using the Plugin Manager

The plugin manager provides several methods for working with plugins.

A lot of methods return plugin containers, which will be discussed in the next section. Plugin containers are pretty
much self-explanatory “containers” of the actual plugin instance.

With the plugin manager, it is possible to get all plugins currently loaded through the plugin manager:

import org.spongepowered.api.plugin.PluginContainer;

import java.util.List;

private List<PluginContainer> plugins = pluginManager.getPlugins();

Or, it is possible to obtain an instance to a plugin container directly, by the example shown below:

private PluginContainer myOtherPlugin = pluginManager.getPlugin("myOtherPluginId").orNull();

The PluginContainer Class

When grabbing a plugin from the PluginManager, you’ll notice very quickly that you are not given an immediate
instance of the requested plugin. Instead, you’ll be greeted by a PluginContainer containing information about the
plugin attained from its @Plugin annotation in its main class, as well as the loaded instance.

The PluginContainer will hold any generic information about the plugin set by its owning developer. You can use
information from here instead of hard-coding what you know about it in your supporting plugin. An example scenario would
be if the owning developer changes the name of the plugin, references to the latter in the supporting plugin would not
become wrong as a result of this change, provided you’ve used the method PluginContainer#getName() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginContainer.html#getName–] to get
its name.

private PluginContainer myOtherPlugin = pluginManager.getPlugin("myOtherPluginId").orNull();
private MyOtherPlugin pluginInstance = (MyOtherPlugin) myOtherPlugin.getInstance();

Note

PluginContainer#getInstance() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginContainer.html#getInstance–] will return as an Object. You need to cast it as the target plugin
after obtaining it from the container.

 Trade-Offers

Trade-Offers

This topic covers the ingame TradeOffer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/merchant/TradeOffer.html]s offered by Villager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/Villager.html]s/Merchant [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/merchant/Merchant.html]s.

Merchant

A Merchant is a container for TradeOffers. Its most common variant is the Villager.
The Merchant interface can be used to open trading windows.

TradeOffers can be added to and removed from Merchants using TradeOfferData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/TradeOfferData.html].

TradeOffer

A trade offer consists of

	an primary/first buying ItemStackSnapshot [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStackSnapshot.html]

	an optional secondary buying ItemStackSnapshot

	a selling ItemStackSnapshot

	already used uses

	maximal available uses

	a flag to indicate whether experience orbs are spawned on trade

TradeOffers can be created using a Builder or a TradeOfferGenerator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/merchant/TradeOfferGenerator.html].

TradeOfferBuilder

TradeOfferBuilders are mainly used if you want to dynamically create TradeOffers on the fly.

The following code block builds a new TradeOffer that allows Players to trade five DIRT into three GRASS
block items. This trade offer has four initial uses, after that the Merchant might need some time to offer this
TradeOffer again.

TradeOffer offer = TradeOffer.builder()
 .firstBuyingItem(ItemStack.of(ItemTypes.DIRT, 5))
 .sellingItem(ItemStack.of(ItemTypes.GRASS, 3))
 .uses(0)
 .maxUses(4)
 .canGrantExperience(false)
 .build();

TradeOfferListMutator

A TradeOfferListMutator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/merchant/TradeOfferListMutator.html] is an interface that is invoked during Villager level ups.
It can be used to replace existing TradeOffers (ex higher tier) and add new TradeOffers.
Its simplist and only API provided variant is the TradeOfferGenerator.
The different TradeOfferListMutators for each level and Career can be configured in the VillagerRegistry [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/merchant/VillagerRegistry.html].

Note

The TradeOffer list in Villagers might be generated lazily when the trading inventory is opened for the
first time.

TradeOfferGenerator

TradeOfferGenerators are simple templates for new TradeOffers. They are a variant of the
TradeOfferListMutator that will only add new entries and does not alter or remove any existing TradeOffers on
that villager.

TradeOfferGenerator tradeOfferGenerator = TradeOfferGenerator.builder()
 .setPrimaryItemGenerator(random -> ItemStack.of(ItemTypes.DIRT, random.nextInt(3) + 5))
 .setSellingGenerator(random -> ItemStack.of(ItemTypes.GRASS, 5))
 .startingUses(VariableAmount.baseWithVariance(2, 1))
 .maxUses(VariableAmount.fixed(5))
 .experienceChance(0.5)
 .build();

This TradeOfferGenerator will randomly generate TradeOffers that will

	buy 5-8 DIRT

	sell 5 GRASS

	has 2-4 remaining initial uses

	5 max uses

The chance that the generated TradeOffer will grant experience is 50%.

Note

You can use ItemStackGenerators to dynamically apply enchantments or other custom data to the buying and
selling items.

VillagerRegistry

The VillagerRegistry can be obtained from the GameRegistry [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/GameRegistry.html]. It will be used to configure the
TradeOfferListMutator that will be applied on a Villager‘s level-up .

VillagerRegistry villagerRegistry = this.game.getRegistry().getVillagerRegistry();
List<TradeOfferListMutator> generators = new ArrayList<>(villagerRegistry.getMutatorsForCareer(Careers.FARMER, 1));
generators.addAll(additionalFarmerLevel1TradeOffers());
villagerRegistry.setMutators(Careers.FARMER, 1, generators);

The lowest specifiable level-up mutator is level 1. This is equivalent to a newly spawned Villager.

Note

Changes to the VillagerRegistry will be lost on server restart and won’t have any impact on the TradeOffers
from Villagers that have levelled up in the past.

 Main Plugin Class

Main Plugin Class

Note

The instructions within the Sponge Documentation assume that you have prior knowledge of Java. The Sponge API
provides the foundation for you to begin creating plugins for Minecraft servers powered by Sponge; however, it is
up to you to be creative and make your code work! There are several free Java courses online if you have had little
experience with Java.

Starting Your Class

The next step after adding the Sponge API as a dependency is creating a new class. The class can be named however you
like, and can be in any package that does not begin with org.spongepowered. By convention, class names should be
in title case.

Oracle recommends [https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html] to use your domain as your
package name, if you own a domain. However, in the event that you do not own a domain, a common practice is to use an
email address (such as com.gmail.username.project) or an open-source repository
(such as io.github.username.project).

After creating your main class, the Plugin [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/Plugin.html] annotation must be affixed to it. This annotation allows Sponge
to easily find your main plugin class when your plugin is loaded. An example usage is illustrated below.

package io.github.username.project;

import org.spongepowered.api.plugin.Plugin;

@Plugin(id = "exampleplugin", name = "Example Plugin", version = "1.0")
public class ExamplePlugin {

}

Note

Refer to Plugin Identifiers if you’ve not chosen your plugin ID yet.

Initializing Your Plugin

Plugins are loaded before the game and the world(s). This leaves a specific timeframe when your plugin should begin
interacting with the game, such as registering commands or events.

Your plugin can listen for particular events, called state events, to be notified about changes in the state of the
game. In the example below, onServerStart() is called when the GameStartedServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStartedServerEvent.html] occurs; take note
of the Listener [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Listener.html] annotation before the method.

import org.spongepowered.api.event.Listener;
import org.spongepowered.api.event.game.state.GameStartedServerEvent;

@Plugin(id = "exampleplugin", name = "Example Plugin", version = "1.0")
public class ExamplePlugin {
 @Listener
 public void onServerStart(GameStartedServerEvent event) {
 // Hey! The server has started!
 // Try instantiating your logger in here.
 // (There's a guide for that)
 }
}

Astuce

The Sponge documentation provides a guide with more information on events (see Events). Normally, in addition
to prefixing event-handler methods with @Listener, you must also register your object with Sponge’s event bus.
However, your main plugin class is registered automatically.

State Events

It may also be desirable to listen for other state events, particularly the GameStoppingServerEvent. There are two
categories of state events:

	Initialization: These events occur when Sponge and plugins are loading.
	GameConstructionEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameConstructionEvent.html]

	GamePreInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GamePreInitializationEvent.html]

	GameInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameInitializationEvent.html]

	GamePostInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GamePostInitializationEvent.html]

	GameLoadCompleteEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameLoadCompleteEvent.html]

	Running: These events occur when the game and world are loading.
	GameAboutToStartServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameAboutToStartServerEvent.html]

	GameStartingServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStartingServerEvent.html]

	GameStartedServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStartedServerEvent.html]

	GameStoppingServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStoppingServerEvent.html]

	GameStoppedServerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameStoppedServerEvent.html]

For information regarding when each state event occurs, see the plugin lifecycle documentation.

 Game Profile Manager

Game Profile Manager

A GameProfile [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfile.html] represents the profile of a player, including such data as a name, UUID, and other
arbitrary data known as properties. SpongeAPI provides the GameProfileManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html] class to get, create, and fill
GameProfiles. You may obtain an instance of the GameProfileManager using the following code.

import org.spongepowered.api.Sponge;
import org.spongepowered.api.profile.GameProfileManager;

GameProfileManager profileManager = Sponge.getServer().getGameProfileManager();

Retrieving GameProfiles

It is important to note that Sponge maintains a cache of GameProfiles to be used as a substitute to making a
request to the Mojang API every time a GameProfile is requested. The methods for retrieving GameProfiles offer
a boolean second argument determining whether the cache will be used. By default, the cache will be used when
possible.

A GameProfile can be looked up using either a UUID or username. Note that the same profile will always be
returned when looking up by UUID, but as usernames can be changed, this may not necessarily be the case when looking
up by username.

Retrieving by username

import org.spongepowered.api.profile.GameProfile;

import java.util.concurrent.CompletableFuture;

CompletableFuture<GameProfile> futureGameProfile = profileManager.get("Notch");

Retrieving by UUID

import java.util.UUID;

CompletableFuture<GameProfile> futureGameProfile =
 profileManager.get(UUID.fromString("069a79f4-44e9-4726-a5be-fca90e38aaf5"));

Astuce

You can also retrieve many GameProfiles at once using GameProfileManager#getAllById(Iterable<UUID>, boolean) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html#getAllById-java.lang.Iterable-boolean-] or GameProfileManager#getAllByName(Iterable<String>, boolean) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html#getAllByName-java.lang.Iterable-boolean-]. Both of these methods return
CompletableFuture<Collection<GameProfile>>.

Note that each of these methods return some sort of CompletableFuture. This indicates that the GameProfile
(or Collection<GameProfile>) may not be immediately available because of pending requests to the Mojang API. The
Javadocs for CompletableFuture [https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html]
describe the full capabilities of the class, but we will focus on the get method for the purpose of this article.

To retrieve a GameProfile from a CompletableFuture<GameProfile, you can simply call the CompletableFuture#get
method.

GameProfile gameProfile = futureGameProfile.get();

Avertissement

If the GameProfile is not immediately available (such as if the cache is not being used or does not contain the
GameProfile), then get will wait for the future to complete. For that reason, it is not advisable to use
this on the main thread as it will halt the server. Alternatively, you can use the
CompletableFuture#thenAccept(Consumer<? super T>) method to specify a Consumer to be run upon completion.

Creating GameProfiles

You can generate a new GameProfile using GameProfile#of(UUID, String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfile.html#of-java.util.UUID-java.lang.String-]. Note that the username does not
necessarily need to correspond to the UUID of that player. Likewise, the UUID does not need to belong to a
valid player.

GameProfile gameProfile = GameProfile.of(
 UUID.fromString("00000000-0000-0000-0000-000000000000"),
 "Herobrine");

Note

It is not mandatory to specify the name of the GameProfile (null is a valid argument).

Filling GameProfiles

Filling a GameProfile completes the profile by fetching information like the player’s skin from the Mojang API.
Note that if faked data like username is associated with a certain UUID, it will be replaced by the actual data from
the Mojang API.

GameProfile filledProfile = profileManager.fill(gameProfile).get();

ProfileProperties

GameProfiles can be used to store arbitrary data about a player using ProfileProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/property/ProfileProperty.html]s. However,
this cannot not be used as a permanent data store, as the data does not persist across server restarts. We can retrieve
the properties of a GameProfile using the GameProfile#getPropertyMap() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfile.html#getPropertyMap–] method, which returns a
Multimap. From there, you can retrieve existing or store new ProfilePropertys, which are represented as a key
value pair. To generate a new ProfileProperty, simply call the ProfileProperty#of(String, String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/property/ProfileProperty.html#of-java.lang.String-java.lang.String-]
method. The third argument (signature) is optional. However, a valid signature from Mojang must be specified for
certain properties.

import org.spongepowered.api.profile.property.ProfileProperty;

import java.util.Collection;

profile.getPropertyMap().put(
 "key", ProfileProperty.of("foo", "bar", null));
Collection<ProfileProperty> customProperties = profile.getPropertyMap().get("key");

GameProfileCache

You can also directly access the GameProfileCache [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileCache.html] used by Sponge to store GameProfiles. To do so,
simply call the GameProfileManager#getCache() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html#getCache–] method. Using the GameProfileCache, you can look up
GameProfiles, add newly constructed GameProfiles, and fill profiles with data stored in the cache.

import org.spongepowered.api.profile.GameProfileCache;

GameProfile fakeProfile =
 GameProfile.of(UUID.fromString("00000000-0000-0000-0000-000000000000"),
 "Herobrine");
GameProfileCache cache = profileManager.getCache();
cache.add(profile);

Astuce

GameProfileCache#add(GameProfile) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileCache.html#add-org.spongepowered.api.profile.GameProfile-] also accepts a boolean second argument determining whether
existing cache entries should be overwritten, and a Date third argument setting the expiry of the
GameProfile.

If you ever decide you need to remove a GameProfile from the cache, you may call
GameProfileCache#remove(GameProfile) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileCache.html#remove-org.spongepowered.api.profile.GameProfile-]. If you need to remove all GameProfiles from the cache, you may
call GameProfileCache#clear() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileCache.html#clear–].

The GameProfileCache may also be set by plugins with the GameProfileManager#setCache(GameProfileCache) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html#setCache-org.spongepowered.api.profile.GameProfileCache-]
method. To restore the original cache, use the same method, passing in the result of
GameProfileManager#getDefaultCache() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html#getDefaultCache–].

 Scheduler

Scheduler

Sponge exposes the Scheduler [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Scheduler.html] to allow you to designate tasks to be executed in the future. The Scheduler
provides a Task.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Task.Builder.html] with which you can specify task properties such as the delay, interval, name,
(a)synchronicity, and Runnable (see Task Properties).

Task Builder

First, obtain an instance of the Task.Builder:

import org.spongepowered.api.scheduler.Task;

Task.Builder taskBuilder = Task.builder();

The only required property is the Runnable [https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html],
which you can specify using Task.Builder#execute(Runnable) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Task.Builder.html#execute-java.lang.Runnable-]:

taskBuilder.execute(new Runnable() {
 public void run() {
 logger.info("Yay! Schedulers!");
 }
});

or using Java 8 syntax with Task.Builder#execute(Runnable runnable)

taskBuilder.execute(
 () -> {
 logger.info("Yay! Schedulers!");
 }
);

or using Java 8 syntax with Task.Builder#execute(Consumer<Task> task)

taskBuilder.execute(
 task -> {
 logger.info("Yay! Schedulers! :" + task.getName());
 }
);

Task Properties

Using the Task.Builder, you can specify other, optional properties, as described below.

	Property
	Method Used
	Description

	delay
	delayTicks(long delay)

	delay(long delay,

	TimeUnit unit)

	The optional amount of time to pass before the task is to be run.

The time is specified as a number of ticks with the delayTicks()
method, or it may be provided as a number of a more convenient time
unit by specifying a TimeUnit [https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/TimeUnit.html] with the delay() method.

Either method, but not both, can specified per task.

	interval
	
	intervalTicks(

	long interval)

	interval(long interval,

	TimeUnit unit)

	The amount of time between repetitions of the task. If an interval is
not specified, the task will not be repeated.

The time is specified as a number of ticks with the intervalTicks()
method, or it may be provided as a number of a more convenient time
unit by specifying a TimeUnit [https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/TimeUnit.html] with the interval() method.

Either method, but not both, can specified per task.

	synchronization
	async()
	A synchronous task is run in the game’s main loop in series with the
tick cycle. If Task.Builder#async is used, the task will be run
asynchronously. Therefore, it will run in its own thread, independently
of the tick cycle, and may not safely use game state.
(See Asynchronous Tasks.)

	name
	name(String name)
	The name of the task. By default, the name of the task will be
PLUGIN_ID “-” (“A-” | “S-”) SERIAL_ID. For example, a default task name
could look like “fooplugin-A-12”. No two active tasks will have the same
serial ID for the same synchronization type. If a task name is specified,
it should be descriptive and aid users in debugging your plugin.

Lastly, submit the task to the scheduler using Task.Builder#submit(Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Task.Builder.html#submit-java.lang.Object-].

And that’s it! To summarize, a fully functional scheduled task that would run asynchronously every 5 minutes after an
initial delay of 100 milliseconds could be built and submitted using the following code:

import java.util.concurrent.TimeUnit;

Task task = Task.builder().execute(() -> logger.info("Yay! Schedulers!"))
 .async().delay(100, TimeUnit.MILLISECONDS).interval(5, TimeUnit.MINUTES)
 .name("ExamplePlugin - Fetch Stats from Database").submit(plugin);

To cancel a task, simply call the Task#cancel() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Task.html#cancel–] method:

task.cancel();

If you need to cancel the task from within the runnable itself, you can instead opt to use a Consumer<Task>` in
order to access the task. The below example will schedule a task that will count down from 60 and cancel itself upon
reaching 0.

@Listener
public void onGameInit(GameInitializationEvent event) {
 Task task = Task.builder().execute(new CancellingTimerTask())
 .interval(1, TimeUnit.SECONDS)
 .name("Self-Cancelling Timer Task").submit(plugin);
}

private class CancellingTimerTask implements Consumer<Task> {
 private int seconds = 60;
 @Override
 public void accept(Task task) {
 seconds--;
 Sponge.getServer()
 .getBroadcastChannel()
 .send(Text.of("Remaining Time: "+seconds+"s"));
 if (seconds < 1) {
 task.cancel();
 }
 }
}

Asynchronous Tasks

Asynchronous tasks should be used primarily for code that may take a significant period of time to execute, namely
requests to another server or database. If done on the main thread, a request to another server could greatly impact
the performance of the game, since the next tick cannot be fired until the request is completed.

Since Minecraft is largely single-threaded, there is little you can do in an asynchronous thread. If you must run a
thread asynchronously, you should execute all of the code that does not use the SpongeAPI/affect Minecraft, then register
another synchronous task to handle the code that needs the API. There are a few parts of Minecraft that you can work
with asynchronously, including:

	Chat

	Sponge’s built-in Permissions handling

	Sponge’s scheduler

In addition, there are a few other operations that are safe to do asynchronously:

	Independent network requests

	Filesystem I/O (excluding files used by Sponge)

Compatibility with other libraries

As your plugin grows in size and scope you might want to start using one of the many concurrency libraries available
for Java and the JVM.
These libraries do tend to support Java’s
ExecutorService [https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html] as a means
of directing on which thread the task is executed.

To allow these libraries to work with Sponge’s Scheduler the following methods can be used:

	Scheduler#createSyncExecutor(Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Scheduler.html#createSyncExecutor-java.lang.Object-] creates a SpongeExecutorService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/SpongeExecutorService.html] which executes tasks
through Sponge’s synchronous scheduler.

	Scheduler#createAsyncExecutor(Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Scheduler.html#createAsyncExecutor-java.lang.Object-] creates a SpongeExecutorService which executes tasks through
Sponge’s asynchronous scheduler. Tasks are subject to the restrictions mentioned in Asynchronous Tasks.

One thing to keep in mind is that any tasks that interacts with Sponge outside of the interactions listed in
Asynchronous Tasks need to be executed on the ExecutorService created with Scheduler#createSyncExecutor(Object)
to be thread-safe.

import org.spongepowered.api.scheduler.SpongeExecutorService;

SpongeExecutorService minecraftExecutor = Sponge.getScheduler().createSyncExecutor(plugin);

minecraftExecutor.submit(() -> { ... });

minecraftExecutor.schedule(() -> { ... }, 10, TimeUnit.SECONDS);

Almost all libraries have some way of adapting the ExecutorService to natively schedule tasks.
As an example the following paragraphs will explain how the ExecutorService is used in a number of libraries.

CompletableFuture (Java 8)

With Java 8 the CompletableFuture [https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html] object was added to the standard library.
Compared to the Future object, this allows for the developer to provide a callback that is called when the future
completes rather than blocking the thread until the future eventually completes.

CompletableFuture [https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html] is a fluent interface which usually has the following three variations for each of its functions:

	CompletableFuture#<function>Async(..., Executor ex) Executes this function through ex

	CompletableFuture#<function>Async(...) Executes this function through ForkJoinPool.commonPool()

	CompletableFuture#<function>(...) Executes this function on whatever thread the previous CompletableFuture was completed on.

import java.util.concurrent.CompletableFuture;

SpongeExecutorService minecraftExecutor = Sponge.getScheduler().createSyncExecutor(plugin);

CompletableFuture.supplyAsync(() -> {
 // ASYNC: ForkJoinPool.commonPool()
 return 42;
}).thenAcceptAsync((awesomeValue) -> {
 // SYNC: minecraftExecutor
}, minecraftExecutor).thenRun(() -> {
 // SYNC: minecraftExecutor
});

RxJava

RxJava [https://github.com/ReactiveX/RxJava] is an implementation of the
Reactive Extensions [http://reactivex.io/] concept for the JVM.

Multithreading in Rx is managed through various
Schedulers [http://reactivex.io/documentation/scheduler.html].
Using the Schedulers#from(Executor executor) function the Executor provided by Sponge can be turned into a
Scheduler.

Much like CompletableFuture by default actions are executed on the same thread that completed the previous part
of the chain.
Use Observable#observeOn(Scheduler scheduler) to move between threads.

One important thing to bear in mind is that the root Observable gets invoked on whatever thread
Observable#subscribe() was called on. If the root observable interacts with Sponge it should be forced to run
synchronously using Observable#subscribeOn(Scheduler scheduler).

import rx.Observable;
import rx.Scheduler;
import rx.schedulers.Schedulers;

SpongeExecutorService executor = Sponge.getScheduler().createSyncExecutor(plugin);
Scheduler minecraftScheduler = Schedulers.from(executor);

Observable.defer(() -> Observable.from(Sponge.getServer().getOnlinePlayers()))
 .subscribeOn(minecraftScheduler) // defer -> SYNC: minecraftScheduler
 .observeOn(Schedulers.io()) // -> ASYNC: Schedulers.io()
 .filter(player -> {
 // ASYNC: Schedulers.io()
 return "Flards".equals(player.getName());
 })
 .observeOn(minecraftScheduler) // -> SYNC: minecraftScheduler
 .subscribe(player -> {
 // SYNC: minecraftScheduler
 player.kick(Text.of("Computer says no"));
 });

Scala

Scala comes with a built-in Future [https://www.scala-lang.org/api/current/#scala.concurrent.Future] object which
a lot of scala framework mirror in design.
Most methods of the Future accept an
ExecutionContext [https://www.scala-lang.org/api/current/index.html#scala.concurrent.ExecutionContext$] which
determined where that part of the operation is executed.
This is different from the CompletableFuture or RxJava since they default to executing on the same thread on which
the previous operation ended.

The fact that all these operation try to implicitly find an ExecutionContext means that you can easily use
the default ExecutionContext.global and specifically run the parts that need to be thread-safe on the Sponge
server thread.

To avoid accidentally scheduling work on through the Sponge ExecutorContext another context should be implicitly
defined so it acts as the default choice. To maintain thread safety only the functions that actually interact with Sponge
will need to have the Sponge executor specified.

import scala.concurrent.ExecutionContext

val executor = Sponge.getScheduler().createSyncExecutor(plugin)

import ExecutionContext.Implicits.global
val ec = ExecutionContext.fromExecutorService(executor)

val future = Future {
 // ASYNC: ExecutionContext.Implicits.global
}

future foreach {
 case value => // SYNC: ec
}(ec)

future map {
 case value => 42 // SYNC: ec
}(ec).foreach {
 case value => println(value) // ASYNC: ExecutionContext.Implicits.global
}

 Book Views

Book Views

A BookView [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.html] is the representation of the Book GUI on the client. The BookView is not associated with an
actual ItemStack [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html] and is only for displaying Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html] through a book to the player. Note that a
BookView is read-only, due to it being impossible to tell the client to open an unsigned book.

To create a BookView, we simply need to obtain a BookView.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html], which is provided through the
BookView#builder() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.html#builder–] method. Using the builder, we can specify the title, the author, and the pages of the
BookView. Then to use the view, we have to send it to a Viewer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/Viewer.html]. An example of this is shown below:

import org.spongepowered.api.effect.Viewer;
import org.spongepowered.api.text.BookView;
import org.spongepowered.api.text.Text;

BookView bookView = BookView.builder()
 .title(Text.of("Story Mode"))
 .author(Text.of("Notch"))
 .addPage(Text.of("There once was a Steve..."))
 .build();
viewer.sendBookView(bookView);

This will display a book to the client with a single page that contains the text specified in the
BookView.Builder#addPage(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#addPage-org.spongepowered.api.text.Text-] method. Of course, you don’t have to call addPage(Text) for every page
you wish to add. The BookView.Builder class provides a BookView.Builder#addPages(Collection<Text>) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#addPages-java.util.Collection-]
method that accepts multiple Texts.

The BookView.Builder class also provides the BookView.Builder#insertPage(int, Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#insertPage-int-org.spongepowered.api.text.Text-] and the corresponding
BookView.Builder#insertPages(int, Collection<Text>) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#insertPages-int-java.util.Collection-] methods for inserting a page or several pages at any
given index.

You may also remove pages of a BookView by providing either the Text from the page or by specifying the index
of the page that you wish to remove. You simply need to use the corresponding
BookView.Builder#removePage(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#removePage-org.spongepowered.api.text.Text-], BookView.Builder#removePage(int) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#removePage-int-], or
BookView.Builder#removePages(Collection<Text>) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/BookView.Builder.html#removePages-java.util.Collection-] methods.

 Permissions

Permissions

Permission

A permission is a case-insensitive hierarchical string key that is used to determine whether a Subject can do a specific
action or not.
The string is split into separate parts using the dot character.
Permissions should be structured like this.

<PluginID>.<MainGroup>.<Subgroup1>...

Allowed characters are:

	“A” - “Z”

	“a” - “z”

	“0” - “9”

	“_”

	“-“

	”.”

Inheritance

If a user has the permission myplugin.commands then they automatically have all sub permissions such as
myplugin.commands.teleport unless the permissions are explicitly removed.

Note

There is no such thing as a myplugin.commands.* wildcard permission.
Use myplugin.commands for that.

Structure-Example

The following example show one possible way of structuring permissions, but following this structure is not required at
all.

	
	myplugin

	
	Grants full access to all plugin’s permissions.

	
	myplugin.commands

	
	Grants full access to all plugin’s commands.

	
	myplugin.commands.teleport.execute

	
	Only grants the user the permission to execute the command. Without this permission he is not able to execute the
command even if he has other teleport permissions.
(With this permission alone the user would only be able to teleport himself to others in his current world.)

	
	myplugin.commands.teleport.all

	
	Only grants the user the permission to teleport all players at once.

	
	myplugin.commands.teleport.worlds

	
	Only grants the user the permission to teleport to all worlds.

	
	myplugin.commands.teleport.worlds.mynetherworld

	
	Only grants the user the permission to teleport to mynetherworld.

PermissionDescription

The PermissionDescription [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/PermissionDescription.html] is an utility that is meant to provide the server owner with details on a certain
permission. PermissionDescriptions are an optional feature a PermissionService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/PermissionService.html] can provide. The creation
of a PermissionDescription does not have any impact on whether a permission exists, who has access or what its
default value is.

The description consists of:

	the target permission id

	a Text description

	one or more assigned roles

	the owning plugin

If you have a dynamic element such as a World or ItemType then you can use <TemplateParts>.

Usage-Example

import org.spongepowered.api.service.permission.PermissionDescription;
import org.spongepowered.api.service.permission.PermissionDescription.Builder;
import org.spongepowered.api.service.permission.PermissionService;
import org.spongepowered.api.text.Text;
import java.util.Optional;

Optional<Builder> optBuilder = permissionService.newDescriptionBuilder(myplugin);
if (optBuilder.isPresent()) {
 Builder builder = optBuilder.get();
 builder.id("myplugin.commands.teleport.execute")
 .description(Text.of("Allows the user to execute the teleport command."))
 .assign(PermissionDescription.ROLE_STAFF, true)
 .register();
}

Simple-Result

myplugin.commands.teleport.execute

Description: Allows the user to execute the teleport command.
Role: user
Owner: MyPlugin v1.2.3

Template-Result

myplugin.commands.teleport.worlds.<World>

Description: Allows the user to teleport to the world <World>.
Role: staff
Owner: MyPlugin v1.2.3

Astuce

You might skip writing descriptions for some parent permission groups such as myplugin.commands.teleport.worlds
or myplugin.commands as their meaning can be derived from the permission structure and the defined children
alone.

Subject

A Subject [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/Subject.html] is a holder of assigned permissions. It can be obtained from the PermissionService via
SubjectCollection [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/SubjectCollection.html]s.
CommandSource [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandSource.html]s such as Player [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/Player.html]s are Subjects by default, but there are many other types of
Subjects. Anything that has permissions is a Subject even if it just delegates the checks to a contained Subject.
Permissions can be granted or denied to a Subject. If a permission is neither granted nor denied its setting will be
inherited. See Inheritance.
Subjects provide methods to check whether they have a certain permission or not.
Plugins that use this method should only query for the specific permission they want to check. It is the
PermissionService’s task to respect the permission and subject inheritance.

Example

The following example could be used to check whether the Player is allowed to execute the teleport command.

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.world.World;

public boolean canTeleport(Player subject, World targetWorld) {
 return subject.hasPermission("myplugin.command.teleport.execute")
 && (subject.getWorld() == targetWorld
 || subject.hasPermission("myplugin.command.teleport." + targetWorld.getName()));
}

Inheritance

If a Subject has a permission assigned, it will use that value.
Otherwise it will be inherited from any parent Subject. It does not matter what kind of parent (e.g. group or
player) Subject that might be.

If neither the subject itself nor any parent subjects grant or deny a permission then it will be inherited from the
default Subjects. Each SubjectCollection defines its own defaults. The global and weakest default subject can be
obtained from the PermissionService. Plugins may define their own permissions to the default’s transient
SubjectData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/SubjectData.html] during every server start-up. This allows server owners to overwrite the defaults defined by
plugins according to their needs using the default’s persistent SubjectData. If you would like to provide a
configuration guideline for server owners use PermissionDescription‘s role-templates instead.

Avertissement

You should think carefully before granting default permissions to users. By granting the permissions you are
assuming that all server owners will want these defaults (at least the first time the plugin runs) and that
exceptions will require server owners to explicitly deny the permissions (which can’t even be done without a custom
permissions service implementation). This should roughly correspond to a guest on a single player lan world without
cheats. For example a chat plugin would allow sending chat messages by default to imitate vanilla game behaviour
for features that were changed by the plugin.

Note

The default Subjects’ persistent SubjectDatas take precedence over the transient ones.
For all other Subjects the transient SubjectDatas take precedence over the persistent ones.

If neither the Subject, nor any of its parents, nor the defaults assign a value to a permission,
then it is automatically denied.

Note

Order of precedence in descending order:

	
	Subject itself

	
	Transient

	Persistent

	
	Parent Subjects

	
	Transient

	Persistent

	
	SubjectCollection Defaults

	
	Persistent

	Transient

	
	PermissionService Defaults

	
	Persistent

	Transient

	Deny permission

SubjectCollections

A container for subjects that can be used to obtain a Subject by name.
These are the default Subject Collections:

	
	User

	
	Contains all on-line Players and all off-line Users (at least those with none-default settings).

	
	Group

	
	Contains all group Subject. Groups are a simple way of structuring a Subject‘s inheritance tree using
named Subjects. Groups should be used if a specific subset of Subjects have additional permission
settings such as a team, faction or role.

	
	System

	
	Contains other Subjects used by the server such as the the console and possible remote consoles.

	
	Command Block

	
	Contains all Subjects for command blocks. These are useful if you would like to run a CommandBlock only
with the permissions of the creator.

	
	Role Template

	
	Contains all role template subjects that are used in PermissionDescriptions. Useful to lookup all recommended
permissions for a user. These should not be used for inheritance.

Note

When SubjectCollections are queried for a Subject they will automatically be created, if they do not already
exist. However they might not necessarily show up in getAllSubjects() unless none-default values are set.

SubjectData

SubjectData are the actual permission stores connected to the Subject.
There are two types of Subject stores:

	Transient = Only lasts for the duration of the session, it is never saved

	Regular (persistent) = Might be saved somewhere, and therefore be persisted and exist forever. Its recommended for
PermissionServices to implement a persistent store, however it is not a requirement. It might also depend on the
subject type. If there is no persistence then the transient store will be returned in both methods.

Plugin authors should consider whether it is necessary to persist a value when choosing between them.

	If it is only for a short time (e.g. during a minigame) then use the transient one.

	If it is for a long time or forever (e.g. a promotion to VIP) use the regular (persistent) one.

Please refer to the Inheritance section if want to know more about the inheritance and precedence of the transient
and persistent SubjectDatas.

Subject Options

Subjects also provide the possibility to store string options. These are basically key value pairs that can be
assigned and inherited. Unlike the permission strings the keys are not hierarchical and don’t provide any inheritance
mechanisms themselves, but the key value pairs itself are inherited from parent Subjects in the same way permissions
are.

Contexts

If you consider each permission to a privilege or ability to be able to do something, a Context [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/context/Context.html] is the
circumstances where that privilege is usable.

You might want to give a Subject permission to do something, but only when the Subject is in a certain world,
or in a certain region.

Contexts are accumulated by a Subject, and are then used by the PermissionService to decide if the Subject
has a privilege or not.

Sponge provides some contexts by default, but it is generally down to other plugins to provide additional contexts to
the PermissionService, through a ContextCalculator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/context/ContextCalculator.html].

When creating contexts for your own plugin please try to avoid conflicts with other plugins (e.g. by prefixing the
context key with your plugin id) unless these contexts are meant to be shared.

Note

Please make sure that your ContextCalculator responds as fast as possible as it will get called frequently.

Example

Your ContextCalculator may look like this:

import org.spongepowered.api.command.CommandSource;
import org.spongepowered.api.service.context.Context;
import org.spongepowered.api.service.context.ContextCalculator;
import org.spongepowered.api.service.permission.Subject;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.UUID;

public class ExampleCalculator implements ContextCalculator<Subject> {

 private static final Context IN_ANY_ARENA = new Context("myarenaplugin-inAnyArena", "true");
 private static final Context NOT_ANY_ARENA = new Context("myarenaplugin-inAnyArena", "false");
 private static final String ARENA_KEY = "myarenaplugin-arena";

 private final Map<UUID, String> playerArenas = new HashMap<>();

 @Override
 public void accumulateContexts(Subject calculable, Set<Context> accumulator) {
 final Optional<CommandSource> commandSource = calculable.getCommandSource();

 if (commandSource.isPresent() && commandSource.get() instanceof Player) {
 final Player player = (Player) commandSource.get();

 final UUID uuid = player.getUniqueId();
 if (this.playerArenas.containsKey(uuid)) {
 accumulator.add(IN_ANY_ARENA);
 accumulator.add(new Context(ARENA_KEY, this.playerArenas.get(uuid)));
 } else {
 accumulator.add(NOT_ANY_ARENA);
 }
 }
 }

 @Override
 public boolean matches(Context context, Subject subject) {
 if (!context.equals(IN_ANY_ARENA) && !context.equals(NOT_ANY_ARENA) && !context.getKey().equals(ARENA_KEY)) {
 return false;
 }

 final Optional<CommandSource> commandSource = subject.getCommandSource();
 if (!commandSource.isPresent() || !(commandSource.get() instanceof Player)) {
 return false;
 }

 final Player player = (Player) commandSource.get();

 if (context.equals(IN_ANY_ARENA) && !this.playerArenas.containsKey(player.getUniqueId())) {
 return false;
 }

 if (context.equals(NOT_ANY_ARENA) && this.playerArenas.containsKey(player.getUniqueId())) {
 return false;
 }

 if (context.getKey().equals(ARENA_KEY)) {
 if (!this.playerArenas.containsKey(player.getUniqueId())) {
 return false;
 }

 if (!this.playerArenas.get(player.getUniqueId()).equals(context.getValue())) {
 return false;
 }
 }

 return true;
 }
}

The ContextCalculator can be registered via:

permissionService.registerContextCalculator(contextCalculator);

 Dependency Injection

Dependency Injection

Sponge uses dependency injection to provide instances of the API to plugins.
Dependency injection allows plugins to designate a few API types that will be injected after construction.

Temporary List of Injected Types

	ConfigDir [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/config/ConfigDir.html] (annotation on Path or File)

	Used to inject the plugin’s configuration directory:
./config/ OR ./config/<Plugin#id>/ depending on ConfigDir#sharedRoot() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/config/ConfigDir.html#sharedRoot–]

	ConfigurationLoader<CommentedConfigurationNode> [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/loader/ConfigurationLoader.html]

	Must be annotated with @DefaultConfig.
Used to inject a pre-generated ConfigurationLoader for the File of the same annotation.

	DefaultConfig [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/config/DefaultConfig.html] (annotation on Path, ConfigurationLoader or File)

	Used to inject the plugin’s specific configuration file: <Plugin#id>.conf

	EventManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/EventManager.html]

	Manages the registration of event handlers and the dispatching of events.

	File

	Must be annotated with either @DefaultConfig or @ConfigDir.
Depending on the annotation given this will contain a file reference to the plugins default config file or the
directory used for storing configuration files. However, Path (see below) should be preferred.

	Game [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Game.html]

	The Game object is the core accessor of the SpongeAPI.

	GameRegistry [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/GameRegistry.html]

	Provides an easy way to retrieve types from a Game.

	GuiceObjectMapperFactory [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/GuiceObjectMapperFactory.html]

	A tool provided by Configurate to allow easier mapping of objects to configuration nodes.
See Serializing Objects for usage.

	Injector

	com.google.inject.Injector is available from Guice, it is the injector that was used to inject your plugin’s
dependencies. You can use it to create a child injector with your own module in order to inject your own classes
with either the Sponge provided dependencies listed on this page, or configure your own classes

	Logger

	Used to identify the plugin from which logged messages are sent.

	Path

	Must be annotated with either @DefaultConfig or @ConfigDir.
Depending on the annotation given this will contain a path reference to the plugins default config file or the
directory used for storing configuration files.

	PluginContainer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginContainer.html]

	A Plugin [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/Plugin.html] class wrapper, used to retrieve information from the annotation for easier use.

	PluginManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/PluginManager.html]

	Manages the plugins loaded by the implementation.
Can retrieve another plugin’s PluginContainer.

Injection Examples

There are a few references which are difficult to get - or, in some cases, impossible - without injection. While these
may not be absolutely vital to every plugin, they’re quite frequently used.

Note

Remember that it’s almost always best practice to inject your objects within the main class, as it’s
instantiated with the Guice injector when the plugin is loaded.

Logger

Astuce

View Logging and Debugging for a complete guide, specifically for the Logger.

Game

The Game object is the opening for many of the internal functions of the SpongeAPI, from the EventManager to the
Server [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Server.html] and even the Sync/Async Scheduler [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/scheduler/Scheduler.html].

While it is entirely possible to retrieve the Game object through Sponge.getGame(), it is commonly obtained
through an injection.

Example - Field

import com.google.inject.Inject;
import org.spongepowered.api.Game;

@Inject
private Game game;

Example - Method

private Game game;

@Inject
private void setGame(Game game) {
 this.game = game;
}

Example - Constructor

For the purpose of this tutorial, “Apple” is the class name.

private Game game;

@Inject
public Apple(Game game) {
 this.game = game;
}

Config Directory

The recommended way to obtain your config file is through Guice, along with the ConfigDir [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/config/ConfigDir.html] annotation.

Astuce

If you set sharedRoot to true, your ConfigDir will be the same directory which - potentially - houses
the configuration for other plugins. In most cases where grabbing the ConfigDir is required, this should be
false.

Example - Field

import org.spongepowered.api.config.ConfigDir;

import java.nio.file.Path;

@Inject
@ConfigDir(sharedRoot = false)
private Path configDir;

Example - Method

private Path configDir;

@Inject
@ConfigDir(sharedRoot = false)
private void setConfigDir(Path configDir) {
 this.configDir = configDir;
}

Example - Constructor

For the purposes of this tutorial, “Orange” is the class name.

private Path configDir;

@Inject
public Orange(@ConfigDir(sharedRoot = false) Path configDir) {
 this.configDir = configDir;
}

DefaultConfig

The way that @DefaultConfig works is very similar to @ConfigDir. The biggest difference is that
@DefaultConfig refers to a specific file, whereas @ConfigDir refers to a directory.

Astuce

View Configuring Plugins for a complete guide, specifically for @DefaultConfig.

 Offline Player Data

Offline Player Data

It may be necessary for plugins to access player data even when the player is offline.
You might think that Sponge.getServer().getPlayer() returning a Player [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/Player.html] can be used for this.
But since Player objects only exist for online players, another solution must be used.

Some plugins store the relevant data themselves and associate the user by using the GameProfileManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/profile/GameProfileManager.html].
But writing different code for offline and online users is not necessary.
The ServiceManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ServiceManager.html] natively provides a service known as the UserStorageService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/user/UserStorageService.html] which is capable
of returning User [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/User.html] instances for Players who are currently offline.
Since the Player interface extends User most methods you call on a Player are also available.

For example:

	#hasPermission(String permission) is available from both instances.

Code Example

Here’s an example for a utility method that can be used to get a User:

import java.util.Optional;
import java.util.UUID;

import org.spongepowered.api.Sponge;
import org.spongepowered.api.entity.living.player.User;
import org.spongepowered.api.service.user.UserStorageService;

public Optional<User> getUser(UUID uuid) {
 Optional<Player> onlinePlayer = Sponge.getServer().getPlayer(uuid);

 if (onlinePlayer.isPresent()) {
 return onlinePlayer;
 }

 Optional<UserStorageService> userStorage = Sponge.getServiceManager().provide(UserStorageService.class);

 return userStorage.get().get(uuid);
}

First check if a Player instance exists meaning that the user is online.
If so, the object is returned.
If not get the UserStorageService from the ServiceManager and then retrieve the User from there.

Note

The UserStorageService can only return Users who previously were connected.

Astuce

This solution can be used to get online and offline Users which makes it dynamically usable within your plugin.

 Build Systems

Build Systems

Build systems such as Gradle [https://gradle.org/] or Maven [https://maven.apache.org/] can manage the build process of your projects. As an independent tool from your
IDE, you can use them to manage your dependency on SpongeAPI or other plugins and give other people an easy way to
build your plugin from the source.

Note

SpongeAPI does not require using a build system for creating plugins, however we strongly recommend using one.
Except the short explanation at Creating a plugin without a build system, the following parts will assume you’re
using a build system, which can manage the dependencies for you.

Generally, you can use any build system which supports Maven dependencies, which is a standard supported by the
majority of build systems for Java projects. The following sections will focus on Gradle [https://gradle.org/] and Maven [https://maven.apache.org/], which are the two
most common choices as build systems. If you’re unsure which one to use we recommend using Gradle [https://gradle.org/] as it is also used
for the Sponge projects and provides the best integration for Sponge plugins.

Gradle

Gradle [https://gradle.org/] uses Groovy [http://www.groovy-lang.org/]-based scripts for configuring projects. A Gradle [https://gradle.org/] project typically consists of a build.gradle
file in your project’s root directory, which tells Gradle [https://gradle.org/] how to build the project.

Astuce

Refer to the Gradle User Guide [https://docs.gradle.org/current/userguide/userguide.html] for the installation and a general introduction of concepts used in Gradle [https://gradle.org/]. If
you’re only interested in how to use Gradle [https://gradle.org/] for a simple Java project, a good place to start would be the Gradle
Java Quickstart [https://docs.gradle.org/current/userguide/tutorial_java_projects.html].

Setup your workspace as explained in Setting Up Your Workspace then follow Setting Up Gradle.

Maven

Maven [https://maven.apache.org/] uses a XML-based configuration called Project Object Model [https://maven.apache.org/guides/introduction/introduction-to-the-pom.html] (or POM) for configuring projects.
A Maven [https://maven.apache.org/] project typically contains a pom.xml file in the project root directory which tells Maven [https://maven.apache.org/] how to
build the project.

Astuce

Refer to the Maven Users Centre [https://maven.apache.org/users/index.html] for the installation and a general introduction of concepts used in Maven [https://maven.apache.org/]. If
you’re only interested in how to use Maven [https://maven.apache.org/] for a simple Java project, a good place to start would be Maven in 5
Minutes [https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html].

Setup your workspace as explained in Setting Up Your Workspace then follow Setting Up Maven.

Creating a plugin without a build system

It is also possible to create Sponge plugins without the use of a build system, only with the included tools in your
IDE.

Avertissement

We strongly suggest against using SpongeAPI without a build system. In the long term using a build system will
simplify the development process for you and other people wanting to contribute to your project. This method of
developing plugins does not receive active testing by the Sponge team.

For developing plugins without a build system you need to download the SpongeAPI dependency manually from the
SpongeAPI Download Page [https://repo.spongepowered.org/maven/org/spongepowered/spongeapi/]. For developing without a build system, we provide the shaded artifact which bundles all
dependencies that would normally be automatically downloaded by the build system.

After you have downloaded the shaded artifact and have added it to a project in your IDE, you can start developing
your plugin. Continue at Plugin Identifiers for choosing an identifier for your project, then continue at Main Plugin Class.

 Economy API Best Practices

Economy API Best Practices

The Economy API tries to be abstract enough to give economy plugins flexibility in how they operate.
In order to give economy plugins as much control as possible, plugins consuming the Economy API should
follow some guidelines when working with it:

Withdrawing money

Plugins should not check if an account has enough money before attempting to withdraw it. While this may
sound counter-intuitive, it allows economy plugins to fully control how they handle negative balances.

By checking yourself if the account has enough money, you prevent the economy plugin from (potentially)
allowing a negative balance. For example, one economy plugin might want to allow negative balances to admins,
or players with a certain permission. By performing the check yourself, you take this power away from the economy plugin.

This code illustrates what not to do:

import java.math.BigDecimal;

import org.spongepowered.api.event.cause.Cause;
import org.spongepowered.api.service.economy.EconomyService;
import org.spongepowered.api.service.economy.account.Account;

EconomyService service = ...;
Account account = ...;
BigDecimal requiredAmount = BigDecimal.valueOf(20);

// BAD: Don't perform this check
if (account.getBalance(service.getDefaultCurrency()).compareTo(requiredAmount) < 0) {
 // You don't have enough money!
} else {
 // The account has enough, let's withdraw some cash!
 account.withdraw(service.getDefaultCurrency(), requiredAmount,
 Cause.source(this).build());
}

Instead of this, the best thing to do is simply withdraw the amount you need, and check the ResultType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/ResultType.html] of
the returned TransactionResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/TransactionResult.html]. An economy plugin which doesn’t want to allow negative balances will simply
return ResultType#ACCOUNT_NO_FUNDS [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/ResultType.html#ACCOUNT_NO_FUNDS], or ResultType#FAILED [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/ResultType.html#FAILED] in this case.

Here’s how you should withdraw money:

import org.spongepowered.api.service.economy.transaction.ResultType;
import org.spongepowered.api.service.economy.transaction.TransactionResult;

EconomyService service = ...
Account account = ...
BigDecimal requiredAmount = BigDecimal.valueOf(20);

TransactionResult result = account.withdraw(service.getDefaultCurrency(),
 requiredAmount, Cause.source(this).build());
if (result.getResult() == ResultType.SUCCESS)) {
 // Success!
} else if (result.getResult() == ResultType.FAILED || result.getResult() == ResultType.ACCOUNT_NO_FUNDS) {
 // Something went wrong!
} else {
 // Handle other conditions
}

 Economy

Economy

Sponge provides an Economy API that unifies all economy plugins under one single API. The API can be used by both
economy plugins providing the API, and other plugins using the API (i.e. shop plugins). This allows for all
plugins that require an economy to work with any Sponge economy plugin.

Contents

	Basic Concepts

	Using the Economy API

	Economy API Best Practices

	Implementing the Economy API

 Implementing the Economy API

Implementing the Economy API

Sponge provides interfaces for economy plugins to implement and create an API. In order to build a complete Economy
API, you must implement six classes:

	Currency [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/Currency.html]

	EconomyService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/EconomyService.html]

	TransactionResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/TransactionResult.html]

	TransferResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/TransferResult.html]

	UniqueAccount [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/account/UniqueAccount.html]

	VirtualAccount [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/account/VirtualAccount.html]

Things to consider when implementing the Economy API

	Do I want to include support for multiple currency types?

	Do I want to my plugin to perform different actions when given different contexts?

Implementing the Economy API is fairly straightforward, and the JavaDocs [https://jd.spongepowered.org] can be a
great tool if you are unsure what a method is supposed to do.

 Basic Concepts

Basic Concepts

The Sponge Economy API has a few basic components that developers should be familiar with:

	EconomyService

	Currency

	Accounts

	Transactions

The EconomyService

The EconomyService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/EconomyService.html] is the basis of the Economy API. It is used to interact via the Economy API, stores an
economy’s currencies and provides methods for account management.

Avertissement

Sponge does not provide a default implementation for the EconomyService. It’s completely up to plugins to
implement the Economy API. This means that you have to rely on another plugin which implements the service or you’ll
have to implement it yourself, if you want to make use of it.

Currency

The Currency [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/Currency.html] object represents a form of Currency. Currency stores a display name (plural and singular),
a symbol, the amount of fractional digits, and whether the currency is the default currency for the economy. If the
economy plugin chooses, it can support multiple currencies.

Accounts

Account [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/account/Account.html]s are used to store economy information about a specific player or other object (i.e. bank,
business, entity). There are two account types in the Sponge Economy API:

Virtual Accounts

Virtual accounts are tied to an identifier, which is stored as a string. Virtual accounts can be tied to almost
anything, but are commonly used for things such as banks, or non-players. To get the id of a virtual account, use
getIdentifier().

Unique Accounts

Unique accounts are tied to a UUID, usually a player. To get the UUID of an unique account, use getUUID().

Transactions

Transactions represent an account’s change in balance. There are currently three types of transactions:

	Deposit: Occurs when an account has funds added to it

	Withdraw: Occurs when an account has funds removed from it

	Transfer: Occurs when an account exchanges funds with another account

When a transfer occurs, the EconomyTransactionEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/economy/EconomyTransactionEvent.html] is fired. Using this event, you can get the
TransactionResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/TransactionResult.html]. The TransactionResult stores data about the transaction that occurred, including:

	Account involved

	Currency involved

	Amount of currency involved

	Transaction type

	Result of the transaction

You can view all possible transaction results on the ResultType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/transaction/ResultType.html] JavaDocs page.

 Using the Economy API

Using the Economy API

The Economy API unifies all economy plugins under one API. This means any plugin using the Economy API
will be compatible with all economy plugins that implement said API. This page guides you through the steps of using
the Economy API in your own plugin.

Loading the EconomyService

In order to utilize the Economy API, you must first load the EconomyService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/EconomyService.html] class using the ServiceManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ServiceManager.html].

Avertissement

Please note that you need to pay attention to different game states while the server is starting, stopping or
running when using services like the Economy API. Take a look at the Services page for further
information.

Example: Loading the EconomyService

import org.spongepowered.api.service.economy.EconomyService;
import org.spongepowered.api.Sponge;

Optional<EconomyService> serviceOpt = Sponge.getServiceManager().provide(EconomyService.class);
if (!serviceOpt.isPresent()) {
 // handle there not being an economy implementation
}
EconomyService economyService = serviceOpt.get();

Avertissement

Keep this service in a local variable instead of a member variable, since the provider (implementation)
could change at any point. If you need to place it in a member variable, for whatever reason, use
ChangeServiceProviderEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/service/ChangeServiceProviderEvent.html] to keep the implementation updated.

Note

Unlike other services, you should try to use ServiceManager#provide(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ServiceManager.html#provide-java.lang.Class-] instead of
ServiceManager#provideUnchecked(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/ServiceManager.html#provideUnchecked-java.lang.Class-] because Sponge does not provide a default implementation
of the EconomyService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/EconomyService.html], and therefore it is not guaranteed that it exists.

Using the EconomyService

After loading the EconomyService and assigning it to a variable, you are ready to access all of the features the
Economy API has to offer.

Example: Getting a player’s balance

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.service.economy.EconomyService;
import org.spongepowered.api.service.economy.account.UniqueAccount;
import java.math.BigDecimal;
import java.util.Optional;

Optional<UniqueAccount> uOpt = economyService.getOrCreateAccount(player.getUniqueId());
if (uOpt.isPresent()) {
 UniqueAccount acc = uOpt.get();
 BigDecimal balance = acc.getBalance(economyService.getDefaultCurrency());
}

Some Account [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/account/Account.html] methods require variables such as:

	Currency: The currency involved in the exchange

	Cause: What caused the change to the account

	Context: The context that the change occurred in

These are for more advanced uses, but still must be filled in. Below is a list of acceptable default values:

	Currency: EconomyService#getDefaultCurrency() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/economy/EconomyService.html#getDefaultCurrency–]

	Cause: Cause.source(myPlugin).build()

	Context: new HashSet<Context>()

 MCP (Mod Coder Pack)

MCP (Mod Coder Pack)

The Mod Coder Pack [http://www.modcoderpack.com] (short MCP) was originally created as a collection of scripts, tools and mappings to make the
development of mods for Minecraft easier. Since Minecraft is not open-source and for the most part obfuscated,
development against it was painful since the original code was almost unreadable. MCP was designed as a workspace in
which developers can create mods using decompiled, deobfuscated (human-readable) Minecraft code.

Workflow

Using MCP adds additional steps to the development workflow of plugins, simplified below:

	
	Set up the MCP workspace

	
	Download the Minecraft client/server files

	Deobfuscate the code (changing obfuscated names into human-readable ones)

	Decompile the code (generating source files from the binary classes)

	Create a plugin using the deobfuscated Minecraft source

	Re-obfuscate the plugin code so it can be used with the obfuscated code at runtime

Mappings

MCP uses two different sets of mappings which are applied separately during the workspace setup. The difference between
Notch, Searge and MCP mappings can be seen in the example below:

// Notch
boolean a(rw ☃);

// Searge
boolean func_72838_d(Entity p_72838_1_);

// MCP
boolean spawnEntityInWorld(Entity entityIn);

	Notch mappings are the original names in the obfuscated Minecraft binary. They change regularly with new
Minecraft versions.

	Searge mappings contain unique names for all obfuscated methods, fields and parameters, as well as human-readable
names for the classes. Unlike Notch mappings they usually stay the same across Minecraft updates unless the method
signatures change. For SpongeVanilla and SpongeForge, they are also used in production (outside of your IDE).

	MCP mappings contain human-readable names largely contributed by the community. They are typically only used in
the development environment, and then re-obfuscated to Searge or Notch mappings.

Note

When you create a plugin you work with MCP mappings in your development environment. To run the plugin in
production (outside of your IDE) you need to re-obfuscate it to Searge mappings.

Using the MCPBot

The MCPBot [http://mcpbot.bspk.rs/] is available in the Sponge and MCP IRC channels and allows you to lookup MCP mappings or contribute new
names. You can send commands to the bot by sending messages in one of the supported channels (e.g. #spongedev).

Astuce

Check out the MCPBot help page [http://mcpbot.bspk.rs/help] for a list of all available commands.

Contributing new names

You can also contribute names for class members which are still unnamed. Check out the
MCPBot help page [http://mcpbot.bspk.rs/help] for more instructions.

Note

You cannot change existing names. If you would like to suggest changing an existing mapping, create
a new issue on the MCPBot issue tracker on GitHub [https://github.com/ModCoderPack/MCPBot-Issues/issues].

Voir aussi

	Mod Coder Pack [http://www.modcoderpack.com]

	Official website of the Mod Coder Pack.

	MCPBot help page [http://mcpbot.bspk.rs/help]

	More information about using the MCPBot [http://mcpbot.bspk.rs/].

 Implementation-dependent Plugins

Implementation-dependent Plugins

There are various reasons for bypassing SpongeAPI and accessing the internal Minecraft implementation directly:

	A part of SpongeAPI is not implemented yet. In this case you can temporarily bypass the API in your plugins. However,
in most cases the better option is attempting to contribute the missing implementation to Sponge so other plugin
developers can profit from the implemented API.

	You need access to an implementation-dependent feature which is not supported by SpongeAPI (on purpose).

	You want to optimize or customize the implementation specifically for your server.

Avertissement

Depending on special implementation features will make your plugin only work on the implementation you build it
against (and likely also only on a specific version). Unless you are certain that accessing the implementation is
necessary we highly recommend building plugins only against SpongeAPI.

Note

The following articles assume you build your plugin for SpongeVanilla/SpongeForge. The plugin will not be usable on
any other implementation.

SpongeVanilla and SpongeForge use MCP as development environment for the internal Minecraft code. Continue at MCP (Mod Coder Pack)
for a short overview about MCP or continue directly with Using MCP in Plugins for an introduction about using MCP in
plugins.

Contents

	MCP (Mod Coder Pack)

	Using MCP in Plugins

	Access Transformers

	Plugin Mixins

	Internal Sponge Classes

 Access Transformers

Access Transformers

Since some parts of the Minecraft code were not designed to be used from the outside, you may find yourself in a
situation in which you need to access a field or method that is not public. While you would normally use reflection to
access the field or method, MCP will make this more difficult since you have two different names - the MCP names in the
development environment and the Searge names in production.

For example to access the method tick() using reflection you would need to use tick in the development
environment, but func_71217_p in production. The re-obfuscation step only handles direct references to methods
and fields, not the string parameter passed to the reflection call.

As a solution, ForgeGradle supports using access transformers (or AT) that automatically make the specified
methods/fields public so you can reference them directly (without reflection). While they are primarily intented for
usage with the Minecraft code base, they can be also applied to classes from other projects. If configured in the JAR
manifest of the plugin, SpongeVanilla and Forge will also apply them in production.

Setup

ForgeGradle will automatically scan for access transformer files with the file name suffix _at.cfg in your resource
folders. To be able to use the access transformer at runtime, you need to add them to a META-INF folder in your
resource directory, for example META-INF/myplugin_at.cfg.

There are 3 different types of access transformers: you can change the modifiers of classes, fields and methods.
An access transformer line is defined by 2 parts (for classes) or 3 parts (for fields and methods), each separated by a
space.

	The access type you want to change the method/field to, e.g. public or protected. To remove final from a
field, append -f after the access type, e.g. public-f.

	Full qualified class name, e.g. net.minecraft.server.MinecraftServer

	For fields and methods: Searge field name or method name and method signature, e.g. field_54654_a or func_4444_a()V

Astuce

You can add comments by prefixing them with #. A good convention is to add the MCP name after each access
transformer line so you know which field/method the line is referring to.

Here are two examples for access transformer lines:

public-f net.minecraft.server.MinecraftServer field_71308_o # anvilFile
public net.minecraft.server.MinecraftServer func_71260_j()V # stopServer
public-f net.minecraft.item.ItemStack

To apply the access transformers to your development environment, run the Gradle setupDecompWorkspace task again and
refresh your Gradle project:

gradle setupDecompWorkspace

Astuce

You can use the MCP bot [http://mcpbot.bspk.rs/help] which is present in the MCP and Sponge IRC channels to
quickly get the access transformer line for a field or method. After looking up a method using !gm <mcp method
name> or a field using !gf <mcp field name>, simply copy the listed AT line to your access transformer
file.

Note

Making a field/method less accessible (e.g. public -> private) is not supported.

Production

To apply the access transformers in production, you need to add a FMLAT manifest entry to your plugin with the file
name of your access transformer in the META-INF directory.

jar {
 manifest.attributes('FMLAT': 'myplugin_at.cfg')
}

 Using MCP in Plugins

Using MCP in Plugins

ForgeGradle [https://github.com/MinecraftForge/ForgeGradle] is a Gradle plugin which integrates the MCP workflow into the Gradle build system. It handles setting up
the workspace, as well as the re-obfuscation of your plugin.

Note

Since ForgeGradle depends on Gradle, the following pages assume you are using Gradle to build your plugin. See
Setting Up Gradle to get started.

Configuring ForgeGradle

You can choose between two different types of workspaces:

	Vanilla workspace: Supports plugins for SpongeVanilla and SpongeForge.

	Forge workspace: Supports only plugins for SpongeForge (and not SpongeVanilla).

Note

In most cases, the Vanilla workspace can be used for SpongeVanilla and SpongeForge. In some cases, there may be
problems on one of the platforms because of changes in the Minecraft code by Forge. Make sure to always test your
plugin on both platforms when using MCP.

Choosing a MCP mappings version

To setup a MCP workspace you need to specify the MCP mappings version that will be used to de-obfuscate the Minecraft
source with human-readable names. A list of MCP mappings versions is available on the
Export page of the MCPBot [http://export.mcpbot.bspk.rs].

There are stable versions (released from time to time) and daily snapshots which contain the latest name changes. If you
do not need a specific name that was added recently, use a stable version (if available for your Minecraft version),
otherwise use the latest snapshot version.

Click the button for the version you want to use and select “Use in ForgeGradle”. Then copy the provided version to your
Gradle build script (insert it in the snapshot_xxx placeholder below).

Vanilla Workspace

buildscript {
 repositories {
 maven {
 name = 'forge'
 url = 'http://files.minecraftforge.net/maven'
 }
 }

 dependencies {
 classpath 'net.minecraftforge.gradle:ForgeGradle:2.2-SNAPSHOT'
 }
}

plugins {
 id 'org.spongepowered.plugin' version '0.8.1'
 id 'net.minecrell.vanillagradle.server' version '2.2-3'
}

minecraft {
 version = '1.10.2'
 // TODO: Replace with your mappings version, e.g. snapshot_20170120
 mappings = 'YOUR_MAPPINGS_VERSION'
}

Forge Workspace

buildscript {
 repositories {
 maven {
 name = 'forge'
 url = 'http://files.minecraftforge.net/maven'
 }
 }

 dependencies {
 classpath 'net.minecraftforge.gradle:ForgeGradle:2.2-SNAPSHOT'
 }
}

plugins {
 id 'org.spongepowered.plugin' version '0.8.1'
}

apply plugin: 'net.minecraftforge.gradle.forge'

minecraft {
 forgeVersion = '1944' // TODO: Configure Forge build here
 // TODO: Replace with your mappings version, e.g. snapshot_20170120
 mappings = 'YOUR_MAPPINGS_VERSION'
}

Setting Up the Workspace

Every time you update the Minecraft or mappings version, or want to re-import your project, you need to start with setting
up your workspace using Gradle. To do that, run the setupDecompWorkspace Gradle task of your project, before
importing the project into your IDE:

gradle setupDecompWorkspace

Now you can import your Gradle project, as described in Setting Up Gradle. If your project is already imported,
make sure to refresh the Gradle configuration so your IDE can register the new Minecraft dependency.

Building Your Plugin

ForgeGradle automatically configures your plugin to re-obfuscate to Searge mappings when building it so you can run it
in production. Make sure to use Gradle’s build task, and not jar directly.

gradle clean build

 Plugin Mixins

Plugin Mixins

Mixins [https://github.com/SpongePowered/Mixin] can be used to modify classes at runtime before they are loaded. You
can use them in plugins if you want to optimize a part of the game specifically for your server - without having to fork
Sponge. The modifications will be bundled directly with your plugin and are only active as long as the plugin is loaded.

Voir aussi

	Mixin documentation [https://github.com/SpongePowered/Mixin/wiki]

	Mixin documentation including an introduction to Mixins.

	Example plugin [https://github.com/SpongePowered/Cookbook/tree/master/Plugin/PluginMixinTest]

	Example plugin which uses Plugin Mixins to print a message when the server is starting.

Setup

	Add the Mixin library as dependency to your plugin:

dependencies {
 compile 'org.spongepowered:mixin:0.6.6-SNAPSHOT'
}

	Add a new Mixin configuration for your plugin, e.g. mixins.myplugin.json inside your resource folder:

{
 "package": "com.example.myplugin.mixin",
 "refmap": "mixins.myplugin.refmap.json",
 "target": "@env(DEFAULT)",
 "compatibilityLevel": "JAVA_8",
 "mixins": [
 "MixinMinecraftServer"
]
}

	Add a Mixin class to the specified package:

package com.example.myplugin.mixin;

import net.minecraft.server.MinecraftServer;
import org.spongepowered.asm.mixin.Mixin;

@Mixin(MinecraftServer.class)
public abstract class MixinMinecraftServer {

}

Debugging

Normally, the Mixin configuration is registered inside JAR manifest of the plugin. Since the plugin is not packaged in a
JAR while debugging inside the IDE you need specify the Mixins to apply as command line options:

	Add a --mixin <mixin config file name> option for each Mixin configuration file to the program arguments of your
run configuration:

--mixin mixins.myplugin.json

Production

If your Mixin is working in your development environment you still need to make some changes to make it work in
production:

	Apply the MixinGradle [https://github.com/SpongePowered/MixinGradle] plugin to your build script:

buildscript {
 repositories {
 maven {
 name = 'sponge'
 url = 'https://repo.spongepowered.org/maven'
 }
 }
 dependencies {
 classpath 'org.spongepowered:mixingradle:0.4-SNAPSHOT'
 }
}

apply plugin: 'org.spongepowered.mixin'

	Set the refmap from your Mixin configuration:

sourceSets {
 main {
 refMap = "mixins.myplugin.refmap.json"
 }
}

	Add your Mixin configuration to the JAR manifest. The FMLCorePluginContainsFMLMod manifest entry is necessary if
you want to load your Mixin on SpongeForge:

jar {
 manifest.attributes(
 'TweakClass': 'org.spongepowered.asm.launch.MixinTweaker',
 'MixinConfigs': 'mixins.myplugin.json',
 'FMLCorePluginContainsFMLMod': 'true',
)
}

	Make sure to re-build the plugin using Gradle. The Mixin should then get applied by SpongeVanilla and SpongeForge.

gradle clean build

 Internal Sponge Classes

Internal Sponge Classes

You can add SpongeCommon, SpongeVanilla or SpongeForge as a dependency to your plugin project if you need to access
internal Sponge classes.

Avertissement

You should only add a specific implementation dependency when really necessary. If possible, use SpongeAPI or
request feature additions on the SpongeAPI issue tracker [https://github.com/SpongePowered/SpongeAPI/issues].

In addition to the normal artifacts, the implementation modules provide a dev artifact which can be easily used in
the IDE, since it is not re-obfuscated. All implementation modules have the API module already included, so you do not
need an extra dependency on SpongeAPI.

SpongeCommon

	Group ID: org.spongepowered

	Artifact ID: spongecommon

	Version: Same as SpongeAPI

	Classifier: dev

Example Using Gradle

dependencies {
 compile 'org.spongepowered:spongecommon:5.0.0-SNAPSHOT:dev'
}

SpongeVanilla

Choose a build from the downloads page and copy the full version string to your dependency definition.

	Group ID: org.spongepowered

	Artifact ID: spongevanilla

	Version: Use a build version from the downloads page

	Classifier: dev

Example Using Gradle

dependencies {
 compile 'org.spongepowered:spongevanilla:1.8.9-4.2.0-BETA-348:dev'
}

SpongeForge

Choose a build from the downloads page and copy the full version string to your dependency definition.

	Group ID: org.spongepowered

	Artifact ID: spongeforge

	Version: Use a build version from the downloads page

	Classifier: dev

Example Using Gradle

dependencies {
 compile 'org.spongepowered:spongeforge:1.8.9-1890-4.2.0-BETA-1625:dev'
}

 Using Keys

Using Keys

Getting and offering data using a key

A data holder provides methods to retrieve or alter a single point of data identified by a Key [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Key.html]. Let’s just
start out with an example:

Code Example: Healing a data holder, if possible

import org.spongepowered.api.data.DataHolder;
import org.spongepowered.api.data.key.Keys;

public void heal(DataHolder target) {
 if (target.supports(Keys.HEALTH)) {
 double maxHealth = target.get(Keys.MAX_HEALTH).get();
 target.offer(Keys.HEALTH, maxHealth);
 }
}

Now for the details of the above function.

The first line checks if our given data holder supports a current health value. Only if it does, it can be healed after
all. Since a data holder can not have current health without having a maximum health and vice versa, a check for
one of the keys using the supports() method suffices.

The second line uses the get() function to ask the data holder for its maximum health. Besides
get(), the methods getOrNull() and getOrElse() exist, all of which accept a Key as their first
parameter. Generally, get() should be used, which will return an Optional of the data requested or
Optional.empty() if the data holder does not support the supplied key. Since we already verified that the
Key is supported, we can just call get() on the Optional without further checks. We could also use
getOrNull() which is basically a shortcut to call get(key).orNull(), thus getting rid of the
Optional. The third possibility would be the getOrElse(), which accepts a default value as a second
parameter to be returned if the value is not present on the data holder.

In the third line, we offer data back to the data holder. We provide a Key denoting the current health and the
before acquired maximum health, thus healing the data holder to full health. There are a variety of offer()
methods accepting different parameter sets, all of which return a DataTransactionResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataTransactionResult.html] containing
information if the offer was accepted. For now, we’ll use the one accepting a Key and a corresponding value, but we
will encounter more in the next pages. Since we already know that our offer of current health is accepted (as the data
holder supports it), we can silently discard the result.

It is also possible to completely remove data from a DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html] using the remove() function. Simply
provide a Key representing the data you want removed. The following example will attempt to remove a custom name
from a given data holder:

public void removeName(DataHolder target) {
 target.remove(Keys.DISPLAY_NAME);
}

Transforming Data

Other than getting, modifying and offering a value, there is another way of interacting with data. Using a data
holder’s transform() method we can pass a Key and a Function. Internally, the value for the key will be
retrieved and the given function applied to it. The result is then stored under the key and the transform()
method will return a DataTransactionResult accordingly.

Now, as an example, imagine we want to buff a data holder by doubling his maximum health.

import java.util.function.Function;

public void buff(DataHolder target) {
 target.transform(Keys.MAX_HEALTH, new Function<Double,Double>() {
 @Override
 public Double apply(Double input) {
 return (input == null) ? 0 : input * 2;
 }
 });
}

Or, if you use Java 8, you’re able to shorten the line with lambda expressions:

public void buff(DataHolder target) {
 target.transform(Keys.MAX_HEALTH, d -> (d == null) ? 0 : 2*d);
}

Note that in both cases we need to make sure our passed function can handle null. You will also notice that no
check has been performed if the target actually supports the Keys#MAX_HEALTH [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Keys.html#MAX_HEALTH] key. If a target does not
support it, the transform() function will fail and return a DataTransactionResult indicating so.

Keyed Values

There are cases where you may care about not only the direct value for a Key, but the keyed value
encapsulating it. In that case, use the getValue(key) method instead of get(key). You will receive an
object inheriting from BaseValue [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/BaseValue.html] which contains a copy of the original value. Since we know that current
health is a MutableBoundedValue [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/mutable/MutableBoundedValue.html], we can find out the minimum possible value and set our target’s health just
a tiny bit above that.

Code Example: Bring a target to the brink of death

import org.spongepowered.api.data.value.mutable.MutableBoundedValue;

public void scare(DataHolder target) {
 if (target.supports(Keys.HEALTH)) {
 MutableBoundedValue<Double> health = target.getValue(Keys.HEALTH).get();
 double nearDeath = health.getMinValue() + 1;
 health.set(nearDeath);
 target.offer(health);
 }
}

Again, we check if our target support the health key and then obtain the keyed value. A
MutableBoundedValue contains a getMinValue() method, so we obtain the minimal value, add 1 and then set
it to our data container. Internally, the set() method performs a check if our supplied value is valid and
silently fails if it is not. Calling health.set(-2) would not change the value within health since it
would fail the validity checks. To finally apply our changes to the target, we need to offer the keyed value
back to it. As a keyed value also contains the Key used to identify it, calling target.offer(health)
is equivalent to target.offer(health.getKey(), health.get()).

 The Data API

The Data API

The unified Data API aims to provide a consistent way of accessing and modifying data. ‘Data’, in this context
means any data that is consistently synchronized between client and server. It can be changed server-side and
then those changes will be synchronized to the connected clients. This includes, among many others, the text on
a sign, the looks of a horse or the health of any living entity.

Where other approaches define the available data using interfaces and inheritance (like a LivingEntity
interface providing getter and setter functions for current and maximum health), in Sponge every entity, block
etc. is completely oblivious to what data it holds. While this may appear less straightforward than direct
accessor methods, it is foremost far more extensible. And thanks to the addition of Key [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Key.html]s, simply accessing
specific values is no less straightforward.

Avertissement

As of writing, a few parts of the Data API are not implemented. If you are trying to access an API and are receiving
an empty Optional when one is not expected, refer to the Implementation Tracker [https://github.com/SpongePowered/SpongeCommon/issues/8], ask in the #spongedev IRC channel or on the
Forums [https://forums.spongepowered.org] to find out if the data you need to work with is available yet.

Concepts

On first glance at the API docs, the data API threatens to overwhelm you with lots of interfaces and packages. But
to simply use the data API, you will not have to deal with many of them, as most interfaces found there are just
specific data manipulators.

DataHolder

A data holder is just that - something that holds data. It provides methods to retrieve and offer back data. The
interface itself is completely oblivious to the type of data held. Since only the implementations will possess
this knowledge, it is possible to ask a DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html] to provide data it does not have or to accept data it
cannot use. In those cases, the return values of the methods will provide the information that data is not available
(via Optional.empty()) or not accepted (via the DataTransactionResult).

Property

A property too is data, but not synchronized between server and clients. Therefore, it can only be
changed by modifications present on both client and server. Since Sponge is not intended to require a
client-side counterpart, properties are not modifiable.
Examples of properties are the harvesting ablities on tools (represented as HarvestingProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/item/HarvestingProperty.html] or the damage
absorption of an equippable armor item (represented as DamageAbsorptionProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/item/DamageAbsorptionProperty.html]).

DataManipulator

A data manipulator represents points of cohesive data that describes a certain component of its holder. For
example HealthData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/HealthData.html], which contains both current and maximum health. If a data holder has HealthData, it
has health that can somehow be depleted and replenished and can die if that health is depleted. This allows for the
re-use of such components over the API and prevents duplication of accessor methods. For example, sheep, stained glass
blocks and leather armor all can share the DyeableData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/DyeableData.html] holding the color they are dyed in.

Key

A Key is a unique identifier for a single point of data and can be used to directly read or set that point of
data without worrying about data manipulators. It was designed to provide a convenient way of accessing data
similar to direct getter/setter methods. All keys used within Sponge are listed as constants in the
Keys [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Keys.html] utility class.

Value

Within the Data API, a value referred to by a Key is encoded in a container object. For this documentation,
it is referred to as ‘keyed value’ to avoid confusion with the actual value. A keyed value encapsulates the
actual data value (if it is present), a default value (to be used if no direct value is present) and the Key by
which the value is identified.

Contents

	Custom Data
	Custom DataManipulators

	Custom DataHolders

	Serializing Custom Data

	Using Keys

	Data Manipulators

	Transactions

	Serializing Data

 Serializing Data

Serializing Data

While an ImmutableDataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html] is a good way to store data while the server is running, it will not
persist over a restart. However, every DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html] implements the DataSerializable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataSerializable.html] interface
and thus can be serialized to a DataContainer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataContainer.html] and deserialized by a DataBuilder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataBuilder.html].

After this initial conversion from the specialized DataManipulator to a more general structure, the DataContainer
can be further processed.

DataContainer and DataView

A DataView [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataView.html] is a general-purpose structure for holding any kind of data. It supports multiple values and even
nested DataViews as a value, thus allowing for a tree-like structure. Every value is identified by a
DataQuery [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataQuery.html]. A DataContainer is a root DataView.

Every DataSerializable provides a toContainer() method which will create and return a DataContainer.
As an example, calling toContainer() on a HealthData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/HealthData.html] instance will yield a DataContainer containing
two values, one for the current and one for the maximum health, each identified by the DataQuery of the respective
Key.

import org.spongepowered.api.data.DataContainer;
import org.spongepowered.api.data.key.Keys;

DataContainer serializedHealth = healthData.toContainer();
double currentHealth = serializedHealth.getDouble(Keys.HEALTH.getQuery()).get();
currentHealth == healthData.health().get(); // true

Converting this container back into a HealthData instance is done by the corresponding DataBuilder. Those are
registered and managed by the DataManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataManager.html]. It can either be obtained from a valid Game [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Game.html] instance
or using the Sponge [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Sponge.html] utility class. The DataManager provides a method to get the appropriate
DataBuilder to deserialize a given class and additionally a shorthand method to get the DataBuilder and have it
do the deserialization in one step. Both of the following code examples are functionally equivalent.

Code Example: Deserialization, the long way

import org.spongepowered.api.data.DataView;
import org.spongepowered.api.data.manipulator.mutable.entity.HealthData;
import org.spongepowered.api.util.persistence.DataBuilder;

import java.util.Optional;

public Optional<HealthData> deserializeHealth(DataView container) {
 final Optional<DataBuilder<HealthData>> builder = Sponge.getDataManager().getBuilder(HealthData.class);
 if (builder.isPresent()) {
 return builder.get().build(container);
 }
 return Optional.empty();
}

Code Example: Deserialization, the short way

import org.spongepowered.api.data.manipulator.mutable.entity.HealthData;

public Optional<HealthData> deserializeHealth(DataView container) {
 return Sponge.getDataManager().deserialize(HealthData.class, container);
}

The deserializeHealth function will return Optional.empty() if there is no DataBuilder registered for
HealthData or the supplied DataContainer is empty. If invalid data is present in the DataContainer, an
InvalidDataException [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/InvalidDataException.html] will be thrown.

DataTranslator

In Sponge, generally the implementations MemoryDataView [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/MemoryDataView.html] and MemoryDataContainer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/MemoryDataContainer.html] are used, which
reside in memory only and thus will not persist over a server restart. In order to persistently store a
DataContainer, it first has to be converted into a storable representation.

Using the DataTranslators#CONFIGURATION_NODE [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataTranslators.html#CONFIGURATION_NODE] implementation of DataTranslator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataTranslator.html], we can convert a
DataView to a ConfigurationNode [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html] and vice versa. ConfigurationNodes can then be written to and read
from persistent files using the Configurate Library.

Code Example: Serializing a HealthData instance to Configurate

import ninja.leaping.configurate.ConfigurationNode;
import org.spongepowered.api.data.persistence.DataTranslator;
import org.spongepowered.api.data.persistence.DataTranslators;

public ConfigurationNode translateToConfig(HealthData data) {
 final DataTranslator<ConfigurationNode> translator = DataTranslators.CONFIGURATION_NODE;
 final DataView container = data.toContainer();
 return translator.translate(container);
}

Code Example: Deserializing a HealthData instance from Configurate

import java.util.Optional;

public Optional<HealthData> translateFromConfig(ConfigurationNode node) {
 final DataTranslator<ConfigurationNode> translator = DataTranslators.CONFIGURATION_NODE;
 final DataView container = translator.translate(node);
 return deserializeHealth(container);
}

 Data Manipulators

Data Manipulators

Accessing and modifying data

A data manipulator represents a certain component and all of its data. It stores a representation of that data and can
be offered to or created from data holders which possess a matching component. Again, let’s use an example. And again
try to heal someone (or something).

Code Example: Healing with data manipulators

import org.spongepowered.api.data.DataHolder;
import org.spongepowered.api.data.DataTransactionResult;
import org.spongepowered.api.data.manipulator.mutable.entity.HealthData;
import org.spongepowered.api.data.value.mutable.MutableBoundedValue;

import java.util.Optional;

public static DataTransactionResult heal(DataHolder target) {
 Optional<HealthData> healthOptional = target.get(HealthData.class);
 if (healthOptional.isPresent()) {
 HealthData healthData = healthOptional.get();

 double maxHealth = healthData.maxHealth().get();
 MutableBoundedValue<Double> currentHealth = healthData.health();
 currentHealth.set(maxHealth);
 healthData.set(currentHealth);

 target.offer(healthData);
 }
}

First we need to check if our target has health data. We do so by first asking it to provide us with its health
data by passing its class to the get() method. We get an Optional which we can use for our check.
This Optional will be absent if either our target does not support HealthData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/HealthData.html] or if it supports it but
at the present moment does not hold any health data.

If the health data is present, it now contains a mutable copy of the data present on the data holder. We make
our alterations and finally offer the changed data back to our target, where it is accepted (again, offer()
will return a DataTransactionResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataTransactionResult.html] which we will disregard in this example and get back to
at a later point).

As you can see, the results for health() and maxHealth() are again keyed values we obtain from the
DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html]. As the MutableBoundedValue [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/mutable/MutableBoundedValue.html] we receive from calling health() again just contains a
copy of the data, we first need to apply our changes back to the DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html] before we can offer the
healthData back to our target.

Astuce

Rule #1 of the Data API: Everything you receive is a copy. So whenever you change something, make sure that
your change is propagated back to where the original value came from.

Another possible modification is fully removing a DataManipulator. This is done via the remove() method which
accepts a class reference for the type of DataManipulator to remove. Some data cannot be removed and attempts to
do so will always return a DataTransactionResult indicating failure. The following code attempts to remove a
custom name from a given DataHolder. Again, the result of the transaction is discarded.

Code Example: Removing a custom display name

import org.spongepowered.api.data.manipulator.mutable.DisplayNameData;

public void removeName(DataHolder target) {
 target.remove(DisplayNameData.class);
}

DataManipulator vs. Keys

If you compared both of our healing examples, you may wonder ‘Why bother with data manipulators anyway, keys are
so much easier’ and be right - for getting and setting single values. But the true merit of a data manipulator is
that it contains all data pertaining to a certain component. Let us take a look at another example.

Code Example: Swapping two data holders’ health

public void swapHealth(DataHolder targetA, DataHolder targetB) {
 if (targetA.supports(HealthData.class) && targetB.supports(HealthData.class)) {
 HealthData healthA = targetA.getOrCreate(HealthData.class).get();
 HealthData healthB = targetB.getOrCreate(HealthData.class).get();
 targetA.offer(healthB);
 targetB.offer(healthA);
 }
}

First we check if both targets support HealthData. If they do, we save the health of both in one variable each. We
don’t need to bother with Optional this time since we verified that HealthData is supported and the
getOrCreate() method ensures that even if no data is present, default values are generated.

Then we just offer the saved health data to the other target, thus switching their health status with each other.

This example done with Keys would be a bit longer and more complicated since we’d have to take care of each
individual key by ourself. And if instead of health we swapped another data manipulator containing even more data
(maybe InvisibilityData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/InvisibilityData.html] which even contains a list), we’d have a lot more work to do. But since the data
holder itself takes care of all data pertaining to it, we could even modify the above function to swap arbitrary data
between two holders.

Code Example: Swapping any data manipulator

import org.spongepowered.api.data.manipulator.DataManipulator;

public <T extends DataManipulator<?,?>> void swapData(DataHolder targetA, DataHolder targetB, Class<T> dataClass) {
 if (targetA.supports(dataClass) && targetB.supports(dataClass)) {
 T dataA = targetA.getOrCreate(dataClass).get();
 T dataB = targetB.getOrCreate(dataClass).get();
 targetA.offer(dataB);
 targetB.offer(dataA);
 }
}

The ability to write a function that can just swap any data on a data holder with the same data on another data
holder demonstrates the core design goal of the Data API: Maximum compatibility across the API.

Mutable vs. Immutable Data Manipulators

To every data manipulator, there is a matching ImmutableDataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html]. For instance, both HealthData
and ImmutableHealthData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/immutable/entity/ImmutableHealthData.html] contain the same data, only the latter returns new instances when requesting modified
data.

Conversion between mutable and immutable data manipulators is done via the asImmutable() and asMutable()
methods, which each will return a copy of the data. The only way to obtain an immutable data manipulator
from a data holder is obtaining a mutable one and then using asImmutable().

A possible use case for this would be a custom event fired when someone is healed. It should provide copies of
the health data before and after, but event listeners should not be able to change them. Therefore we can write
our event to only provide ImmutableHealthData instances. That way, even if third party code gets to interact
with our data, we can rest assured that it will not be changed.

Absent Data

As mentioned above, the get() method may return an empty Optional if one of the following is true:

	The DataHolder does not support the given DataManipulator

	The DataHolder does support the DataManipulator, but currently holds no data of that type

There is a big semantic difference between data not being present and the data consisting of default values. While the
latter is always possible, there are cases where it is impossible for a DataHolder to support a type of data and
then not hold it. Examples of those include:

	HealthData is always present on every (vanilla) DataHolder that supports it

	DisplayNameData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/DisplayNameData.html] is always present on a Player [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/Player.html], but may be absent on other entities.

 Transactions

Transactions

Reading the Result

For everything you offer to a data holder, the offer method will yield a DataTransactionResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataTransactionResult.html]. This
object will contain the following:

Type

The DataTransactionResult.Type [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataTransactionResult.Type.html] indicates whether the transaction was completed
successfully and, if not, how it failed.

	UNDEFINED
	No clear result for the transaction - indicates that something went wrong

	SUCCESS
	Transaction was completed successfully

	FAILURE
	Transaction failed for expected reasons (e.g. incompatible data)

	ERROR
	Transaction failed for unexpected reasons

	CANCELLED
	An event for this transaction was cancelled

The affected Data

The result also provides a couple of immutable lists containing immutable value containers representing
the data that was involved in the transaction.

	getSuccessfulData()
	contains all data that was successfully set

	getReplacedData()
	contains all data that got replaced by successfully set data

	getRejectedData()
	contains all data that could not be set

Examples

Healing a Player

Surely you remember the healing example in the Using Keys page. Imagine a player who is down to half a heart
(which equals 1 health) being healed that way. The DataTransactionResult in that case would look like this:

	getType() would return SUCCESS

	getRejectedData() would be an empty list

	getReplacedData() would contain one value container for the Keys.HEALTH key with a value of 1.0

	getSuccessfulData() would contain one value container for the Keys.HEALTH key with a value of 20.0

Now what would be different if we used the healing example from the Data Manipulators page instead? Since the
HealthData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/HealthData.html] data manipulator contains values for both the current and the maximum health, in addition to the
above result, both the getReplacedData() list and the getSuccessfulData() list would contain one more element:
A value container for the Keys.MAX_HEALTH key with a value of 20.0.

Offering HealthData to a block of stone

Now our above-mentioned examples are coded in a such a way that they will fail silently rather than try to offer the
incompatible data. But imagine we took a (fully healed) player’s HealthData and tried to offer it to the
Location [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html] of the stone block he’s currently standing on. We can do this, since Location is also a data
holder. And if we do, it would reward us with a DataTransactionResult like this:

	getType() would return FAILURE

	getRejectedData() would contain two value containers for the HEALTH and MAX_HEALTH keys, each with a value of 20.0

	getReplacedData() and getSuccessfulData() would be empty lists

Reverting Transactions

Since everything about a transaction result is immutable, it can serve for documentation of data changes. And it
also allows for those changes it documents to be undone. For that, simply pass a transaction result to the data
holder’s undo() method. This is particularly useful since some data offerings may be partially successful, so
that one or more values are successfully written to the data holder, yet one more value cannot be accepted. Since
you may wish to undo the partial successes.

Code Example: Reverting a transaction

import org.spongepowered.api.data.DataHolder;
import org.spongepowered.api.data.DataTransactionResult;
import org.spongepowered.api.data.manipulator.DataManipulator;

public void safeOffer(DataHolder target, DataManipulator data) {
 DataTransactionResult result = target.offer(data);
 if (result.getType() != DataTransactionResult.Type.SUCCESS) {
 target.undo(result);
 }
}

 Custom Data

Custom Data

Sponge has a powerful data system, that can do much more than just vanilla features. It’s also
possible to create your own data objects, allowing you to serialize objects directly to
players, entities and more!

To start making your own data, we recommend that you read up on each of the components of the ecosystem in the
data documentation. You should understand how a fully implemented system works before you begin work
on your own implementation.

There are three main areas of custom data:

	DataHolders, which store data such as items and entities

	DataManipulators, which are attached to a DataHolder and can contain any number of
serializable objects. Manipulators will stay attached to their owner, even across reboots

	Serialization, which saves/loads data into configs, files, or world files

We will provide and explain snippets of code throughout the tutorials, however we also provide a full implementation [https://github.com/SpongePowered/Cookbook/tree/master/Plugin/MyHomes]
for those that prefer to look through an example implementation.

Contents

	Custom DataManipulators

	Custom DataHolders

	Serializing Custom Data

 Serializing Custom Data

Serializing Custom Data

Without a method for serializing and deserializing, your data will not persist across restarts. Sponge has a few different
ways to serialize/deserialize data based on the type of data:

	DataSerializable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/serialization/DataSerializable.html]s implement an interface to perform serialization, and use DataBuilder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataBuilder.html] for
deserialization and creation

	DataManipulators also implement DataSerializable, but instead use a
DataManipulatorBuilder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataManipulatorBuilder.html] for deserialization and creation

	Objects that do not or cannot implement DataSerializable use DataTranslator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataTranslator.html] for both serialization
and deserialization

This means that practically any object in Java can be saved to disk if it has been registered!

Reading DataViews

Whenever you’re reading a serialized object, it’s tempting to read all the individual values yourself in order to
manually create all the required objects (and their parameters) for your data. However, depending on the data saved in
the container there are a few ways ways that are far more convenient:

	Common java types such as int, String, double, List and Map can be retrieved using built-in
methods getInt(DataQuery), getString(DataQuery), etc. Lists of these types can also be retrieved in a
similar fashion, for example getStringList(DataQuery).

	DataSerializable objects can be retrieved using getSerializable(DataQuery, Class) or
getSerializableList(DataQuery, Class). Along with the path, you must also specify the Class of the
serializable type, such as Home.class.

	Objects with a registered DataTranslator can be retrieved using getObject(DataQuery, Class) or
getObjectList(DataQuery, Class). A full list of classes that are supported by default can be found in
DataTranslators [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataTranslators.html].

In all cases you need to specify a path using a DataQuery [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataQuery.html]. If your data has a corresponding Key this is
as easy as calling key.getQuery(). Otherwise, the easiest way to do this is with DataQuery.of("name").

Astuce

DataQueries can be used to reference data multiple nodes down a tree by using, for example,
DataQuery.of("my", "custom", "data").

DataBuilders

To make an object serializable, first ensure that it implements DataSerializable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/serialization/DataSerializable.html]. You must implement just
two methods:

	getContentVersion() - this defined the current version of your data.

	toContainer() - this is what your builder will be given when attempting to deserialize and object. You can store
whatever you want in the returned DataContainer, so long as it is also serializable using one of the methods
above. Just use the set(DataQuery, Object) method to save your data to the given path.

Astuce

It is recommended that you save the version of your data to the container as well using Queries.CONTENT_VERSION
as the query. This will allow for versioning upgrades with DataContentUpdaters.

Code Example: Implementing toContainer

import org.spongepowered.api.data.DataContainer;
import org.spongepowered.api.data.DataQuery;
import org.spongepowered.api.data.Queries;
import org.spongepowered.api.data.MemoryDataContainer;

String name = "Spongie";

@Override
public DataContainer toContainer() {
 return new MemoryDataContainer()
 .set(DataQuery.of("Name"), this.name)
 .set(Queries.CONTENT_VERSION, getContentVersion());
}

The next part is to implement a DataBuilder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataBuilder.html]. It’s recommended to extend AbstractDataBuilder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/AbstractDataBuilder.html] as
it will try to upgrade your data if the version is less than the current version. There’s only one method you need to
implement - build(DataView), or buildContent(DataView) if you’re using AbstractDataBuilder.

You’ll want to check that all the queries you want to retrieve are present using DataView.contains(Key...). If not
the data is likely incomplete and you should return Optional.empty().

If everything seems to be there, use the getX methods to construct the values and return a newly created object as
an Optional.

Finally, you need to register this builder so that it can be found by plugins. To do this, simply call
DataManager#registerDataBuilder(Class, DataBuilder) referencing the data class and an instance of the builder.

DataContentUpdaters

What happens if you change the layout of data in a new version release? DataContentUpdater [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataContentUpdater.html]s solve that
problem. If the serialized object is less than the current version, an AbstractDataBuilder will try and update the
data before passing it to the builder.

Each updater has an input version and an output version. You should take in the old data and change whatever is needed
to upgrade it to a newer layout. If it’s impossible to convert due to missing data, it may be possible instead to
provide a default value which is interpreted elsewhere - such as by the main builder or the object itself.

Finally, you must ensure that all DataContentUpdaters are registerered with
DataManager#registerContentUpdater() referencing the main data class - this will allow them to be discovered by
the builder.

Code Example: Implenting a DataContentUpdater

org.spongepowered.api.data.persistence.DataContentUpdater
org.spongepowered.api.text.Text

public class NameUpdater implements DataContentUpdater {

 @Override
 public int getInputVersion() {
 return 1;
 }

 @Override
 public int getOutputVersion() {
 return 2;
 }

 @Override
 public DataView update(DataView content) {
 String name = content.getString(DataQuery.of("Name")).get();

 // For example, version 2 uses a text for the name
 return content.set(DataQuery.of("Name"), Text.of(name));
 }
}

DataManipulatorBuilders

A DataManipualatorBuilder is very similar to DataBuilder, however it adds a few methods directly related to
deserializing manipulators:

	create() should return a new manipulator with default values

	createFrom(DataHolder) is similar to the build method, but instead the values should be taken from the
DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html]. If there is no data to be taken from the holder, just return the output of create(). If
the data is incompatible with the DataHolder, you should instead return Optional.empty().

Just like DataBuilder, you should read and return your manipulator in the relevant build method.

DataManipulatorBuilders can make use of DataContentUpdaters as well, as long as you implement
AbstractDataBuilder.

Registering a DataManipulatorBuilder is also similar to DataBuilder but uses the register() method. You
must reference both your mutable and immutable classes in the method, in addition to an instance of your builder.

Note

You must reference the implementation classes if you have split the API from the implementaton.

DataTranslators

Often the objects you want to serialize are not objects that implement DataSerializable, such as Vector3d or
Date. To allow these objects you implelement a DataTranslator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/persistence/DataTranslator.html] which handles both the serialization
and deserialization of the object.

The implementation of translate is identical to toContainer() and build(DataView) for a
DataSerializable as shown above, except that an InvalidDataException is thrown if data is missing in place of
returning an Optional.

As with other data, ensure that you register the translator with
DataManager#registerTranslator(Class, DataTranslator).

 Custom DataHolders

Custom DataHolders

Note

This page has not been filled yet by our Documentation Team. If you feel like you can help, you can do so on our
GitHub repository [https://github.com/SpongePowered/SpongeDocs].

 Custom DataManipulators

Custom DataManipulators

The core part of custom data is the DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html]. To implement it, you must first decide if you want to
create a separate API for your custom data. Generally speaking it’s best to separate the API from the implementation
(as SpongeAPI does), but if it won’t be seen by other developers then you can just put both in the same class.

You’ll want to define an API method for each “unit” your data, such as a String, int, ItemStack [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/inventory/ItemStack.html] or
a custom type like Home. These units will be wrapped in a Value [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/mutable/Value.html], which will allow it to be accessed
with Key [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Key.html]s. There are various extensions of Value depending on which object will be represented, such
as MapValue [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/mutable/MapValue.html] which provides the standard map operations, or BoundedComparableValue [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/mutable/BoundedComparableValue.html] which can set
limits on the upper and lower bound of an Comparable [https://docs.oracle.com/javase/8/docs/api/java/util/Comparable.html] objects like integers.

Now, pick which of the AbstractData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/common/AbstractData.html] types you’ll extend from. While you could implement from scratch, these
abstract types remove a lot of the work that needs to be done implementing the required methods. A full list can be
found in org.spongepowered.api.data.manipulator.mutable.common [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/common/package-summary.html]. See either Single Types or
Compound Types below for implementation details each type.

You need to create two different classes - one which is mutable and implements DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html] and your
abstract type, and an immutable version which implements ImmutableDataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html] and your immutable
abstract type.

Note

All data must have mutable and immutable versions, you must implement both.

For all types, you’ll need to define the DataManipulator#asImmutable() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html#asImmutable–]/
asMutable() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html#asMutable–] methods - this is as simple as copying the existing
objects into a constructor for the alternate version.

Values

Your value getter(s) need to return a value. In the example below, we get the ValueFactory [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/ValueFactory.html]. This saves us a
lot of type by using Sponge’s already implemented Value objects. Depending on what value you’re creating there a
different methods to call such as createMapValue, createBoundedComparableValue, etc.

Code Example: Implementing a Value Getter

import org.spongepowered.api.Sponge;
import org.spongepowered.api.data.value.ValueFactory;
import org.spongepowered.api.data.value.mutable.Value;

import org.spongepowered.cookbook.myhomes.data.home.Home;
import org.spongepowered.cookbook.myhomes.data.Keys;

@Override
protected Value<Home> defaultHome() {
 return Sponge.getRegistry().getValueFactory()
 .createValue(Keys.DEFAULT_HOME, getValue(), null);
}

Note that an ImmutableDataManipulator would instead return an ImmutableValue, by calling asImmutable() on
the returned Value. We recommended that you cache this (such as with a class field) in the immutable version.

Each Value also needs a Key [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Key.html] to identify it, seen in the example as Keys.DEFAULT_HOME. Similar
to values, you use one of the makeXKey() methods in KeyFactory [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/KeyFactory.html] to create a Key for your value.

You need to pass one TypeToken representing the raw type of your value, and one TypeToken representing the
Value. You also need to provide a DataQuery [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataQuery.html] path - this is most commonly used to serialize the
Value. As with any catalog type you must also provide a unique ID and a name. Put this all together and you have a
Key you can use in your Values.

Code Example: Creating a Key

import org.spongepowered.api.data.DataQuery;
import org.spongepowered.api.data.key.Key;
import org.spongepowered.api.data.key.KeyFactory;
import org.spongepowered.api.data.value.mutable.Value;
import org.spongepowered.api.data.value.mutable.Value;

import com.google.common.reflect.TypeToken;

import org.spongepowered.cookbook.myhomes.data.home.Home;

public static final Key<Value<Home>> DEFAULT_HOME = KeyFactory.makeSingleKey(
 TypeToken.of(Home.class),
 new TypeToken<Value<Home>>() {},
 DataQuery.of("DefaultHome"), "myhomes:default_home", "Default Home");

Note

TypeToken [https://google.github.io/guava/releases/17.0/api/docs/com/google/common/reflect/TypeToken.html]s are used by the implementation to preserve the generic type of your
values. Sponge provides a long list of pre-built tokens for the API in TypeTokens [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/TypeTokens.html].

If you need to create your own, you can do this in one of two ways:

	For non-generic types, use TypeToken.of(MyType.class)

	For generic types, create an anonymous class with TypeToken<MyGenericType<String>>() {}

Serialization

To make your data serializable to DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html]s or config files, you must also
implement DataSerializable#toContainer() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataSerializable.html#toContainer–]. We recommend calling super.toContainer() as this will
include the version from DataSerializable#getContentVersion() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataSerializable.html#getContentVersion–]. You should increase the version each time a
change is made to the format of your serialized data, and use DataContentUpdaters to allow backwards compatability.

Note

This is not required for simple single types, as the already implement toContainer()

Code Example: Implementing toContainer

import org.spongepowered.api.data.DataContainer;

import org.spongepowered.cookbook.myhomes.data.Keys;

@Override
public DataContainer toContainer() {
 DataContainer container = super.toContainer();
 // This is the simplest, but use whatever structure you want!
 container.set(Keys.DEFAULT_HOME.getQuery(), this.defaultHome);
 container.set(Keys.HOMES, this.homes);

 return container;
}

Registration

Registering your DataManipulator allows it to be accessible by Sponge and by other plugins in a generic way. The
game/plugin can create copies of your data and serialize/deserialize your data without referencing any of your classes
directly.

To register a DataManipulator Sponge has the DataRegistration#builder() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataRegistration.html#builder–] helper. This will build a
DataRegistration [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataRegistration.html] and automatically register it.

Note

Due to the nature of Data, you must register your DataManipulator during initialization - generally by
listening to GameInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameInitializationEvent.html] such as in the example below. If you try to register a
DataManipulator once initialization is complete an exception will be thrown.

import org.spongepowered.api.event.game.state.GameInitializationEvent;
import org.spongepowered.api.data.DataRegistration;

import org.example.MyCustomData;
import org.example.ImmutableCustomData;
import org.example.CustomDataBuilder;

@Listener
public void onInit(GameInitializationEvent event) {
 DataRegistration.builder()
 .dataClass(MyCustomData.class)
 .immutableClass(ImmutableCustomData.class)
 .builder(new CustomDataBuilder())
 .manipulatorId("my-custom")
 .dataName("My Custom")
 .buildAndRegister(myPluginContainer);
}

Avertissement

Data that was serialized prior to 6.0.0, or data where you have changed the ID, will not be recognised unless
registered with DataManager#registerLegacyManipulatorIds(String, DataRegistration) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataManager.html#registerLegacyManipulatorIds-String-org.spongepowered.api.data.DataRegistration-]. If registering a
pre-6.0.0 DataManipulator the ID is taken from Class.getName(), such as com.example.MyCustomData.

Single Types

Single types require little implementation because much of the work has already been done in the AbstractSingleData
type you extend from.

The “simple” abstract types are the easiest to implement, but are restricted to only the types below:

	Boolean

	Comparable

	Integer

	List

	Map

	CatalogType

	Enum

For all other types you must implement a custom single type by extending AbstractSingleData. This allows you to
define your own single data with whatever type you want, while still doing most of the work for you.

Astuce

The abstract implementations save the object for you in the constructor. You can access it in your implementation
by calling the getValue() and getValueGetter() methods.

Simple Single Types

Almost all the work is done for you with simple abstract types. All you need to do is:

	Extend the relevant abstract type

	pass the Key for your data, the object itself, and the default object (if the object is null) in the constructor

AbstractBoundedComparableData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/common/AbstractBoundedComparableData.html] (and the immutable equivalent) additionally require minimum and maximum
values that will be checked, as well as a Comparator [https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html].

Note

List and Mapped single types must instead implement ListData / MappedData (or the immutable
equivalent). This adds additional methods to allow Map-like/List-like behavior directly on the DataManipulator.

The following 3 methods must be defined on mutable manipluators:

fill(DataHolder, MergeFunction) should replace the data on your object with that of the given DataHolder,
using the result of MergeFunction#merge().

import org.spongepowered.api.data.DataHolder;
import org.spongepowered.api.data.merge.MergeFunction;

import org.spongepowered.cookbook.myhomes.data.friends.FriendsData;

import java.util.Optional;

@Override
public Optional<FriendsData> fill(DataHolder dataHolder, MergeFunction overlap) {
 FriendsData merged = overlap.merge(this, dataHolder.get(FriendsData.class).orElse(null));
 setValue(merged.friends().get());

 return Optional.of(this);
}

from(DataContainer) should overwrite its value with the one in the container and return itself, otherwise return
Optional.empty()

import org.spongepowered.api.data.DataContainer;
import org.spongepowered.api.data.DataQuery;

import org.spongepowered.cookbook.myhomes.data.Keys;
import org.spongepowered.cookbook.myhomes.data.friends.FriendsData;
import org.spongepowered.cookbook.myhomes.data.friends.ImmutableFriendsData;

import com.google.common.collect.Maps;

import java.util.Optional;
import java.util.UUID;

@Override
public Optional<FriendsData> from(DataContainer container) {
 if(container.contains(Keys.FRIENDS)) {
 List<UUID> friends = container.getObjectList(Keys.FRIENDS.getQuery(), UUID.class).get();
 return Optional.of(setValue(friends));
 }

 return Optional.empty();
}

copy() should, as the name suggests, return a copy of itself with the same data.

import org.spongepowered.cookbook.myhomes.data.friends.FriendsData;

@Override
public FriendsData copy() {
 return new FriendsDataImpl(getValue());
}

Custom Single Types

In addition to the , you need to override the following methods:

getValueGetter() should pass the Value representing your data (see above).

toContainer() should return a DataContainer representing your data (see above).

Compound Types

Whereas single types only support one value, “compound” types support however many values you want. This is useful
when multiple objects are grouped, such as FurnaceData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/tileentity/FurnaceData.html]. The downside, however, is that they are more
complex to implement.

To start with, create all the Value getters that your data will have. For each value, create a method to get and
set the raw object, which you’ll use later. For immutable data, only the getters are necessary.

Registering Values

Next, you’ll want to register these so that the Keys-based system can reference them. To do this,
implement either DataManipulator#registerGettersAndSetters() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html#registerGettersAndSetters–] or
ImmutableDataManipulator#registerGetters() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html#registerGetters–] depending on whether the data is mutable or not.

For each value you must call:

	registerKeyValue(Key, Supplier) referencing the Value getter for the given key

	registerFieldGetter(Key, Supplier) referencing the getter method for the raw object defined above

	registerFieldSetter(Key, Consumer) referencing the setter method above if you are implementing the mutable
version

We recommend using Java 8’s :: syntax for easy Supplier and Consumer functions.

Code Example: Implementing Getters and Setters

import org.spongepowered.cookbook.myhomes.data.Keys

// registerGetters() for immutable implementation
@Override
protected void registerGettersAndSetters() {
 registerKeyValue(Keys.DEFAULT_HOME, this::defaultHome);
 registerKeyValue(Keys.HOMES, this::homes);

 registerFieldGetter(Keys.DEFAULT_HOME, this::getDefaultHome);
 registerFieldGetter(Keys.HOMES, this::getHomes);

 // Only on mutable implementation
 registerFieldSetter(Keys.DEFAULT_HOME, this::setDefaultHome);
 registerFieldSetter(Keys.HOMES, this::setHomes);
}

fill(DataHolder, MergeFunction) and from(DataContainer) are similar to the implementations for single data,
but loading all your values.

 Optionals Explained

Optionals Explained

Much of the Sponge API makes use of Java’s Optional system on object accessors, but if you’ve never used Optional
before this might seem like a bit of a peculiar way of doing things. You might be tempted to ask:
“why do I need to perform an extra step when fetching something from an API object?”

This section gives a brief summary of Optional and explains how - and perhaps more importantly why -
it’s used throughout the Sponge API.

Let’s start with a little history, and look at how accessors - particularly “getters” - typically work when not making
use of Optional.

1. Implicit Nullable Contracts and Why They Suck

Let’s say we have a simple API object Entity with a getFoo() method which returns the Entity’s Foo.

[image: ../../_images/optionals1.png]
In the olden times of yore, our plugin might fetch and use the Foo from the entity using the getter like this:

public void someEventHandler(Entity someEntity) {
 Foo entityFoo = someEntity.getFoo();
 entityFoo.bar();
}

The problem arises because - when designing the API - we have to rely an implicit contract on the getFoo method
with respect to whether the method can (or cannot) return null. This implicit contract can be defined in one of
two ways:

	In the javadoc - this is bad because it relies on the plugin author reading the javadoc for the method, and the contract may not be clear to the plugin author

	Using nullable annotations - this is not ideal because in general these annotations require a tool to be of any use, for example relying on the IDE or compiler to handle the annotations.

[image: ../../_images/optionals2.png]
Let’s assume that the getFoo() method can - as part of its contract - return null. This suddenly means that our
code above is unsafe as it may result in a NullPointerException if entityFoo is null.

public void someEventHandler(Entity someEntity) {
 Foo entityFoo = someEntity.getFoo();
 entityFoo.bar();
}

Let’s assume our plugin author is savvy to the nullable nature of our getFoo method and decides to fix the problem
with null checking. Assuming they have defined a local constant Foo, the resultant code looks like this:

public void someEventHandler(Entity someEntity) {
 Foo entityFoo = someEntity.getFoo();
 if (entityFoo == null) {
 entityFoo = MyPlugin.DEFAULT_FOO;
 }
 entityFoo.bar();
}

In this example, the plugin author is aware that the method can return null and has a constant available with a
default instance of Foo which can be used instead. Of course the plugin could just short-circuit the call entirely,
or it could attempt to fetch Foo from somewhere else. The key message is that handling nulls even in simple cases
can lead to spaghetti code quite quickly, and moreover relies on the plugin author to explicitly visit the method’s
contract to check whether a null check is necessary in the first place.

That’s not the only drawback however. Let’s consider the API over the longer term and assume that at the time the author
writes their plugin, they visit the method javadoc and see that the method is guaranteed to never return null
(since every Entity always has a Foo available). Great! No convoluted null check required!

However, let’s now assume that in a later version of the game, the game developers remove or deprecate the concept of
Foo. The API authors update the API accordingly and state that from now on the getFoo() method
can return null and write this into the method javadoc. Now there’s a problem: even diligent plugin authors who
checked the method contract when they first wrote their code are unwittingly handling the method incorrectly: with no
null check in place any code using the Foo returned from getFoo is going to raise an NPE.

Thus we can see that allowing implicit nullable contracts leaves us with a selection of pretty awful solutions to
choose from:

	Plugin authors can assume that all methods may return null and code defensively accordingly, however we’ve already seen that this leads to spaghetti code pretty quickly.

	The API authors can define an implicit nullable contract on every API method, in an attempt to make null handling the plugin author’s problem, which only exacerbates the previous problem.

	The API authors can assert that any implicit nullable contract they define will never be altered going forward. This means that in the eventuality that they need to handle the removal of a feature from the base game then they must either:

	Throw an exception - hardly elegant but certainly easier to diagnose than a loose NPE which may be triggered elsewhere in the codebase and be hard to track down

	Return a “fake” object or invalid value - this means that consuming (plugin) code will continue to work, but creates an ever-increasing burden on the API developers going forward since every deprecated feature will require the creation of yet more fake objects. This could soon lead to the situation where a big chunk of the API is filled with junk objects whose only purpose is to support parts of the API which are no longer in service.

It should be pretty clear by now that there are some sizable headaches attached to implicit nullable contracts, made
all the more poignant when the API in question is a layer over an extremely unstable base product. Fortunately,
there is a better way:

2. Optional and the Explicit Nullable Contract

As mentioned above, APIs for Minecraft are in a difficult situation. Ultimately they need to provide a platform with
a reasonable amount of implied stability atop a platform (the game) with absolutely no amount of implied stability.
Thus any API for Minecraft needs to be designed with full awareness that any aspect of the game is liable to change at
any time for any reason in any way imaginable; up to and including being removed altogether!

This volatility is what leads to the problem with nullable method contracts described above.

Optional solves the above problems by replacing implicit contracts with explicit ones. The API never advertises,
“here is your object, kthxbai”, instead it presents accessors with a
“here is a box which may or may not contain the object you asked for, ymmv”.

[image: ../../_images/optionals3.png]
By encoding the possibility of returning null into an explicit contract, we replace the concept of
null checking with the more nuanced concept of may not exist. We also stipulate this contract from day one.

So what does this mean?

In a nutshell, no longer do plugin authors have to worry about the possibility of null being returned. Instead the
very possibility of a particular object not being available becomes encoded in the very fabric of their plugin code.
This has the same level of inherent safety as constantly performing null-checks, but with the benefit of much more
elegant and readable code in order to do so.

To see why, let’s take a look at the above example, converted to use a getFoo method which returns
Optional<Foo> instead:

public void someEventHandler(Entity someEntity) {
 Optional<Foo> entityFoo = someEntity.getFoo();
 if (entityFoo.isPresent()) {
 entityFoo.get().bar();
 }
}

You may note that this example looks very much like a standard null-check, however the use of Optional actually
carries a little more information in the same amount of code. For example, it is not necessary for someone reading
the above code to check the method contract, it is clear that the method may not return a value, and the handling
of the value’s absence is explicit and clear.

So what? Our explicit contract in this case results in basically the same amount of code as a null check - albeit
one that is contractually enforced by the getter. “Whoop de do,” you say, “so what?”

Well the Optional boxing allows us to take some of the traditionally more awkward aspects of null-checking and
make them more elegant: consider the following code:

public void someEventHandler(Entity someEntity) {
 Foo entityFoo = someEntity.getFoo().orElse(MyPlugin.DEFAULT_FOO);
 entityFoo.bar();
}

Hold the phone! Did we just replace the tedious null-check-and-default-assignment from the example above with a
single line of code? Yes indeed we did. In fact, for simple use cases we can even dispense with the assignment:

public void someEventHandler(Entity someEntity) {
 someEntity.getFoo().orElse(MyPlugin.DEFAULT_FOO).bar();
}

This is perfectly safe provided that MyPlugin.DEFAULT_FOO is always available.

Consider the following example with two entities, using an implicit nullable contract we want to use Foo from the
first entity, or if not available use Foo from the second entity, and fall back on our default if neither is
available:

public void someEventHandler(Entity someEntity, Entity entity2) {
 Foo entityFoo = someEntity.getFoo();
 if (entityFoo == null) {
 entityFoo = entity2.getFoo();
 }
 if (entityFoo == null) {
 entityFoo = MyPlugin.DEFAULT_FOO;
 }
 entityFoo.bar();
}

Using Optional we can encode this much much more cleanly as:

public void someEventHandler(Entity someEntity, Entity entity2) {
 someEntity.getFoo().orElse(entity2.getFoo().orElse(MyPlugin.DEFAULT_FOO)).bar();
}

This is merely the tip of the Optional iceberg. In java 8 Optional also supports the Consumer and
Supplier interfaces, allowing lambas to be used for absent failover. Usage examples for those can be found on the
Usage Examples page.

Note

Another explanation on the rationale behind avoiding null references can be found on
Guava: Using And Avoiding Null Explained [https://github.com/google/guava/wiki/UsingAndAvoidingNullExplained/].
Beware that the guava Optional class mentioned in the linked article is different from java’s
java.util.Optional and therefore will have method names different from those used here.

 Usage Examples

Usage Examples

Now that we learned why Optionals are used, let us take a look what we can actually do with them in java. These
code examples (and Sponge) use the java.util.Optional [https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html]
class available in Java 8.

Obtaining the wrapped Value

The get() method will unwrap an Optional and return the wrapped value. If no value is present, calling get()
will throw a NoSuchElementException, so a presence check should be performed first.

Optional<String> opt = getOptionalString();
String wrappedString = opt.get();

Handling absent Values

The purpose of the Optional type is representing a value that might or might not be there. As such, many use cases
revolve around handling absent values.

Presence Check

The isPresent() method returns true if a value is present on the Optional. It can provide the most basic
verification and is an equivalent to a classic null check.

Optional<String> opt = getOptionalString();
if (opt.isPresent()) {
 String wrappedString = opt.get();
 // more code
}

Using default Values

A common pattern is falling back to a default value if none is present. The orElse() method allows for a single
line statement that will return either the value present on the Optional or the supplied default value.

Instead of

Optional<String> optionalString = optionalString();
String someString;
if (optionalString.isPresent()) {
 someString = optionalString.get();
} else {
 someString = DEFAULT_STRING;
}

just use

String someString = getOptionalString().orElse(DEFAULT_STRING);

In some cases a default value has to be calculated in a way that has side effects or is particularly expensive. In such
a case it is desirable to calculate the default value only if needed (lazy evaluation). The orElseGet() method
accepts a Supplier instead of a pre-calculated value. If no value is present on the Optional itself, the
Supplier will be called. Since Supplier is a functional interface, a lambda expression or method reference can
be passed instead.

Instead of

Optional<String> optionalString = optionalString();
String someString;
if (optionalString.isPresent()) {
 someString = optionalString.get();
} else {
 someString = myPlugin.defaultString();
}

just use

String someString = getOptionalString().orElseGet(myPlugin::defaultString);

Fail on absent Values

If a value being absent should lead to an exception, it is almost always better to throw a custom exception instead of
relying on the default NoSuchElementException. If you call the orElseThrow() method with a Supplier, it will
return the wrapped value if it is present, or throw a Throwable obtained from the Supplier if the Optional
is empty. Again, as Supplier is a functional interface, lambda expressions or method references may be used instead.

Instead of

Optional<String> optionalString = optionalString();
if (!optionalString.isPresent()) {
 throw new MyException();
}
String someString = optionalString.get();

just use

String someString = getOptionalString().orElseThrow(MyException::new);

Note

If the Throwable provided by the supplier is a checked exception, it will also have to be included in the
signature of the surrounding function (for example public void doStuff() throws MyException)

Conditional Code Execution

If no default value can be used, the code that relies on a value being present cannot be executed. While this might be
dealt with in a simple condition, there are other convenient methods.

Consuming Values

If your logic to handle the present value is already encapsulated in a Consumer or a single-parameter function, the
ifPresent() method will accept the consumer (or a method reference). If a value is present on the Optional, it
will be passed to the consumer. If the Optional is empty, nothing will happen.

Instead of

Optional<String> optionalString = getOptionalString();
if (optionalString.isPresent()) {
 myPlugin.doSomethingWithString(optionalString.get());
}

just use

Optional<String> optionalString = getOptionalString();
optionalString.ifPresent(s -> myPlugin.doSomethingWithString(s));

or

getOptionalString().ifPresent(myPlugin::doSomethingWithString);

Filtering

It is also possible to pass a Predicate. Only values that this Predicate returns true for will be retained. If
no value is present or the Predicate returns false, an empty Optional will be returned. Since this method
returns an optional, it allows for chaining with other methods.

Instead of

Optional<String> optionalString = getOptionalString();
if (optionalString.isPresent()) {
 String someString = optionalString.get();
 if (stringTester.isPalindromic(someString)) {
 myPlugin.doSomethingWithString(someString);
 }
}

just use

getOptionalString()
 .filter(stringTester::isPalindromic)
 .ifPresent(myPlugin::doSomethingWithString);

Note

Neither this filtering function nor the mapping functions described below modify the instance they are called on.
Optionals are always immutable.

Mapping

Another chainable operation is mapping the potential value to a different one. If no value is present, nothing will
change. But if it is present, the map() method will return an Optional of the value returned by the provided
Function (or an empty Optional if that return value is null).

Instead of

Optional<String> optionalString = getOptionalString();
if (optionalString.isPresent()) {
 String someString = optionalString.toLowerCase();
 myPlugin.doSomethingWithString(someString);
}

just use

getOptionalString()
 .map(s -> s.toLowerCase())
 .ifPresent(myPlugin::doSomethingWithString);

Astuce

If your mapping function already returns an Optional, use the flatMap() method instead. It will behave just
like map(), except that it expects the mapping function to already return an Optional and therefore will
not wrap the result.

Combined Example

Imagine a plugin that allows each player to have a pet following. Assume the existance of the following methods:

	petRegistry.getPetForPlayer() accepting a Player and returning an Optional<Pet>. This method looks up the pet associated with a given player

	petHelper.canSpawn() accepting a Pet and returning a boolean. This method performs all the necessary checks to make sure the given pet may be spawned.

	petHelper.spawnPet() accepting a Pet and returning nothing. This method will spawn a previously not spawned pet.

Now from somewhere (probably the execution of a command) we got the optionalPlayer variable holding an
Optional<Player>. We now want to obtain this players pet, check if the pet is spawned and if it is not spawned,
spawn it while performing the according checks if each and every Optional actually contains a value. The code only
using the basic isPresent() and get() methods gets nasty really quickly.

if (optionalPlayer.isPresent()) {
 Player player = optionalPlayer.get();
 Optional<Pet> optionalPet = petRegistry.getPetForPlayer(player);
 if (optionalPet.isPresent()) {
 Pet pet = optionalPet.get();
 if (petHelper.canSpawn(pet)) {
 petHelper.spawnPet(pet);
 }
 }
}

However through use of Optionals methods for conditional code execution, all those presence checks are hidden,
reducing the boilerplate and indentation levels and thus leaving the code much more readable:

optionalPlayer
 .flatMap(petRegistry::getPetForPlayer)
 .filter(petHelper::canSpawn)
 .ifPresent(petHelper::spawnPet);

Creating Optionals

Should you choose to provide an API following the same contract of using Optional instead of returning null
values, you will have to create Optionals in order to be able to return them. This is done by calling one of the
three static constructor methods.

Optional.empty() will always return an empty Optional.

Optional.of() will return an optional wrapping the given value and raise a NullPointerException if the value was
null.

Optional.ofNullable() will return an empty Optional if the supplied value is null, otherwise it will return
an Optional wrapping the value.

 Optionals

Optionals

Optionals are a feature widely used in the SpongeAPI. This section tries to explain why we need them and how
they’re used. If you already know why we use Optionals, just head directly to the Usage Examples section. If you’re
unsure what they are, what they do and why we need them, then Optionals Explained should be the first chapter to read.

Contents

	Optionals Explained

	Usage Examples

 Event Listeners

Event Listeners

In order to listen for an event, an event listener must be registered. This is done by making a method with any name,
defining the first parameter to be the desired event type, and then affixing the Listener [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Listener.html] annotation to the
method, as illustrated below.

import org.spongepowered.api.event.Listener;

@Listener
public void onSomeEvent(SomeEvent event) {
 // Do something with the event
}

In addition, the class containing these methods must be registered with the event manager:

Astuce

For event listeners on your main plugin class (annotated by Plugin [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/plugin/Plugin.html]), you do not need to register the
object for events as Sponge will do it automatically.

Note

The event bus supports supertypes. For example, ChangeBlockEvent.Break [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/block/ChangeBlockEvent.Break.html] extends
ChangeBlockEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/block/ChangeBlockEvent.html]. Therefore, a plugin could listen to ChangeBlockEvent and still receive
ChangeBlockEvent.Breaks. However, a plugin listening to just ChangeBlockEvent.Break would not be notified
of other types of ChangeBlockEvent.

Registering and Unregistering Event Listeners

To register event listeners annotated by @Listener that are not in the main plugin class, you can use
EventManager#registerListeners(Object, Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/EventManager.html#registerListeners-java.lang.Object-java.lang.Object-], which accepts a reference to the plugin and an instance of
the class containing the event listeners.

Example: Registering Event Listeners in Other Classes

import org.spongepowered.api.Sponge;

public class ExampleListener {

 @Listener
 public void onSomeEvent(SomeEvent event) {
 // Do something with the event
 }
}

Sponge.getEventManager().registerListeners(this, new ExampleListener());

Dynamically Registering Event Listeners

Some plugins (such as scripting plugins) may wish to dynamically register an event listener. In that case the event
listener is not a method annotated with @Listener, but rather a class implementing the EventListener interface.
This event listener can then be registered by calling EventManager#registerListener, which accepts a reference to the
plugin as the first argument, the Class of events handled as the second argument, and the listener itself as the
final argument. Optionally, you can specify an Order [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Order.html] to run the event listener in as the third argument or a
boolean value as the fourth argument (before the instance of the listener) which determines whether to call the listener
before other server modifications.

Example: Implementing EventListener

import org.spongepowered.api.event.EventListener;
import org.spongepowered.api.event.block.ChangeBlockEvent;

public class ExampleListener implements EventListener<ChangeBlockEvent.Break> {

 @Override
 public void handle(ChangeBlockEvent.Break event) throws Exception {
 ...
 }
}

Example: Dynamically Registering the Event Listener

EventListener<ChangeBlockEvent.Break> listener = new ExampleListener();
Sponge.getEventManager().registerListener(this, ChangeBlockEvent.Break.class, listener);

Astuce

For event listeners created with the @Listener annotation, the order of the execution can be configured
(see also About @Listener). For dynamically registered listeners this is possible by passing an Order
to the third argument the EventManager#registerListener method.

Unregistering Event Listeners

To unregister a single event listener, you can use the EventManager#unregisterListeners(Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/EventManager.html#unregisterListeners-java.lang.Object-] method,
which accepts an instance of the class containing the event listeners.

EventListener listener = ...
Sponge.getEventManager().unregisterListeners(listener);

Alternatively, you can use EventManager#unregisterPluginListeners(Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/EventManager.html#unregisterPluginListeners-java.lang.Object-], passing in a reference to the
plugin, to unregister all event listeners associated with that plugin. Note that this will remove all of the plugin’s
event listeners, including those registered with @Listener annotations.

MyPlugin plugin = ...
Sponge.getEventManager().unregisterPluginListeners(plugin);

About @Listener

The @Listener annotation has a few configurable fields:

	order is the priority in which the event listener is to be run. See the Order [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Order.html] enum in the SpongeAPI to
see the available options.

	beforeModifications specifies if the event listener should be called before other server mods, such as Forge
mods. By default, this is set to false.

By default, @Listener is configured so that your event listener will not be called if the event in question is
cancellable and has been cancelled (such as by another plugin).

GameReloadEvent

To prevent all plugins providing their own reload commands, Sponge provides a built in callback for plugins to listen
to, and when executed, perform any reloading actions. What constitutes as a ‘reloading action’ is purely up to the
plugin to decide. The GameReloadEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/GameReloadEvent.html] will fire when a player executes the
/sponge plugins reload command. The event is not necessarily limited to reloading configuration.

import org.spongepowered.api.event.game.GameReloadEvent;

@Listener
public void reload(GameReloadEvent event) {
 // Do reload stuff
}

Note that this is different for what generally is considered a ‘reload’, as the event is purely all callback for
plugins and does not do any reloading on its own.

Firing Events

To dispatch an event, you need an object that implements the Event [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Event.html] interface.

You can fire events using the event bus (EventManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/EventManager.html]):

boolean cancelled = Sponge.getEventManager().post(theEventObject);

The method returns true if the event was cancelled, false if not.

Firing Sponge Events

It is possible to generate instances of built-in events with the static SpongeEventFactory [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/SpongeEventFactory.html]. The events
created by the SpongeEventFactory are then passed to EventManager#post(Event) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/EventManager.html#post-org.spongepowered.api.event.Event-].

Example: Firing LightningEvent

import org.spongepowered.api.event.SpongeEventFactory;
import org.spongepowered.api.event.action.LightningEvent;
import org.spongepowered.api.event.cause.Cause;

LightningEvent lightningEvent = SpongeEventFactory.createLightningEvent(Cause.source(plugin).build());
Sponge.getEventManager().post(lightningEvent);

Avertissement

A Cause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html] can never be empty. At the very least it should contain your plugin container.

 Events

Events

Events are used to inform plugins of certain happenings. Many events can also be cancelled – that is, the action that
the event refers to can be prevented from occurring. Cancellable events implement the Cancellable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Cancellable.html] interface.

Sponge itself contains many events; however, plugins can create their own events which other plugins can listen to.

Event listeners are assigned a priority that determines the order in which the event listener is run in context of other
event listeners (such as those from other plugins). For example, an event listener with EARLY priority will return
before most other event listeners. See About @Listener for more information.

Events cannot be sent to a specific set of plugins. All plugins that listen to an event will be notified of the event.

The event bus or event manager is the class that keeps track of which plugins are listening to which event,
and is also responsible for distributing events to event listeners.

Sponge provides a built in callback for plugin reloading. See the GameReloadEvent section for more information.

Contents

	Event Listeners

	Event Causes

	Event Filters

	Custom Events

 Event Causes

Event Causes

Events are great for attaching additional logic to game actions, but they have the drawback of providing next to no
context as to what has caused that event to occur. The Cause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html] object allows providing and receiving
additional contextual information about the event. This contextual information can then be used to modify the behavior
of your event listener.

For example, a world protection plugin needs information on what player has caused a ChangeBlockEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/block/ChangeBlockEvent.html] to
occur before they can decide if the event should be cancelled or not. Rather than go with the traditional route of
creating a multitude of subevents for the different source conditions this information is instead provided in the
Cause of the event.

Every event provides a Cause object which can be interrogated for the information pertaining to why the event was
fired. The Cause object can be retrieved from an event by simply calling Event#getCause() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Event.html#getCause–].

Retrieving objects from a Cause

Structurally, a Cause object contains a sequential list of objects. There are several methods of
retrieving information from a Cause object which we will discuss here, for a more complete
listing please see the Javadocs [https://jd.spongepowered.org].

Note

The objects within a cause are ordered such that the first object is the most immediate
cause of the event, and subsequent objects are of decreasing importance and/or may only
provide contextual information.

Cause#root() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#root–] returns the first object within the cause. This object is the most immediate or direct cause of
the event. Since a Cause may not be empty, it is guaranteed to have a root.

Cause#first(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#first-java.lang.Class-] returns the first object in the cause chain whose type is either the same as or is a
subtype of the given class. For example given a cause which contained a player followed by an entity
[Player, Entity, ...]

@Listener
public void onEvent(ExampleCauseEvent event) {
 Cause cause = event.getCause(); // [Player, Entity]
 Optional<Player> firstPlayer = cause.first(Player.class); // 1
 Optional<Entity> firstEntity = cause.first(Entity.class); // 2
}

Both optionals would contain the player object as it’s type directly matched request for a
Player type and it matched the request for an Entity type as Player is a subtype of Entity.

Cause#last(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#last-java.lang.Class-] is similar to Cause#first(Class) except it returns the last value in the cause chain
matching the type.

Continuing from the example above, if we instead changed it to call Cause#last(Class) the first
optional would contain the player object still, but the second optional would now contain
the entity that we passed in the second position of the cause.

Cause#containsType(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#containsType-java.lang.Class-] returns a boolean value and can be used to check if a cause chain contains any
object matching the provided type.

Cause#all() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#all–] simply returns all objects within the cause allowing more advanced handling.

Named Causes

Sometimes the ordering of objects within the cause isn’t enough to get the proper idea of what an object represents in
relation to the event. This is where NamedCause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/NamedCause.html] comes in. Named causes provide a method for tagging objects
within a cause with a unique name allowing them to be easily identified and requested. Some examples of use cases
for named causes is the Notifier of a ChangeBlockEvent.Grow [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/block/ChangeBlockEvent.Grow.html] or the Source of a
DamageEntityEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/entity/DamageEntityEvent.html].

Retrieving a named entry from a cause

@Listener
public void onGrow(ChangeBlockEvent.Grow event) {
 Optional<Player> notifier = event.getCause().get(NamedCause.NOTIFIER, Player.class);
}

This example makes use of Cause#get(String, Class<T>) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#get-java.lang.String-java.lang.Class-] which can be used to retrieve the expected object
associated with a name if it is present within the cause chain. Additionally Cause#getNamedCauses() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#getNamedCauses–] provides
a Map<String, Object> which can be used to find all present names and their associated objects.

Note

Some common identifying names for NamedCauses are present as static fields in the
NamedCause class. Identifiers which are specific to certain events can often be found
as static fields on the event class, for example DamageEntityEvent#SOURCE [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/entity/DamageEntityEvent.html#SOURCE].

Creating custom Causes

Creating a cause to use when firing an event is extremely easy. The hardest part is deciding
what information to include in the cause. If you’re firing an event from your plugin which is
usually triggered through other means perhaps you want to include your plugin container so
other plugins know that the event comes from your plugin. Or if you are firing the event on
behalf of a player due to some action it’s usually a good idea to include that player in
the cause.

Note

Cause objects are immutable therefore cannot be modified once created.

Using Cause#of(NamedCause) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#of-org.spongepowered.api.event.cause.NamedCause-], you can construct a cause from a series of objects. The objects will be added to
the cause chain in the order that they are passed to the method, so the first object parameter will become the root
cause. Remember that a Cause may not be empty, so at least one non-null parameter is always required.

If you already have a cause object and would like to append some more objects to the chain you can use
Cause#with(NamedCause, NamedCause...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#with-org.spongepowered.api.event.cause.NamedCause-org.spongepowered.api.event.cause.NamedCause...-]. This constructs a new Cause object containing first the objects
already present in the original cause, then followed by the additional objects that you provided.

Finally if you wish to add an object to a cause with a defined named first call NamedCause#of(String, Object) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/NamedCause.html#of-java.lang.String-Object-]
and then pass the returned NamedCause instance to the cause chain as you would a normal object.

 Event Filters

Event Filters

Now that you’ve spent a bit of time working with events you’ve probably noticed that there are several preconditions that you
very commonly check while writing an event listener. Event filters are a group of annotations that assist you by allowing you
to automatically validate aspects of the event, and if the validation fails then your listener will not be called. This allows
your listener to be dedicated to the logic of your handler, rather than the preconditions, resulting in cleaner code.

Event filters come in two varieties, event type filters and parameter filters.

Event type filters are method annotations that are applied to your listener method along with the Listener [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Listener.html]
annotation and provide several filters based on the type or state of the event.

Parameter filters validate objects contained within the event such as the cause. They come in a further two varieties
parameter sources and parameter filters. Each additional parameter must have one source annotation, and optionally may include
any number of filter annotations.

Event Type Filters

@Include/@Exclude
These two parameters are used in conjunction with listening for supertype events such as AffectEntityEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/entity/AffectEntityEvent.html]
while narrowing the events that you receive to just a subset of the events extending the event you’re listening for.

For example:

@Listener
@Exclude(InteractBlockEvent.Primary.class)
public void onInteract(InteractBlockEvent event) {
 // do something
}

This listener would normally be called for all events extending InteractBlockEvent. However, the Exclude [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/filter/type/Exclude.html]
annotationte will prevent your listener from being called for the InteractBlockEvent.Primary [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/block/InteractBlockEvent.Primary.html] event (leaving
just the InteractBlockEvent.Secondary [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/block/InteractBlockEvent.Secondary.html] event).

An example with Include [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/filter/type/Include.html] could be:

@Listener
@Include({DamageEntityEvent.class, DestructEntityEvent.class})
public void onEvent(EntityEvent event) {
 // do something
}

This listener would normally be called for all EntityEvents, however the Include annotation narrows it to only
recieve DamageEntityEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/entity/DamageEntityEvent.html] and DestructEntityEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/entity/DestructEntityEvent.html]s.

@IsCancelled
This annotation allows filtering events by their cancellation state at the time that your event listener would normally be
called. By default your event listener will not be called if the event has been cancelled by a previous event listener.
However you can change this behavior to one of three states depending on the Tristate [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/Tristate.html] value in the
IsCancelled [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/filter/IsCancelled.html] annotation.

	Tristate.FALSE is the default behavior if the IsCancelled annotation is not present, and will not call your
listener if the event has been cancelled.

	Tristate.UNDEFINED will cause your listener to be called regardless of the cancellation state of the event.

	Tristate.TRUE will cause your listener to be called only if the event has been cancelled by a previous event listener.

Parameter Filters

Parameter filters allow you to filter based on objects within the event. These annotations come in two types, sources and
filters. Each additional parameter for your listener method, beyond the normal event parameter, requires exactly one source
annotation and may optionally have any number of filter annotations.

Parameter Source Annotations

Parameter source annotations tell the event system where it should look for this parameter’s value. This may be in the events
cause or in a member of the event object itself.

@First This parameter source annotation tells the event system to find the first object in the event’s cause which matches
the type of your parameter (This is equivalent to Cause#first(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#first-java.lang.Class-]). If no object is found matching this
parameter then your listener is not called.

In this example your listener will only be called if there is a player in the event’s cause, and the player
parameter will be set to the first player present the cause.

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @First Player player) {
 // do something
}

@Last This is similar to @First however it instead makes a call to Cause#last(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#last-java.lang.Class-].

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @Last Player player) {
 // do something
}

@Before This parameter source annotation tells the event system to find the object before the one of the type
specified by the annotation parameter (This is equivalent to Cause#before(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#before-java.lang.Class-]). Additionally, the found
object must match the type of the parameter. If no object is found meeting these criteria, then your listener is not
called.

In this example your listener will only be called if there is a player located before a plugin container in the event’s cause.
The player parameter will be set to that player.

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @Before(PluginContainer.class) Player player) {
 // do something
}

@After This is similar to @Before, but it instead uses Cause#after(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#after-java.lang.Class-].

@All This parameter source annotation requires that the annotated parameter be an array type. The returned array
will be equivalent to the contents of calling Cause#allOf(Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#allOf-java.lang.Class-]. By default if the returned array would be
empty then the validation fails however this can be disabled by setting ignoreEmpty=false.

In this example your listener will always be called, although the players array may be empty if the event’s cause contained
no players.

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @All(ignoreEmpty=false) Player[] players) {
 // do something
}

@Root This parameter source annotation will fetch the root object of the cause, equivalent to
Cause#root() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#root–]. It also performs an additional check that the type of the root object matches the type of your
parameter.

@Named This parameter source annotation tells the event system to find the object with the name specified by the annotation
parameter (This is equivalent to Cause#get(String, Class) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html#get-java.lang.String-java.lang.Class-]). Additionally, the found object must match the
type of the parameter. If no object is found meeting these criteria, then your listener is not called.

In this example your listener will only be called if there is a player associated with the name NamedCause.OWNER .
The player parameter will be set to that player.

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @Named(NamedCause.OWNER) Player player) {
 // do something
}

@Getter This parameter source annotation will fetch a getter on the event with the specified name. If the specified
getter returns an Optional, @Getter will automatically unwrap the Optional.

In this example, we attempt to retrieve the value of getUseItemResult using the @Getter
annotation.

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @Getter("getUseItemResult") Tristate result) {
 // do something
}

Parameter Filter Annotations

Parameter filter annotations add additional validation to objects returned from parameter source annotations. As with all
event filters if any of these validations fail then your listener will not be called.

@Supports
This parameter filter may be applied to any parameter type which is a DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html]. It takes a class extending
DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html] as its parameter and validates that the annotated DataHolder supports the given
DataManipulator. This validation is equivalent to CompositeValueStore#supports(Class<? extends H>) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/value/mutable/CompositeValueStore.html#supports-java.lang.Class-].

In this example the listener will be called only if there is an entity in the event’s cause, and if that entity supports
the data manipulator FlyingData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/FlyingData.html].

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @First @Supports(FlyingData.class) Entity entity) {
 // do something
}

@Has
This parameter filter is similar to the @Supports parameter filter except that it additionally validates that the
DataHolder contains an instance of the given DataManipulator.

In this example the listener will be called only if there is an entity in the event’s cause, and if that entity has an
instance of FlyingData available.

@Listener
public void onInteract(InteractBlockEvent.Secondary event, @First @Has(FlyingData.class) Entity entity) {
 // do something
}

Note

Both @Has and @Supports have an optional parameter inverse which can be set to cause validation
to fail if the does have, or does support, the target DataManipulator.

 Custom Events

Custom Events

You can write your own event classes and dispatch those events using the method described above. An event class must
extend the AbstractEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/impl/AbstractEvent.html] class, thus implementing the Event [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Event.html] interface. Depending on the exact
nature of the event, more interfaces should be implemented, like Cancellable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/Cancellable.html] for events that can be
cancelled by a listener or interfaces like TargetPlayerEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/entity/living/humanoid/player/TargetPlayerEvent.html] clarifying what sort of object is affected by
your event.

Example: Custom Event Class

The following class describes an event indicating a Player has come in contact with FLARD and is now about to
mutate in a way specified by the event. Since the event targets a player and can be cancelled by listeners, it
implements both the TargetPlayerEvent and Cancellable interfaces.

Since generally custom events are intended to be listened to by other plugins, it is in your best interest to document
them appropriately. This includes a list of objects typically found in the Cause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/Cause.html]. In the below example, it
would probably be mentioned that the root cause is generally an object of the fictitious FLARDSource class.

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.event.Cancellable;
import org.spongepowered.api.event.cause.Cause;
import org.spongepowered.api.event.entity.living.humanoid.player.TargetPlayerEvent;
import org.spongepowered.api.event.impl.AbstractEvent;

public class PlayerMutationEvent extends AbstractEvent implements TargetPlayerEvent, Cancellable {

 public enum Mutation {
 COMPULSIVE_POETRY,
 ROTTED_SOCKS,
 SPONTANEOUS_COMBUSTION;
 };

 private final Cause cause;
 private final Player victim;
 private final Mutation mutation;
 private boolean cancelled = false;

 public PlayerMutationEvent(Player victim, Mutation mutation, Cause cause) {
 this.victim = victim;
 this.mutation = mutation;
 this.cause = cause;
 }

 public Mutation getMutation() {
 return this.mutation;
 }

 @Override
 public boolean isCancelled() {
 return this.cancelled;
 }

 @Override
 public void setCancelled(boolean cancel) {
 this.cancelled = cancel;
 }

 @Override
 public Cause getCause() {
 return this.cause;
 }

 @Override
 public Player getTargetEntity() {
 return this.victim;
 }

}

Example: Fire Custom Event

import org.spongepowered.api.Sponge;

PlayerMutationEvent event = new PlayerMutationEvent(victim, PlayerMutationEvent.Mutation.ROTTED_SOCKS,
 Cause.source(flardSource).build());
Sponge.getEventManager().post(event);
if (!event.isCancelled()) {
 // Mutation code
}

Bear in mind that you need to supply a non-empty cause. If your event was Cancellable, make sure that it was not
cancelled before performing the action described by the event.

Example: Listen for Custom Event

import org.spongepowered.api.event.Listener;
import org.spongepowered.api.text.Text;

@Listener
public void onPrivateMessage(PlayerMutationEvent event) {
 if(event.getMutation() == PlayerMutationEvent.Mutation.SPONTANEOUS_COMBUSTION) {
 event.setCancelled(true);
 event.getTargetEntity().sendMessage(Text.of("You can not combust here, this is a non-smoking area!"));
 }
}

 Modifying Blocks

Modifying Blocks

Changing a Blocks Type

Changing the Type of a Block is as simple as calling the Location#setBlockType(BlockType, Cause) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#setBlockType-org.spongepowered.api.block.BlockType-org.spongepowered.api.event.cause.Cause-] method with
the new BlockType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockType.html]. As with most block modifications, we need to supply a cause for the block change. In most
cases, this can be your main plugin class. The following code turns the block at the given Location [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html] into a
sponge:

import org.spongepowered.api.block.BlockTypes;
import org.spongepowered.api.event.cause.Cause;
import org.spongepowered.api.world.Location;
import org.spongepowered.api.world.World;

public void setToSponge(Location<World> blockLoc, Object myPluginInstance) {
 blockLoc.setBlockType(BlockTypes.SPONGE, Cause.source(myPluginInstance).build());
}

It’s as simple as that. If you just want to ‘delete’ a block (which is done by replacing it with air), you may just
use the Location#removeBlock(Cause) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#removeBlock-org.spongepowered.api.event.cause.Cause-] method provided by Location.

Altering Block States

Similar to the above example, the Location class provides a Location#setBlock(BlockState, Cause) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#setBlock-org.spongepowered.api.block.BlockState-org.spongepowered.api.event.cause.Cause-] method
accepting a new BlockState [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockState.html]. To make use of it, you first must acquire a BlockState you can modify. You
can do so either by getting the block’s current state via the Location#getBlock() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#getBlock–] method or by using a
BlockType‘s default state. The latter is demonstrated below. The default state for a Sponge block is retrieved
and then modified to directly create a wet sponge block:

import org.spongepowered.api.Sponge;
import org.spongepowered.api.block.BlockState;
import org.spongepowered.api.data.manipulator.mutable.WetData;

public void setToWetSponge(Location<World> blockLoc, Object myPluginInstance) {
 BlockState state = BlockTypes.SPONGE.getDefaultState();
 WetData wetness = Sponge.getDataManager().
 getManipulatorBuilder(WetData.class).get().create();
 wetness.set(wetness.wet().set(true));
 BlockState newState = state.with(wetness.asImmutable()).get();
 blockLoc.setBlock(newState, Cause.source(myPluginInstance).build());
}

Since a BlockState is an ImmutableDataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/ImmutableDataHolder.html], you may use the provided methods with() and
without(), both of which will return a new altered BlockState or Optional.empty() if the given
ImmutableDataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html] is not applicable to the kind of block represented by the BlockState.

The with() method accepts an ImmutableDataManipulator and will try to create a new BlockState with the
given data set, overwriting existing values. The following example will change any dirt block to podzol.

import org.spongepowered.api.data.key.Keys;
import
 org.spongepowered.api.data.manipulator.immutable.block.ImmutableDirtData;
import org.spongepowered.api.data.manipulator.mutable.block.DirtData;
import org.spongepowered.api.data.type.DirtTypes;

public void dirtToPodzol(Location<World> blockLoc, Object myPluginInstance) {
 BlockState state = blockLoc.getBlock();
 Optional<ImmutableDirtData> dirtDataOpt =
 state.get(ImmutableDirtData.class);

 if (dirtDataOpt.isPresent()) {
 DirtData dirtData = dirtDataOpt.get().asMutable();
 dirtData.set(Keys.DIRT_TYPE, DirtTypes.PODZOL);
 BlockState dirtState = state.with(dirtData.asImmutable()).get();
 blockLoc.setBlock(dirtState, Cause.source(myPluginInstance).build());
 }
}

Note that the DirtData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/block/DirtData.html] is a mutable copy of the data held in the BlockState. It is changed and then
converted back to an immutable and used to create a new BlockState which then replaces the original block.

The without() method accepts a class reference and will create a new BlockState without the data
represented by the given class. If the block state would not be valid without that data, a default value will be used.
So if the DirtData from a dirt blocks state is removed, it will fall back to DirtTypes#DIRT [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/type/DirtTypes.html#DIRT], the default
value. The following example will dry the block at a given Location, if possible.

import
 org.spongepowered.api.data.manipulator.immutable.block.ImmutableWetData;

public void dry(Location<World> blockLoc, Object myPluginInstance) {
 BlockState wetState = blockLoc.getBlock();
 Optional<BlockState> dryState = wetState.without(ImmutableWetData.class);
 if (dryState.isPresent()) {
 blockLoc.setBlock(dryState.get(), Cause.source(myPluginInstance).build());
 }
}

Since the WetData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/WetData.html] data manipulator represents boolean data, by removing it we set the wetness of the block
(if it has any) to false. The dryState.isPresent() check will fail on block states that can not be wet since
dryState will be Optional.empty() in that case.

Copying Blocks

If you want to copy all of a block’s data, the BlockSnapshot [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockSnapshot.html] class is your best friend. While it doesn’t
expose all the data, it stores a BlockType, its BlockState and, if necessary, all additional Tile Entity Data
(for example chest inventories). Conveniently, the Location class provides a Location#createSnapshot() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#createSnapshot–]
method to create a snapshot of the block at that point in time. That makes copying blocks from one location to another
very simple:

import org.spongepowered.api.block.BlockSnapshot;

public void copyBlock(Location<World> from, Location<World> to, Object myPluginInstance) {
 BlockSnapshot snapshot = from.createSnapshot();
 to.setBlock(snapshot.getState(), Cause.source(myPluginInstance).build());
}

 Blocks

Blocks

Blocks are the very foundation of every Minecraft world, the element that makes Minecraft Minecraft-y. This section
details how information about a block’s type and attributes are read and set via the SpongeAPI, what tile entities are
and how they can be tamed to behave exactly like you want them to.

Contents

	Concepts

	Accessing Blocks

	Modifying Blocks

	Tile Entities

	Virtual Block Changes

 Concepts

Concepts

Properties

All blocks are of a base type. Examples of base types include dirt, stairs, and leaves. However, to further
differentiate these base types, each block has set of different properties, of which each can take a limited set of
values (i.e. podzol dirt, brick stairs, oak leaves). A block can have multiple properties (such as east-facing,
brick stairs).

Examples of block properties

minecraft:dirt[snowy=false,variant=default]
minecraft:dirt[snowy=true,variant=default]
minecraft:dirt[snowy=false,variant=grassless]
minecraft:dirt[snowy=true,variant=grassless]
minecraft:planks[variant=oak]
minecraft:planks[variant=spruce]
minecraft:planks[variant=birch]
minecraft:redstone_wire[east=up,north=up,power=0,south=up,west=up]
minecraft:redstone_wire[east=side,north=up,power=0,south=up,west=up]
minecraft:redstone_wire[east=none,north=up,power=0,south=up,west=up]
minecraft:redstone_wire[east=up,north=side,power=0,south=up,west=up]

Some properties, however, are ephemeral – they exist only when the game is running. Their values are not written to
the save file because their values can be detected automatically. For example, with Redstone wire, whether they are
powered or not can be detected based on the environment (is there a lever that is on?). In this case, the power
property of minecraft:redstone_wire as illustrated above is an ephemeral property.

As of writing, Minecraft still stores block data to an old format with 12 bits for a base type (4096 possible base types)
and 4 bits for “metadata” (16 possible values per base type). However, properties do not map directly to metadata due to
legacy reasons: for example, the furnace block consists of two base types (currently smelting versus not smelting), each
not utilizing their metadata at all. On the other hand, logs do use their metadata fully, but because the combination of
properties exceeds 16 possible values (think tree type and direction), logs must be split over two base types.

In the future, there will only be one 16 bit number (65536 possible combinations of base type + properties). Blocks will
be assigned an ID automatically and this assignment will be stored in the world save file. This is illustrated below:

0 => minecraft:dirt[snowy=false,variant=default]
1 => minecraft:dirt[snowy=true,variant=default]
2 => minecraft:dirt[snowy=false,variant=grassless]
3 => minecraft:dirt[snowy=true,variant=grassless]
4 => minecraft:planks[variant=oak]
5 => minecraft:planks[variant=spruce]
etc.

Tile Entity Data

With 65536 possible combinations, it is not possible to store a lot of information like inventory, so there’s an
additional way that some blocks have data: tile entities.

Tile entities themselves are Java objects (like a Chest class). Normally, Minecraft code would access data in a tile
entity by getting its instance and then calling it methods or fields, like a regular object
(world.getTileEntity(position).getInventory()). When tile entities need to be written to the save file, they are
stored in the NBT format [http://minecraft.gamepedia.com/NBT_format].

Astuce

Some things, like paintings, are actually entities.

However, tile entities can also override rendering so they don’t look like a regular block, although this is
generally inefficient and causes a client framerate drop.

 Tile Entities

Tile Entities

Tile entities are blocks that are capable of additional operations like autonomically crafting (furnaces and brewing
stands) or provide effects (like a beacon or a note block). They also contain additional data like an inventory or
text (like chests, signs or command blocks).

Identifying Tile Entities and their Type

Again, it all starts with a Location [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html]. The Location#getTileEntity() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html#getTileEntity–] function will return the tile
entity corresponding to the block or Optional.empty() if the block is not a tile entity.

import org.spongepowered.api.world.Location;
import org.spongepowered.api.world.World;

public boolean isTileEntity(Location<World> blockLoc) {
 return blockLoc.getTileEntity().isPresent();
}

The type of a tile entity can then be obtained by the TileEntity#getType() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/tileentity/TileEntity.html#getType–] function which returns a
TileEntityType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/tileentity/TileEntityType.html]. Which can then be compared similar to a BlockType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockType.html]. After performing this check
the TileEntity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/tileentity/TileEntity.html] variable can safely be cast to the according subtype.

import org.spongepowered.api.block.tileentity.Jukebox;
import org.spongepowered.api.block.tileentity.TileEntity;
import org.spongepowered.api.block.tileentity.TileEntityTypes;

public boolean isJukebox(TileEntity entity) {
 return entity.getType().equals(TileEntityTypes.JUKEBOX);
}

public void ejectDiscFromJukebox(TileEntity entity) {
 if (isJukebox(entity)) {
 Jukebox jukebox = (Jukebox) entity;
 jukebox.ejectRecord();
 }
}

After performing this cast, the methods provided by the particular interface can be accessed (in this example the
Jukebox#ejectRecord() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/tileentity/Jukebox.html#ejectRecord–] method). For detailed information about TileEntity subtypes and their respective
methods refer to the org.spongepowered.api.block.tileentity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/tileentity/package-summary.html] package and its subpackages in the API.

Accessing and Modifying a Tile Entity’s Data

Similar to block states, the data stored in a tile entity is accessed using a DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html]. Since the
kind of a data is fully described by the DataManipulator used, all data manipulation can be done with the
TileEntity interface itself and does not require a cast.

The following example contains two methods to alter the data of a sign. The first method reads (if possible) the first
line, the second attempts to set it and returns the boolean value indicating its success.

import org.spongepowered.api.data.manipulator.mutable.tileentity.SignData;
import org.spongepowered.api.text.Text;

import java.util.Optional;

public Optional<Text> getFirstLine(TileEntity entity) {
 Optional<SignData> data = entity.getOrCreate(SignData.class);
 if (data.isPresent()) {
 return Optional.of(data.get().lines().get(0));
 }
 return Optional.empty();
}

public boolean setFirstLine(TileEntity entity, Text line) {
 if (entity.supports(SignData.class)) {
 SignData sign = entity.getOrCreate(SignData.class).get();
 sign.set(sign.lines().set(0, line));
 entity.offer(sign);
 return true;
 }
 return false;
}

The main difference to working with a BlockState is that a tile entity is a mutable DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html] as
opposed to the immutable BlockState.

Accessing Inventories

Quite a share of tile entities come with their own inventory, most notably chests and furnaces. That inventory can not
be accessed directly from the TileEntity interface. So a cast will be necessary. Since all tile entities containing
an inventory extend the TileEntityCarrier [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/tileentity/carrier/TileEntityCarrier.html] interface it suffices to cast to that interface as shown below.

import org.spongepowered.api.block.tileentity.carrier.TileEntityCarrier;
import org.spongepowered.api.item.inventory.Inventory;

public void useInventory(TileEntity entity) {
 if (entity instanceof TileEntityCarrier) {
 TileEntityCarrier carrier = (TileEntityCarrier) entity;
 Inventory inventory = carrier.getInventory();
 ...
 }
}

Refer to the inventory documentation regarding the manipulation of the inventory.

 Virtual Block Changes

Virtual Block Changes

Virtual block changes allow you to make it seem as if a block has changed on the client without actually changing any
physical blocks in the world.

Sending a virtual block change to the client is as simple as calling the
Viewer#sendBlockChange(int, int, int, BlockState) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/Viewer.html#sendBlockChange-int-int-int-org.spongepowered.api.block.BlockState-] method. You will need to specify the co-ordinates of the
block that you wish to change, as well as the new BlockState [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockState.html]. An example is shown below:

import org.spongepowered.api.block.BlockTypes;
import org.spongepowered.api.effect.Viewer;

viewer.sendBlockChange(0, 65, 0, BlockTypes.COMMAND_BLOCK.getDefaultState());

This will make it seem as if the block at the co-ordinates 0, 65, 0 has changed to a command block. Of course, you
are not restricted to the default state of a block. Any BlockState is accepted by the sendBlockChange() method.

Besides specifying three integers for the co-ordinates, you may also specify a Vector3i. An example of using the
Viewer#sendBlockChange(Vector3i, BlockState) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/Viewer.html#sendBlockChange-com.flowpowered.math.vector.Vector3i-org.spongepowered.api.block.BlockState-] method is shown below:

import com.flowpowered.math.vector.Vector3i;

Vector3i vector = new Vector3i(0, 65, 0);
viewer.sendBlockChange(vector, BlockTypes.COMMAND_BLOCK.getDefaultState());

Resetting Changes

To reset any changes you’ve made to the client at a specific location, you can call the
Viewer#resetBlockChange(int, int, int) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/effect/Viewer.html#resetBlockChange-int-int-int-] method. For example, to undo our damage from the previous example, we
can call the resetBlockChange() method specifying the co-ordinates from before:

viewer.resetBlockChange(0, 65, 0);

Note that you may also use a Vector3i in place of the three integers with this method as well.

 Accessing Blocks

Accessing Blocks

Basic Information

Blocks are most commonly identified and accessed by their Location [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html]. This location points to a certain
coordinate within an Extent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/extent/Extent.html]. In most cases a World [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/World.html] will be used as the Extent.

import org.spongepowered.api.Sponge;
import org.spongepowered.api.world.Location;
import org.spongepowered.api.world.World;

public Location<World> getBlockAt(String worldName, int posX, int posY, int posZ) {
 World world = Sponge.getServer().getWorld(worldName).get();
 Location<World> blockLoc = new Location<World>(world, posX, posY, posZ);
 return blockLoc;
}

Avertissement

Note that the above example does not check if the world exists. getWorld(worldName).get() will fail if there
is no world of that name loaded.

With this Location object you can then obtain further information about the block. The following code checks if a
referenced block is any kind of banner by checking the blocks type.

import org.spongepowered.api.block.BlockType;
import org.spongepowered.api.block.BlockTypes;

public boolean isBanner(Location<World> blockLoc) {
 BlockType type = blockLoc.getBlock().getType();
 return type.equals(BlockTypes.STANDING_BANNER)
 || type.equals(BlockTypes.WALL_BANNER);
}

Astuce

The function == could be used in place of equals() as there is only one BlockType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockType.html] instance for
every block, however it is generally recommended to use equals().

Block Data Manipulators

The data of a block is held as a DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html], similar to other parts of the API. This is the container
that holds information on components of our block such as the orientation of a block, specific types (stone vs.
granite), and so on. Checking the values of these manipulators is easy, you just need to check the block’s direction
DirectionalData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/block/DirectionalData.html].

import org.spongepowered.api.data.key.Keys;
import org.spongepowered.api.data.manipulator.mutable.block.DirectionalData;

public boolean isFacingNorth(Location<World> blockLoc) {
 Optional<DirectionalData> optionalData = blockLoc.get(DirectionalData.class);
 if (!optionalData.isPresent()) {
 return false;
 }
 DirectionalData data = optionalData.get();
 if (data.get(Keys.DIRECTION).get().equals(Direction.NORTH)) {
 return true;
 }
 return false;
}

First, we need to know which DataManipulator sub-interface we need. Those that are applicable to blocks are found
in the org.spongepowered.api.data.manipulator.mutable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/package-summary.html] and
org.spongepowered.api.data.manipulator.mutable.block [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/block/package-summary.html] packages. Then, we can just pass that class to the
get(DataManipulator) method of Location which will return an Optional. We then have to check if our
DataManipulator actually exists for our block by checking ifPresent(). If it exists, then we can use it.

More on DataManipulators can be found in the data documentation.

Astuce

If a block will never stop supporting a particular DataManipulator, such as DirectionalData with stairs,
then there is no need to check for isPresent(). Just remove the optional around the DataManipulator and
fetch the non-optional data by adding .get() to the end of the statement. Note, that this will cause a
NullPointerException if a block ever stops supporting a particular DataManipulator.

Block States

A BlockState [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockState.html] contains a BlockType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockType.html], any DataManipulators and properties that are applied to
the block, and any BlockTrait [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/trait/BlockTrait.html]s for a block. It stores all immutable value’s for a particular block. One
use of this is getting an ImmutableDataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/ImmutableDataManipulator.html], as shown below:

import org.spongepowered.api.block.BlockState;
import org.spongepowered.api.data.manipulator.immutable.ImmutableWetData;

public void isWet(Location blockLoc) {
 BlockState sponge = blockLoc.getBlock();
 if (!sponge.getType().equals(BlockTypes.SPONGE)) {
 return false;
 }
 Optional<ImmutableWetData> wetness = sponge.get(ImmutableWetData.class);
 return wetness.isPresent();
}

More information on mutable and immutable DataManipulators can be found in the data documentation.

Block Properties

Blocks can contain certain properties. A property is a pre-set value that defines the game logic of that particular
block. For example, blocks can contain pre-determined blast-resistance values that can be used to determine what
you’re working with, without actually checking the type of block it could be one by one. For example, if we wanted to
get the blast resistance of a block and checking if it is greater than or equal to one, it would be done like so:

import org.spongepowered.api.data.property.DoubleProperty;
import org.spongepowered.api.data.property.block.BlastResistanceProperty;

public boolean blastResistanceGreaterThanOne(Location<World> blockLoc) {
 Optional<BlastResistanceProperty> optional =
 blockLoc.getProperty(BlastResistanceProperty.class);

 if(optional.isPresent()) {
 BlastResistanceProperty resistance = optional.get();
 DoubleProperty one = DoubleProperty.greaterThanOrEqual(1);
 return one.matches(resistance);
 }
 return false;
}

This will get the blast resistance of our block and compare it to a new DoubleProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/DoubleProperty.html], as
BlastResistanceProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/block/BlastResistanceProperty.html] inherits from DoubleProperty. The method will then return if the blast
resistance of our block is greater than one, the value in placed matches(). If we wanted to see if it was less than
two, we would replace it with lessThan().

If we were comparing two pre-existing properties, it will take the Operator of our first value, the one we are
creating a double property for. If the Operator is DELEGATE, which is the none operator, then it will take the
Operator of the second value, the one in matches(). Comparison will return false if both are DELEGATE.
An example of comparing two PoweredProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/block/PoweredProperty.html]s, a BooleanProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/BooleanProperty.html], can be seen below:

import org.spongepowered.api.data.property.block.PoweredProperty;

public boolean areBlocksPowered(Location<World> blockLoc, Location<World> blockLoc2) {
 Optional<PoweredProperty> optional = blockLoc.getProperty(PoweredProperty.class);
 Optional<PoweredProperty> optional2 = blockLoc2.getProperty(PoweredProperty.class);

 if(optional.isPresent() && optional2.isPresent()) {
 PoweredProperty property1 = optional2.get();
 PoweredProperty property2 = optional2.get();
 BooleanProperty booleanProperty = BooleanProperty.of(property1);
 BooleanProperty booleanProperty2 = BooleanProperty.of(true);

 if(booleanProperty2.matches(property1)) {
 return booleanProperty.matches(property2);
 }
 }
 return false;
}

The second if check checks if one of the properties is true. If it is true and both are equal, then both
of the values must be true. Therefore, eliminating the need to check the second value. Now we know that both
blocks are being powered.

A list of possible block properties can be found in the org.spongepowered.api.data.property.block [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/block/package-summary.html] package.

Block Traits

A block trait is a certain value on the current state of a block. A block may or may not contain block traits depending
on the type of block. For example, a bed has a BooleanTrait [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/trait/BooleanTrait.html] called
BED_OCCUPIED. As a boolean can only have two values, true and false, the BED_OCCUPIED trait can only be true or
false. Checking this value is simple, just call the BlockState#getTraitValue(BlockTrait) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockState.html#getTraitValue-org.spongepowered.api.block.trait.BlockTrait-] method. An example
of this with a bed is shown below:

import org.spongepowered.api.block.trait.BooleanTraits;

public boolean isBedOccupied(Location<World> blockLoc) {
 if(blockLoc.getBlock().getType().equals(BlockTypes.BED)) {
 return blockLoc.getBlock().getTraitValue(BooleanTraits.BED_OCCUPIED).get();
 }
 return false;
}

Avertissement

If possible, it is recommended to use DataManipulators in place of BlockTraits where possible as they are
only to be meant as a fallback for modded compatibility.

 Setting Up Eclipse

Setting Up Eclipse

This article describes how to configure your Eclipse workspace for plugin development with SpongeAPI and a
build system such as Maven or Gradle.

Note

A tutorial by Mumfrey showing the setup of a Sponge workspace in Eclipse, using the new features in Buildship and ForgeGradle,
can be viewed here [https://www.youtube.com/watch?v=R8NcakQtHVI].

Gradle

Preparing Gradle

Note

Gradle is automatically included in Eclipse starting from the Neon release (June 22, 2016) and later. These steps are only required for earlier versions.

You must first install the Gradle Integration Plugin before using Gradle in Eclipse. This only needs to be done
upon the creation of your first project.

Astuce

Typically, you do not need the optional Spring modules distributed with this plugin, so you can uncheck them during
installation.

	Open Eclipse.

	Click Help > Eclipse Marketplace.

	Search for Gradle Integration Plugin.

	Install the Gradle Integration Plugin.

Creating your project

	Open Eclipse.

	Click File > New > Other.

	Select Gradle > Gradle Project.

	Click Next.

	Enter a project name, then click Finish.

Editing the build script

	Open build.gradle in the navigator.

	Edit the build script according to the instructions at Setting Up Gradle.

	Right-click your project, and select Gradle > Refresh Gradle Project.

Importing your project

If you’ve already started with your project and want to import it again at a later point you need to import it instead
of re-creating it inside your IDE:

	Click File > Import

	Select Gradle > Gradle Project

	Navigate to the root folder of the project

	Click Finish

Maven

Creating your project

	Open Eclipse.

	Click File > New > Other.

	Select Maven on the left side of the popup, and select Maven Project on the right side.

	Click Next.

	Select Create a simple project, unless you require a more advanced setup.

	Enter your Group ID, Artifact ID, Version, project name, and project description.
	Your Group ID should usually correspond to your Java package name. See Main Plugin Class for details.

	Your Artifact ID should usually correspond to your plugin ID you chose earlier, e.g. myplugin.

	Your Version is up to you.

	Click Finish.

Astuce

Eclipse often does not open new projects after creating them. If this happens, try closing the Eclipse welcome
screen; your project should be open behind it.

Editing the project configuration

	Open pom.xml in the navigator.

	Edit the build configuration according to the instructions at Setting Up Maven.

	Refresh your Maven project.

Importing your project

If you’ve already started with your project and want to import it again at a later point you need to import it instead
of re-creating it inside your IDE:

	Click File > Import

	Select Maven > Existing Maven Projects

	Navigate to the root folder of the project

	Click Finish

Git Integration

The Eclipse Foundation offers documentation on using Eclipse’s EGit plugin:

https://www.eclipse.org/egit/documentation/

 Setting Up Your Workspace

Setting Up Your Workspace

This section shows the basic setup for your IDE, to get yourself ready to develop Sponge plugins.

Contents

	Setting Up IntelliJ IDEA

	Setting Up Eclipse

 Setting Up IntelliJ IDEA

Setting Up IntelliJ IDEA

This article describes how to configure your IntelliJ IDEA workspace for plugin development with SpongeAPI and
a build system such as Maven or Gradle.

Gradle

Creating your project

	Open IntelliJ IDEA.

	Click Create New Project.

	Select Gradle in the popup, and click Next.

	Enter your Group ID, Artifact ID, and Version.
	Your Group ID should usually correspond to your Java package name. See Main Plugin Class for details.

	Your Artifact ID should usually correspond to your plugin ID you chose earlier, e.g. myplugin.

	Your Version is up to you.

	Click Next twice, name your project, and click Finish.

Editing the build script

	Open build.gradle in the navigator and add the dependencies.

	Edit the build script according to the instructions at Setting Up Gradle.

	Open the Gradle tab on the right of the IntelliJ window and hit the refresh button.

	Gradle setup is done! Now you can start coding your plugin.

Importing your project

If you’ve already started with your project and want to import it again at a later point you need to import it instead
of re-creating it inside your IDE:

	Click File > Open

	Navigate to the project’s build.gradle file

	Click Ok

Maven

Creating your project

	Open IntelliJ IDEA.

	Click Create New Project.

	Select Maven in the popup, and click Next.

	Enter your Group ID, Artifact ID, and Version.
	Your Group ID should usually correspond to your Java package name. See Main Plugin Class for details.

	Your Artifact ID should usually correspond to your plugin ID you chose earlier, e.g. myplugin.

	Your Version is up to you.

	Click Next.

	Enter your project’s name, and click Finish.

Editing the project configuration

	Open pom.xml in the navigator.

	Edit the build configuration according to the instructions at Setting Up Maven.

	Refresh your Maven project.

	Import the Maven changes, if prompted.

Importing your project

If you’ve already started with your project and want to import it again at a later point you need to import it instead
of re-creating it inside your IDE:

	Click File > Open

	Navigate to the project’s pom.xml file

	Click Ok

Git Integration

JetBrains offers documentation on Git integration:

https://www.jetbrains.com/idea/help/using-git-integration.html

 World Generation

World Generation

World Generation in Minecraft is a complicated process, and Sponge adds its own complications too.
Here we provide a basic overview of how it works for the interested reader.
You may choose to skip this and move directly to the API details at:

	WorldGeneratorModifiers

	Modifying World Generation

An Overview of World Generation in Minecraft

World generation in Minecraft is based on chunks. Whenever the game calls for a chunk which does not yet exist,
a request is made to the world generator to provide that chunk. The process to provide this
chunk is split into two distinct phases, named Generation and Population.

The Generation Phase

The first phase in providing a chunk is the Generation Phase. This is primarily responsible for the
creation of the base terrain shape, the generation of biomes, and larger features such as villages and caves.

Note

Block placement in the generation phase takes place entirely within a buffer,
as the Chunk object is not created until the last step in the phase.

The first step is for the biome generator to populate a 2d biome buffer with the biomes that will correspond to each
1x1 column within the chunk. Next, the base GenerationPopulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/GenerationPopulator.html] creates the basic shape of the terrain. At
this stage the world is entirely made of stone. Default generation is simply a heightmap generated from perlin noise,
then filled in - leaving air if higher than sea level, and water if below. This step can be overridden by calling
WorldGenerator#setBaseGenerationPopulator(GenerationPopulator) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/WorldGenerator.html#setBaseGenerationPopulator-org.spongepowered.api.world.gen.GenerationPopulator-] to provide your own custom populator to the
world generator.

Next, using the biome buffer created above, the generator replaces the top layers of the terrain with the
BlockState [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockState.html]s and depths specified by the biome’s GroundCoverLayer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/biome/GroundCoverLayer.html]s. The biomes are provided by
a BiomeGenerator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/BiomeGenerator.html] - which may also be applied to the world generator with the
WorldGenerator#setBiomeGenerator(BiomeGenerator) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/WorldGenerator.html#setBiomeGenerator-org.spongepowered.api.world.gen.BiomeGenerator-] method.

Now that the base terrain has been generated and primed, we run through the GenerationPopulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/GenerationPopulator.html]s. These
come in two groups: those specified globally for the world generator, and those specified for a specific biome. The set
of GenerationPopulators used is the union of the GenerationPopulators specified for each of the unique
biomes within the chunk.

GenerationPopulators are designed for large intensive operations, and are applied to the buffer rather than
the (as yet non-existent) Chunk object. This means that there must be the restriction that GenerationPopulators may not place
any blocks outside of the confines of the currently generating chunk. Content being generated by a GenerationPopulator which
spans multiple chunks must generate in pieces using the chunk position and world seed to determine which piece
of the whole goes into the current chunk.

Finally, with the base terrain created, the biomes applied, and the GenerationPopulators run, we have
completed the generation phase, and the Chunk object can be constructed and returned.

The Population Phase

The Population Phase can only run on a chunk once the three chunks adjacent to it in the positive x and z directions
are loaded. This allows objects during this phase to expand outside the 16x16 chunk area being populated, without
requiring the partial generation used for GenerationPopulators. To support this, the actual area populated
during this phase is a 16x16 area offset by 8 in each of the x and z axes.

Only the Populator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/Populator.html]s of the biome at the position (x*16+16, 0, z*16+16) are applied to this area. It does
not apply a union of all the biomes as is the case for GenerationPopulators.

Populators are ideal for small features (eg. desert wells) and additional terrain covering (eg. trees).
Sponge provides access to a great number of vanilla specified populators which may be reconfigured for your use.

 WorldGeneratorModifiers

WorldGeneratorModifiers

For a brief overview of the World Generation process in Sponge, please read World Generation.
Now, let’s show how you can begin making your mark on world generation.

All plugins wishing to make changes to a worlds generator must register a WorldGeneratorModifier [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/WorldGeneratorModifier.html]. These
modifiers are registered globally with a unique id, which must be added to the config of a world by a server admin.
With the id specified in the world config, a WorldGeneratorModifier will be automatically called when the generator
for that world is set up, allowing it to make changes to the generator.

Creating a WorldGeneratorModifier

Let’s start with the format of a WorldGeneratorModifier. First, you need a class which implements
the WorldGeneratorModifier interface:

import org.spongepowered.api.world.storage.WorldProperties;

private class MyModifier implements WorldGeneratorModifier {

 @Override
 public String getId() {
 return "pluginid:mymodifier";
 }

 @Override
 public String getName() {
 return "My Modifier";
 }

 @Override
 public void modifyWorldGenerator(WorldProperties world, DataContainer settings, WorldGenerator worldGenerator) {

 }

}

As you can see, WorldGeneratorModifier has three methods which we override. CatalogType#getId() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/CatalogType.html#getId–] must be
overridden to return a constant and unique identifier for your WorldGeneratorModifier, this is the identifier which
will be used in the world configuration to specify which worlds your modifier should be applied to.
CatalogType#getName() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/CatalogType.html#getName–] must be overriden with a constant and simple human-readable name for your modifier.

The third overridden method is where you make your changes to the world generator. This method is called by
the implementation when it is creating the world generator for a world which has specified that your
WorldGeneratorModifier should be applied.

The WorldProperties [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/storage/WorldProperties.html] and a DataContainer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataContainer.html] of additional properties for the world are passed
to this method in order to give context for your changes. For instance, you can use the WorldProperties to only
apply your generator changes to nether worlds.

Registering a WorldGeneratorModifier

Now that you have created our modifier, you need to register it. A good time to do this is during the INITIALIZATION
State. To register it, simply call GameRegistry#register(Class, T) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/GameRegistry.html#register-java.lang.Class-T-] with WorldGeneratorModifier.class as
the first argument and your modifier as the second.

@Listener
public void onGameInitialization(GameInitializationEvent event) {
 Sponge.getRegistry().register(WorldGeneratorModifier.class , new MyModifier());
}

To apply your WorldGeneratorModifier to a world you must add it to the world-generation-modifiers array within
the world config file found at config/sponge/worlds/[dimension]/[worldName]/world.conf. For example to apply
the skylands WorldGeneratorModifier to a world you would add the skylands modifier’s id to the modifiers list.

WorldGenerationModifiers to apply to the world
world-generation-modifiers=[
"sponge:skylands"
]

Note that the world-generation-modifiers list may not be there, as by default there are no modifiers applied to
a world and therefore the value is not created when the configuration file is created.

In the next articles we will look deeper at the changes we can make from our WorldGeneratorModifier.

 Modifying World Generation

Modifying World Generation

	Modifying Vanilla Generation

	Creating Custom Base Terrain

	Creating Custom GenerationPopulators

	Creating Custom Populators

	Creating Custom Biomes

Modifying Vanilla Generation

Note

This page assumes that you are familiar with setting up your WorldGeneratorModifier [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/WorldGeneratorModifier.html]. If not, then please
read the article on setting up your modifier at WorldGeneratorModifiers.

Sponge exposes a great deal of vanilla world generation, which can be manipulated through the various interfaces.
Currently, the only elements of the generation process that are easily exposed to manipulation are the populators.

For a quick example, let’s look at how we would change the cactii that spawn in deserts to be taller.

import org.spongepowered.api.world.biome.BiomeGenerationSettings;
import org.spongepowered.api.world.biome.BiomeTypes;
import org.spongepowered.api.world.gen.Populator;
import org.spongepowered.api.world.gen.populator.Cactus;

@Override
public void modifyWorldGenerator(WorldCreationSettings world, DataContainer settings, WorldGenerator worldGenerator) {
 BiomeGenerationSettings desertSettings = worldGenerator.getBiomeSettings(BiomeTypes.DESERT);
 for (Cactus populator : desertSettings.getPopulators(Cactus.class)) {
 populator.setHeight(5);
 }
}

Start by getting the BiomeGenerationSettings [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/biome/BiomeGenerationSettings.html] for the desert biome. This object is a container for all
generation settings relating to that biome. Next, iterate through the list of all Cactus [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/populator/Cactus.html] populators and set
the height to 5, which means it can only generate cactii which are 5 blocks tall.

Note

The Cactus#setHeight(int) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/populator/Cactus.html#setHeight-int-], and many other similar methods on other populators, also takes a
VariableAmount [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/util/weighted/VariableAmount.html] which can be used to specify the height as a range or other custom value.

This has been a simple example of how to modify an existing populator. Let’s look at how we can add a new
instance of a vanilla populator. This time the populator will be added globally, which means it will be
applied to all chunks regardless of the biome. Let’s add a Pumpkin populator globally, causing pumpkins to be
scattered everywhere throughout the world.

import org.spongepowered.api.world.gen.populator.Pumpkin;

@Override
public void modifyWorldGenerator(WorldCreationSettings world, DataContainer settings, WorldGenerator worldGenerator) {
 Pumpkin pumpkinPopulator = Pumpkin.builder().perChunk(12).build();
 worldGenerator.getPopulators().add(pumpkinPopulator);
}

Contrary to the previous example, this time you are creating an entirely new populator. To do this, first you need to
get a builder for that populator. Then set your desired settings for the populator into it - in this case, we want a
dozen pumpkins to spawn per patch. Finally, add your new populator to the list of populators that are applied globally
to the world.

Voila, now we have pumpkins everywhere.

Note

In this example we added the pumpkin populator to the end of the populators list, but it should be noted that
this list is order dependent. So if you would like your populator to be called earlier than other populators,
as is usually a good idea with Forest populators, then your should add your populator to the start of the list.

These two examples should serve to help you get familiar with the realm of working with vanilla populators.
This only touches the surface of what is possible. See the javadocs for a complete listing of available populators
and their properties.

Creating Custom Base Terrain

Changing the base GenerationPopulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/GenerationPopulator.html] of a world generator allows you to change the base terrain shape
generation of the world. A generator populator will roughly follow the procedure of using the seed and biome information
to seed and modify a series of noise maps, from which the terrain is formed. The terrain created in a modified base
generator populator should only consist of stone blocks, to allow the biomes to properly replace blocks for
biome-specific ground cover.

public class SinusoidalGenerator implements GenerationPopulator {

 @Override
 public void populate(World world, MutableBlockVolume buffer, ImmutableBiomeArea biomes) {
 for(int x = buffer.getBlockMin().getX(); x < buffer.getBlockMax().getX(); x++) {
 for(int z = buffer.getBlockMin().getZ(); z < buffer.getBlockMax().getZ(); z++) {
 BiomeType biome = biomes.getBiome(x,z);
 int height = getHeight(x, z, world.getWorldGenerator().getBiomeSettings(biome));
 for(int y = 0; y < height || y < 64; y++) {
 if(y < height) {
 buffer.setBlockType(x, y, z, BlockTypes.STONE);
 } else {
 buffer.setBlockType(x, y, z, BlockTypes.WATER);
 }
 }
 }
 }
 }

 private int getHeight(int x, int z, BiomeGenerationSettings biome) {
 double sx = Math.sin(x / 64d) + 1;
 double sz = Math.sin(z / 64d) + 1;
 double value = (sx + sz) / 4d;
 double heightRange = biome.getMaxHeight() - biome.getMinHeight();
 double height = heightRange * value / biome.getMinHeight();
 return GenericMath.floor(height * 256);
 }
}

This is a fairly simple example of a base terrain generation populator (at least, if you look past the math to
calculate the height). For each column in the buffered area we want to calculate a height value, and then fill
in everything below that with stone and leave everything above it as air (or water if we’re still below sea-level).

Creating Custom GenerationPopulators

Note

The API for custom GenerationPopulators isn’t finished yet. This section will be expanded in the future.

Creating Custom Populators

Custom populators can be used to add a great variety of custom features. To create a custom populator you need
only create a class implementing the Populator interface and add it to the list of populators attached to a
biome, or to a world generator if you want it applied globally.

Your custom populator will be passed an Extent which is a view onto the world covering the area that you
should be applying your populator. It is advised that you do not make any assumptions as to the expected size
or position of this extent, as it may be larger or smaller for operations such as regenerating a chunk.

Note

To allow your populator to overlap chunk boundaries your populator is allowed to extend up to 8 blocks outside
of the boundaries of the extent.

Creating Custom Biomes

While it is currently not possible to create entirely new biomes from within sponge, you can replace the system
by which they are arranged in the world be implementing the BiomeGenerator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/gen/BiomeGenerator.html] interface and setting your custom
biome generator onto a WorldGenerator.

Below is an example of a biome generator which creates one large island centered around (0, 0).

public class IslandBiomeGen implements BiomeGenerator {

 private static final double ISLAND_SIZE = 200f;
 private static final double BEACH_RADIUS = ISLAND_SIZE * ISLAND_SIZE;
 private static final double FOREST_SIZE = ISLAND_SIZE - 7;
 private static final double FOREST_RADIUS = FOREST_SIZE * FOREST_SIZE;
 private static final double HILLS_SIZE = FOREST_SIZE - 120;
 private static final double HILLS_RADIUS = HILLS_SIZE * HILLS_SIZE;

 @Override
 public void generateBiomes(MutableBiomeArea buffer) {
 Vector2i min = buffer.getBiomeMin();
 Vector2i max = buffer.getBiomeMax();

 for (int x = min.getX(); x <= max.getX(); x++) {
 for (int y = min.getY(); y <= max.getY(); y++) {
 if (x * x + y * y < HILLS_RADIUS) {
 buffer.setBiome(x, y, BiomeTypes.EXTREME_HILLS);
 } else if (x * x + y * y < FOREST_RADIUS) {
 buffer.setBiome(x, y, BiomeTypes.FOREST);
 } else if (x * x + y * y < BEACH_RADIUS) {
 buffer.setBiome(x, y, BiomeTypes.BEACH);
 } else {
 buffer.setBiome(x, y, BiomeTypes.OCEAN);
 }
 }
 }
 }
}

 Message Channels

Message Channels

In Sponge, every object that messages may be sent to implements the MessageReceiver [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageReceiver.html] interface. A
MessageChannel [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html] is a device that may send messages to an arbitrary number of MessageReceivers and even
perform actions like recipient-specific formatting of the message.

Selecting Message Recipients

Within the MessageChannel interface there are constants and static methods that can be used to obtain or create
commonly used channels. There are also other classes and interfaces that can be used to create a MessageChannel,
such as AbstractMutableMessageChannel [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/AbstractMutableMessageChannel.html] and MutableMessageChannel [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MutableMessageChannel.html]. A complete list of these can be
found at org.spongepowered.api.text.channel [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/package-summary.html] and its sub-packages.

Broadcasting

The most common channel will be the broadcasting channel. It can be obtained either from the
Server [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Server.html] via the Server#getBroadcastChannel() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Server.html#getBroadcastChannel–] method or from either the
MessageChannel#TO_PLAYERS [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#TO_PLAYERS] or MessageChannel#TO_ALL [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#TO_ALL] constant. The only difference is that
TO_ALL includes not only every player connected to the server but also the server Console.

The channel returned by getBroadcastChannel() will generally be the MessageChannel.TO_ALL channel, however a
different channel may be set using the Server#setBroadcastChannel(MessageChannel) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/Server.html#setBroadcastChannel-org.spongepowered.api.text.channel.MessageChannel-] method.

Sending to a Fixed List of MessageReceivers

It is also possible to send a message not to all players connected, but to a number of hand-selected receivers. This
can be done by passing the list of the intended recipients to the MessageChannel#fixed(MessageReceiver...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#fixed-org.spongepowered.api.text.channel.MessageReceiver...-]
method. Unlike most other channels, the list of recipients will not be generated dynamically every time something is
sent through the channel but remains static for the rest of its existence. However, the references kept are weak.
This means that if for example a player disconnects and the corresponding Player [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/living/player/Player.html] object is removed by Java’s
garbage collector, that player will also vanish from the channels recipient list.

Permission-based Selection

It is also possible to create a channel sending to all recipients that hold a specific permission. The channel is
obtained from the MessageChannel#permission(String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#permission-java.lang.String-] method with the permission to check for as an argument.
When a message is then sent through this channel, it will obtain all subjects from the PermissionService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/permission/PermissionService.html]
that have the given permission.

Combining Channels

It is also possible to combine multiple channels into one. This can be done by passing all channels into the
MessageChannel#combined(MessageChannel...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#combined-org.spongepowered.api.text.channel.MessageChannel...-] method. The resulting channel will relay messages to every
recipient that is targeted by at least one of the combined channels.

Sending Messages

Once you have obtained a MessageChannel you can send a message through it via the
MessageChannel#send(Object, Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#send-java.lang.Object-org.spongepowered.api.text.Text-] method. This method is preferred over the
MessageChannel#send(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#send-org.spongepowered.api.text.Text-] method, as the Object can be used for identification or for performing other
various actions. Alternatively, you can use a ChatType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/chat/ChatType.html] to specify where the message will be sent to. Using
the MessageChannel#send(Object, Text, ChatType) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#send-java.lang.Object-org.spongepowered.api.text.Text-org.spongepowered.api.text.chat.ChatType-] method will allow you to accomplish this. The channel will
then transform the message for every recipient and send the transformed message.

Extended Application: Chat Channels

Message channels have a very useful application as they can be used to establish chat channels. For example, you could
establish a message channel for every chat channel you wish to have. Then, when a MessageReceiver joins a channel,
such as with /join <channel name>, simply set the MessageReceiver‘s MessageChannel to the appropriate
channel using MessageReceiver#setMessageChannel(MessageChannel) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageReceiver.html#setMessageChannel-org.spongepowered.api.text.channel.MessageChannel-]. This will cause every message sent from
the MessageReceiver to be passed to the given MessageChannel instead of the default one. Alternatively,
you could listen to MessageChannelEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/message/MessageChannelEvent.html], and set the appropriate MessageChannel using
MessageChannelEvent#setChannel(MessageChannel) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/message/MessageChannelEvent.html#setChannel-org.spongepowered.api.text.channel.MessageChannel-]. Passing null to that method will unset any custom
channel, causing the message to be sent to the original MessageChannel instead.

Transforming Messages

You can apply a filter to all Texts that pass through a MessageChannel to change the message however you
like. This is possible by extending MessageChannel and overriding the
MessageChannel#transformMessage(Object, MessageReceiver, Text, ChatType) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#transformMessage-java.lang.Object-org.spongepowered.api.text.channel.MessageReceiver-org.spongepowered.api.text.Text-org.spongepowered.api.text.chat.ChatType-] method as demonstrated below.

Example: Transforming Messages

The following code excerpt defines an AdminMessageChannel class which overrides the default transformMessage
method. The new transformMessage method will take the original message and append a red [Admin] tag to the
front of the message.

import java.util.Collection;
import java.util.Collections;
import java.util.Optional;

import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.channel.MessageChannel;
import org.spongepowered.api.text.channel.MessageReceiver;
import org.spongepowered.api.text.format.TextColors;

public class AdminMessageChannel implements MessageChannel {

 @Override
 public Optional<Text> transformMessage(Object sender, MessageReceiver recipient,
 Text original) {
 Text text = original;
 text = Text.of(TextColors.RED, "[Admin]", TextColors.RESET, text);
 return Optional.of(text);
 }

 @Override
 public Collection<MessageReceiver> getMembers() {
 return Collections.emptyList();
 }
}

Note that we do not wish to define any additional recipients, so we return an empty collection in the
MessageChannel#getMembers() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageChannel.html#getMembers–] method.

Thanks to the capabilities of combined MessageChannels, we can combine our newly created AdminMessageChannel
with any other MessageChannel. Now if a player joins with the myplugin.admin permission, we will obtain the
MessageChannel his messages are sent to, combine it with an AdminMessageChannel and set the combined channel
back onto the player. That way all his messages are sent to everyone specified in the original channel, but due to the
addition of the AdminMessageChannel, a red [Admin] tag will be prefixed.

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.event.Listener;
import org.spongepowered.api.event.network.ClientConnectionEvent;

private AdminMessageChannel adminChannel = new AdminMessageChannel();

@Listener
public void onClientConnectionJoin(ClientConnectionEvent.Join event) {
 Player player = event.getTargetEntity();
 if(player.hasPermission("myplugin.admin")) {
 MessageChannel originalChannel = event.getOriginalChannel();
 MessageChannel newChannel = MessageChannel.combined(originalChannel,
 adminChannel);
 player.setMessageChannel(newChannel);
 }
}

Note that this will prefix all messages pertaining to a player. This includes death messages, leave messages, etc. If
you only want to prefix all chat messages, you would need to listen to MessageChannelEvent.Chat [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/message/MessageChannelEvent.Chat.html] and set
the channel onto the event rather than the player. This would be done using event.setChannel(newChannel) onto the
MessageChannelEvent.Chat event. To get the player from the event to check for permissions, you would need to get a
Player from the Cause of the event. This is demonstrated below:

Optional<Player> playerOptional = event.getCause().<Player>first(Player.class);

More on causes can be found on the causes page.

Note

When combining multiple MessageChannels defining different message transformations, the Text will be
transformed in the order that the MessageChannels are passed in to the
MessageChannel#combined(MessageChannel... channels) method. Note that any transformations resulting in an
empty Optional will be ignored unless performed by the last channel in the chain.

Mutable Message Channels

A MutableMessageChannel [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MutableMessageChannel.html] contains methods for changing who may receive the messages sent through our channel.
As such, we must implement methods for performing actions that modify our members. To do this, we simply will create a
class named MutableAdminMessageChannel that will implement a MutableMessageChannel.

import java.util.Set;
import java.util.WeakHashMap;

import org.spongepowered.api.text.channel.MutableMessageChannel;

public class MutableAdminMessageChannel implements MutableMessageChannel {

 private Set<MessageReceiver> members;

 public MutableAdminMessageChannel() {
 this(Collections.emptySet());
 }

 public MutableAdminMessageChannel(Collection<MessageReceiver> members) {
 this.members = Collections.newSetFromMap(new WeakHashMap<>());
 this.members.addAll(members);
 }

 @Override
 public Collection<MessageReceiver> getMembers() {
 return Collections.unmodifiableSet(this.members);
 }

 @Override
 public boolean addMember(MessageReceiver member) {
 return this.members.add(member);
 }

 @Override
 public boolean removeMember(MessageReceiver member) {
 return this.members.remove(member);
 }

 @Override
 public void clearMembers() {
 this.members.clear();
 }

 @Override
 public Optional<Text> transformMessage(Object sender, MessageReceiver recipient,
 Text original) {
 Text text = original;
 if(this.members.contains(recipient)) {
 text = Text.of(TextColors.RED, "[Admin]", TextColors.RESET, text);
 }
 return Optional.of(text);
 }
}

The main difference between our AdminMessageChannel and our new MutableAdminMessageChannel is that we check if
the recipient is in the member list before transforming the message. If it is, then we may alter the message that is
sent, appending the red [Admin] prefix. In our getMembers() method we return an immutable set, so that the set
can only be modified by the appropriate methods in our MutableAdminMessageChannel.

Note that an abstract implementation for MutableMessageChannels exists in the Sponge API as
AbstractMutableMessageChannel. Also note that our members do not persist. If a player were to leave the server,
they would be removed from the set.

Modifying the Members

To make full use of our MutableAdminMessageChannel, we need to be able to add and remove members from the channel.
To do this, we can simply call our MutableMessageChannel#addMember(MessageReceiver) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MutableMessageChannel.html#addMember-org.spongepowered.api.text.channel.MessageReceiver-]
and MutableMessageChannel#removeMember(MessageReceiver) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MutableMessageChannel.html#removeMember-org.spongepowered.api.text.channel.MessageReceiver-] methods we implemented previously whenever we need
to add or remove a member from the member set.

 The Pagination Service

The Pagination Service

Astuce

For a basic understanding of services, make sure you read Services first.

The PaginationService [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/pagination/PaginationService.html] acts as a way to split up content into discrete pages. The service provides a
PaginationList.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/pagination/PaginationList.Builder.html] with which you can specify attributes such as title, contents, header, and padding.

Pagination List Builder

First obtain an instance of a PaginationList.Builder:

import org.spongepowered.api.service.pagination.PaginationList;

PaginationList.Builder builder = PaginationList.builder();

There are two different ways to specify the contents of paginated list:

	With an Iterable<Text>

import org.spongepowered.api.text.Text;

import java.util.ArrayList;
import java.util.List;

List<Text> contents = new ArrayList<>();
contents.add(Text.of("Item 1"));
contents.add(Text.of("Item 2"));
contents.add(Text.of("Item 3"));

builder.contents(contents);

Note

If the Iterable is a List, then bidirectional navigation is supported. Otherwise, only forwards navigation
is supported.

	With an array of Texts

builder.contents(Text.of("Item 1"), Text.of("Item 2"), Text.of("Item 3"));

You can also specify various other components of a paginated list, such as a title, header, footer, and padding. The
diagram below shows which component is displayed in each part of the paginated list. In the following diagram, the
padding string is shown as the letter p.

pppppppppppppppppppppppp Title pppppppppppppppppppppppp
Header
Item 1
Item 2
Item 3
...
ppppppppppppppppppppppp < 2/3 > ppppppppppppppppppppppp
Footer

To achieve the preceding output, we might use the following builder pattern:

builder.title(Text.of("Title"))
 .contents(Text.of("Item 1"), Text.of("Item 2"), Text.of("Item 3"))
 .header(Text.of("Header"))
 .footer(Text.of("Footer"))
 .padding(Text.of("p"));

Note

With the exception of contents, all components of the paginated list are optional. However, a title is strongly
recommended.

Finally, to send the paginated list to a MessageReceiver [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/channel/MessageReceiver.html], use
PaginationList.Builder#sendTo(MessageReceiver) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/service/pagination/PaginationList.Builder.html#sendTo-org.spongepowered.api.text.channel.MessageReceiver-].

And thats it! To recap, a fully functional paginated list could be generated and sent to a previously defined
msgReceiver using the following code:

PaginationList.builder()
 .title(Text.of("Title"))
 .contents(Text.of("Item 1"), Text.of("Item 2"), Text.of("Item 3"))
 .header(Text.of("Header"))
 .footer(Text.of("Footer"))
 .padding(Text.of("p"))
 .sendTo(msgReceiver);

 Text

Text

Formatted Text can be created using the Text.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.Builder.html], as described in this section. The robust Text API can
be used in a variety of ways to combine styling, coloring, and Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html] actions.

Pagination, the process of splitting content (such as lists of Text) into discrete pages, will also be discussed in
this section.

Contents

	Creating Text

	Text Serializers
	Formatting Code & Legacy Format

	TextXML Format

	JSON Format

	Configuration Format

	The Pagination Service

	Message Channels

	TextTemplates

 TextTemplates

TextTemplates

TextTemplate [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/TextTemplate.html]s are an easy and convenient way to store messages with variable elements. For instance, you
may find yourself wanting to create a configurable message for players who have joined the server for the first time.
This is easily attainable with TextTemplates using the following strategy:

Let’s say we want to create a join message where the text is all yellow and italicized except the player’s name, which
will be bold and aqua and the server’s name which will be bold and red. We can create a template of that description
using the following code:

import static org.spongepowered.api.text.TextTemplate.*;
import org.spongepowered.api.text.TextTemplate;
import org.spongepowered.api.text.format.TextColor;
import org.spongepowered.api.text.format.TextStyle;

TextTemplate template = of(
 TextColors.YELLOW, TextStyles.ITALIC, "Welcome to ",
 arg("server").color(TextColors.RED).style(TextStyles.BOLD), " ",
 arg("player").color(TextColors.AQUA).style(TextStyles.BOLD), "!"
);

You can obtain the result of this text template with the TextTemplate#apply() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/TextTemplate.html#apply–] method. The apply() method
accepts a Map<String, TextElement> of parameters where the keys are the names of the arguments and the values are
the TextElement [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/TextElement.html] values you wish to replace the arguments with.

Note

Unless an argument is specified as “optional” via Arg.optional() when it is created, missing parameters
supplied to the apply() method will throw a TextTemplateArgumentException [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/TextTemplateArgumentException.html]. Arguments may also
specify a default value during their creation with Arg.defaultValue()

Note

Although arguments can have text formatting associated with them, this can be overridden by providing a Text object
with custom formatting to the parameter map via the apply() method.

TextTemplates, like Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html] objects themselves are serializable to Configurate. To save a TextTemplate
to a configuration file use the following code. We are also going to add a setting here so the user can define the name
of their server.

Astuce

To learn more about how to use Configurate to create configuration files for your plugin please refer to
Configuring Plugins.

import ninja.leaping.configurate.ConfigurationNode;
import com.google.common.reflect.TypeToken;

ConfigurationNode node = loader.load();
node.getNode("serverName").setValue("My Sponge Server");
node.getNode("mytemplate").setValue(TypeToken.of(TextTemplate.class), template);
loader.save(node);

This will produce the following output:

serverName="My Sponge Server"
mytemplate {
 arguments {
 player {
 optional=false
 }
 server {
 optional=false
 }
 }
 content {
 color=yellow
 extra=[
 "Welcome to ",
 {
 bold=true
 color=red
 text="{server}"
 },
 " ",
 {
 bold=true
 color=aqua
 text="{player}"
 },
 "!"
]
 italic=true
 text=""
 }
 options {
 closeArg="}"
 openArg="{"
 }
}

You can retrieve TextTemplates from configurations using the following code:

TextTemplate template = node.getNode("mytemplate").getValue(TypeToken.of(TextTemplate.class));

Once you are happy with the layout of your new TextTemplate, let’s go ahead and send it to the server when a player
joins the server for the first time. We can achieve that using the following code:

Astuce

To learn more about how to handle events, please refer to Events.

import com.google.common.collect.ImmutableMap;
import org.spongepowered.api.Sponge;
import org.spongepowered.api.data.key.Keys;
import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.event.network.ClientConnectionEvent;
import org.spongepowered.api.text.Text;
import java.time.Instant;
import java.util.Optional;

@Listener
public void onJoin(ClientConnectionEvent.Join event) {
 Player player = event.getTargetEntity();
 Instant firstPlayed = player.firstPlayed().get();
 Instant lastPlayed = player.lastPlayed().get();
 if (firstPlayed.equals(lastPlayed)) {
 // Player has not been to this server before
 // First we will get the server name from our configuration file
 String serverName = node.getNode("serverName").getString();
 // Next we will send the template to the server,
 // using the "server" and "player" template parameters
 Text message = this.template.apply(ImmutableMap.of(
 "server", Text.of(serverName), "player", Text.of(player.getName())
)).build();
 event.setMessage(message);
 }
}

 Creating Text

Creating Text

The Text API is used to create formatted text, which can be sent to players in chat messages, and can also be used in
places such as books and signs.

Unformatted Text

Oftentimes, all you need is unformatted text. Unformatted text does not require the use of a text builder, and is the
simplest form of text to create.

Example:

import org.spongepowered.api.text.Text;

Text unformattedText = Text.of("Hey! This is unformatted text!");

The code excerpt illustrated above will return uncolored, unformatted text with no text actions
configured.

Text Builder

The text builder interface allows for the creation of formatted text in a “building-block” style.

Astuce

Read this Wikipedia article [https://en.wikipedia.org/wiki/Builder_pattern] for help understanding the purpose
of the builder pattern in software design.

Colors

One usage of the text builder is the addition of colors to text, as illustrated below.

Example: Colored Text

import org.spongepowered.api.text.format.TextColors;

Text coloredText = Text.builder("Woot! Golden text is golden.").color(TextColors.GOLD).build();

Any color specified within the TextColors [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/format/TextColors.html] class can be used when coloring text. Multiple colors can be used
in text by appending additional texts with different colors:

Example: Multi-colored Text

Text multiColoredText = Text.builder("Sponges are ").color(TextColors.YELLOW).append(
 Text.builder("invincible!").color(TextColors.RED).build()).build();

Styling

The builder can also be used to style text, including underlining, italicizing, etc.

Example: Styled Text

import org.spongepowered.api.text.format.TextStyles;

Text styledText = Text.builder("Yay! Styled text!").style(TextStyles.ITALIC).build();

Just like with colors, multiple styles can be used by chaining together separately styled texts.

Example: Multi-styled Text

Text multiStyledText = Text.builder("I'm italicized! ").style(TextStyles.ITALIC)
 .append(Text.builder("I'm bold!").style(TextStyles.BOLD).build()).build();

Coloring & Styling Shortcut

The Text#of(Object...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html#of-java.lang.Object...-] method provides a simple way to add color and styling to your text in a much more
concise way.

Example: Color & Style Shortcut

Text colorAndStyleText = Text.of(TextColors.RED, TextStyles.ITALIC, "Shortcuts for the win!");

Text Actions

The text builder also offers the ability to create actions for text. Any action specified within the
TextActions [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/action/TextActions.html] class can be used when creating text actions for text. The method below is a small example of
what text actions can do.

Example: Text with an Action

import org.spongepowered.api.text.action.TextActions;

Text clickableText = Text.builder("Click here!").onClick(TextActions.runCommand("tell Spongesquad I'm ready!")).build();

In the method above, players can click the “Click here!” text to run the specified command.

Note

Some text actions, such as TextActions#changePage(int) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/action/TextActions.html#changePage-int-], can only be used with book items.

Astuce

Just like with colors, multiple actions can be appended to text. Text actions can even be used in tandem with colors
because of the builder pattern interface.

Selectors

Target selectors are used to target players or entities that meet a specific criteria. Target selectors are particularly
useful when creating minigame plugins, but have a broad range of applications.

Astuce

Read this Minecraft wiki article [http://minecraft.gamepedia.com/Commands#Target_selectors] for help understanding
what target selectors are in Minecraft, and how to use them.

To use selectors in text, you must use the Selector.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/selector/Selector.Builder.html] interface. This is illustrated in the example
below.

Example: Selector-generated Text

import org.spongepowered.api.text.selector.Selector;

Text adventurers = Text.builder("These players are in adventure mode: ").append(
 Text.of(Selector.parse("@a[m=2]"))
).build();

In this example, the target selector @a[m=2] is targeting every online player who is in adventure mode. When the
method is called, a Text will be returned containing the usernames of every online player who is in adventure mode.

 Text Serializers

Text Serializers

TextSerializer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializer.html]s provide a convenient way to serialize and de-serialize Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html] instances. There
are three applicable formats:

	Formatting Code & Legacy Format

	TextXML Format

	JSON Format

	Configuration Format

The TextSerializers [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializers.html] class provides three TextSerializers for serializing to a representative
String or deserializing to a Text instance:

	LEGACY_FORMATTING_CODE

	FORMATTING_CODE

	JSON

	TEXT_XML

Serializing Text

To serialize a Text object, simply use the TextSerializer#serialize(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializer.html#serialize-org.spongepowered.api.text.Text-] method, specifying the
appropriate Text object as the only argument. The method will return a String representing the Text object.

Deserializing to Text

To deserialize a String into its corresponding Text object, simply use the
TextSerializer#deserialize(String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializer.html#deserialize-java.lang.String-] method, specififying the input String as the only argument. If the
input is incorrectly formatted, a TextParseException [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextParseException.html] will be thrown. Alternatively, use the
TextSerializer#deserializeUnchecked(String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializer.html#deserializeUnchecked-java.lang.String-] method to deserialize without any exceptions. If there is an
error, the raw input will be returned in the form of a Text object.

 JSON Format

JSON Format

JSON is JavaScript Object Notation [http://www.json.org/], a “light-weight data-interchange format” that is “easy
for humans to read and write” and “for machines to parse and generate”. The
Minecraft Wiki [http://minecraft.gamepedia.com/Commands#Raw_JSON_Text] details the structure of text represented
in JSON.

For example, the text “Hello World!”, formatted with the color red and an underline would have the following representation
in JSON:

{
 "underlined":true,
 "color":"red",
 "text":"Hello World!"
}

This output can be produced using the following code:

import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.format.TextColors;
import org.spongepowered.api.text.format.TextStyles;
import org.spongepowered.api.text.serializer.TextSerializers;

Text text = Text.of(TextColors.RED, TextStyles.UNDERLINE, "Hello World!");
String jsonText = TextSerializers.JSON.serialize(text);

 TextXML Format

TextXML Format

Sponge uses a predefined form of XML [https://en.wikipedia.org/wiki/XML] called “TextXML” to denote the coloring
and styling of text. A description of the elements and attributes are as follows:

	Element
	Attribute
	Description

	a (anchor)
	href
	anchor element; Indicates that this text will open the link in the href attribute
when clicked.

	b (bold)
	

 Formatting Code & Legacy Format

Formatting Code & Legacy Format

Text can be represented by using a special character indicating a formatting of some kind followed by a unique character
indicating the specific formatting to be used. In the SpongeAPI, there are two different characters that are supported
by default: the ampersand (&) and the section character (§).

Both formatting schemes use the codes found at the Minecraft Wiki [http://minecraft.gamepedia.com/Formatting_codes].
It is important to note that the Minecraft Wiki only displays the use of the section character (§), but the same codes
work with the ampersand (&) as well.

Avertissement

Text serialization using any kind of formatting code is limited to representing only some of the capabilities
of a Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html], namely formatting. It cannot represent any kind of click or hover actions. If brevity is not
an issue (as it is in Minecraft chat), it is recommended to use either the TextXML Format or the JSON Format.

Ampersand Formatting

By default, Sponge supports the formatting character & (ampersand). Using the ampersand format allows for easier user
input of text formatting and is useful in such cases where brevity is necessary, such as in the Minecraft chat console.

To use this formatting, you can access its corresponding TextSerializer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializer.html] with
TextSerializers#FORMATTING_CODE [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializers.html#FORMATTING_CODE]. From there, you can use the serialize or deserialize methods as
normal:

import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.format.TextColors;
import org.spongepowered.api.text.format.TextStyles;
import org.spongepowered.api.text.serializer.TextSerializers;

Text text = Text.of(TextColors.RED, TextStyles.UNDERLINE, "Hello World!");
String ampersandFormattedText = TextSerializers.FORMATTING_CODE.serialize(text);

For example, the text “Hello World!”, formatted with the color red and an underline would have the following representation
with the ampersand formatting code: &c&nHello World!

Legacy Formatting

The legacy text representation is the format widely used in older versions of Minecraft, represented by the section
character (§). Sponge provides serialization and deserialization using the legacy format only for compatibility.
It should not be used unless absolutely necessary. Rather, it is recommended to use formatting with the ampersand, as
detailed above. The legacy formatting has a few limitations that the ampersand formatting does not have, the most
obvious among them being that users cannot easily type the section character into the chat.

To use this formatting, you can access its corresponding TextSerializer with
TextSerializers#LEGACY_FORMATTING_CODE [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializers.html#LEGACY_FORMATTING_CODE]. From there, you can use the serialize or deserialize methods
as normal:

Text text = Text.of(TextColors.RED, TextStyles.UNDERLINE, "Hello World!");
String legacyText = TextSerializers.LEGACY_FORMATTING_CODE.serialize(text);

For example, the text “Hello World!”, formatted with the color red and an underline would have the following representation
in the legacy format: §c§nHello World!

Astuce

Although its use is not recommended, you can get a FormattingCodeTextSerializer [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/FormattingCodeTextSerializer.html] using whichever
formatting character you need by calling TextSerializers#formattingCode(char) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/serializer/TextSerializers.html#formattingCode-char-], passing in a char as
the only argument.

 Configuration Format

Configuration Format

SpongeAPI offers support to serialize text directly to a Configurate configuration file through the use of the
TypeToken class. Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html] objects are saved using the same node structure as the Text‘s JSON
representation.

Astuce

For information on how to use Configurate to create configuration files for your plugin, please refer to
Configuring Plugins.

For example, the text “Hello World!”, formatted with the color red and and underline would have the following HOCON
representation:

{
 underlined=true
 color=red
 text="Hello, world!"
}

To save a Text object simply set the value of your desired node using the following code:

import com.google.common.reflect.TypeToken;
import ninja.leaping.configurate.ConfigurationNode;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.format.TextColors;
import org.spongepowered.api.text.format.TextStyles;

ConfigurationNode node = loader.load();
Text text = Text.of(TextColors.RED, TextStyles.UNDERLINE, "Hello World!");
node.getNode("mytext").setValue(TypeToken.of(Text.class), text);
loader.save(node);

You can then load a Text object using the following code:

Text text = node.getNode("mytext").getValue(TypeToken.of(Text.class));

Note

This strategy is not limited to HoconConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/hocon/HoconConfigurationLoader.html]; any ConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/loader/ConfigurationLoader.html] will
suffice.

 Command Flags

Command Flags

Command flags are useful for specifying extra parameters to be used for the processing of a command that doesn’t belong
as a command argument.

To create a flag, we first need a builder for flags. We can simply use the GenericArguments#flags() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html#flags–] method
provided by GenericArguments [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html] to obtain the builder we need. From there, we can specify what type of flag we
would like to create. Note that flags are specified as an argument.

import org.spongepowered.api.command.args.GenericArguments;
import org.spongepowered.api.command.spec.CommandSpec;

CommandSpec myCommand = CommandSpec.builder()
 .executor(new MyCommand())
 .arguments(GenericArguments.flags().flag("s").buildWith(GenericArguments.none()))
 .build();

This will create a command flag, so that when the player performs /our-command -s, the flag for s will be true.
Note that building with GenericArguments#none() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html#none–] will prevent the command from having any arguments. If you
wish for the command to have arguments and flags, you will need to specify your arguments within the
CommandFlags.Builder#buildWith(CommandElement) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandFlags.Builder.html#buildWith-org.spongepowered.api.command.args.CommandElement-] method.

Now that we have specified that our command may be run with the flag, we can now get the value of the flag. For a
simple boolean flag like the one we have specified above, we can simply just check if it exists. In the example below,
we are checking if the CommandContext [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandContext.html] for the command has a value for s.

import org.spongepowered.api.text.Text;

if (args.hasAny("s")) {
 src.sendMessage(Text.of("The command flag s was specified!"));
}

Permission Flags

Our flags so far are great, but what if we wanted to have it so that a player needs a permission to use a flag? We can
instead use the CommandFlags.Builder#permissionFlag(String, String...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandFlags.Builder.html#permissionFlag-java.lang.String-java.lang.String...-] method on our flag builder. This will
require the player to have a specific permission to run the command with the flag. An example of this is below:

CommandSpec myCommand = CommandSpec.builder()
 .executor(new MyCommand())
 .arguments(GenericArguments.flags().permissionFlag("myplugin.command.flag",
 "s").buildWith(GenericArguments.none()))
 .build();

If a player does not have the permission myplugin.command.flag, then they will not be allowed to execute our
command with the command flag s.

Value Flags

Booleans can be great, but what if we wanted flags for things such as strings or integers? This is where value flags
come into play. We simply need to use the CommandFlags.Builder#valueFlag(CommandElement, String...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandFlags.Builder.html#valueFlag-org.spongepowered.api.command.args.CommandElement-java.lang.String...-] method
on our flag builder. Using the valueFlag() method, we can specify the type of flag we want to create, such as an
integer or string. Creating an integer value flag can be done like so:

CommandSpec myCommand = CommandSpec.builder()
 .executor(new MyCommand())
 .arguments(GenericArguments.flags().valueFlag(GenericArguments
 .integer(Text.of("value")), "s").buildWith(GenericArguments.none()))
 .build();

You may replace GenericArguments#integer(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html#integer-org.spongepowered.api.text.Text-] with any other flag type you would like to specify, such as
GenericArguments#string(Text) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html#string-org.spongepowered.api.text.Text-].

Now to retrieve the flag value from our command, we can simply treat it like any other command argument. We simply need
to check if it exists before retrieving it:

import java.util.Optional;

Optional<Integer> optional = args.<Integer>getOne("value");
if (optional.isPresent()) {
 int value = optional.get().intValue();
} else {
 src.sendMessage(Text.of("The value flag was not specified."));
}

Long Flags

As an alternative to short flags like the ones we have been using above, we can also use long flags. Using a long flag,
you can specify a value along with the flag using equals in the command. To create a long flag, simply prefix your
normal flag with a dash -, like so:

CommandSpec myCommand = CommandSpec.builder()
 .executor(new MyCommand())
 .arguments(GenericArguments.flags().flag("-myflag")
 .buildWith(GenericArguments.none()))
 .build();

We can retrieve the value that was specified with our flag similarly to value flags:

Optional<String> optional = args.<String>getOne("myflag");
if (optional.isPresent()) {
 String value = optional.get();
}

So if a user runs /our-command --myflag=Flag_Value, the Flag_Value will be stored in the string value.

Unknown Flag Behavior

Now what if we didn’t specify a specific flag to go along with our command, but still wanted to accept unknown flags?
We can set the unknown flag behavior of our command to achieve this:

import org.spongepowered.api.command.args.CommandFlags;

CommandSpec myCommand = CommandSpec.builder()
 .executor(new MyCommand())
 .arguments(GenericArguments.flags()
 .setUnknownShortFlagBehavior(
 CommandFlags.UnknownFlagBehavior.ACCEPT_VALUE)
 .buildWith(GenericArguments.none()))
 .build();

Using this, we can specify that any short flag with a specified value will be accepted. Without this, attempting to use
an unknown flag will throw an exception. Some of the possible unknown flag behaviors are ERROR,
ACCEPT_NONVALUE, ACCEPT_VALUE, and IGNORE. Note that the default behavior for unknown flags is ERROR.

 Commands

Commands

Astuce

Since the Command API makes use of the Text API, make sure you read Text first.

There are two different APIs to create commands in Sponge: The CommandCallable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandCallable.html] interface and the
CommandSpec [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandSpec.html] builder.

The most comfortable way to create a new command is the CommandSpec builder, which will be detailed in this section.
It supports child commands and argument parsing.

Alternatively, you can use CommandCallable, a lower-level interface which provides access to the raw command data.
It is described on this page.

Contents

	Building a Command

	Argument Parsing

	Command Flags

	Child Commands

	The Command Manager

	Low-Level Command API

 Child Commands

Child Commands

The CommandSpec [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandSpec.html] builder supports hierarchical command structures like this:

	/mail (parent command)
	/mail send (child command)

	/mail read (child command)

Every child command is a separate CommandSpec and can be created in the same way a regular command is.

import org.spongepowered.api.text.Text;
import org.spongepowered.api.command.spec.CommandSpec;

// /mail read
CommandSpec readCmd = CommandSpec.builder()
 .permission("myplugin.mail.read")
 .description(Text.of("Read your inbox"))
 .executor(...)
 .build();

// /mail send
CommandSpec sendCmd = CommandSpec.builder()
 .permission("myplugin.mail.send")
 .description(Text.of("Send a mail"))
 .arguments(...)
 .executor(...)
 .build();

Instead of registering them to the command service, child commands are registered on their parent command using the
CommandSpec.Builder#child(CommandCallable, String...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandSpec.Builder.html#child-org.spongepowered.api.command.CommandCallable-java.lang.String...-] method. They are registered with a list of aliases.
The first alias supplied is the primary one and will appear in the usage message.

import org.spongepowered.api.Sponge;

CommandSpec mailCommandSpec = CommandSpec.builder()
 .permission("myplugin.mail")
 .description(Text.of("Send and receive mails"))
 .child(readCmd, "read", "r", "inbox")
 .child(sendCmd, "send", "s", "write")
 .build();

Sponge.getCommandManager().register(plugin, mailCommandSpec, "mail", "email");

Note

If a CommandExecutor [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandExecutor.html] was set for the parent command, it is used as a fallback if the arguments do not
match one of the child command aliases. Setting an executor is not required.

 Argument Parsing

Argument Parsing

The Command Builder API comes with a powerful argument parser. It converts the string input to java base types
(integers, booleans, strings) or game objects (players, worlds, block types , ...). The parser supports optional
arguments and flags. It also handles TAB completion of arguments.

The parsed arguments are stored in the CommandContext [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandContext.html] object. If the parser returns a single object, obtain
it with CommandContext#getOne(String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandContext.html#getOne-java.lang.String-]. Optional and weak arguments may return Optional.empty().

Many of the parsers may return more than one object (e.g. multiple players with a matching username). In that case, you
must use the CommandContext#getAll(String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandContext.html#getAll-java.lang.String-] method to get the Collection of possible matches.
Otherwise, the context object will throw an exception!

Astuce

You can use the
GenericArguments#onlyOne(CommandElement) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html#onlyOne-org.spongepowered.api.command.args.CommandElement-] element to limit the amount of returned values to a single one,
so you can safely use args.<T>getOne(String).

To create a new CommandElement [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/CommandElement.html] (argument), use the GenericArguments [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html] factory class. Many command
elements require a short text key, which is displayed in error and help messages.

Apply the CommandElement to the command builder with the CommandSpec.Builder#arguments(CommandElement...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandSpec.Builder.html#arguments-org.spongepowered.api.command.args.CommandElement...-]
method. It is possible to pass more than one CommandElement to the method, thus chaining multiple arguments (e.g
/msg <player> <msg>). This has the same effect as wrapping the CommandElement objects in a
GenericArguments#seq(CommandElement...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/GenericArguments.html#seq-org.spongepowered.api.command.args.CommandElement...-] element.

Example: Building a Command with Multiple Arguments

import org.spongepowered.api.Sponge;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.command.CommandException;
import org.spongepowered.api.command.CommandResult;
import org.spongepowered.api.command.CommandSource;
import org.spongepowered.api.command.args.CommandContext;
import org.spongepowered.api.command.args.GenericArguments;
import org.spongepowered.api.command.spec.CommandExecutor;
import org.spongepowered.api.command.spec.CommandSpec;

CommandSpec myCommandSpec = CommandSpec.builder()
 .description(Text.of("Send a message to a player"))
 .permission("myplugin.command.message")

 .arguments(
 GenericArguments.onlyOne(GenericArguments.player(Text.of("player"))),
 GenericArguments.remainingJoinedStrings(Text.of("message")))

 .executor(new CommandExecutor() {
 @Override
 public CommandResult execute(CommandSource src, CommandContext args) throws CommandException {

 Player player = args.<Player>getOne("player").get();
 String message = args.<String>getOne("message").get();

 player.sendMessage(Text.of(message));

 return CommandResult.success();
 }
 })
 .build();

Sponge.getCommandManager().register(plugin, myCommandSpec, "message", "msg", "m");

Overview of the GenericArguments command elements

	Command Element
	Description
	Value Type & Amount

	none
	Expects no arguments. This is the default behavior of a CommandSpec.
	

 The Command Manager

The Command Manager

The CommandManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandManager.html] stands as the manager for watching what commands get typed into chat, and redirecting
them to the right command handler. To register your command, use the method
CommandManager#register(Object, CommandCallable, String...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandManager.html#register-java.lang.Object-org.spongepowered.api.command.CommandCallable-java.lang.String...-] passing your plugin, an instance of the command,
and any needed aliases as parameters.

Usually you want to register your commands when the GameInitializationEvent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/game/state/GameInitializationEvent.html] is called. If you are registering
the commands from the main plugin class, use this as the plugin parameter.

import org.spongepowered.api.Sponge;
import org.spongepowered.api.command.CommandManager;

CommandManager cmdManager = Sponge.getCommandManager();
cmdManager.register(this, myCommandSpec, "alias1", "alias2", "alias3");

Note

The arguments after the new instance of your command are the aliases to register for the command. You can add as
many Strings as you want. The first alias that isn’t used by another command becomes the primary alias. This means
aliases used by another command are ignored.

The CommandManager can also be used to call a command programatically:

cmdManager.process(player, "msg Notch hi notch!");

You can also send a command from the server console:

cmdManager.process(Sponge.getServer().getConsole(), "kill Notch");

 Building a Command

Building a Command

The first step is to get a new CommandSpec [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandSpec.html] builder. The builder provides methods to modify the command help
messages, command arguments and the command logic. These methods can be chained.

To finally build the command, you’ll want to call the CommandSpec.Builder#build() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandSpec.Builder.html#build–] method.

After that, you have to register the command.

Example: Building a Simple Command

import org.spongepowered.api.Sponge;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.command.spec.CommandSpec;

CommandSpec myCommandSpec = CommandSpec.builder()
 .description(Text.of("Hello World Command"))
 .permission("myplugin.command.helloworld")
 .executor(new HelloWorldCommand())
 .build();

Sponge.getCommandManager().register(plugin, myCommandSpec, "helloworld", "hello", "test");

Overview of the CommandSpec builder methods

	Method
	Description

	executor
	Defines the command logic (See Writing a Command Executor).

Setting the executor is required if no child commands are set.

	arguments
	Sets the argument specification for this command (See Argument Parsing).

	permission
	Set the permission that will be checked before using this command.

	description
	A short, one-line description of this command’s purpose that will be displayed by the help system.

	extendedDescription
	Sets an extended description to use in longer help listings. Will be appended to the short description.

	child
	Adds a child command to this command with its aliases (See Child Commands).

	children
	Sets the child commands of this command with their aliases (See Child Commands).

	inputTokenizer
	Defines how the arguments will be parsed. By default, the parser splits the command input by spaces.
Quotations count as a single argument.

Example: /tpworld Notch "My World" would result in two arguments: Notch and My World.

	build
	Builds the command. After that, you have to register the command.

Writing a Command Executor

The only required component to build a simple command is the command executor class, which contains the logic of the
command.

The class has to implement the CommandExecutor [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandExecutor.html] interface, which defines the
CommandExecutor#execute(CommandSource, CommandContext) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/spec/CommandExecutor.html#execute-org.spongepowered.api.command.CommandSource-org.spongepowered.api.command.args.CommandContext-] method. The method is called on command execution and
has two arguments:

	The source of the command call (e.g. the console, a command block or a player)

	The command context object, which contains the parsed arguments (See Argument Parsing)

Example: Simple Command Executor

import org.spongepowered.api.command.CommandException;
import org.spongepowered.api.command.CommandResult;
import org.spongepowered.api.command.CommandSource;
import org.spongepowered.api.command.args.CommandContext;
import org.spongepowered.api.command.spec.CommandExecutor;

public class HelloWorldCommand implements CommandExecutor {

 @Override
 public CommandResult execute(CommandSource src, CommandContext args) throws CommandException {
 src.sendMessage(Text.of("Hello World!"));
 return CommandResult.success();
 }
}

Astuce

You can use anonymous classes [https://docs.oracle.com/javase/tutorial/java/javaOO/anonymousclasses.html] to
define the command executor in the command build process (See the example in the Argument Parsing page).

Player-Only Commands

Sometimes it is neccessary that only players can execute a command (e.g. a /suicide command).

Perform an instanceof check to determine the type of the CommandSource [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandSource.html]:

import org.spongepowered.api.entity.living.player.Player;
import org.spongepowered.api.command.source.CommandBlockSource;
import org.spongepowered.api.command.source.ConsoleSource;

if(src instanceof Player) {
 Player player = (Player) src;
 player.sendMessage(Text.of("Hello " + player.getName() + "!"));
}
else if(src instanceof ConsoleSource) {
 src.sendMessage(Text.of("Hello GLaDOS!"));
 // The Cake Is a Lie
}
else if(src instanceof CommandBlockSource) {
 src.sendMessage(Text.of("Hello Companion Cube!"));
 // <3
}

Note

We recommend you to add an optional [player] argument to make the command console-friendly (e.g. /suicide
[player]).

The easiest solution for this is to append a playerOrSource command element (See Argument Parsing).

Command Results

The CommandExecutor#execute() method must always return a CommandResult [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandResult.html]. In most cases it is sufficient
to return CommandResult#success() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandResult.html#success–] if the command was successful or CommandResult#empty() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandResult.html#empty–] if it
wasn’t. In cases where more information needs to be conveyed, a CommandResult#builder() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandResult.html#builder–] should be used. The
builder provides the several various methods that accepts an integer and will set the attribute of the same name. All
attributes that are not set by the builder will be empty.

Command blocks can use those values to modify scoreboard stats, which then can be used for elaborate constructions
consisting of multiple command blocks. A tutorial how the data is accessed can be found
here [https://minecraft.gamepedia.com/Tutorials/Command_stats].

Example: Building a CommandResult

CommandResult result = CommandResult.builder()
 .affectedEntities(42)
 .successCount(1)
 .build();

This example uses a builder to create a CommandResult for a command which affected 42 entities and was successful.

Error Handling

The execute() method may also throw a CommandException [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandException.html], signaling that an error occured while trying to
execute the command. If such an Exception is thrown, its message will be displayed to the command source, formatted as
an error. Also, the commands usage message will be displayed. An ArgumentParseException [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/args/ArgumentParseException.html], a subtype of
CommandException is automatically thrown if the commands arguments could not be parsed.

 Low-Level Command API

Low-Level Command API

The CommandCallable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandCallable.html] and Dispatcher [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/dispatcher/Dispatcher.html] interfaces can be used to define commands. The interfaces can
be used as a base for custom command APIs.

It is recommended to use the Command Builder API for simple command definitions.

Writing a command

The first step is to create a class for the command. The class has to implement the interface CommandCallable:

import org.spongepowered.api.Sponge;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.command.CommandCallable;
import org.spongepowered.api.command.CommandException;
import org.spongepowered.api.command.CommandResult;
import org.spongepowered.api.command.CommandSource;

import java.util.Collections;
import java.util.List;
import java.util.Optional;

public class MyBroadcastCommand implements CommandCallable {

 private final Optional<Text> desc = Optional.of(Text.of("Displays a message to all players"));
 private final Optional<Text> help = Optional.of(Text.of("Displays a message to all players. It has no color support!"));
 private final Text usage = Text.of("<message>");

 public CommandResult process(CommandSource source, String arguments) throws CommandException {
 Sponge.getServer().getBroadcastChannel().send(Text.of(arguments));
 return CommandResult.success();
 }

 public boolean testPermission(CommandSource source) {
 return source.hasPermission("myplugin.broadcast");
 }

 public Optional<Text> getShortDescription(CommandSource source) {
 return desc;
 }

 public Optional<Text> getHelp(CommandSource source) {
 return help;
 }

 public Text getUsage(CommandSource source) {
 return usage;
 }

 public List<String> getSuggestions(CommandSource source, String arguments) throws CommandException {
 return Collections.emptyList();
 }
}

Astuce

See the JavaDoc for CommandCallable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandCallable.html] for the purposes of each method in this example.

Registering the command

Now we can register the class in the CommandManager [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandManager.html]. The CommandManager stands as the manager for
watching what commands get typed into chat, and redirecting them to the right command handler.
To register your command, use the method CommandManager#register(Object, CommandCallable, String...) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/CommandManager.html#register-java.lang.Object-org.spongepowered.api.command.CommandCallable-java.lang.String...-],
passing your plugin, an instance of the command, and any needed aliases as parameters.

import org.spongepowered.api.command.CommandManager;

CommandManager cmdService = Sponge.getCommandManager();
cmdService.register(plugin, new MyBroadcastCommand(), "message", "broadcast");

Note

The arguments after the new instance of your command are the aliases to register for the command. You can add as many
Strings as you want. The first alias that isn’t used by another command becomes the primary alias. This means aliases
used by another command are ignored.

Command Dispatchers

Command dispatchers can be used to create hierarchical command structures (subcommands).

The default implementation of the Dispatcher interface is the SimpleDispatcher [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/command/dispatcher/SimpleDispatcher.html] class.

A Dispatcher is also a CommandCallable, so it can be registered like any other command.

import org.spongepowered.api.command.dispatcher.SimpleDispatcher;

CommandCallable subCommand1 = ...;
CommandCallable subCommand2 = ...;

SimpleDispatcher rootCommand = new SimpleDispatcher();

rootCommand.register(subCommand1, "subcommand1", "sub1");
rootCommand.register(subCommand2, "subcommand2", "sub2");

Sponge.getCommandManager().register(this, rootCommand, "root");

 Basic Item Usage

Basic Item Usage

Items are represented through an ItemStack [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html]. An ItemStack is an inventory item with information such as
the amount of the item in the stack, the type of the item, and extra data such as durability. An Item [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/Item.html] itself
is the graphical representation of an ItemStack as an entity. Be aware that you’ll always get a copy and not the
actual ItemStack and thus, you will need to set it back into an inventory if desired.

Checking an Item’s Type

Checking the type of the item is very simple. You just need to call the ItemStack#getItem() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html#getItem–] method.

import org.spongepowered.api.item.ItemType;
import org.spongepowered.api.item.ItemTypes;
import org.spongepowered.api.item.inventory.ItemStack;

public boolean isStick(ItemStack stack) {
 ItemType type = stack.getItem();
 return type.equals(ItemTypes.STICK);
}

See how simple that is? Because sticks can stack, we can also find out how many are present.

Getting the amount of items in an ItemStack is relatively easy. The ItemStack#getQuantity() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html#getQuantity–] method will
handle this for us.

Modifying ItemStack Data

Manipulating data such as durability or the lore of an item is accomplished by simply using keys. You just need to
specify the key that needs to be changed:

import org.spongepowered.api.data.key.Keys;

public void setUnbreakable(ItemStack stack) {
 stack.offer(Keys.UNBREAKABLE, true);
}

In this, we specified that the Keys#UNBREAKABLE [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Keys.html#UNBREAKABLE] key is the key that we would like to change. We then set its
value to true to imply that the item will never break. All of this is enclosed within the offer() method of the
ItemStack to return our changes back to the ItemStack.

Different keys will require different values based on their job. For example, to change the lore of an item, one would
need to specify a List of Text [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/text/Text.html] rather than an boolean or other value. It is also important to perform
checks to see if the key can actually apply to the item. For example, some items might not have durability or may
already have lore applied to the item.

import org.spongepowered.api.text.Text;

import java.util.List;

public void setLore(ItemStack stack, List<Text> itemLore) {
 if (stack.get(Keys.ITEM_LORE).isPresent()) {
 stack.offer(Keys.ITEM_LORE, itemLore);
 }
}

Item Properties

Certain items may hold specific properties. For example, certain items can mine specific blocks, such as a diamond
pickaxe to obsidian. Properties are used for determining if an item can cause an action without actually checking up
the type of the item. We can check if a block can mine obsidian by using the
HarvestingProperty [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/property/item/HarvestingProperty.html] of that item.

import org.spongepowered.api.block.BlockTypes;
import org.spongepowered.api.data.property.item.HarvestingProperty;

import java.util.Optional;

public boolean canMineObsidian(ItemStack stack) {
 Optional<HarvestingProperty> optional =
 stack.getProperty(HarvestingProperty.class);

 if (optional.isPresent()) {
 HarvestingProperty property = optional.get();
 return property.getValue().contains(BlockTypes.OBSIDIAN);
 }
 return false;
}

This code will check to see if the item has a HarvestingProperty, such as a pickaxe. If present, it will then
return if this item can harvest obsidian without the need to check the type of the item. This is useful in the event
that a mod or a Minecraft update adds a new tool with the capabilities of mining obsidian.

Comparing ItemStacks

The ItemStack class contains a neat method for comparing two ItemStacks. By using the
ItemStack#equalTo(ItemStack) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html#equalTo-org.spongepowered.api.item.inventory.ItemStack-] method off of an already existing ItemStack, we can see if the two
ItemStacks are ‘equal’. That is, they share the same stack size, ItemType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/ItemType.html], and data. An example is
show below:

public boolean isEqual(ItemStack stack1, ItemStack stack2) {
 return stack1.equalTo(stack2);
}

 Items

Items

Items are a fundamental feature of Minecraft and plugins. This section shows some basic usage examples and how to
create your own items.

	Basic Item Usage

	Creating an ItemStack

 Creating an ItemStack

Creating an ItemStack

If you want to create your own items, you need to go through several steps. Let’s go through a basic example and create
an enchanted diamond sword.

To create an ItemStack [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html], we need to first grab the builder from the ItemStack. This is done with the
ItemStack#builder() [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.html#builder–] method. In the builder, we can specify things such as the ItemType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/ItemType.html] or the
quantity of the item. In our example, we will be creating a diamond sword that contains enchantments, a custom name,
and is unbreakable. If you want a plain sword without any other data, then this is all you need to do:

import org.spongepowered.api.item.ItemTypes;
import org.spongepowered.api.item.inventory.ItemStack;

public ItemStack generateSword() {
 ItemStack superMegaAwesomeSword = ItemStack.builder()
 .itemType(ItemTypes.DIAMOND_SWORD).build();
 return superMegaAwesomeSword;
}

Creating the basic item is done. Now this is a normal diamond sword that we created, but what if we wanted something
more interesting? What about enchanting and naming our sword? We can use EnchantmentData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/item/EnchantmentData.html] to give our sword
some enchantments. The following example will give our sword every enchantment in the game, to level 1000. Make sure to
include this all before return superMegaAwesomeSword;.

import java.util.List;
import java.util.stream.Collectors;

import org.spongepowered.api.Sponge;
import org.spongepowered.api.data.manipulator.mutable.item.EnchantmentData;
import org.spongepowered.api.data.meta.ItemEnchantment
import org.spongepowered.api.item.Enchantment;

EnchantmentData enchantmentData = superMegaAwesomeSword
 .getOrCreate(EnchantmentData.class).get();
final List<Enchantment> enchantments = Sponge.getRegistry()
 .getAllOf(Enchantment.class).stream().collect(Collectors.toList());

for (Enchantment enchantment : enchantments) {
 enchantmentData.set(enchantmentData.enchantments()
 .add(new ItemEnchantment(enchantment, 1000)));
}
superMegaAwesomeSword.offer(enchantmentData);

Now let’s say we wanted to give our overpowered sword a cool name to go with it. Here, we can directly offer a key to
the ItemStack. Using this key, we can change the name of the ItemStack to “SUPER MEGA AWESOME Diamond Sword”

import org.spongepowered.api.data.key.Keys;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.format.TextColors;

superMegaAwesomeSword.offer(Keys.DISPLAY_NAME, Text.of(
 TextColors.BLUE, "SUPER ",
 TextColors.GOLD, "MEGA ",
 TextColors.DARK_AQUA, "AWESOME ",
 TextColors.AQUA, "Diamond Sword"));

Finally, to make the sword unbreakable, we can use keys again:

superMegaAwesomeSword.offer(Keys.UNBREAKABLE, true);

That’s it. You now have a fully enchanted, unbreakable, and beautifully named sword which you can give to players.

Spawning the Item

Sure we can simply put the sword into a player’s inventory, but what if we wanted to throw it out into the open world
and spawn the item? This is where entity spawning comes into play. Since the in-game
graphical representation of an ItemStack is Item [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/Item.html], we can spawn it in similarly to a normal
Entity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/Entity.html]. The EntityType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/EntityType.html] will simply be EntityTypes#ITEM [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/EntityTypes.html#ITEM] and we will need to specify
that the Entity will represent our ItemStack. This can be done using the Keys#REPRESENTED_ITEM [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Keys.html#REPRESENTED_ITEM] key.
An example is shown below:

import org.spongepowered.api.entity.Entity;
import org.spongepowered.api.entity.EntityTypes;
import org.spongepowered.api.event.cause.Cause;
import org.spongepowered.api.event.cause.entity.spawn.EntitySpawnCause;
import org.spongepowered.api.event.cause.entity.spawn.SpawnTypes;
import org.spongepowered.api.world.Location;
import org.spongepowered.api.world.World;
import org.spongepowered.api.world.extent.Extent;

import java.util.Optional;

public void spawnItem(ItemStack superMegaAwesomeSword, Location<World> spawnLocation) {
 Extent extent = spawnLocation.getExtent();
 Optional<Entity> optional = extent
 .createEntity(EntityTypes.ITEM, spawnLocation.getPosition());
 if (optional.isPresent()) {
 Entity item = optional.get();
 item.offer(Keys.REPRESENTED_ITEM, superMegaAwesomeSword.createSnapshot());
 extent.spawnEntity(item, Cause.source(EntitySpawnCause.builder()
 .entity(item).type(SpawnTypes.PLUGIN).build()).build());
 }
}

Creating an ItemStack From a Block

An ItemStack for a block can be created by using the method ItemStack.Builder#itemType(ItemType) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.Builder.html#itemType-org.spongepowered.api.item.ItemType-]
similarly to normal items, but what if we wanted to create an ItemStack from a BlockState [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/block/BlockState.html] itself? To
create an ItemStack from a BlockState, you would need to use the
ItemStack.Builder#fromBlockState(BlockState) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/item/inventory/ItemStack.Builder.html#fromBlockState-org.spongepowered.api.block.BlockState-] method on the ItemStack builder. An example of this is
shown below:

import org.spongepowered.api.block.BlockState;

public ItemStack createStack(BlockState state) {
 return ItemStack.builder().fromBlockState(state).build();
}

 Modifying an Entity

Modifying an Entity

Sure, spawning a regular-old entity is nice and all, but there has to be something more interesting than that? This is
where DataManipulator [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/DataManipulator.html]s come into play. An Entity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/Entity.html] is a DataHolder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataHolder.html], which means that
our Entity can hold data. More on DataHolders can be found in the data documentation.

DataManipulators that apply to Entitys are things such as FoodData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/FoodData.html] or HealthData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/HealthData.html]. A
list of applicable DataManipulators can be found at org.spongepowered.api.data.manipulator.mutable [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/package-summary.html] and
org.spongepowered.api.data.manipulator.mutable.entity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/package-summary.html]. Note that not all DataManipulators found there
may apply to all entities.

Entity Type

Before we can jump behind the wheel with our Entity, we should check what type of Entity it is, as we may
receive an Entity we didn’t create and thus, do not know it’s type. Doing this is a simple equality check. Here is
an example of checking if our Entity is a creeper:

import org.spongepowered.api.entity.Entity;
import org.spongepowered.api.entity.EntityTypes;

public boolean isCreeper(Entity entity) {
 if (entity.getType().equals(EntityTypes.CREEPER)) {
 return true;
 }
 return false;
}

Entity Data Manipulators

Now that we are certain that our Entity is a creeper, we can apply creeper specific DataManipulators to it.
For example, ExplosionRadiusData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/entity/ExplosionRadiusData.html] is a DataManipulator that creepers can have, but not all Entitys.
An example of changing an Entitys explosive radius to 50 can be seen below:

import org.spongepowered.api.data.manipulator.mutable.entity.ExplosiveRadiusData;

public void explosionRadius50(Entity creeper) {
 ExplosiveRadiusData radiusData = creeper.get(ExplosiveRadiusData.class).get();
 creeper.offer(radiusData.explosiveRadius().set(50));
}

This will get the ExplosiveRadiusData of our Entity for our use. We then use that data to set the explosive
radius of our creeper to 50. We then have to offer the data back to the creeper, as the data we received from our
Entity is only a copy of the live data.

Perhaps we want to give our Entity a name to customize it a bit! This would be done by using
DisplayNameData [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/manipulator/mutable/DisplayNameData.html]. An example of this in action can be seen below:

import org.spongepowered.api.data.manipulator.mutable.DisplayNameData;
import org.spongepowered.api.text.Text;
import org.spongepowered.api.text.format.TextColors;

public void setDisplayName(Entity creeper) {
 DisplayNameData displayData = creeper.get(DisplayNameData.class).get();
 creeper.offer(displayData.displayName().set(Text.of(TextColors.DARK_AQUA,
 "Inscrutable")));
}

Another, shorter way to do this is by just using Keys [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/key/Keys.html] on our Entity instead of using
DataManipulators. This would be done like so:

import org.spongepowered.api.data.key.Keys;

public void explosionRadius50(Entity creeper) {
 creeper.offer(Keys.EXPLOSIVE_RADIUS, 50);
 creeper.offer(Keys.DISPLAY_NAME, Text.of(TextColors.DARK_AQUA, "Inscrutable"));
}

This would neaten our code and is easier to perform. See the data documentation on
the specific benefits of using either DataManipulators or just Keys.

 Entities

Entities

Entities are a huge part of Minecraft, and the Sponge API in general.

	Spawning an Entity

	Modifying an Entity

 Spawning an Entity

Spawning an Entity

You will need four things for spawning in an Entity [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/Entity.html], a Location [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/Location.html], an Extent [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/extent/Extent.html], and an
EntityType [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/entity/EntityType.html]. The process for getting these is quite simple, you just need to grab a Location from
somewhere in your plugin code and choose the type of Entity you wish to spawn.

For example, let’s try to spawn a Creeper:

import org.spongepowered.api.entity.Entity;
import org.spongepowered.api.entity.EntityTypes;
import org.spongepowered.api.event.cause.Cause;
import org.spongepowered.api.event.cause.entity.spawn.SpawnCause;
import org.spongepowered.api.event.cause.entity.spawn.SpawnTypes;
import org.spongepowered.api.world.Location;
import org.spongepowered.api.world.World;

import java.util.Optional;

public void spawnEntity(Location<World> spawnLocation) {
 World world = spawnLocation.getExtent();
 Entity creeper = world
 .createEntity(EntityTypes.CREEPER, spawnLocation.getPosition());
 SpawnCause spawnCause = SpawnCause.builder().type(SpawnTypes.PLUGIN).build();
 world.spawnEntity(creeper, Cause.source(spawnCause).build());
}

This will grab the world from our Location, which we will need for the actual spawning. Next, it uses
EntityUniverse#createEntity(EntityType, Vector3d) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/world/extent/EntityUniverse.html#createEntity-org.spongepowered.api.entity.EntityType-com.flowpowered.math.vector.Vector3d-] to create the entity, but do note that this does not
spawn the entity into the world, it just will create it. We will need to specify the type of Entity to spawn, and the
co-ordinates from our Location.

Once we have created our Entity we can then use the world for spawning the Entity. We will need
to specify a Cause for the spawning. For spawning Entitys, it is best to use a SpawnCause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/entity/spawn/SpawnCause.html] as the root
of the cause. In this example, we stated that our entity was spawned from a plugin, however we can make it any cause
that best describes why we are spawning this in, such as a mob spawner (See MobSpawnerSpawnCause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/entity/spawn/MobSpawnerSpawnCause.html]), or spawn egg
(See EntitySpawnCause [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/event/cause/entity/spawn/EntitySpawnCause.html]).

 Setting Up Your Project

Setting Up Your Project

Before you can start developing your Sponge plugin, you need to set up the SpongeAPI dependency in your project. If
you’re already experienced with your build system, below is the Maven dependency you need to add. Otherwise, there is a
more detailed explanation at the Gradle and Maven page.

SpongeAPI dependency

Maven repository

	Name
	sponge

	URL
	https://repo.spongepowered.org/maven

Maven dependency

	Group ID
	org.spongepowered

	Artifact ID
	spongeapi

	Version
	For example: 6.0.0 (stable), or 7.0.0-SNAPSHOT (dev build, unstable)

Setting Up Your Project

	Setting Up Gradle

	Setting Up Maven

 Setting Up Gradle

Setting Up Gradle

Using SpongeGradle

Using SpongeGradle [https://github.com/SpongePowered/SpongeGradle] is very simple and allows you to minimize the necessary Gradle configuration for setting up a
Sponge plugin on Gradle. Additionally, it provides integration for Plugin Metadata, such as automatically
contributing the group, project name, version and description defined in your build script to the built plugin, so you
only need to update your plugin version in one file.

Astuce

Most problems are caused by attempting to use an outdated Gradle version. We recommend using the latest Gradle
version together with SpongeGradle [https://github.com/SpongePowered/SpongeGradle]. The Gradle section of the build systems page explains how
to setup Gradle on your computer.

Below is a simple template that should be usable for most plugins. Make sure to replace the group with the group ID
you have chosen before.

plugins {
 id 'org.spongepowered.plugin' version '0.8.1'
}

group = 'com.example' // TODO
version = '1.0-SNAPSHOT'
description = 'An example plugin'

dependencies {
 compile 'org.spongepowered:spongeapi:6.0.0'
}

These few lines handle most settings you would normally do manually:

	Basic Gradle Java setup

	Set your project to compile with Java 8

	Add Sponge’s Maven repository (and Maven Central)

	Set up a plugin with the project name in lower case as plugin ID

	Automatically includes the project name, description and version in Plugin Metadata.

Manually setting the plugin ID

By default, the Gradle plugin will configure your plugin ID with project name (in lowercase) you have configured.
If you want to use a custom plugin ID and still use the Plugin Metadata integration you can change it
manually:

sponge {
 plugin {
 id = 'mypluginid'
 }
}

Overriding defaults

By default the Gradle plugin will contribute the plugin name, plugin version and description automatically
to Plugin Metadata with defaults defined in the project properties. It is also possible to override these if
you want to specify them manually:

sponge {
 plugin {
 meta {
 name = 'My Plugin'
 version = '1.0.0'
 description = 'This is a plugin'
 }
 }
}

You can also remove a default value entirely:

sponge {
 plugin {
 meta {
 description = null
 }
 }
}

Without SpongeGradle

Avertissement

We recommend using SpongeGradle for Gradle plugins since it will provide additional Gradle
integration for Sponge plugins.

Generally, everything necessary to compile a Sponge plugin using Gradle can be done by simply adding the SpongeAPI
dependency to your project:

repositories {
 mavenCentral()
 maven {
 name = 'sponge'
 url = 'https://repo.spongepowered.org/maven'
 }
}

dependencies {
 compile 'org.spongepowered:spongeapi:6.0.0'
}

 Setting Up Maven

Setting Up Maven

Add the following to the <project> block of your pom.xml to add the SpongeAPI dependency:

<repositories>
 <repository>
 <id>sponge</id>
 <url>https://repo.spongepowered.org/maven</url>
 </repository>
</repositories>

<dependencies>
 <dependency>
 <groupId>org.spongepowered</groupId>
 <artifactId>spongeapi</artifactId>
 <version>6.0.0</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

Using the Plugin Archetype

Alternatively, Sponge has a simple archetype that generates the basic structure for a plugin.

The generated pom includes a release profile that generates gpg-signed jars for javadocs, binary, and sources as
recommended in the guidelines for submitting projects to Sonatype OSS (However, this option is not currently available
for Sponge plugins due to the fact that Sponge API is not currently hosted on Maven Central).

Properties

The archetype plugin accepts a few properties:

	Property
	Example value
	Description

	groupId
	io.github.user
	The maven groupId, useful more for plugins used as dependencies, but should
more or less match your package name

	artifactId
	myproject
	The project id, also used as plugin id and name of the generated folder

	version
	1.0-SNAPSHOT
	The initial version for your plugin. Can (and should) be changed as
development progresses

	package
	io.github.user.myproject
	The package your plugin class will be generated in

	githubProject
	user/repo
	The GitHub project. If a value is specified that is not user/repo, issue
tracking and SCM sections are added to the pom

These can be specified as arguments to Maven in the form -Dproperty=value

Usage

This archetype requires Maven 3 or newer. Invoke maven with the goal archetype:generate. Maven will prompt for any
required properties, but optional properties must be specified on the command line.

$ mvn archetype:generate -DarchetypeArtifactId=sponge-plugin-archetype -DarchetypeGroupId=org.spongepowered -DarchetypeRepository=http://repo.spongepowered.org/maven -DarchetypeVersion=1.2 -DgithubProject=waylon531/spongeparty

The first four arguments specify where maven will find the archetype and which version to use. The
-DgithubProject=waylon531/spongeparty parameter is an optional property for the generated project and can be left
out if you do not intend to host your plugin on GitHub.

After your project has been generated, you need to import it in your IDE. See Setting Up Your Workspace for details.

 Configuration Loaders

Configuration Loaders

Let’s break down how Configurate works, beginning with the loading process. Configurate provides
ConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/loader/ConfigurationLoader.html]s for common configuration formats, standing as the manager of the physical
configuration file, allowing you to save and load data from the given resource. They also allow you to load empty
configurations, giving you the option of hard-coding default values or loading from a pre-written file.

Getting your Loader

Note

The default ConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/loader/ConfigurationLoader.html] can be used instead if you’re using HOCON; see the
main configuration page.

First, let’s grab a new HoconConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/hocon/HoconConfigurationLoader.html] that points to our configuration file.

import java.nio.file.Path;
import ninja.leaping.configurate.commented.CommentedConfigurationNode;
import ninja.leaping.configurate.hocon.HoconConfigurationLoader;
import ninja.leaping.configurate.loader.ConfigurationLoader;

Path potentialFile = getConfigPath();
ConfigurationLoader<CommentedConfigurationNode> loader =
 HoconConfigurationLoader.builder().setPath(potentialFile).build();

The loader will also hold a generic type depending what kind of node it will build. These Configuration Nodes will be
discussed in a later section.

ConfigurationLoaders usually hold a builder for you to statically access and create a new instance of the loader of
your desired type. For a basic configuration, we don’t really need to specify anything other than the file we want to
load from and/or save to, so all we’ll do is tell it exactly that, using
HoconConfigurationLoader.builder().setPath(path). We then tell the builder to build the instance (build()) for
it and store it in a variable.

Of course, this isn’t the only way to load a file. The builder also has the method setURL(URL), in case you want
to load a resource without using a Path object. Bear in mind that configuration loaders created from an URL
are read-only as they have no way of writing back data to the URL.

This functionality may be used to bundle default configurations with your plugin jar file and load them as initial
configuration to be edited by the server administrator (or your plugin itself).

Loading and Saving

Once you obtained your ConfigurationLoader you can use it to obtain an empty ConfigurationNode [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html] using the
createEmptyNode() method.

import ninja.leaping.configurate.ConfigurationNode;
import ninja.leaping.configurate.ConfigurationOptions;

Path potentialFile = getConfigPath();
ConfigurationLoader<CommentedConfigurationNode> loader = HoconConfigurationLoader.builder().setPath(potentialFile).build();
ConfigurationNode rootNode = loader.createEmptyNode(ConfigurationOptions.defaults());

This method expects the ninja.leaping.configurate.ConfigurationOptions to use as a parameter. Unless you want to use
features like custom type serialization, you can just use ConfigurationOptions#defaults() [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationOptions.html#defaults–] to create an
options object with default values.

Using the load() method you can attempt to load the configuration contents from the source specified upon creation
of the ConfigurationLoader. It also expects a ConfigurationOptions instance, but also provides a no-args form
that is shorthand for load(ConfigurationOptions.defaults()).

import java.io.IOException;

Path potentialFile = getConfigPath();
ConfigurationLoader<CommentedConfigurationNode> loader = HoconConfigurationLoader.builder().setPath(potentialFile).build();
ConfigurationNode rootNode;
try {
 rootNode = loader.load();
} catch(IOException e) {
 // error
}

If the Path given does not exist, the load() method will create an empty ConfigurationNode. Any other error
will lead to an IOException being thrown which you will need to handle properly.

If you have injected the default loader, it’s a good idea to get its ConfigurationOptions, since they contain the
ability to serialize and deserialize a large number of Sponge objects.

Once you modified your ConfigurationNode to hold the data you like to be saved, you can use the
ConfigurationLoader to save the node to the file specified while creating the loader. If that file does not exist,
it will be created. If it does exist, all contents will be overwritten.

try {
 loader.save(rootNode);
} catch(IOException e) {
 // error
}

Again, errors will be propagated as an IOException and must be handled.

Example: Loading a default config from the plugin jar file

import java.net.URL;

URL jarConfigFile = Sponge.getAssetManager().getAsset("defaultConfig.conf").get().getUrl();
ConfigurationLoader<CommentedConfigurationNode> loader =
 HoconConfigurationLoader.builder().setURL(jarConfigFile).build();

For this example it is important to note that the AssetManager#getAsset(String) [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/asset/AssetManager.html#getAsset-java.lang.String-] method works relative to the
plugin’s asset folder. So if in the above example the plugin ID is myplugin, the defaultConfig.conf file
must not lie in the jar file root, but instead in the directory assets/myplugin. For more information, see
the Asset API page.

 Configuring Plugins

Configuring Plugins

Configuration files allow plugins to store data, as well as allow server administrators to easily take control over
specific portions of a plugin, if you so choose to let them. Sponge uses Configurate to allow you to easily
manipulate configuration files. These pages will explain how to utilize Configurate in order to use configuration
files to full advantage.

Astuce

See the official Configurate wiki [https://github.com/zml2008/configurate/wiki] to gain more in-depth information
about working with its components.

Note

Sponge makes use of the HOCON configuration format, a superset of JSON, as the default format for saving
configuration files. The rest of this guide will assume you are using HOCON as well. See
../../server/getting-started/configuration/hocon more for information regarding the HOCON format.
Working with different formats is made relatively similar by the Configurate system, so it should not
pose too much of an issue if you use an alternate format instead.

	Configuration Loaders

	Configuration Nodes

	Serializing Objects

Quick Start

Creating a Default Plugin Configuration

Plugins using the Sponge API have the option to use one or more configuration files. Configuration files allow plugins
to store data, and they allow server administrators to customize plugin options (if applicable).

Getting your Default Plugin Configuration

The Sponge API offers the use of the DefaultConfig [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/config/DefaultConfig.html] annotation on a field or setter method with the type
Path to get the default configuration file for your plugin.

The @DefaultConfig annotation requires a sharedRoot boolean. If you set sharedRoot to true, then the
returned pathname will be in a shared configuration directory. In that case, the configuration file for your plugin
will be your_plugin_id.conf (with “your_plugin_id” replaced with your plugin’s specified ID).

Astuce

See Main Plugin Class for information on configuring your plugin ID.

If you set sharedRoot to false, the returned pathname will refer to a file named {pluginname}.conf in a
directory specific to your plugin.

If you are unsure of what to set the value of sharedRoot to, consider the following:

	If you plan on having multiple configuration files (complex plugins) in the future, set the value to false.

	If you plan on having a single configuration file (less-complex plugins), set the value to true.

You can also obtain a Path instance pointing to the config directory instead of a particular file. Just
have it injected using the ConfigDir [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/config/ConfigDir.html] annotation, either with sharedRoot set to false for a plugin
specific directory or to true to get the shared configuration directory.

Note

While it may be possible to get a File instead of a Path, Configurate (and Sponge) recommend using Path.

Example - Field using @DefaultConfig

import java.nio.file.Path;
import com.google.inject.Inject;
import org.spongepowered.api.config.ConfigDir;
import org.spongepowered.api.config.DefaultConfig;
import ninja.leaping.configurate.commented.CommentedConfigurationNode;
import ninja.leaping.configurate.loader.ConfigurationLoader;

@Inject
@DefaultConfig(sharedRoot = true)
private Path defaultConfig;

@Inject
@DefaultConfig(sharedRoot = true)
private ConfigurationLoader<CommentedConfigurationNode> configManager;

@Inject
@ConfigDir(sharedRoot = false)
private Path privateConfigDir;

Avertissement

When your plugin is running for the first time, returned pathnames for configuration files and directories may not
yet exist. If you delegate all reading / writing of files to Configurate, you do not need to worry about
non-existant paths as the library will handle them appropriately.

Note

The use of YAML format (http://yaml.org/spec/1.1/) is also supported, but the preferred config format for Sponge
plugins is HOCON. Conversion from YAML to HOCON can be automated by using a YAMLConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/yaml/YAMLConfigurationLoader.html] to
load the old config and then saving it using a HoconConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/hocon/HoconConfigurationLoader.html].

 Serializing Objects

Serializing Objects

The Configurate library also provides the means to tweak automatic serialization and deserialization of objects.
Per default, a set of data types can be (de)serialized: among others Strings, ints, doubles, UUIDs, Lists
(of serializable values) and Maps (where both keys and values are serializable). But if you want to write your
custom data structures to a config file, this will not be enough.

Imagine a data structure tracking how many diamonds a player has mined. It might look a little like this:

public class DiamondCounter {
 private UUID playerUUID;
 private int diamonds;

 ...
}

Also assume some methods to access those fields, a nice constructor setting both of those etc.

Creating a custom TypeSerializer

A very straightforward way of writing and loading such a data structure is providing a custom TypeSerializer [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/serialize/TypeSerializer.html].
The TypeSerializer interface provides two methods, one to write the data from an object to a configuration node and
one to create an object from a given configuration node.

import com.google.common.reflect.TypeToken;
import ninja.leaping.configurate.objectmapping.ObjectMappingException;
import ninja.leaping.configurate.objectmapping.serialize.TypeSerializer;

public class DiamondCounterSerializer implements TypeSerializer<DiamondCounter> {

 @Override
 public DiamondCounter deserialize(TypeToken<?> type, ConfigurationNode value)
 throws ObjectMappingException {
 UUID player = value.getNode("player").getValue(TypeToken.of(UUID.class));
 int diamonds = value.getNode("diamonds").getInt();
 return new DiamondCounter(player, diamonds);
 }

 @Override
 public void serialize(TypeToken<?> type, DiamondCounter obj, ConfigurationNode value)
 throws ObjectMappingException {
 value.getNode("player").setValue(obj.getPlayerUUID());
 value.getNode("diamonds").setValue(obj.getDiamonds());
 }
}

This TypeSerializer must then be registered with Configurate. This can be done either globally, by registering to
the default TypeSerializerCollection [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/serialize/TypeSerializerCollection.html] or locally, by specifying it in the ConfigurationOptions [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationOptions.html]
when loading your config.

Code Example: Registering a TypeSerializer globally

import ninja.leaping.configurate.objectmapping.serialize.TypeSerializers;

TypeSerializers.getDefaultSerializers().registerType(TypeToken.of(DiamondCounter.class), new DiamondCounterSerializer());

Code Example: Registering a TypeSerializer locally

import ninja.leaping.configurate.ConfigurationNode;
import ninja.leaping.configurate.ConfigurationOptions;
import ninja.leaping.configurate.objectmapping.serialize.TypeSerializerCollection;
import ninja.leaping.configurate.objectmapping.serialize.TypeSerializers;

TypeSerializerCollection serializers = TypeSerializers.getDefaultSerializers().newChild();
serializers.registerType(TypeToken.of(DiamondCounter.class), new DiamondCounterSerializer());
ConfigurationOptions options = ConfigurationOptions.defaults().setSerializers(serializers);
ConfigurationNode rootNode = someConfigurationLoader.load(options);

Avertissement

If you provide a custom TypeSerializer for types that are not introduced by your own plugin, you should only
ever register them locally in order to avoid conflicts with other plugins or Sponge, caused by a TypeSerializer
being overwritten.

Using ObjectMappers

Since in many cases the (de)serialization boils down to mapping fields to configuration nodes, writing such a
TypeSerializer is a rather dull affair and something we’d like Configurate to do on its own. So let’s annotate our
class with the ConfigSerializable [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/serialize/ConfigSerializable.html] and Setting [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/Setting.html] annotations.

import ninja.leaping.configurate.objectmapping.Setting;
import ninja.leaping.configurate.objectmapping.serialize.ConfigSerializable;

@ConfigSerializable
public class DiamondCounter {

 @Setting(value="player", comment="Player UUID")
 private UUID playerUUID;
 @Setting(comment="Number of diamonds mined")
 private int diamonds;

 ...
}

The above example can now be serialized and deserialized from config nodes without further registration. The
@Setting annotations map a configuration node to the field that was annotated. It accepts two optional parameters,
value and comment. If the value parameter exists, it defines the name of the node the field will be
saved in. If it is not present, the name of the field will be used instead. So in our above example, the
annotation ensures that the contents of the field playerUUID are saved to the node “player”, commented with
“Player UUID”. The diamonds field however will be saved under that exact name since its annotation only
specifies a comment. That comment will be written to the config if the implementation supports commented
configuration nodes, otherwise it will be discarded.

Astuce

You may also use the shorthand @Setting("someNode") instead of @Setting(value="someNode")

The @ConfigSerializable annotation eliminates the need for any registration since it allows Configurate to
just generate an ObjectMapper [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/ObjectMapper.html] for the class. The only limitation is that Configurate needs an empty
constructor to instantiate a new object before filling in the annotated fields.

Providing a custom ObjectMapperFactory

That restriction, however, can be lifted if we use a different ObjectMapperFactory [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/ObjectMapperFactory.html], for example a
GuiceObjectMapperFactory [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/GuiceObjectMapperFactory.html]. Instead of requiring an empty constructor, it will work on any class that guice
can create via dependency injection. This also allows for a mixture of @Inject and @Setting annotated fields.

Your plugin can just acquire a GuiceObjectMapperFactory simply by dependency injection
(see Dependency Injection) and then pass it to the ConfigurationOptions.

import org.spongepowered.api.event.Listener;
import org.spongepowered.api.event.game.state.GamePreInitializationEvent;
import org.spongepowered.api.plugin.Plugin;
import com.google.inject.Inject;
import ninja.leaping.configurate.commented.CommentedConfigurationNode;
import ninja.leaping.configurate.loader.ConfigurationLoader;
import ninja.leaping.configurate.objectmapping.GuiceObjectMapperFactory;

@Plugin(name="IStoleThisFromZml", id="shamelesslystolen", version="0.8.15")
public class StolenCodeExample {

 @Inject private GuiceObjectMapperFactory factory;
 @Inject private ConfigurationLoader<CommentedConfigurationNode> loader;

 @Listener
 public void enable(GamePreInitializationEvent event) {
 CommentedConfigurationNode node =
 loader.load(ConfigurationOptions.defaults().setObjectMapperFactory(factory));
 DiamondCounter myDiamonds = node.getValue(TypeToken.of(DiamondCounter.class));
 }
}

Note

The above code is an example and, for brevity, lacks proper exception handling.

 Configuration Nodes

Configuration Nodes

In memory, the configuration is represented using ConfigurationNode [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html]s. A ConfigurationNode either holds
a value (like a number, a string or a list) or has child nodes, a tree-like configuration structure. When using a
ConfigurationLoader [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/loader/ConfigurationLoader.html] to load or create new configurations, it will return the root node. It is
recommended that you always keep a reference to that root node stored somewhere.

Note

Depending on the ConfigurationLoader used, you might even get a CommentedConfigurationNode [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/commented/CommentedConfigurationNode.html], which in
addition to normal ConfigurationNode behavior is able to retain a comment that will persist on the saved config
file.

Navigating Nodes

Every child node is identified by a key, most commonly a string. When going from one node (for example the root node)
to a specific child node, it may be necessary to move through multiple layers of child nodes. The keys of the child
nodes passed make up the path of the target node. In the following example, there is a node holding the value
false at the path modules blockCheats enabled (from the root node) in the following HOCON representation
of a config.

Note

When written down, paths are commonly represented by joining the keys together with a separator char, usually ..
The above mentioned path would be written modules.blockCheats.enabled.

modules {
 blockCheats {
 enabled=true
 }
}

In Java, you can get the child node for a path using the getNode(...) method. The method accepts any number of
arguments, where each argument is one key in the path. The path modules.blockCheats.enabled from a root node is
acquired as follows.

import ninja.leaping.configurate.ConfigurationNode;

ConfigurationNode rootNode = ...;
ConfigurationNode targetNode = rootNode.getNode("modules", "blockCheats", "enabled");

Note

The function calls node.getNode("foo", "bar") and node.getNode("foo").getNode("bar") are equivalent.

Values

Basic Values

Basic value types like int, double, boolean or String each have their own convenience getter method
which will return the value or a default if the node does not contain a value of that type. Let’s check if the server
administrator wants our plugin to enable its blockCheats module by checking the value at the
modules.blockCheats.enabled path.

boolean shouldEnable = rootNode.getNode("modules", "blockCheats", "enabled").getBoolean();

Yes, it’s really as simple as that. Similar to the above example, methods like ConfigurationNode#getInt() [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html#getInt–],
ConfigurationNode#getDouble() [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html#getDouble–] or ConfigurationNode#getString() [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html#getString–] exist that allow you to
conveniently grab a value of that type.

To set a basic value to a node, just use the ConfigurationNode#setValue(Object) [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/ConfigurationNode.html#setValue-java.lang.Object-] method. Don’t be confused
that it accepts an Object - this means that it can take anything and will determine how to proceed from there by
itself.

Imagine the blockCheats module is deactivated by a user command. This change will need to be reflected in the config
and can be done as follows:

rootNode.getNode("modules", "blockCheats", "enabled").setValue(false);

Avertissement

Anything other than basic value types cannot be handled by those basic functions, and must instead be read and
written using the (de)serializing Methods described below. Basic types are those that are natively handled by the
underlying implementation of the file format used by the ConfigurationLoader, but generally include the
primitive data types, Strings as well as Lists and Maps of basic types.

(De)Serialization

If you attempt to read or write an object that is not one of the basic types mentioned above, you will need to pass it
through deserialization first. In the ConfigurationOptions used to create your root ConfigurationNode, there
is a collection of TypeSerializer [http://zml2008.github.io/configurate/apidocs/ninja/leaping/configurate/objectmapping/serialize/TypeSerializer.html]s that Configurate uses to convert your objects to a
ConfigurationNode and vice versa.

In order to tell Configurate what type it is dealing with, we have to provide a guava TypeToken. Imagine we want
to read a player UUID from the config node towns.aFLARDia.mayor. To do so, we need to call the getValue()
method while providing a TypeToken representing the UUID class.

import java.util.UUID;

UUID mayor = rootNode.getNode("towns", "aFLARDia", "mayor").get(TypeToken.of(UUID.class));

This prompts Configurate to locate the proper TypeSerializer for UUIDs and then use it to convert the stored
value into a UUID. The TypeSerializer (and by extension the above method) may throw an ObjectMappingException
if it encounters incomplete or invalid data.

Now if we we want to write a new UUID to that config node, the syntax is very similar. Use the setValue()
method with a TypeToken and the object you want to serialize.

rootNode.getNode("towns","aFLARDia", "mayor").setValue(TypeToken.of(UUID.class), newUuid);

Note

Serializing a value will throw an ObjectMappingException if no TypeSerializer for the given TypeToken
can be found.

For simple classes like UUID, you can just create a TypeToken using the static TypeToken.of() method.
But when the class you want to use has type parameters of its own (like Map<String,UUID>) the syntax gets a
little more complicated. In most cases you will know exactly what the type parameters will be at compile time, so
you can just create the TypeToken as an anonymous class: new TypeToken<Map<String,UUID>>() {}. That way,
even generic types can conveniently be written and read.

Voir aussi

For more information about TypeTokens, refer to the guava documentation [https://github.com/google/guava/wiki/ReflectionExplained]

The types serializable using those methods are:

	Any basic value (see above)

	Any List or Map of serializable types

	The types java.util.UUID, java.net.URL, java.net.URI and java.util.regex.Pattern

	Any type that has been made serializable as described on the config serialization page

Defaults

Unlike the Sponge API, the Configurate library does not use Optional for values that might not be present but null.
While the getters for primitive methods (like getBoolean() or getInt()) might return false or 0, those
that would return an object (like getString()) will return null if no value is present. If you do not want to
manually handle those special cases, you can use default values. Every getXXX() method discussed above has an
overloaded form accepting an additional parameter as a default value.

Let us take a look at the example for reading a boolean value again.

boolean shouldEnable = rootNode.getNode("modules", "blockCheats", "enabled").getBoolean();

This call will return false if either the value false is saved in the config or the value is not present in the
config. Since those two cases are indistinguishable we have no simple way of setting our variable to false only if
that is the value specified on the config. Unless we specify true as the default value.

boolean shouldEnable = rootNode.getNode("modules", "blockCheats", "enabled").getBoolean(true);

Similarly, you can specify defaults on any value you get from the config, thus avoiding null returns or
ObjectMappingException caused by the absence of the whole value. It also works on the deserializing getValue()
method. Some examples:

String greeting = rootNode.getNode("messages", "greeting").getString("FLARD be with you good man!");

UUID mayor = rootNode.getNode("towns", "aFLARDia", "mayor")
 .getValue(TypeToken.of(UUID.class), somePlayer.getUniqueId());

Another useful application of those defaults is that they can be copied to your configuration if needed. Upon creation
of your root configuration node, you can create your ConfigurationOptions with setShouldCopyDefaults(true).
Subsequently, whenever you provide a default value, Configurate will first check if the value you’re trying to get is
present, and if it is not, it will first write your default value to the node before returning the default value.

Let’s assume your plugin is running for the first time and the config file does not exist yet. You try to load it
with ConfigurationOptions that enable copying of default values and get an empty config node. Now you run the
line rootNode.getNode("modules", "blockCheats", "enabled").getBoolean(true). As the node does not yet exist,
configurate creates it and writes the value true to it as per the ConfigurationOptions before returning it.
When the config is then finished, the value true will persist on the node without ever being explicitly set.

 Art Assets

Art Assets

This page provides the official SpongePowered logo and mascot. Feel free to use them to spread the word about Sponge.
However note that these images are not provided under the MIT License.

Note

If you’re reading a translated version, please note that the English license is the one which counts. Translated
licenses are only provided for informational purposes.

You may:

	Make minor modifications to Spongie’s facial expressions - such as making a cute smile,
making them perplexed or sad, adding a hat, and so on. It should be easily recognizable that the Spongie you create
is the Spongie mascot, but wearing a different expression or clothing.

	Use Spongie or the SpongePowered logo in an article or blog post about the Sponge project, and to spread the word.

	Use the SpongePowered Logo to link to Sponge Homepage [https://www.spongepowered.org]
(for example in your signature on forums etc.)

You may not:

	Use the mascot as a link to the Sponge project only. The SpongePowered logo (which retains Spongie’s form) is a better
representation of the Sponge project when used as an affiliate or reference.

	Create a vastly modified version of Spongie, where they become unrecognizable or clearly different from the
original Spongie mascot.

	Add your project image to Spongie, or vice versa.

	Claim Spongie as your own mascot, or use them as a mascot for your own project.

	Sell or use Spongie in commerce without permission.

	Change any colors or dimensions.

The Official Sponge Logo

[image: official SpongePowered logo]

Spongie - The Official Sponge Mascot

[image: Spongie the SpongePowered mascot]

 About the Sponge Project

About the Sponge Project

The articles in this section explain the purpose and goals of the Sponge project. Think of this section as an extended
FAQ. Rules and guidelines for the Sponge communication channels, including Sponge Forums, IRC Channels and subreddit,
and a Glossary of common terms, are also provided below.

If you refuse to read this section, Spongie will be very upset. Don’t make Spongie upset!

Contents

	Introduction

	Frequently Asked Questions

	The Structure of the Sponge Project

	Plans for the Future

	License

	Forum Posting Guidelines

	Forum & IRC Rules

	Staff

	Sponge Glossary

	Art Assets

	The History of Sponge

 Frequently Asked Questions

Frequently Asked Questions

	For Everyone
	What is Sponge?

	What is required to run Sponge?

	Where do I get Sponge?

	What Sponge implementations are available?

	Where do I get Plugins for Sponge?

	What happened to Bukkit?

	Can I run Bukkit Plugins with this?

	For Server Owners
	I’m a Server Owner! How Will Switching to Sponge Affect My Server?

	How Will Switching to Sponge Affect Players on My Server?

	For Developers
	What can I do with Sponge?

	What can’t I do with Sponge? / Limitations of Sponge?

	I’m a Bukkit Plugin Developer! Why Can’t Sponge Use Bukkit’s API?

	Will I Be Able to Access the Server Internals In My Plugins?

For Everyone

What is Sponge?

Sponge is a new versatile Minecraft API. It was made to enrich your Minecraft experience by allowing plugins to add
functionality to Minecraft. Read more about Sponge here: Introduction and about the history of Sponge here:
The History of Sponge

What is required to run Sponge?

Sponge (and Minecraft) needs the Java Runtime Environment to run properly. You will obviously need a computer to run
the server on too, besides that nothing is required. Learn more about choosing the correct Java version here:
../server/getting-started/jre/

Where do I get Sponge?

Beta development builds of SpongeForge and SpongeVanilla are already available:
Sponge Downloads [https://spongepowered.org/downloads]

What Sponge implementations are available?

The Sponge Project currently develops two implementations which both use the SpongeAPI:

	SpongeForge, a coremod for Minecraft Forge, which is an existing Minecraft modding framework famous for spurring
the Minecraft modding scene. Forge lacks a cross-version API, and this is where Sponge steps in. Sponge allows
server owners to deploy Sponge plugins with ease, making server management easier.
(SpongeForge was formerly known as Sponge, until it was renamed to avoid confusion).

	SpongeVanilla, a stand-alone implementation of the Sponge API, running on top of the vanilla Minecraft server.
(SpongeVanilla was formerly known as Granite, until the development teams merged).

Where do I get Plugins for Sponge?

On our official plugin repository, which is called Ore. Development has already started on GitHub. Temporarily, plugins
are hosted on the SpongeForums [https://forums.spongepowered.org/c/plugins/plugin-releases].

What happened to Bukkit?

The Bukkit project halted further development of their API and server modification. Shortly thereafter, one of the
contributors to Bukkit sent a DMCA takedown notice to stop further distribution of CraftBukkit. He was within his legal
right. Downloads, as well as source code, for CraftBukkit and its derivatives (such as Spigot and Cauldron) are no
longer publicly available. If you want to know the reasons why this affected Sponge development, have a look at our
history page: The History of Sponge

Can I run Bukkit Plugins with this?

Sadly no, not natively. Sponge is using its own API (Sponge API), while Bukkit is using the Bukkit API. However there is the
possibility that a third-party plugin for Sponge implements the Bukkit API on top of Sponge API.

For Server Owners

I’m a Server Owner! How Will Switching to Sponge Affect My Server?

For an existing Forge server, you will need to download Sponge and place it into the mods folder. The server can then
be started like any other Forge server.

Non-Forge servers may elect to use SpongeVanilla instead, an implementation that does not rely on Forge. There are
guides for migrating from Bukkit and/or Canary elsewhere on SpongeDocs. It is worth noting that many plugin developers
from the Bukkit community have thrown their weight behind Sponge, and are planning to make their plugins available for
Sponge-powered servers.

Worlds will be able to be ported over. It is up to plugin developers to create conversion processes that will allow you
to keep plugin data, if any exists. Some plugin developers may not do this.

On a related note, we will not be providing support for Bukkit plugins on Sponge. However, it may be possible for a
third-party to create a way for Bukkit plugins to work on Sponge.

How Will Switching to Sponge Affect Players on My Server?

Switching to Sponge should not affect players on your server. If you (as a server owner) migrate correctly, players will
be able to connect to your server the same way as they did before you migrated to Sponge. They will not need to have
Forge installed - unless your server runs Forge mods, of course.

For Developers

What can I do with Sponge?

Sponge provides a Plugin API. This means that you can create new content and gamemodes on the go.
Have a look at our plugin pages to get a quick-start: Creating a Plugin

What can’t I do with Sponge? / Limitations of Sponge?

Sponge can’t be used to create new blocks, textures, mobs on the clientside or any other content which would need
clientside modifications. The Sponge API wont support sending mods or plugins to the client for now due to security
concerns. However you can make use of the ForgeAPI for clients and create Sponge plugins for the serverside.
It is even possible to use Sponge on the client-side, but for several tasks mods are still required.

I’m a Bukkit Plugin Developer! Why Can’t Sponge Use Bukkit’s API?

Bukkit’s API contains code licensed under the GPL. This is a large reason why Bukkit met its demise in September 2014;
by moving forward with a new API licensed under the MIT license, we can avoid some of the problems that fell upon Bukkit.
While this does not free us from Mojang’s control, as their code is proprietary, it is our belief that Mojang supports
modding and will continue to do so.

Will I Be Able to Access the Server Internals In My Plugins?

Accessing the server internals (known as “NMS” or “net.minecraft.server” in CraftBukkit) can be done through MCP,
which has a large number of names de-obfuscated. However, be aware that accessing the server internals raises the risk
of your plugin breaking - this is your prerogative.

See Implementation-dependent Plugins for an introduction about using MCP in your plugin.

 License

License

SpongeForge, SpongeVanilla, SpongeCommon and the Sponge API are licensed under the MIT license. There is no contributor
license agreement, and contributions to the Sponge project are welcome. We also explicitly grant permission to distribute
SpongeForge in any third-party modpack.

The MIT license is an extremely permissive license, placing almost no restrictions on what can be done with Sponge.
The only requirement is that the copyright header must be left intact.

There is true value in licensing Sponge under the MIT license, especially when considering the fate of other projects
with goals similar to those of Sponge. The license offers peace-of-mind in ensuring Sponge has a bright future. Further
details on the license can be found at https://choosealicense.com/licenses/mit/.

 Sponge Glossary

Sponge Glossary

This is a guide to the more common reserved words, phrases and abbreviations used in the Sponge Project. Links are
provided in some cases to provide more information. It is not intended to be a guide to the SpongeAPI or Java.

Note

Terms are defined with reference to Minecraft and/or the Sponge Project as required.

Definitions

	API

	Application Programming Interface - a way of making modding easier.

	Contributor

	Someone who contributes code to the SpongePowered projects.

	Coremod

	A Forge mod that is loaded before any Mojang classes are loaded. The purpose of a CoreMod is to patch actual Minecraft
code. http://www.minecraftforge.net/wiki/Core_Mod

	Crowdin

	A web-based translation system for documentation. SpongeDocs uses it to provide translated Docs in many languages.
https://crowdin.com/project/sponge-docs

	Developer

	Someone who programs code (Sponge, Plugins, Mods, ...).

	FLARD

	It is green, edible, and explosive. Leave it alone and it will leave you alone.

	Forge

	A long-standing Minecraft modding API, with its own installer. Forge enables mods in single player, LAN, and on
dedicated servers. http://www.minecraftforge.net/wiki/

	GitHub

	A free public web-based system for sharing code and creating projects. https://github.com/

	Implementation

	A mod or program that enables the use of the SpongeAPI in Minecraft.

	IRC

	Internet Relay Chat, used as a chat platform. Provides chat rooms for all things Sponge.

	Issue

	A way of flagging problems, bugs, improvements, and things-to-do on GitHub and elsewhere. The Sponge project uses
GitHub as an Issue Tracker.

	Java

	The programming language that Minecraft and Sponge are written in, and require to run. https://java.com/en/

	MCP

	The Mod Coder Pack helps developers create mods for both the Minecraft server and client. http://www.modcoderpack.com/website

	Mixins

	Specialised program components that inject Sponge into Minecraft. https://github.com/SpongePowered/Mixin/wiki

	Mod

	A Minecraft modification that changes gameplay somehow. Mods written using the Forge API need Forge to work, but some
mods can be installed on their own.

	NPC

	Non-Player Character. Any character not controlled by a player, eg. a Villager.

	Ore

	The Official Sponge plugin hosting site, not ready yet. Use the Sponge Forums instead.

	Patreon

	A Service that allows for donations to projects and organizations. If you want to support Sponge, this is the place to
look at! Sponge Patreon Donation Page [https://www.patreon.com/Sponge?ty=h]

	Plugin

	A Minecraft mod that extends and changes Minecraft via the SpongeAPI, usable only on Sponge servers.

	Project Leaders

	The folks in charge of the entire Sponge Project, responsible for co-ordinating the activities of the various Teams and
sub-projects.

	Pull Request (PR)

	A method of submitting contributions to an open development project, such as the Sponge repositories on GitHub.

	Sponge

	The name of the entire project.

	SpongeAPI

	The Minecraft Plugin API developed by the Sponge project.

	SpongeCommon

	A repository of code common to the official SpongeAPI implementations, used in building them. SpongeVanilla and SpongeForge
use this repository.

	SpongeForge

	The implementation of SpongeAPI as a Forge Coremod.

	SpongeDocs

	Dedicated and frequently updated documentation, the best source of information on Sponge.

	Sponge Forums

	Home to the Sponge Project and the second best source of information on Sponge. Update announcements are posted
regularly. https://forums.spongepowered.org/

	Sponge Foundation

	The financial side of the project, a separate entity that accepts, manages and distributes donations.
http://spongefoundation.org/

	SpongeVanilla

	An implementation of Sponge API that runs on Vanilla Minecraft (and not Forge).

	Spongie

	The Sponge Mascot, a valiant little Sponge with a red cape.

	Spongy

	The sponge GitHub Bot that makes PR previews for the Docs.

	Team Leaders

	The people who directs the Teams (WebDev, Docs, SysOps, subreddit, IRC).

 Forum Posting Guidelines

Forum Posting Guidelines

Read Before Posting

If you are confused or curious about Sponge, we strongly recommend reading the Frequently Asked Questions.

Please refrain from posting topics asking for basic information about Sponge, like “Is Sponge a Forge mod”, “When
will Sponge be released”, etc. Answers to those questions can be found here in SpongeDocs.

Before you post a new topic on Sponge Forums, please make sure it’s not redundant questions or information! Use the
Search feature (top right of page) or check the Your topic is similar to... box that appears above the pane when
creating a new topic (it updates as you add stuff to your topic). If there is a similar topic, you should probably
continue your discussion there!

Discussions about other APIs are allowed so long as they don’t turn nasty.

Still need more info? Take a look at the Sponge resources in the Enoviah Documentation, check the Forum Announcements [https://forums.spongepowered.org/c/announcements], or to track Sponge’s progress, follow them on Twitter [https://twitter.com/SpongePowered] or watch Sponge GitHub [https://github.com/SpongePowered]. If you are really
keen to help development, look at Contributing to Sponge.

Forum Rules

	A complete list of rules and guidelines for Sponge Forums can be found in Forum & IRC Rules.

Categorizing Your Posts

When creating new topics, use the drop down menu to the right of the topic title to set its category. Try to make sure
this category fits what you’re posting about. If you don’t know what a category implies, a description is next to each
one in the drop down.

Thanks for reading & welcome to the Sponge community!

 Plans for the Future

Plans for the Future

There is a lot we would like to do. Specifically:

	If Mojang releases an official modding API, we are interested in building the Sponge API on top of Mojang’s modding
API so Sponge plugins will work on both.

	We may support client-side Sponge mods that could perform a variety of functions related to the client.

There are also some things we have decided not to do:

	We will not support Bukkit plugins natively.

	We will not send Forge mods from the server to the client because of security concerns.

	We will not develop implementations using other programming languages, but we encourage others to do so. Our focus is
on Java.

 Staff

Staff

Below is a list of staff members of the Sponge project. Each section is presented alphabetically.

Sponge Leaders

The Sponge Leaders are the stewards of the Sponge project, and make the final decisions to ensure the project
operates efficiently.

	Name
	Role

	blood
	Implementation (Forge) Leader

	gabizou
	API Design Specialist & Leader

Discord Manager

	Zidane
	API/Implementation (Vanilla) Leader

Project Managers

The Project Managers of Sponge each coordinate a separate aspect of the Sponge project.

	Name
	Role

	Dockter
	Chief Financial Officer

Chief Technology Officer

	Inscrutable
	SpongeDocs Chief Editor

	lukegb
	Systems Manager

	Me4502
	Subreddit Manager

Developer

	Owexz
	Forum & Community Manager

Website Manager

	phroa
	IRC Manager

	Tzk
	Website Manager

Editor

	windy
	Ore Manager

Developer

API and Implementation Developers

The API and Implementation Developers work on producing SpongeAPI, and the two official implementations
SpongeForge and SpongeVanilla.

	Name
	Role

	Aaron1011
	Developer

	Dark_Arc
	Developer

	DDoS
	Developer

	Deamon
	Developer

	dualspiral
	Developer

	Faithcaio
	Developer

	JBYoshi
	Developer

	kashike
	Developer

	Minecrell
	Developer

	Mumfrey
	Bytecode Engineer

Developer

	simon816
	Developer

	zml
	Developer

Systems Maintainers

The Systems Maintainers ensure the efficient performance of Sponge’s servers.

	Name
	Role

	GenPage
	Systems Management

	progwml6
	Systems Management

Web Development

Web Developers

Our Web Developers maintain, update and integrate the Sponge website.

	Name
	Role

	jamierocks
	Web Development

SpongeDocs Editors

The SpongeDocs Editors write, edit, and maintain articles for Sponge’s official documentation.

	Name
	Role

	12AwsomeMan34
	Editor

Moderator

	ST-DDT
	Editor

	ZephireNZ
	Editor

	Zirconium
	Editor

Moderator

Moderators and Support

Moderators and members of the Support Team patrol the forums and IRC channels, and help when needed.

	Name
	Role

	gravityfox
	Moderator

	Grinch
	Moderator

	Hassans6000
	Moderator

	Lemonous
	Moderator

	mbaxter
	Moderator

	ryantheleach
	Moderator

	worm424
	Moderator

Retired Staff

These people have assisted with the Sponge project in various ways, but are no longer actively involved. This list is
here to thank them and acknowledge their valuable contributions.

	Name
	Former Role

	AzureusNation
	Developer

	Boformer
	Editor

	Cedeel
	Editor

	DarkArcana
	Community and IRC Manager

	Disconsented
	Moderator

	drtshock
	Moderator

	FerusGrim
	Moderator

	gratimax
	Web Manager and Developer

	hawtre
	Editor

	jckf
	Developer

	kitsub
	Developer

	kobata
	Developer

	Kodfod
	Docs Chief Editor

	Kornagan
	Developer

	modwizcode
	Developer

	Pandette
	Editor

	Saladoc
	Editor

	sibomots
	Developer

	sk89q
	Resources Leader

	theresajayne
	Developer

	TnT
	Moderator

	Tyrannokapi
	Editor

	Voltasalt
	Developer

 Forum & IRC Rules

Forum & IRC Rules

Welcome to the Sponge Project! We’re glad you’re here and interested in Sponge. We have a few rules that apply to all
of our various methods of communications, including (but not limited to):

	Official IRC channels: #sponge, #spongedev, #spongedocs

	Sponge Forums

	GitHub and Bug/Issue tracker

	Sponge Discord

	Sponge subreddit

	Sponge TeamSpeak Server

	Any other official means of communication by the Sponge project.

The Sponge project adheres primarily to Wheaton’s Law: “Don’t be a dick.” We expect everyone using our communication
systems to act like a reasonable and responsible person, showing respect for other users and staff.

Read on for some more specific guidance, but please remember these rules are meant to be general, not a comprehensive
list of do’s and don’ts. This stuff should all be common sense.

	Follow Support Guidelines (when they exist) for any issues you may have.

	Don’t abuse the channel (IRC, Forum, Discord, etc). This means don’t spam, multipost, crosspost, or flood it. Be nice and
remember that we’re all sharing the same virtual space.

	Try to keep the language at least PG-13. We’re not your nanny and we’re not going to give you grief over the odd curse
word, but keep it within the bounds of reason and courtesy.

	Racism, sexism, bigotry, or hateful language is forbidden. Don’t even try it. This is a strict rule - don’t break it.

	Be nice to the operators and admins. They are volunteers, and their time is frequently limited. While they are very
often happy to talk with you, please don’t overdo private messages, pinging ops in IRC, and so forth.

	Only private message ops/mods if something needs to be kept private, they are not your personal search engine.

	Please avoid discussions of politics, religion and similar controversial topics. Not only is it not relevant to Sponge,
it tends to create conflict where there doesn’t need to be any.

	Don’t bash other projects, Mojang, or people associated with them.

	Don’t ask when Sponge will be ready. It’ll be done when it’s done. When it’s done, don’t ask for updates. They come
out when they come out. This is a general rule for all open source projects.

	Advertising in any form is prohibited on any Sponge system. This includes but is not limited to advertising your
favorite server hosting company, the server you play on, some piece of software you use for fun, another game, or
whatever. Some exceptions are made in Off-Topic sections and are solely at the discretion of moderation staff.

	Do not attempt to make a sale or sell anything on Sponge websites or systems. This includes but is not limited to
plugins (mods or any variation of the term), art assets, services, or any work to be provided. We specifically
allow offering a bounty in an original post in the Devs Wanted area, and developers may seek commissioned work
in the Devs Available category. Any further discussion of payment in these (or any other) threads is prohibited.
	Users may post job advertisements (with or without a bounty) within the “Devs Wanted” Category, however they must
follow the Dev Wanted Template and Rules [https://forums.spongepowered.org/t/devs-wanted-template-guidelines/15531].

	Users may post job requests (with or without rates) within the “Devs Available” Category, however they must follow
the Dev Available Template and Rules [https://forums.spongepowered.org/t/devs-available-template-guidelines/15532].

	If it comes to our attention that a “lite” version plugin hosted by Sponge is being used as a promotion as a for-sale
“premium” version, we reserve the right to remove the plugin listing. What constitutes a “lite” or “premium” version
will be decided at the discretion of Sponge Staff.

	Please don’t include Sponge in your plugin name. We reserve the use of Sponge for official SpongePowered works.
There are two exceptions: You may append “for Sponge” to the title if your plugin also has versions for other APIs,
and you may use Sponge in the title if your plugin primarily concerns the Minecraft block “Sponge”.

	We aim to comply entirely with the Mojang EULA, to that end any plugins, services, posts and/or links suspected of
violating the EULA may be removed at the discretion of the Sponge Staff or at the request of Mojang AB.

	Don’t spread rumors or falsehoods about the Sponge projects, staff members, affiliates or partners of Sponge, or any
other defamatory statements that might harm the project.

	If you’re banned or suspended, it is for a reason. Don’t evade or attempt to get around bans.

	The moderator, administrator or manager(s) of the various communication channels in use by the Sponge project shall
have the last word in any dispute.

Note

Any of the above rules are subject to change at any time without warning. Any content found to be in violation of
these rules, even if the content was created before a rule was in place, can be removed by moderator approval. These
rules apply generally to all Sponge methods of communication, but each individual sub method (eg: subreddit or Forum
category) may have its own set of additional rules and guidelines to add on top of these general rules. If this is
the case, both sets of rules must be followed. Rules and guidelines evolve as the Sponge community evolves. Use only
as directed; excessive use of FLARD may rot your socks.

 The Structure of the Sponge Project

The Structure of the Sponge Project

The Sponge Project consists of different subprojects, hosted in various repositories on GitHub. Here’s a short overview
before going into detail:

	Project
	Description
	What is done in the repository?

	SpongeAPI [https://github.com/Spongepowered/SpongeAPI]
	The API itself
	Development of the API itself

	SpongeForge [https://github.com/Spongepowered/SpongeForge]
	A SpongeAPI implementation built on top of Forge
	Development of the parts of SpongeForge which rely on Forge

	SpongeVanilla [https://github.com/Spongepowered/SpongeVanilla]
	A SpongeAPI implementation built directly on top
of Vanilla Minecraft
	Development of the Vanilla Counterpart of the SpongeForge repository

	SpongeCommon [https://github.com/Spongepowered/SpongeCommon]
	The shared code between SpongeForge and SpongeVanilla
	Development of all code which is shared between SpongeForge and SpongeVanilla

	Mixin [https://github.com/Spongepowered/Mixin]
	The tool used to inject the implementations into
the underlying code structure
	Development of our solution to hook Sponge into the Minecraft server

	SpongeDocs [https://github.com/Spongepowered/SpongeDocs]
	The official SpongeProject Documentation
	Expanding, fixing and writing the SpongeDocs

	SpongeHome [https://github.com/Spongepowered/SpongeHome]
	The website for the SpongeProject
	Development of our website

	Ore [https://github.com/Spongepowered/Ore]
	Plugin hosting solution
	Development of our plugin hosting solution

SpongeCommon, SpongeForge and SpongeVanilla

The SpongeCommon repository is the base which contains all code which is shared between the SpongeForge and SpongeVanilla
implementation. The SpongeForge and SpongeVanilla repositories contain all code which can’t be shared between them, as
Forge requires some Forge specific things which won’t work on Vanilla and vice versa.

When you refer to the SpongeForge implementation, you’re basically talking about everything contained in the
SpongeCommon and SpongeForge repositories. The same applies for SpongeVanilla and SpongeCommon. This is the reason why
building SpongeForge or SpongeVanilla from the repository without including SpongeCommon won’t work.

SpongeHome

SpongeHome is the SpongeProject’s website. It’s written in Golang, using the go-macaron library. It uses SCSS as it’s
CSS preprocessor.

Ore

Ore is our very own plugin hosting solution. It’s written in Scala, based on the Play Framework and of course open-source!

How everything is tied together

The image shows the various parts of the Sponge Implementations and how they interact with each other and their dependencies.
On the left side is a typical SpongeForge setup with some SpongeAPI plugins, a Forge mod and a hybrid which uses Forge
(as a mod) and Sponge (as a plugin) to interact. On the right side there’s a typical SpongeVanilla setup. You’ll notice
that SpongeVanilla doesn’t support Forge mods or the hybrid, because SpongeVanilla is missing the Forge functionality:

[image: Repo Overview]

 The History of Sponge

The History of Sponge

	This page is split into two main parts:

	
	the history of the project itself

	the history of our beloved mascot Spongie

The History of the Project

Sponge was founded as a better alternative to the APIs that were available as of September 2014. The Sponge Staff
consists of many people from different Communities, eg. Spout/Spoutcraft, Forge, Cauldron and a few others.

When the development of Bukkit and Cauldron reached an abrupt end, the Minecraft community was shocked. Several
developers from the above mentioned communities gathered in #nextstep on Esper.NET and discussed the future of Minecraft
modding. It was decided that there certainly was a demand for a new API as the CraftBukkit repository (Cauldron too)
was taken down.

	Several goals should be achieved with the new API:

	
	consistency

	stability across Minecraft updates

	ease of use

	compliance with the Mojang EULA

	protection against DMCA takedowns

While the goals were mostly clear, the route to be taken was not. The soon-to-be Project was still nameless too. The
first mention of Sponge as the projects name was on Sept, 6th by Firehead94. Obviously the name stuck.

The initial commit to SpongeAPI and SpongeForge was made on September 7th and 8th, 2014 by one of the Sponge
Project leaders, Zidane. This was the beginning of the development of the SpongeAPI and SpongeForge (named Sponge at the time).

On September 7th, 2014 the initial commit to Granite, an API based upon Vanilla Minecraft was made. Granite, originally
started as an independent project, was planned to implement it’s own API and the SpongeAPI. Granite and SpongeForge
coexisted until April 20th, 2015.

The development of SpongeForge and the API gained momentum leading to a first API release on December 1st, 2014. However this
version was far from feature complete and an API-only release, meaning that there was no official implementation available
at that time.

On December 26th, 2014 the Granite Team decided to limit Granite to the usage of SpongeAPI. That made Granite the first
unofficial Sponge Implementation for Vanilla Minecraft. On March 26th, the Granite Team finally joined the Sponge Team
and Granite became SpongeVanilla, the official SpongeAPI implementation for Vanilla Minecraft. About a month later the
unification of the Granite and SpongeForge codebase began in SpongeCommon. SpongeCommon was created to hold all
shared code between the two implementations while implementation-specific code remains in SpongeVanilla and SpongeForge.

On April 21st, 2015 SpongeAPI 2.0 was finally released. On April 25th, 2015 development builds of SpongeForge
(#428, Inspired Wallaroo) were finally made available. The first alpha build of SpongeVanilla (DEV#17) was
released on September 13th, 2015.

On December 31st, 2015 SpongeAPI 3.0.0 was released, along with SpongeForge (#1000) and SpongeVanilla (#129)
entering their beta.

Spongie - our Mascot

Spongie is our friendly, helpful and somewhat soaky mascot. Don’t make her cry, as she’s a very sensitive person.

The History of Spongie

Spongie first appeared in #Sponge on Esper.NET around September 2014. She was created and posted by
DragonsPainter [http://dragonspainter.deviantart.com/]. Strad, another user, felt that Spongie would look better with
a moogle-like antenna, a Forge furnace instead of a Cauldron and replaced the Spigot with Spout. An anonymous user then
removed all labels and introduced her as the icon and background logo for the Sponge reddit section.

This older version of Spongie sadly isn’t available as vector graphic. Thus Sponge staff decided to create a new
vectorized version. Two new drafts were then posted on
State of Spongie [https://forums.spongepowered.org/t/state-of-spongie-wip/6194]. The currently used assets are
located here.

 Introduction

Introduction

What Is Sponge?

The purpose of the Sponge project is to create a plugin development framework for Minecraft. Sponge is being created by
a global community, and its open-source nature means anyone can participate.

Sponge was created after seeing the failures of other projects in the Minecraft plugin development community. We are
trying to avoid making the same mistakes as other projects; thus:

	Sponge is an extremely open project.

	Sponge is licensed under the MIT license - an extremely permissive open source license.

	Performance is of high priority.

Most plugins developed with the Sponge API should work across several different versions of Minecraft without needing
to be updated. This means that, for the most part, server owners do not need to worry about plugin incompatibilities.

We have two other projects in addition to the Sponge API:

	SpongeForge, a coremod for Minecraft Forge, which is an existing Minecraft modding framework famous for spurring
the Minecraft modding scene. Forge lacks a cross-version API, and this is where Sponge steps in. Sponge allows
server owners to deploy Sponge plugins with ease, making server management easier.

	SpongeVanilla, a stand-alone implementation of the Sponge API, running on top of the vanilla Minecraft server.
(SpongeVanilla was formerly known as Granite, until the development teams merged).

Players on servers running SpongeForge or SpongeVanilla do not need to install any client-side mods. They are able to join
servers running Sponge using the vanilla Minecraft client provided by Mojang.

The Sponge API is not tied to any platform. This means that server owners can run Sponge plugins on any official
implementation of the Sponge API. Sponge plugins should function identically on either implementation, due to the
common functionality of mixins.

Where Can I Download Sponge?

Beta development builds of SpongeForge and SpongeVanilla can be found here:
Sponge Downloads [https://spongepowered.org/downloads]

Who Is behind Sponge?

The project leaders are blood, gabizou and Zidane. We are trying to be very open with the team to ensure the project leaders
do not end up “holding all of the keys.” Nonetheless, these three people make the final decisions to ensure the efficient
operation of the project.

A full list of staff members is located at Staff.

Our developers are well-versed with Java, and many of them have worked with Minecraft for years and know the ins-and-outs
of its mechanics. There are tons of very good developers working on the Sponge project, and it would be nearly impossible
to list all of them!

 Preparing for Development

Preparing for Development

The articles in this section explain how to set up your development environment.
This is intended for developers who wish to develop plugins with the Sponge API and for developers who wish to
contribute to the Sponge project.

Contents

	Installing the JDK

	Installing an IDE

	Installing a Text Editor

	Installing Git

 Installing Git

Installing Git

Git is an open-source version control system, and helps tremendously with collaborative project development.

The Sponge project, alongside thousands of other open-source projects, hosts its Git repositories on GitHub. Thus,
Git is a crucial tool in the development of Sponge and the Sponge API.

The Git website [https://www.git-scm.com/] has substantial documentation, and their downloads page offers a range
of options for GUI clients suitable for various operating systems.

Download

Windows

GitHub Desktop [https://desktop.github.com/] is an easy method of installing Git on Windows, because Git is
included as a part of the software.

Rebooting your computer after installing Git is recommended.

Mac

There are a couple of ways to install Git on macOS.

The easiest method is to install Xcode Command Line Tools.

Avertissement

These instructions do not work on Macs running a version older than Mavericks. If you are running a version of OS X
older than Mavericks, install the GitHub client instead.

	Launch the Terminal.

	Run xcode-select --install.

	Install it, and grab a cookie while you wait.

	Run git from the Terminal.

Alternatively, you can install GitHub Desktop [https://desktop.github.com/]. Git is available as a part of the GitHub
Desktop installation.

Rebooting your computer after installing Git is recommended.

Linux and Unix

The simplest method of installing Git on Linux is by using the package manager that came with your Linux distribution.

Note

You may need to prefix these commands with sudo.

	Launch the Terminal.

	Run apt-get install git if you are on a Ubuntu or Debian-based distribution. Run yum install git if you are on Fedora.

GitHub Desktop is currently not available for Linux, unlike Windows and Mac.

Rebooting your computer after installing Git is recommended.

Setup

Who Are You?

Before you even start to work with git and the repository, make sure your
git configuration has your identity set up. Open up your CLI and enter:

git config --list

Look for user.name and user.email. If they are not the same username and email as your GitHub account
then set them:

git config --global user.name "John Doe"
git config --global user.email johndoe@example.com

Astuce

Do not proceed with any contribution in any Sponge repository until you establish your user.name and user.email.

 Installing an IDE

Installing an IDE

What is an IDE?

The installation of an IDE - also known as an integrated development environment - is recommended for developing Sponge
plugins and/or working on Sponge itself. An IDE auto-completes names and notifies you of errors, such as mismatched
braces, in your code.

Which one should I choose?

Every IDE has its pros and cons, and there is no single best IDE for Sponge development. The IDE you choose to use is
largely a matter of personal preference. That being said, it is worth mentioning that IntelliJ IDEA Community Edition [https://www.jetbrains.com/idea/download] is fairly popular amongst a majority of the core Sponge team.

Downloads

	IntelliJ IDEA [https://www.jetbrains.com/idea/download/]

	Eclipse [https://www.eclipse.org/downloads/]

	NetBeans [https://netbeans.org/downloads/index.html]

 Installing a Text Editor

Installing a Text Editor

Articles on SpongeDocs are saved as text files in the reStructuredText [http://sphinx-doc.org/rest.html] markup
language. Although your operating system’s default text editor is likely sufficient for editing these files, installing
a different text editor may prove to be useful.

Downloads

Atom

Atom is an open-source text editor published under the MIT license. Atom has built-in support for projects stored in a
Git repository, such as SpongeDocs. This article [https://blog.atom.io/2014/03/13/git-integration.html] goes more in
depth about the features of Atom’s Git integration. If you’re interested in adding reST support to Atom, check out
this package [https://atom.io/packages/language-restructuredtext].

Atom can be downloaded for free from https://atom.io/.

Notepad++

Notepad++ is, arguably, one of the most popular text editors.

Notepad++ can be downloaded for free from https://notepad-plus-plus.org/.

Sublime Text

Sublime Text is a multi-platform text editor, with quite a few useful features. It includes the ability to customize the
look of the editor, create useful macros, and even includes a plugin API to make your editing even easier. Sublime Text
provides both a free version and a paid version.

Sublime Text can be downloaded for free from https://www.sublimetext.com/

 Installing the JDK

Installing the JDK

The Java Development Kit - also known as the JDK - is required in order to develop Sponge plugins and/or work on Sponge
itself.

Download

Before installing the JDK, uninstall any older versions of Java that are present on your computer.

Note

Sponge contributors and Plugin authors must use JDK 8, as older versions of Java are no longer supported.
Be aware that some Minecraft servers have still not yet migrated to Java 8. To run Sponge and its plugins
properly you must update to Java 8, as Sponge won’t run on older versions (ie. Java 6 and 7).

Oracle provides free downloads of the Java Development Kit on their website. Ensure that you are installing the JDK
(Java Development Kit), not the JRE (Java Runtime Environment). There is a difference between the two.

	Java Development Kit 8 [https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html]

Upon completion of the installation process, reboot your computer. The JDK should then be ready for use.

 Contribution Guidelines

Contribution Guidelines

There will always be a need for developers to help us improve SpongeAPI. There is no such thing as a perfect project and
things can always be improved. If you are a developer and are interested in helping then please do not hesitate. Just
make sure you follow our guidelines.

Note

Developers who show determination and consistency in their contributions to the project may be invited to join the
Sponge Staff by Team Leaders, at their discretion. There is no formal application process.
Please don’t ask to be staff, we’ll ask you.

General steps

	Setup your workspace as described in Preparing for Development.

	Make sure you’re familiar with Git and GitHub. If your knowledge needs a refresh, take a look here: How to Git(Hub)

	Check for existing issues in the SpongeAPI [https://github.com/SpongePowered/SpongeAPI/issues],
SpongeCommon [https://github.com/SpongePowered/SpongeCommon],
SpongeForge [https://github.com/SpongePowered/SpongeForge],
SpongeVanilla [https://github.com/SpongePowered/SpongeVanilla], and
SpongeDocs [https://github.com/SpongePowered/SpongeDocs] repositories. There is possibly someone else already
working on the same thing. You can also check
issues marked with “help wanted” [https://github.com/SpongePowered/SpongeAPI/labels/help%20wanted] for existing
issues we need your help with.

Note

Please don’t submit pull request for small changes under 20 lines. Instead, join #sponge on IRC (irc.esper.net) [https://webchat.esper.net/?channels=sponge] or join #spongedev on IRC (irc.esper.net) [https://webchat.esper.net/?channels=spongedev] and we’ll change it together with the other smaller changes.

	If the issue requires a bigger change you may want to submit the issues without the necessary changes first, so we
can confirm the issue and know that you’re working on fixing it. You should also create a WIP (work in process) pull
request prefixed with [WIP] early so we can already start reviewing them.

	Fork the project, clone it and make your changes in an extra branch.

	Test your changes (make sure it compiles!), commit and push them to your fork.

	Submit the pull request with a short summary what you’ve changed and why it should be changed in that way.

	If you make additional changes, push new commits to your branch. Do not squash your changes, that makes it
extremely hard to see what you’ve changed compared to the previous version of your pull request.

	Make sure your PR is rebased to the latest changes of the branch you’re intending to merge it into. If you need help
rebasing it, just ask!

Astuce

If you’re unsure which branch you should base your work on, read about our Versioning System and Repository Branch Layout before submitting your PR.

 Contributing to Sponge

Contributing to Sponge

This section shows you how to get involved with Sponge.

What are the projects I can help with?

The Sponge Project and its parts are maintained on GitHub [https://github.com/spongepowered]. If you’re unfamiliar
with GitHub and the tool git, then take a look at How to Git(Hub) first. A read of our Contribution Guidelines is strongly
advised before starting any work. There are several projects we’re currently maintaining:

	SpongeAPI

	SpongeForge

	SpongeVanilla

	SpongeCommon

	Mixin

	SpongeDocs

	Ore

If you want to know more about the structure of the project and how everything is tied together, head over to
The Structure of the Sponge Project.

What kind of help is needed?

Basic contributions

This can be done by almost everyone. You don’t need to know a programming language like Java or Python to:

	test SpongeForge or SpongeVanilla and report bugs or usage quirks

	report or suggest any errors, faults or bugs you encounter

	post suggestions or idea you have which would make Sponge better

Reporting bugs best via our GitHub repositories [https://github.com/spongepowered/], suggestions fit onto our
forums [https://forums.spongepowered.org/]. Just have a look at our
Bug Reporting page for further instructions.

Intermediate Contributions

You should at least have basic knowledge of Java, Python or reST to help out on the following tasks:

	help fixing bugs

	finish the implementation of the API (SpongeForge and SpongeVanilla)

	help writing the SpongeDocs

	help translate the Docs on Crowdin [https://crowdin.com/project/sponge-docs]

	help out developing Ore

The development of the Sponge API [https://github.com/spongepowered/SpongeAPI],
SpongeForge [https://github.com/spongepowered/SpongeForge],
SpongeVanilla [https://github.com/spongepowered/SpongeVanilla] and Ore [https://github.com/spongepowered/Ore] as
well as the SpongeDocs [https://github.com/spongepowered/SpongeDocs] is done in several repositories hosted on GitHub.

Advanced Contributions

And finally these are the most difficult things you can help out with. Advanced knowledge of Java, Minecraft and at
least basic knowledge of the Sponge API [https://github.com/spongepowered/SpongeAPI] and its
structure [https://jd.spongepowered.org] is strongly advised before attempting to help out with:

	adding functionality to the API (Submitting a Pull-Request)

	implementing advanced API functionality in the implementations

Contents

	Contribution Guidelines

	How to Git(Hub)

	Developing Sponge
	Code Style

	Git Workflow for API and Implementations

	Submitting a Pull-Request

	Debugging Sponge Within the IDE

	Mixins

	Implementing DataManipulators

	SpongeDocs Writing

	Porting Sponge to Other Platforms

	Versioning System and Repository Branch Layout

 Versioning System and Repository Branch Layout

Versioning System and Repository Branch Layout

With the release for beta we’ve moved the SpongeAPI versioning to semantic versioning (see http://semver.org/).
This change means that every time that we make a release we have to increment the version according to the rules
of semver.

SemVer

SemVer uses the scheme X.Y.Z, where X is a major version, Y is a minor one and Z finally is a
patch version.
A release containing changes which are not backwards-compatible must be one major version ahead of the previous
release. If there are only new features that are still backwards compatible, then the new release will be one minor
version ahead of the previous release, and if the release strictly contains bugfixes then only the patch version will
be incremented.

This means that for example 3.2.0 is fully compatible to 3.0.0 while 4.0.0 isn’t binary compatible to
3.0.0. 3.1.0 and 3.1.2 are fully interchangeable besides the bugs that were fixed.

The layout of our branches (described below) is designed to assist this process by allowing us to make minor releases
without a breaking change forcing us to make it a major release. This branch layout applies to the SpongeAPI,
SpongeCommon, SpongeForge, and SpongeVanilla repositories but not to the SpongeDocs.

SpongeAPI, SpongeCommon, SpongeForge and SpongeVanilla

The Bleeding Branch

The core of our repositories is the bleeding branch. Almost all changes will be added to bleeding, including
new features, changes, and bugfixes. The version of bleeding will always be the next major release version
appended with -SNAPSHOT (eg 6.0.0-SNAPSHOT) to denote that it is not yet a final build and subject to change.

The primary reason for having the bleeding branch is to have a testing ground for changes. Even experienced
members of the Sponge team can accidentally cause a build to fail or miss a bug. The bleeding branch will be
tested by people in the community that want the very latest, and it means that we can fix bugs that arise far more
readily.

Stable Branches

Stable branches represent a much more stable platform which plugins and server implementations can be built upon. There
will be no breakages to API, only non-breaking additions. There is a branch named after each major API release, which
contains the latest API/implementation for that release including any minor or patch releases.

When the time comes to release a major version, a new stable-x branch will be created from bleeding, where
x is the new major version - for example, stable-5. bleeding will be appropriately updated to be the next
major release as described above.

Changes that have been in bleeding for a while, which have no known bugs, and that can be applied to a previous
major release will be cherry-picked to the relevant stable branch for future release. Changes will be grouped into
a new minor version, unless an immediate fix is preferred in which case a bugfix version will be created instead. When
a version is released, the API repository will have a tag created pointing to that release’s commit.

Feature Branches

New features or changes should be created in a feature/foo or fix/bar branch. This should be based on the most
recent commit to bleeding. The only exception to this is if the changes are incompatible with the breaking changes
in bleeding, in which case you should base against the relevant stable-x. You should state in your pull
request why your change cannot be included in bleeding - such as fixing a bug in a feature that was removed by
Mojang in a later release.

If the changes made are not breaking for a previous release, the Sponge team may also cherry-pick the changes to one
or more stable branches assuming that no problems arise after the change is merged into bleeding.

SpongeDocs

The SpongeDocs themselves are unversioned following our philosophy that they will never be finished, but instead in a
constant flux of ever increasing usability. However they target a specific version of the API, generally the most
recent release of SpongeAPI.

Core Branch

The core branch for the SpongeDocs is master. Each new commit to master triggers a rebuild of the docs website [https://docs.spongepowered.org/]. Commits to master are generally made to document the most current SpongeAPI
release or to fix minor mistakes on the Docs.

Feature Branches

Whenever a new feature is described, older texts are updated or reworded or the documents are restructured, it is done
in a feature/foo or fix/bar branch. Those branches will then be reviewed and, once they are deemed complete,
may be merged.

A feature branch may only be merged into master if the changes / additions made in it are correct regarding the
SpongeAPI release currently targeted by the SpongeDocs. Any feature branches that describe features not yet included
in a release stay unmerged until the corresponding API version is released and becomes the new targeted version for the
SpongeDocs. However the Docs team might collect additions for a specific version on a single branch.

[image: release branch example]

Release Branches

SpongeDocs uses release/x.y.z branches to publish Docs for older API versions like API 3.1.0. Older API releases
are available on their respective branches. Whenever a new API version is released, the Docs Staff will create a new
release/x.y.z branch and bump master to the new API version afterwards. A commit to a release branch also
triggers a rebuild of the older Docs release, just like on the core branch.

 SpongeDocs Writing

SpongeDocs Writing

The Sponge documentation, also referred to as “SpongeDocs”, is the official documentation of the Sponge project. The
goal of SpongeDocs is to:

	Help users set up their own servers powered by a Sponge implementation.

	Provide developers with information on how to contribute to the Sponge project.

	Provide developers with information on how to get started with plugin development.

Reporting Problems

It may always occur that a page gets outdated, an error sneaks in or you just look at a page and think “Well, there is a
better way of explaining this.” If that is the case and you are for some reason not able to provide a fix yourself,
there are three ways of making us aware of the problem:

	Create an Issue on the SpongeDocs GitHub [https://github.com/SpongePowered/SpongeDocs/issues]

	Create a Posting on the SpongeDocs Forums Category [https://forums.spongepowered.org/c/sponge-docs]

	Visit us in the #spongedocs channel on irc.esper.net (you need to be registered)

Writing the Docs

Changes and additions to SpongeDocs should be submitted as a pull request to the SpongeDocs repository on GitHub [https://github.com/SpongePowered/SpongeDocs]. We do not require it to be perfect right away as it is common for pull
requests to be refined during the review process. Incomplete explanations are also welcome, so don’t shy away if there
are some parts you do not understand. There will always be someone able to fill in the gaps.

The Docs are written in reStructuredText (reST), if you’re familiar with Markdown (md) the step to reST shouldn’t be to
hard. If you’re having issues with it we suggest that you join our forums [https://forums.spongepowered.org/] or
#SpongeDocs on Esper.net and ask for help there.

Style Guide

To make sure we have consistent format across all SpongeDocs pages, here are the guidelines we have developed for
writing Sponge Documentation. This list may get added to (or bent out of shape) as the Docs get bigger.

	Headings Should Be Written in Title Case (<- example) [unless #8 applies].

	Page headings should be meaningful (the heading appears as a link).

	Program code should be contained in inline literals [http://docutils.sourceforge.net/docs/ref/rst/roles.html#literal]
or code blocks.

	Try not to put too much text in code blocks, as they cannot be translated.
Contributors are discouraged from commenting in code blocks wherever possible. Simple place-holder text may be
necessary in some examples. Ideally, code block examples will be short, and followed by an explanation for each
example in the body text. Of course, there may be some concepts that cannot be illustrated with a short example.

	Keep separate areas for Users, Plugin Devs, and Sponge Devs.

	Avoid repetition by sharing pages where possible.

	Link to external resources rather than reproduce them.

	Some exceptions are made for translation purposes.

	Make distinction between SpongeForge, SpongeVanilla and SpongeAPI.

	If it looks awful in your language, invent your own rules.

	Sponge is the Project Title and should NOT be translated.

	Some languages may wish to use a phonetic translation as well.

	Automated translations (eg. Google Translate) are strongly discouraged. These often contain serious errors, and are
very likely to be rejected.

	Page Titles and Section Headings should be plain text, avoiding literal blocks and other formatting.

	Code symbols should be capitalised in their original form and have no extra spaces (eg. blockState (a field name) or
BlockState (a class name), rather than block state). They should also be formatted as a literal using double
backticks (eg. blockState) in body text.

	Lines should have a maximum length of 120 characters.

	Imports should be written out in code blocks the first time they are referenced in each article, but not repeated
after the first time.

Note

As Sponge is still in a state of flux, a shortfall of development docs is to be expected. Until official release of
Sponge, there are sure to be voids in many subjects. Nevertheless, SpongeDocs is a living document, always subject
to edit. It’s never going to be perfect, just beaten into shape as needs demand.

Contributions, suggestions and corrections are always welcome.

 How to Git(Hub)

How to Git(Hub)

If you want to assist in creating Sponge, you have an awesome addition to the API, or you want to improve our Docs,
then you’ll need to become familiar with git and GitHub. If you’re already familiar with forking, branches,
issues, pull-requests and commits, then just skip this topic. If you have no clue what we’re talking about, then read on.

Note

This guide assumes that you’ve read Installing Git and that you’ve already setup your machine with a Git
client of your choice.

The Basic Concept of Git and GitHub

Git allows many different developers to develop a single piece of software at the same time. GitHub is a website where
developers can collaborate and share their work with others. GitHub relies on Git for the management of said work.

Astuce

If you’re unfamiliar with the Git and GitHub vocabulary, have a look at the
glossary page on GitHub [https://help.github.com/articles/github-glossary/].

[image: Repo Overview]In this case the repo is named SpongePowered, has two branches named master and
feature 1 and also some commits on both branches.

Let’s put these terms into context - beginning with the repository. The repository (short: repo) is the place where
a project stores its files. The SpongePowered repositories are located at GitHub [https://github.com/SpongePowered].
However, this repo has some access restrictions to preserve it from unwanted or malicious changes. You can’t simply make
changes yourself, as the repo is read-only for regular users. Now you may wonder how you’re supposed to file proposals
and changes. Well, that’s where forks come into play. You can grab a copy of the SpongePowered repos, and make your
changes there. When you’re done, you open it as a pull request (PR) on our repository. Your proposed additions and
changes can then be reviewed, and staff will tell you if something is wrong, or needs improvement, and eventually merge
the final PR.

Here’s a short summary of the procedure described above, before we go into detail:

	Fork the repo of your choice

	Clone it to your local machine

	Create a new branch

	Make the desired changes

	Test if everything works

	Commit the changes

	Sync them to GitHub

	Propose the changes in a PR to the SpongePowered Repo

	Amend to your PR if necessary

	Your PR gets pulled into master by staff

Details please!

1. Forking a Repo

Note

This step is only required if you don’t have push rights on the repo you’re making changes to. If you’re working on
your own repo, no fork is required. Just skip this step and clone directly. If you’re making changes to Sponge
and you aren’t staff, this step is required.

Now that you know the basic concept, we’ll discuss the details. First you need to fork the repository you want to
make changes to. This can be done on GitHub.com, where you’ll find a Fork button at the top of the repositories page.
After pressing it, GitHub will do some work and present a clone of the original repo to you. You’ll notice that the
clone is now located at YourGitHubAccount/ClonedRepoName. Alright, first step completed.

Note

All branches from the original repository will get forked too, you recieve an exact clone of the forked repo.

[image: Repo forking]

2. Cloning the Fork to Your local Machine

Now you need to get this fork to your local machine to make your changes. Open the Git Client of your choice
(Installing Git) and clone your fork to your local machine. The client will ask you for a folder to store
everything in. Second step finished, well done!

Note

Most steps can be done via GUI of your choice. If you’re experienced with a command line interface, then you can use
it too. Each steps will show you the required commands to achieve the desired result.

Alternatively you can do this via CLI (command line interface, CMD or powershell on windows). Note
that you need to create the folder everything is getting cloned to yourself before typing this command:

git clone git://github.com/YourGitHubAccount/ClonedRepoName.git

[image: Repo cloning]

3. Creating a New Branch

Now that you have a local clone of your fork, it’s time to create a branch to work on. Branches were designed to be able
to develop and test different features or additions at the same time, without causing problems and errors due to
interferences of the additions. It’s strongly advised that you don’t make your changes on the master branch.
Instead, create a new branch yourself (with a sensible name) and make the changes there.

This implies that we need to create a branch first, so let’s go! You can do this via your client (there
should be a create branch button somewhere), or you can use the CLI with git:

git checkout -b [name_of_your_new_branch]

This will create a branch with the name of your choice and switch to it. All changes you’re about to make will be
on this branch. If you need to switch to another branch (for example master), just reuse this command. Third step
done! Good job so far! To get an overview of your branches, just have a look at your git client or use:

git branch

[image: Branches]Now it’s time to make your changes. Use the editor or IDE of your choice to do this.

4. Test if Your Changes Work

For SpongeAPI and the implementations you have to run gradle compileJava. Proceed to the next step if it finishes
without errors. If it doesn’t, make the appropriate corrections and try again.

For SpongeDocs you can just submit your PR. It will get built automatically and reveal possible errors. Another option
is to build the Docs locally. Have a look at the
Readme.md on the Docs [https://github.com/SpongePowered/SpongeDocs/blob/master/README.md] for further instructions.

5. Commit the Changes

When you’re done, you need to bundle them into a single package (a commit) and get them into the branch. Again your
git client will help you out. Add a meaningful name to your commit and a short description if needed. This can be done
via CLI too:

First collect all files and folders you want to put into a commit:

git add <file>
git add <folder>

Now that the files are added to your list of changes you want included in the commit, just do

git commit

It will open a text window, where you can add a message if you desire. Have a look at the image below. You’ll notice
that your commits are still stored locally only and not on your fork on GitHub.

Note

You can have multiple commits in a PR. Just go ahead and change everything you need and commit the changes.
You can merge the commits onto a single commit later.

So now, the sixth step is done. Almost there!

[image: Committing]

6. Sync to GitHub

Now we need to get the changes to your fork on GitHub. Everything you’ve made so far is only stored locally
right now. As always, you can use your git client to do this (there’s a button somewhere in your GUI), or you can do
it via CLI:

git push <remote> <branch>

In this case it should be:

git push origin feature/YourFeature

[image: Pushing commits]

7. Propose the Changes in a PR to the SpongePowered Repo

You can either go to your forks page on GitHub.com (there should be a notice at the top of your forks page to
guide you), or you can use your GitHub client to create a pull-request. The official GitHub for Win client uses the
the top right corner of the window for this.

[image: PRs]

8. Amend Your PR if Necessary

If we want you to make changes to your PR, then just make more commits to the branch created above.
Further commits will be added to your PR automatically.

9. Your PR Gets Pulled

That’s it. We’re all set! Great job!

Advanced Git

Squashing with Rebase

Let’s say you have finished your additions to the repo, and let’s pretend that you made 137 commits while getting it done.
Your commit history will certainly look cluttered. It would be a shame if they were all recorded into the repo, wouldn’t it?
Too many trivial commits also clutters the project commit history. Fortunately Git has a nice tool to circumvent this, it’s
called a rebase. Rebasing can take your 137 small commits and just turn them into one big commit. Awesome, isn’t it?
Instead of reinventing the wheel, we’ll just pass you a link to a very short and easily understandable squashing tutorial:

Gitready: Squashing with Rebase [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html]

This is what it does, nicely visualized:

[image: Squashing commits]

Setting Up a Remote

Naturally the original repo is the direct parent of your fork and your fork is the direct parent of your local clone.
However the original repo isn’t the direct parent of your clone. This isn’t a problem in the first place, but it
prevents you from updating your clone to the latest changes on the original repo. If you setup the original repo as a
remote (read: “parent”) of your clone, you’ll be able to grab all changes made to this repo and apply it to your local
clone. Look below to see how grabbing and updating works.

[image: Setting up a remote]Alright. This step is done through CLI as most GUIs are missing this (rather advanced) functionality:

git remote add upstream https://github.com/ORIGINAL_OWNER/ORIGINAL_REPOSITORY.git

If you’re unsure if that worked as intended or if you want to check which remotes are currently set, you can check via:

git remote -v

the output should look like:

origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (fetch)
origin https://github.com/YOUR_USERNAME/YOUR_FORK.git (push)
upstream https://github.com/ORIGINAL_OWNER/ORIGINAL_REPOSITORY.git (fetch)
upstream https://github.com/ORIGINAL_OWNER/ORIGINAL_REPOSITORY.git (push)

Note

If you see the warning fatal: The current branch YourBranchName has no upstream branch., then the branch may not be on
the upstream remote. This may happen if this is the first time you are pushing a commit for the new branch. To push the
current branch and set the remote as upstream, use git push --set-upstream origin YourBranchName.

Rebasing

Let’s say you made some changes to your desired branch, but in the meantime someone else updated the repo. This
means that your fork and your clone are outdated. This is not a big problem, but to avoid problems when merging your
additions later on, it’s strongly advised to rebase your changes against the latest changes on the original repo.
If you haven’t set up the remote repo yet, do it before trying to rebase.

A successfull rebase requires several steps:

1. Fetch the Changes on the Remote Repo

First you need to fetch the changes on the remote repository. This is (again) done via CLI:

git fetch upstream

This will add all changes from the remote upstream and put them into a temporary upstream/master branch.

2. Merge Remote Changes locally

Now we need to select our local master branch:

git checkout master

After that we’ll merge the changes that are included in upstream/master into our local master branch:

git merge upstream/master

Alright, this is what we’ve done so far:

[image: Rebasing 1]

3. Rebase Local Branch against Updated Master

Next up is rebasing the local branch you’re working in against local master. We need to switch to your working
branch (here: feature/yourfeature) and then perform a rebase. This is done via:

git checkout feature/yourfeature
git rebase master

This will rewind your branch, add the commits from master and then apply your own changes again. The result looks like
this:

[image: Rebasing 2]

4. Push Everything to your Fork

The last thing we need to do is to push everything to the fork. If you’ve already created a PR, it will get updated
automatically:

git checkout master
git push -f
git checkout feature/yourfeature
git push -f

[image: Rebasing 3]You made it, awesome! Good job and well done and thanks for flying Rebase-Air!

 Porting Sponge to Other Platforms

Porting Sponge to Other Platforms

Currently, two official Sponge implementations are being developed:

	SpongeForge, a coremod for Minecraft Forge

	SpongeVanilla, based on the Vanilla Minecraft Server

If you plan to implement the Sponge API on another platform, please make sure to provide all needed dependencies.

Expected Dependencies

Plugin developers expect the following dependencies to be bundled with implementations:

	Guava

	Guice

	Gson

 Debugging Sponge Within the IDE

Debugging Sponge Within the IDE

Note

This page has not been filled yet by our Documentation Team. If you feel like you can help, you can do so on our
GitHub repository [https://github.com/spongepowered/spongedocs]. Also see the related GitHub Issue [https://github.com/SpongePowered/SpongeDocs/issues/356] for more information on what is required.

 Submitting a Pull-Request

Submitting a Pull-Request

The Basics

First you need to setup your machine to be able to develop for and with Sponge:

	read Preparing for Development and setup your machine

	get familiar with git and GitHub: How to Git(Hub)

	read our Code Style page and Contribution Guidelines

	get familiar with our Git Workflow for API and Implementations

When you’re done and feel you’re ready for developing Sponge, decide which parts you want to work on.

Writing a PR

Fixing Bugs

Explain in a few sentences:

	which bug you encountered, especially
	how it behaved

	how you think it should behave

	what you fixed

	how you fixed it

Major API Addition

So, you’ve developed a pretty large API addition that you want to now submit as a PR. Good! Constructive PR’s are what
make this project keep getting better. Which brings us to writing the glorious PR description.

There have been a few in the past that go above and beyond the standards, examples include:

	Inventory API PR [https://github.com/SpongePowered/SpongeAPI/pull/443]

	Data API PR [https://github.com/SpongePowered/SpongeAPI/pull/542]

Of course, those examples are the extreme, but PR’s that are accepted and provide as a good standard of what should be
included in a PR description are:

	Event Filtering PR [https://github.com/SpongePowered/SpongeAPI/pull/927]

	Bans improvement API PR [https://github.com/SpongePowered/SpongeAPI/pull/954]

A few things that can be taken from this:

	Links to any implementation PRs in clear view at the top of the PR, this can be achieved with GitHub Markdown

SpongeAPI|[SpongeCommon](html link)|[SpongeForge](html link)|[SpongeVanilla](html link)

	Clear description of what the API PR is aiming to do, this can be a brief summary as if writing an essay, at most 4
sentences long, depending on what the functionality is.

	Clear code examples of how plugins can use the new feature (and if there are old features existing, why they needed
to be changed).

 Developing Sponge

Developing Sponge

This sections describes the best way to approach the project when you’re intending to develop Sponge itself. It is
mandatory to be familiar with git and our Code Style. Basic knowledge of the
The Structure of the Sponge Project is also very helpful.

If you want to join us in creating Sponge, head straight over to the Submitting a Pull-Request page.

Contents

	Code Style

	Git Workflow for API and Implementations

	Submitting a Pull-Request

	Debugging Sponge Within the IDE

	Mixins

	Implementing DataManipulators

Astuce

Video tutorials by trusted developers will be featured here when available.

 Implementing DataManipulators

Implementing DataManipulators

This is a guide for contributors who want to help with Data API implementation by creating DataManipulators.
An updated list of DataManipulators to be implemented can be found at
SpongeCommon Issue #8 [https://github.com/SpongePowered/SpongeCommon/issues/8].

To fully implement a DataManipulator these steps must be followed:

	Implement the DataManipulator itself

	Implement the ImmutableDataManipulator

When these steps are complete, the following must also be done:

	Register the Key in the KeyRegistry

	Implement the DataProcessor

	Implement the ValueProcessor for each value being represented by the DataManipulator

	Register everything in the SpongeSerializationRegistry

If the data applies to a block, several methods must also be mixed in to the block.

Note

Make sure you follow our Contribution Guidelines.

1. Implement the DataManipulator

The naming convention for DataManipulator implementations is the name of the interface prefixed with “Sponge”.
So to implement the HealthData interface, we create a class named SpongeHealthData in the appropriate package.
For implementing the DataManipulator first have it extend an appropriate abstract class from the
org.spongepowered.common.data.manipulator.mutable.common package. The most generic there is AbstractData
but there are also abstractions that reduce boilerplate code even more for some special cases like
DataManipulators only containing a single value.

public class SpongeHealthData extends AbstractData<HealthData, ImmutableHealthData> implements HealthData {
 [...]
}

There are two type arguments to the AbstractData class. The first is the interface implemented by this class, the
second is the interface implemented by the corresponding ImmutableDataManipulator.

The Constructor

In most cases while implementing an abstract DataManipulator you need to have two constructors:

	One without arguments (no-args) which calls the second constructor with “default” values

	The second constructor that takes all the values it supports.

The second constructor must

	make a call to the AbstractData constructor, passing the class reference for the implemented interface.

	make sure the values passed are valid

	call the registerGettersAndSetters() method

import static com.google.common.base.Preconditions.checkArgument;

public class SpongeHealthData {

 public SpongeHealthData() {
 this(DataConstants.DEFAULT_HEALTH, DataConstants.DEFAULT_HEALTH);
 }

 public SpongeHealthData(double currentHealth, double maxHealth) {
 super(HealthData.class);
 checkArgument(currentHealth >= DataConstants.MINIMUM_HEALTH && currentHealth <= (double) Float.MAX_VALUE);
 checkArgument(maxHealth >= DataConstants.MINIMUM_HEALTH && maxHealth <= (double) Float.MAX_VALUE);
 this.currentHealth = currentHealth;
 this.maximumHealth = maxHealth;
 this.registerGettersAndSetters();
 }

 ...

}

Since we know that both current health and maximum health are bounded values, we need to make sure no values
outside of these bounds can be passed. To achieve this we use guava’s Preconditions of which we import the
required methods statically.

Note

Never use so-called magic values (arbitrary numbers, booleans etc) in your code. Instead, locate the
org.spongepowered.common.data.util.DataConstants class and use a fitting constant - or create one, if
necessary.

Accessors defined by the Interface

The interface we implement specifies some methods to access Value objects. For HealthData, those are
health() and maxHealth(). Every call to those should yield a new Value.

public MutableBoundedValue<Double> health() {
 return SpongeValueFactory.boundedBuilder(Keys.HEALTH)
 .minimum(DataConstants.MINIMUM_HEALTH)
 .maximum(this.maximumHealth)
 .defaultValue(this.maximumHealth)
 .actualValue(this.currentHealth)
 .build();
}

Astuce

Since Double is a Comparable, we do not need to explicitly specify a comparator.

If no current value is specified, calling get() on the Value returns the default value.

Copying and Serialization

The two methods copy() and asImmutable() are not much work to implement. For both you just need to return
a mutable or an immutable data manipulator respectively, containing the same data as the current instance.

The method toContainer() is used for serialization purposes. Use a MemoryDataContainer as the result
and apply to it the values stored within this instance. A DataContainer is basically a map mapping DataQuerys
to values. Since a Key always contains a corresponding DataQuery, just use those by passing the Key directly.

public DataContainer toContainer() {
 return new MemoryDataContainer()
 .set(Keys.HEALTH, this.currentHealth)
 .set(Keys.MAX_HEALTH, this.maximumHealth);
}

registerGettersAndSetters()

A DataManipulator also provides methods to get and set data using keys. The implementation for this is handled
by AbstractData, but we must tell it which data it can access and how. Therefore, in the
registerGettersAndSetters() method we need to do the following for each value:

	register a Supplier to directly get the value

	register a Consumer to directly set the value

	register a Supplier<Value> to get the mutable Value

Supplier and Consumer are functional interfaces, so Java 8 Lambdas can be used.

private void setCurrentHealthIfValid(double value) {
 if (value >= DataConstants.MINIMUM_HEALTH && value <= (double) Float.MAX_VALUE) {
 this.currentHealth = value;
 } else {
 throw new IllegalArgumentException("Invalid value for current health");
 }
}

private void setMaximumHealthIfValid(double value) {
 if (value >= DataConstants.MINIMUM_HEALTH && value <= (double) Float.MAX_VALUE) {
 this.maximumHealth = value;
 } else {
 throw new IllegalArgumentException("Invalid value for maximum health");
 }

}

private void registerGettersAndSetters() {
 registerFieldGetter(Keys.HEALTH, () -> SpongeHealthData.this.currentHealth);
 registerFieldSetter(Keys.HEALTH, SpongeHealthData.this::setCurrentHealthIfValid);
 registerKeyValue(Keys.HEALTH, SpongeHealthData.this::health);

 registerFieldGetter(Keys.MAX_HEALTH, () -> SpongeHealthData.this.maximumHealth);
 registerFieldSetter(Keys.MAX_HEALTH, SpongeHealthData.this::setMaximumHealthIfValid);
 registerKeyValue(Keys.MAX_HEALTH, SpongeHealthData.this::maxHealth);
}

The Consumer registered as field setter must perform the adequate checks to make sure the supplied value is valid.
This applies especially for DataHolder``s which won't accept negative values. If a value is invalid, an
``IllegalArgumentException should be thrown.

Astuce

The validity criteria for those setters are the same as for the respective Value object, so you might delegate
the validity check to a call of this.health().set() and just set this.currentHealth = value if the first
line has no thrown an exception yet.

That’s it. The DataManipulator should be done now.

2. Implement the ImmutableDataManipulator

Implementing the ImmutableDataManipulator is similar to implementing the mutable one.

The only differences are:

	The class name is formed by prefixing the mutable DataManipulators name with ImmutableSponge

	Inherit from ImmutableAbstractData instead

	Instead of registerGettersAndSetters(), the method is called registerGetters()

When creating ImmutableDataHolders or ImmutableValues, check if it makes sense to use the
ImmutableDataCachingUtil. For example if you have WetData which contains nothing more than a boolean, it
is more feasible to retain only two cached instances of ImmutableWetData - one for each possible value. For
manipulators and values with many possible values (like SignData) however, caching is proven to be too expensive.

Astuce

You should declare the fields of an ImmutableDataManipulator as final in order to
prevent accidental changes.

3. Register the Key in the KeyRegistry

The next step is to register your Keys to the KeyRegistry. To do so, locate the
org.spongepowered.common.data.key.KeyRegistry class and find the static generateKeyMap() function.
There add a line to register (and create) your used keys.

keyMap.put("health"), makeSingleKey(Double.class, MutableBoundedValue.class, of("Health")));
keyMap.put("max_health", makeSingleKey(Double.class, MutableBoundedValue.class, of("MaxHealth")));

The keyMap maps strings to Keys. The string used should be the corresponding constant name from
the Keys utility class in lowercase. The Key itself is created by one of the static methods
provided by KeyFactory, in most cases makeSingleKey. makeSingleKey requires first a class reference
for the underlying data, which in our case is a “Double”, then a class reference for the Value type used.
The third argument is the DataQuery used for serialization. It is created from the statically imported
DataQuery.of() method accepting a string. This string should also be the constant name, stripped of
underscores and capitalization changed to upper camel case.

4. Implement the DataProcessors

Next up is the DataProcessor. A DataProcessor serves as a bridge between our DataManipulator and
Minecraft’s objects. Whenever any data is requested from or offered to DataHolders that exist in Vanilla
Minecraft, those calls end up being delegated to a DataProcessor or a ValueProcessor.

For your name, you should use the name of the DataManipulator interface and append Processor. Thus for HealthData we create a HealthDataProcessor.

In order to reduce boilerplate code, the DataProcessor should inherit from the appropriate abstract class in
the org.spongepowered.common.data.processor.common package. Since health can only be present on certain
entities, we can make use of the AbstractEntityDataProcessor which is specifically targeted at Entities
based on net.minecraft.entity.Entity. AbstractEntitySingleDataProcessor would require less
implementation work, but cannot be used as HealthData contains more than just one value.

public class HealthDataProcessor extends AbstractEntityDataProcessor<EntityLivingBase, HealthData, ImmutableHealthData> {
 public HealthDataProcessor() {
 super(EntityLivingBase.class);
 }
 [...]
}

Depending on which abstraction you use, the methods you have to implement may differ greatly, depending on how
much implementation work already could be done in the abstract class. Generally, the methods can be categorized.

Astuce

It is possible to create multiple DataProcessors for the same data. If vastly different DataHolders
should be supported (for example both a TileEntity and a matching ItemStack), it may be beneficial to
create one processor for each type of DataHolder in order to make full use of the provided abstractions.
Make sure you follow the package structure for items, tileentities and entities.

Validation Methods

Always return a boolean value. If the method is called supports() it should perform a general check if the supplied target generally supports the kind of data handled by our DataProcessor.

For our HealthDataProcessor supports() is implemented by the AbstractEntityDataProcessor. Per
default, it will return true if the supplied argument is an instance of the class specified when calling the
super() constructor.

Instead, we are required to provide a doesDataExist() method. Since the abstraction does not know how to
obtain the data, it leaves this function to be implemented. As the name says, the method should check if the data
already exists on the supported target. For the HealthDataProcessor, this always returns true, since every
living entity always has health.

protected boolean doesDataExist(EntityLivingBase entity) {
 return true;
}

Setter Methods

A setter method receives a DataHolder of some sort and some data that should be applied to it, if possible.

The DataProcessor interface defines a set() method accepting a DataHolder and a DataManipulator
which returns a DataTransactionResult. Depending on the abstraction class used, some of the necessary
functionality might already be implemented.

In this case, the AbstractEntityDataProcessor takes care of most of it and just requires a method to set
some values to return true if it was successful and false if it was not. All checks if the
DataHolder supports the Data is taken care of, the abstract class will just pass a Map mapping each
Key from the DataManipulator to its value and then construct a DataTransactionResult depending on
whether the operation was successful or not.

protected boolean set(EntityLivingBase entity, Map<Key<?>, Object> keyValues) {
 entity.getEntityAttribute(SharedMonsterAttributes.maxHealth)
 .setBaseValue(((Double) keyValues.get(Keys.MAX_HEALTH)).floatValue());
 entity.setHealth(((Double) keyValues.get(Keys.HEALTH)).floatValue());
 return true;
}

Astuce

To understand DataTransactionResult s, check the corresponding docs page and refer to the
DataTransactionResult.Builder [https://jd.spongepowered.org/6.0.0/org/spongepowered/api/data/DataTransactionResult.Builder.html] docs to create one.

Avertissement

Especially when working with ItemStacks it is likely that you will need to deal with NBTTagCompounds
directly. Many NBT keys are already defined as constants in the org.spongepowered.common.data.util.NbtDataUtil
class. If your required key is not there, you need to add it in order to avoid ‘magic values’ in the code.

Removal Method

The remove() method attempts to remove data from the DataHolder and returns a DataTransactionResult.

Removal is not abstracted in any abstract DataProcessor as the abstractions have no way of knowing if the data
is always present on a compatible DataHolder (like WetData or HealthData) or if it may or may not be present
(like LoreData). If the data is always present, remove() must always fail. If it may or may not be present,
remove() should remove it. In such cases the doesDataExist() method should be overridden.

Since a living entity always has health, HealthData is always present and removal therefore not supported.
Therefore we just return failNoData() and do not override the doesDataExist() method.

public DataTransactionResult remove(DataHolder dataHolder) {
 return DataTransactionBuilder.failNoData();
}

Getter Methods

Getter methods obtain data from a DataHolder and return an optional DataManipulator. The
DataProcessor interface specifies the methods from() and createFrom(), the difference being that
from() will return Optional.empty() if the data holder is compatible, but currently does not contain the
data, while createFrom() will provide a DataManipulator holding default values in that case.

Again, AbstractEntityDataProcessor will provide most of the implementation for this and only requires a
method to get the actual values present on the DataHolder. This method is only called after supports()
and doesDataExist() both returned true, which means it is run under the assumption that the data is present.

Avertissement

If the data may not always exist on the target DataHolder, e.g. if the remove() function may be successful
(see above), it is imperative that you override the doesDataExist() method so that it returns true
if the data is present and false if it is not.

protected Map<Key<?>, ?> getValues(EntityLivingBase entity) {
 final double health = entity.getHealth();
 final double maxHealth = entity.getMaxHealth();
 return ImmutableMap.<Key<?>, Object>of(Keys.HEALTH, health, Keys.MAX_HEALTH, maxHealth);
}

Filler Methods

A filler method is different from a getter method in that it receives a DataManipulator to fill with values.
These values either come from a DataHolder or have to be deserialized from a DataContainer. The method
returns Optional.empty() if the DataHolder is incompatible.

AbstractEntityDataProcessor already handles filling from DataHolders by creating a DataManipulator
from the holder and then merging it with the supplied manipulator, but the DataContainer deserialization it
can not provide.

public Optional<HealthData> fill(DataContainer container, HealthData healthData) {
 final Optional<Double> health = container.getDouble(Keys.HEALTH.getQuery());
 final Optional<Double> maxHealth = container.getDouble(Keys.MAX_HEALTH.getQuery());
 if (health.isPresent() && maxHealth.isPresent()) {
 healthData.set(Keys.HEALTH, health.get());
 healthData.set(Keys.MAX_HEALTH, maxHealth.get());
 return Optional.of(healthData);
 }
 return Optional.empty();
}

The fill() method is to return an Optional of the altered healthData, if and only if all required data could
be obtained from the DataContainer.

Other Methods

Depending on the abstract superclass used, some other methods may be required. For instance,
AbstractEntityDataProcessor needs to create DataManipulator instances in various points. It can’t do this
since it knows neither the implementation class nor the constructor to use. Therefore it utilizes an abstract
function that has to be provided by the final implementation. This does nothing more than create a
DataManipulator with default data.

If you implemented your DataManipulator as recommended, you can just use the no-args constructor.

protected HealthData createManipulator() {
 return new SpongeHealthData();
}

5. Implement the ValueProcessors

Not only a DataManipulator may be offered to a DataHolder, but also a keyed Value on its own.
Therefore, you need to provide at least one ValueProcessor for every Key present in your
DataManipulator. A ValueProcessor is named after the constant name of its Key in the Keys class
in a fashion similar to its DataQuery. The constant name is stripped of underscores, used in upper camel case
and then suffixed with ValueProcessor.

A ValueProcessor should always inherit from AbstractSpongeValueProcessor, which already will handle a
portion of the supports() checks based on the type of the DataHolder. For Keys.HEALTH, we’ll create
and construct HealthValueProcessor as follows.

public class HealthValueProcessor extends AbstractSpongeValueProcessor<EntityLivingBase, Double,
 MutableBoundedValue<Double> {

 public HealthValueProcessor() {
 super(EntityLivingBase.class, Keys.HEALTH);
 }

 [...]
}

Now the AbstractSpongeValueProcessor will relieve us of the necessity to check if the value is supported.
It is assumed to be supported if the target ValueContainer is of the type EntityLivingBase.

Astuce

For a more fine-grained control over what EntityLivingBase objects are supported, the
supports(EntityLivingBase) method can be overridden.

Again, most work is done by the abstraction class. We just need to implement two helper methods for creating
a Value and its immutable counterpart and three methods to get, set and remove data.

protected MutableBoundedValue<Double> constructValue(Double value) {
 return SpongeValueFactory.boundedBuilder(Keys.HEALTH)
 .minimum(DataConstants.MINIMUM_HEALTH)
 .maximum((double) Float.MAX_VALUE)
 .defaultValue(DataConstants.DEFAULT_HEALTH)
 .actualValue(value)
 .build();
}

protected ImmutableValue<Double> constructImmutableValue(Double value) {
 return constructValue(value).asImmutable();
}

protected Optional<Double> getVal(EntityLivingBase container) {
 return Optional.of((double) container.getHealth());
}

Since it is impossible for an EntityLivingBase to not have health, this method will never return
Optional.empty().

protected boolean set(EntityLivingBase container, Double value) {
 if (value >= DataConstants.MINIMUM_HEALTH && value <= (double) Float.MAX_VALUE) {
 container.setHealth(value.floatValue());
 return true;
 }
 return false;
}

The set() method will return a boolean value indicating whether the value could successfully be set.
This implementation will reject values outside of the bounds used in our value construction methods above.

public DataTransactionResult removeFrom(ValueContainer<?> container) {
 return DataTransactionBuilder.failNoData();
}

Since the data is guaranteed to be always present, attempts to remove it will just fail.

6. Register Processors

In order for Sponge to be able to use our manipulators and processors, we need to register them. This is done
in the org.spongepowered.common.data.SpongeSerializationRegistry class. In the setupSerialization method
there are two large blocks of registrations to which we add our processors.

DataProcessors

A DataProcessor is registered alongside the interface and implementation classes of the DataManipulator it
handles. For every pair of mutable / immutable DataManipulators at least one DataProcessor must be registered.

dataRegistry.registerDataProcessorAndImpl(HealthData.class, SpongeHealthData.class,
 ImmutableHealthData.class, ImmutableSpongeHealthData.class,
 new HealthDataProcessor());

ValueProcessors

Value processors are registered at the bottom of the very same function. For each Key multiple processors
can be registered by subsequent calls of the registerValueProcessor() method.

dataRegistry.registerValueProcessor(Keys.HEALTH, new HealthValueProcessor());
dataRegistry.registerValueProcessor(Keys.MAX_HEALTH, new MaxHealthValueProcessor());

Implementing Block Data

Block data is somewhat different from other types of data in that it is implemented by mixing in to the block itself.
There are several methods in org.spongepowered.mixin.core.block.MixinBlock that must be overridden to implement
data for blocks.

@Mixin(BlockHorizontal.class)
public abstract class MixinBlockHorizontal extends MixinBlock {

 [...]
}

supports() should return true if either the ImmutableDataManipulator interface is assignable from the
Class passed in as the argument, or the superclass supports it.

@Override
public boolean supports(Class<? extends ImmutableDataManipulator<?, ?>> immutable) {
 return super.supports(immutable) || ImmutableDirectionalData.class.isAssignableFrom(immutable);
}

getStateWithData() should return a new BlockState with the data from the ImmutableDataManipulator applied
to it. If the manipulator is not directly supported, the method should delegate to the superclass.

@Override
public Optional<BlockState> getStateWithData(IBlockState blockState, ImmutableDataManipulator<?, ?> manipulator) {
 if (manipulator instanceof ImmutableDirectionalData) {
 final Direction direction = ((ImmutableDirectionalData) manipulator).direction().get();
 final EnumFacing facing = DirectionResolver.getFor(direction);
 return Optional.of((BlockState) blockState.withProperty(BlockHorizontal.FACING, facing));
 }
 return super.getStateWithData(blockState, manipulator);
}

getStateWithValue() is the equivalent of getStateWithData(), but works with single Keys.

@Override
public <E> Optional<BlockState> getStateWithValue(IBlockState blockState, Key<? extends BaseValue<E>> key, E value) {
 if (key.equals(Keys.DIRECTION)) {
 final Direction direction = (Direction) value;
 final EnumFacing facing = DirectionResolver.getFor(direction);
 return Optional.of((BlockState) blockState.withProperty(BlockHorizontal.FACING, facing));
 }
 return super.getStateWithValue(blockState, key, value);
}

Finally, getManipulators() should return a list of all ImmutableDataManipulators the block supports, along with
the current values for the provided IBlockState. It should include all ImmutableDataManipulators from the
superclass.

@Override
public List<ImmutableDataManipulator<?, ?>> getManipulators(IBlockState blockState) {
 return ImmutableList.<ImmutableDataManipulator<?, ?>>builder()
 .addAll(super.getManipulators(blockState))
 .add(new ImmutableSpongeDirectionalData(DirectionResolver.getFor(blockState.getValue(BlockHorizontal.FACING))))
 .build();
}

Further Information

With Data being a rather abstract concept in Sponge, it is hard to give general directions on how to
acquire the needed data from the Minecraft classes itself. It may be helpful to take a look at already
implemented processors similar to the one you are working on to get a better understanding of how it should work.

If you are stuck or are unsure about certain aspects, go visit the #spongedev IRC channel, the forums, or
open up an Issue on GitHub. Be sure to check the Data Processor Implementation Checklist [https://github.com/SpongePowered/SpongeCommon/issues/8] for general
contribution requirements.

 Git Workflow for API and Implementations

Git Workflow for API and Implementations

Developing the API

The basic process of adding your changes is explained in the How to Git(Hub) section. On top of that we suggest that
you create your new branch with a meaningful name.With the new branching model you need to be aware which
branch you need to base your PRs on and where it should get merged afterwards. Read about the new branching and
versioning model here: Versioning System and Repository Branch Layout

Additionally we require that you ensure the module will compile with gradle compileJava.
This will run a simple build of the source files. When finished successfully, you can PR your changes to the SpongeAPI
repo.

Developing the Implementation

The process for the implementations is almost the same as for the API. You add your changes as described in How to Git(Hub).
Note that you should give your branches a meaningful name. With the new branching model you need to be aware which
branch you need to base your PRs on and where it should get merged afterwards. Read about the new branching and
versioning model here: Versioning System and Repository Branch Layout

Run gradle compileJava to check if everything compiles without errors.

Since you are working on the implementation, there is a possibility that your work included changes in the API. This is
okay. Just remember to ensure the pointers for the version of the SpongeAPI match the version of your branch prior to
committing and pushing. To do this, you may need to add the submodules to the commit (with git add SpongeAPI and/or
git add Mixin) prior to committing on your implementation work.

You may open a pull request once your commit is pushed to your fork or the repository.

 Code Style

Code Style

We follow Google’s Java Style Guidelines [https://google.github.io/styleguide/javaguide.html] with a
few additions and modifications, which are described herein.

Astuce

You can use our code styles for Eclipse or IntelliJ IDEA to let your IDE format the code correctly for you. See
Preparing for Development for more information.

	Line endings
	Use Unix line endings when committing (\n)
	Windows users of Git can do git config --global core.autocrlf true to let Git convert them automatically

	Column width
	80 for Javadocs

	150 for code

	Feel free to wrap when it will help with readability

	Indentation
	Use 4 spaces for indentations, do not use 2 spaces

	Vertical whitespace
	Place a blank line before the first member of a class, interface, enum, etc. (i.e. after class Example {) as
well as after the last member

	File headers
	File headers must contain the license headers for the project. Use the licenseFormat Gradle task to add them
automatically.

	Imports
	Imports must be grouped in the following order, where each group is separated by an empty line
	Static imports

	All other imports

	java imports

	javax imports

	This differs from Google’s style in that imports are not grouped by top-level package, they are all grouped as one.

	Exceptions
	For exceptions that are to be ignored, name the exception variable ignored

	Field accesses
	Qualify all field accesses with this

	Javadocs
	Do not use @author

	Wrap additional paragraphs in <p> and </p>

	Capitalize the first letter in the descriptions within each “at clause”, i.e. @param name Player to affect, no
periods

Code Conventions

	Use Optionals instead of returning
null in the API

	Method parameters accepting null must be annotated with @Nullable (from javax.*), all methods and parameters
are @Nonnull by default.

	Use Google Preconditions [https://code.google.com/p/guava-libraries/wiki/PreconditionsExplained] for null- and
argument checking.

The Gist

While we urge that you read Google’s Java conventions particularly, the two are fairly long documents. To get you
started quickly, here is an example of properly formatted code:

/*
 * This file is part of Sponge, licensed under the MIT License (MIT).
 *
 * Copyright (c) SpongePowered.org <https://www.spongepowered.org>
 * Copyright (c) contributors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
package com.example.java;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Random;
import java.util.Optional;

public class Example {

 private static final Logger log = LoggerFactory.getLogger(Example.class);
 private static final Random random = new Random();
 private final String id = "test";

 /**
 * Returns an identifier approximately half of the time.
 *
 * <p>A static instance of {@link Random} is used to calculate the
 * outcome with a 50% chance.</p>
 *
 * @return The ID, if available
 */
 public Optional<String> resolveId() {
 log.info("ID requested");

 if (random.nextBoolean()) {
 return Optional.of(this.id);
 } else {
 return Optional.empty();
 }
 }

 /**
 * Returns an identifier approximately half of the time.
 *
 * <p>A static instance of {@link Random} is used to calculate the
 * outcome with a 50% chance. If the outcome is to not return the ID,
 * the given fallback ID is returned.</p>
 *
 * @param fallback A fallback name to return
 * @return The ID half of the time, the given fallback the other half
 */
 public String resolveId(String fallback) {
 return resolveId().orElse(fallback);
 }

}

 Mixins

Mixins

Note

This page applies to SpongeCommon, SpongeForge, and SpongeVanilla as these three repositories utilize Mixins to hook
into the underlying implementations (Vanilla Minecraft server and Forge).

Mixins are a way of modifying java code at runtime by adding additional behavior to classes. They enable transplanting
of intended behavior into existing Minecraft objects. Mixins are necessary for all official Sponge implementations
to function.

A basic introduction to some of the core concepts underpinning the mixin functionality we’re using to implement Sponge
is available at the Mixin Wiki [https://github.com/SpongePowered/Mixin/wiki/]

It starts with absolute basics. If you’re an experienced java developer, feel free to skip to section 4, where the
mixins themselves are actually discussed.

If you’re looking to get started writing mixins, we also strongly recommend carefully examining all of the examples in
the SpongeCommon repository [https://github.com/SpongePowered/SpongeCommon/tree/stable-6/src/example/java/org/spongepowered] which
are extensively documented and cover many of the more complex scenarios. You should also consult the Javadoc of the Mixin
repository itself, since almost everything is already documented.

Caveat: When contributing mixins, note that you can use neither anonymous classes nor lambda expressions.

This means expressions like the following will cause mixins to fail horribly and bring death and destruction upon all
that attempt to use Sponge.

return new Predicate<ItemStack>() {
 @Override
 public boolean test(ItemStack input) {
 return input.getItem().equals(Items.golden_apple);
 }
}

return input -> input.getItem().equals(Items.golden_apple);

return this::checkItem;

This applies to all classes that are annotated with @Mixin. Classes that are not touched by the mixin processor may
make use of those features. However, you can use a static utility class to create your anonymous classes, as unlike
your mixin class that utility class will still exist at runtime, while your mixin class will be merged into the
specified target class. The following code therefore will work.

public class ItemUtil {
 public static Predicate<ItemStack> typeChecker(final Item item) {
 return new Predicate<ItemStack>() {
 @Override
 public boolean test(ItemStack input) {
 return input.getItem().equals(item);
 }
 }
 }
}

@Mixin(TargetClass.class)
public abstract class SomeMixin {
 public Predicate<ItemStack> someFunction() {
 return ItemUtil.typeChecker(Items.golden_apple);
 }
}

Note

The Mixin project will be servicing a number of other projects in addition to Sponge itself. Therefore Mixin has its’
own documentation together with the repository.

 Ore Plugin Submission Guidelines

Ore Plugin Submission Guidelines

Welcome to the Ore submission guidelines. This document provides an outline of our expectations for both project and file submissions.

Remember that these are just guidelines and the Ore team, referred to as the “staff” throughout these guidelines, may choose to allow
or disallow an action that is not explicitly listed here at our own discretion.

Projects

Submitted projects should meet the following expectations:

Name

Your project’s submitted name should not include a version, tagline, or other description. The name should be unique and original
and must not have a name implying it is a Sponge project (e.g. SpongeWarp is not allowed, Cool Warps for Sponge is).

Main Documentation Page (Home)

This is the first page anyone sees when visiting your project. Information here should include a description of your project’s
features. The following, if present in your plugin, should be documented on the main page if not documented elsewhere on the Ore
project: commands, configuration, and permission nodes. Additionally, the below information must be documented on the main page
if relevant:

External Connections

If your project utilizes a web API, phones home to collect data, or otherwise connects to a system external to the server it is
running on, the presence of this feature as well as information on how to enable or disable it must be displayed prominently on
the main page. If your project’s sole purpose involves utilizing an external system (such as a Sponge plugin that translates
chat between languages), a configuration option to toggle making connections to that service is not required. If your plugin
sends information (for example, plugin list or player data), the information collected must be listed on the main page.

Examples of systems that require documentation:

	Statistics or usage information collection (‘metrics’)

	Geolocation

	Translation service

	Web server that runs on the plugin, serving information to users

	Server that runs on the plugin, listening to requests from other services

	IRC/Discord/Telegram/WhatsApp bot or relay

Category

The category you choose should be accurate. Your project should use the narrowest category possible rather than any category that
slightly applies. If no category appears accurate, the Miscellaneous category should be used.

Download Links

Ore provides, on each project page, a download button which will automatically choose the most recent release. If you wish to add
additional download links, all links must point to files hosted on Ore. You may additionally link to unapproved file pages, not
direct file links, on Ore but these links may not be the most prominently displayed links. Further, you may not attempt to
circumvent any plugin warnings on Ore, including warnings that inform the user that a project has not yet been reviewed.

Monetization / Advertising

Submissions may not be sold, nor may additional features be unlockable with payment. Advertisements and other revenue generating
links (e.g. adfly) are not permitted. The documentation may contain a link to a page to donate to the project maintainer or
other contributors as thanks but that page may not offer additional features or other plugins/mods for sale.

“Cracked” / Offline-mode / online-mode=false Support

Projects that explicitly state they are designed for such uses are not allowed. Some projects, such as authentication systems,
may have functionality that can be useful for servers regardless of the server’s use of Mojang authentication, but they may not
promote this additional usage or be specifically designed for servers avoiding Mojang auth. Projects designed for proxies
requiring online-mode=false are allowed, provided they are not written to facilitate circumvention of Minecraft account ownership.

EULA

We aim to comply entirely with the Mojang EULA. Any plugins, services, posts, and/or links suspected of violating the EULA may
be removed at the discretion of the Sponge Staff or at the request of Mojang AB.

Forks

Forks are permitted, provided they meet all items in the below list. Staff have the final say in what constitutes an accepted fork.
Follow the license of the parent project appropriately.

Either:

	Contain significant changes warranting the creation of a new project. This is to avoid “I changed the message colors in
Plugin X and now I claim credit!”, or

	Continue a plugin that has been abandoned, with proof the author has not been answering messages or has stated the project
will no longer be updated.

Acknowledge or credit the past plugin and developers. Essentially, don’t claim it is a new plugin and exclusively your creation.

Files

Files submitted should meet the following expectations:

Obfuscation

A file that utilizes obfuscation will be denied unless it falls under the following exception:

NMS Obfuscation

This only applies for plugins which reference Minecraft or a Forge mod. Examples would be a plugin using Mixins or a plugin
which doubles as a Forge mod (hybrid plugin). Provided that the only obfuscated references are to obfuscated source generated
using ForgeGradle or VanillaGradle, the plugin is allowed to proceed through the review process.

Core Mods and Mixins: Modification of the Minecraft Base Code

Plugins and mods that use a system that modifies the Minecraft base code at runtime, (such as core mods and mixins) must disclose
the edits that they make to the Minecraft code, and their reasoning for them. Sponge plugins should use the Sponge API where
possible. Sponge implementations may implement technical restrictions to prevent such modifications from being applied by default.
Files are not permitted to attempt to work around these restrictions, but can notify the user that enhanced functionality can be
enabled via the Sponge provided configuration options.

External Connections (Web API, Phoning Home, etc.)

Many great features can be written by making calls to external systems. As well as being clearly documented in project descriptions,
such functionality should be configurable and disabled by default. If your project’s sole purpose involves utilizing an external
system (such as a Sponge plugin that translates chat between languages), connecting to that system does not need to be disableable.
If your plugin sends information (e.g. a plugin list, player data, or map data) to external systems, the information collected
must be listed on the main page (see above).

Execution of Downloaded Code

This is a security risk we will not tolerate. This includes downloading jar or class files, generation of bytecode from downloaded
sources, and execution shell scripts.

Monetization / Advertising

All functionality present in your plugin should be usable without restriction, and can not require a license key to operate.
External APIs, such as translation or geolocation services, that require payment for functionality can be allowed but must be
discussed among staff prior to approval. Plugins may not be used to display advertisements.

Update Checking

Checking for updates should be performed using the provided Ore API. Your plugin may not link anywhere but Ore when directing
users of your plugin to download new versions. Note that this update checking counts as an external connection, which must be
documented and for which configuration must exist to disable it.

Privilege Granting

Plugins must not grant or revoke feature access to any particular user or group of users determined by the plugin developer.
This includes the author granting themselves a special display name or letting themselves use a special command. Features,
when applicable, should be locked behind permission nodes, rather than access being predetermined by the author. Commands
for granting specific, pre-programmed users OP or permissions are not acceptable.

 Ore Documentation

Ore Documentation

Our custom built plugin hosting solution provides a unique and convenient way for content creators to share and
make accessible plugins that they have created. For developers, Ore offers a centralized location where their users
can download, review, and get support on their plugin. For server administrators, Ore offers a level of safety and
security previously lacking from many Minecraft communities by requiring PGP signed uploads, offering two-factor
authentication on user accounts, and having our staff carefully review each upload.

Ore is currently still in beta and has only recently been introduced to a production environment. If you find an
issue with Ore that you believe is a bug, please take the time to report it to our
issue tracker [https://github.com/SpongePowered/Ore/issues].

If you need help using Ore, create a new topic on our
Ore Support Forum [https://forums.spongepowered.org/c/plugins/ore-support].

If you’d like to submit a plugin to Ore, please read and follow the Ore plugin submission guidelines linked below.

Contents

	Ore Plugin Submission Guidelines

	Projects

	Files

	Publishing Your Plugin

	Security

	Ore Web API
	List projects

	Get Project

	List Project Versions

	Get Project Version

	List Users

	Get User

	Download Project Version

 Ore Web API

Ore Web API

Ore offers a JSON RESTful API to interact with mods and plugins indexed by Ore. The following is an ongoing
specification of that API.

Data Types

There are a few integer-based enum-style data types that are used throughout the API. The following is a list of
these current types.

Category IDs:

	0
	Administrator Tools

	1
	Chat Tools

	2
	Developer Tools

	3
	Economy

	4
	Gameplay

	5
	Games

	6
	Protection

	7
	Role Playing

	8
	World Management

	9
	Miscellaneous

	10
	Undefined

Sorting Method IDs:

	0
	Most stars

	1
	Most downloads

	2
	Most views

	3
	Newest

	4
	Recently updated

Routes

Below is a list of the following routes that are currently available within the API.

	List projects

	Get Project

	List Project Versions

	Get Project Version

	List Users

	Get User

	Download Project Version

 Security

Security

Spongie takes security very seriously. For this reason, all uploaded plugins are PGP signed to ensure you’re getting
what the plugin author intended to upload and are immediately queued to go through a meticulous vetting process.

Note

Ore will warn you if you attempt to download a plugin that has not been cleared by our reviewing process.
We disclaim all responsibility for any harm to your server or system should you choose not to heed the warning.

Ore requires all plugin submissions to be signed with
Pretty Good Privacy (PGP) [https://en.wikipedia.org/wiki/Pretty_Good_Privacy] for security purposes. This helps us
verify that the identity of the uploader is indeed the same identity of the account holder. This means that if your
account were to become compromised, the attacker would need your private key to upload plugins to Ore. This alone
dramatically reduces the chances of having malicious code uploaded to and associated with your account.

You can read about how to upload a public key to your account and how to sign your plugins with your private key
Publishing Your Plugin.

Additionally, while not required, we highly recommend you enable two-factor authentication on your account to prevent it
from being compromised. You can enable two-factor authentication in your general Sponge account settings
here [https://auth.spongepowered.org/settings].

 Publishing Your Plugin

Publishing Your Plugin

Sponge’s official plugin / mod repository, Ore [https://ore.spongepowered.org], is a free and open-source
project that anyone may publish their Sponge plugins or Forge mods on.

Packaging Your Plugin

Ore requires any projects to be packaged with a mcmod.info descriptor file in the top-level of your JAR file. This
file is used to automatically infer some important details about your project to make the upload process easier. Ore
will reject your plugin if this file is missing from the JAR. Luckily, Sponge API has a built in annotation processor
that creates this file for you automatically, on compile, using the @Plugin annotation that you have likely
already created in your plugin’s main class.

Note

For more information on creating and compiling your first plugin, see Main Plugin Class

For reference, here is a sample mcmod.info file:

[
 {
 "modid": "my-plugin",
 "name": "MyPlugin",
 "version": "1.0.0",
 "description": "My first plugin!",
 "url": "https://spongepowered.org",
 "authorList": [
 "windy",
 "Zidane",
 "gabizou"
],
 "requiredMods": [
 "bookotd@1.0.0",
 "ore-test@1.0.0",
 "worldedit@1.0.0"
],
 "dependencies": [
 "bookotd@1.0.0",
 "ore-test@1.0.0",
 "worldedit@1.0.0"
]
 }
]

At the very least, each Ore project must have the modid, name and, version fields completed.

Signing your Plugin

Due to security concerns, Ore requires each plugin file (ZIP or JAR) to be uploaded with a detached
Pretty Good Privacy (PGP) [https://en.wikipedia.org/wiki/Pretty_Good_Privacy] signature for a public key that is
associated with the email that you signed up to Sponge with. This digital signature ensures that any file uploaded by a
user was intended to be uploaded by the actual account holder.

Note

A digital signature certifies and timestamps a document. If the document is subsequently modified in any way, a
verification of the signature will fail. A digital signature can serve the same purpose as a hand-written signature
with the additional benefit of being tamper-resistant. The GnuPG source distribution, for example, is signed so
that users can verify that the source code has not been modified since it was packaged.

In order to sign your plugin, you must first download a PGP compliant software program, such as
GnuPG (GPG) [https://www.gnupg.org/]. GPG is available for all major platforms and the binaries can be downloaded
here [https://www.gnupg.org/download/index.html#sec-1-2].

Once you have installed GPG and have generated your first public key, you will need to add the key to your account.
To do this, you can navigate to your profile and click the key symbol next to your avatar.

[image: PGP public key 1]
You will then be prompted to enter your key into a text box. You must be sure to enter the key in it’s entirety or
signature validation will fail.

[image: PGP public key 2]
Finally, you must sign your built plugin with your private key of the public key you uploaded. You only need to sign
the file that you are uploading: for instance, if you are uploading a ZIP with your plugin JAR included, only the ZIP
needs to (and should only be) signed. The easiest way to sign the file you intend to upload is with the following GPG
command.

gpg --output myplugin-1.0.0.jar.sig --detach-sig myplugin-1.0.0.jar

Note

If you’re using build manager such as Gradle or Maven, there are plugins you can apply to your build script that
can sign built artifacts and automate this laborious process for you. For more information, please refer to
Gradle’s documentation [https://docs.gradle.org/current/userguide/signing_plugin.html] or
Maven’s documentation [https://maven.apache.org/plugins/maven-gpg-plugin/].

Uploading Your Plugin

Once your plugin’s JAR file is packaged with an mcmod.info descriptor file in the top-level and signed with your
PGP private key, your plugin is ready for uploading! To create a project on Ore, you must have an active Sponge
account. Hitting the “Sign up” button in the top-right corner will take you to the appropriate page to create one. If
you already have an account, just hit the “Log in” button in the top-right corner to log into Ore.

Once logged in, navigate to your avatar and select the “New” option in the drop-down menu that appears, or just press
the “C” key.

While uploading, the creation wizard will first ask for your main upload file and then for your detached signature.

Setting Up Your Project on Ore

After uploading your plugin, you will be presented with some settings to configure your project however you like. Don’t
worry, all of these can be changed later in the settings panel. After setting up your project you will be able to invite
Sponge users to be a part of your project. Any user that is registered on the forums can be invited to a project even if
they have never logged onto Ore. Upon creation of your project, the users you have invited will receive a notification
and will be able to either accept or decline your invitation. Project members will not be visible to the public until
the invitation has been accepted.

There are currently three groups you may assign to project members: Developer, Editor, and Support. The user
who created the project will be assigned the Owner which has unrestricted access to the project. Here is a quick
rundown of what each group can do within your project.

Owner

There is a maximum of one owner to a project, is non-transferable (for now), and is the only group that may assign roles
to other members.

Developers

Developers may create/edit release channels, pages and create/edit versions.

Editor

Editors may edit pages.

Support

Support cannot do anything, merely a way of showing that the member is a part of the project.

 List projects

List projects

GET /api/projects

Returns a list of projects based on given criteria.

Query parameters:

	Name
	Data Type
	Description

	categories
	Comma Separated Integer List
	Filters projects by categories (inclusive).

	sort
	Integer
	Sorts projects by a given method.

	q
	String
	Search query. Checks against name, author, and description.

	limit
	Integer
	Limits the amount of projects returned (max / default: 25).

	offset
	Integer
	Drops the first n projects from the result list.

Sample output:

[{
 "pluginId": "ore",
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "Ore",
 "owner": "windy",
 "description": "Official package manager for Sponge.",
 "href": "/windy/Ore",
 "members": [{
 "userId": 6602,
 "name": "windy",
 "roles": ["Owner"],
 "headRole": "Owner"
 }],
 "channels": [{
 "name": "Beta",
 "color": "#B400FF"
 }],
 "recommended": {
 "id": 221,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "1.0.0",
 "dependencies": [],
 "pluginId": "ore",
 "channel": {
 "name": "Beta",
 "color": "#B400FF"
 },
 "fileSize": 52807
 },
 "category": {
 "title": "Admin Tools",
 "icon": "fa-server"
 },
 "views": 275,
 "downloads": 28,
 "stars": 9
}, {
 "pluginId": "serverlistplus",
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "ServerListPlus",
 "owner": "Minecrell",
 "description": "An extremely customizable server status ping plugin for Minecraft",
 "href": "/Minecrell/ServerListPlus",
 "members": [{
 "userId": 1875,
 "name": "Minecrell",
 "roles": ["Owner"],
 "headRole": "Owner"
 }],
 "channels": [{
 "name": "Release",
 "color": "#009600"
 }],
 "recommended": {
 "id": 231,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "3.4.7",
 "dependencies": [],
 "pluginId": "serverlistplus",
 "channel": {
 "name": "Release",
 "color": "#009600"
 },
 "fileSize": 397480
 },
 "category": {
 "title": "Admin Tools",
 "icon": "fa-server"
 },
 "views": 60,
 "downloads": 9,
 "stars": 3
}]

 Get Project

Get Project

GET /projects/:pluginId

Returns a single project with a given plugin ID. Note that there are no two plugins on Ore with the same plugin ID.

Sample output:

{
 "pluginId": "ore",
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "Ore",
 "owner": "windy",
 "description": "Official package manager for Sponge.",
 "href": "/windy/Ore",
 "members": [{
 "userId": 6602,
 "name": "windy",
 "roles": ["Owner"],
 "headRole": "Owner"
 }],
 "channels": [{
 "name": "Beta",
 "color": "#B400FF"
 }],
 "recommended": {
 "id": 221,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "1.0.0",
 "dependencies": [],
 "pluginId": "ore",
 "channel": {
 "name": "Beta",
 "color": "#B400FF"
 },
 "fileSize": 52807
 },
 "category": {
 "title": "Admin Tools",
 "icon": "fa-server"
 },
 "views": 275,
 "downloads": 28,
 "stars": 9
}

 List Users

List Users

GET /api/users

Returns a list of users based on given criteria.

Query parameters:

	Name
	Data Type
	Description

	limit
	Integer
	Limits the amount of projects returned (max / default: 25).

	offset
	Integer
	Drops the first n projects from the result list.

Sample output:

[{
 "id": 6602,
 "createdAt": "2016-11-07 12:26:35.672",
 "username": "windy",
 "roles": ["Ore Admin", "Ore Moderator", "Sponge Developer", "Sponge Staff"],
 "starred": [],
 "avatarTemplate": "https://forums.spongepowered.org/user_avatar/forums.spongepowered.org/windy/{size}/8440_1.png",
 "projects": [{
 "pluginId": "ore",
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "Ore",
 "owner": "windy",
 "description": "Official package manager for Sponge.",
 "href": "/windy/Ore",
 "members": [{
 "userId": 6602,
 "name": "windy",
 "roles": ["Owner"],
 "headRole": "Owner"
 }],
 "channels": [{
 "name": "Beta",
 "color": "#B400FF"
 }],
 "recommended": {
 "id": 221,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "1.0.0",
 "dependencies": [],
 "pluginId": "ore",
 "channel": {
 "name": "Beta",
 "color": "#B400FF"
 },
 "fileSize": 52807
 },
 "category": {
 "title": "Admin Tools",
 "icon": "fa-server"
 },
 "views": 275,
 "downloads": 28,
 "stars": 9
 }]
}, {
 "id": 11,
 "createdAt": "2016-11-07 12:26:35.672",
 "username": "Zidane",
 "roles": ["Ore Moderator", "Sponge Developer", "Sponge Leader", "Sponge Staff"],
 "starred": [],
 "avatarTemplate": "https://forums.spongepowered.org/user_avatar/forums.spongepowered.org/zidane/{size}/5831_1.png",
 "projects": []
}, {
 "id": 155,
 "createdAt": "Jun 19, 2016",
 "username": "2016-11-07 12:26:35.672",
 "roles": ["Iron Donor", "Quartz Donor", "Sponge Leader", "Stone Donor", "Team Leader", "Sponge Adviser", "Sponge Contributor"],
 "starred": [],
 "avatarTemplate": "https://forums.spongepowered.org/user_avatar/forums.spongepowered.org/gabizou/{size}/5862_1.png",
 "projects": []
}]

 Get User

Get User

GET /api/users/:username

Returns a single user.

Sample output:

{
 "id": 6602,
 "createdAt": "2016-11-07 12:26:35.672",
 "username": "windy",
 "roles": ["Ore Admin", "Ore Moderator", "Sponge Developer", "Sponge Staff"],
 "starred": [],
 "avatarTemplate": "https://forums.spongepowered.org/user_avatar/forums.spongepowered.org/windy/{size}/8440_1.png",
 "projects": [{
 "pluginId": "ore",
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "Ore",
 "owner": "windy",
 "description": "Official package manager for Sponge.",
 "href": "/windy/Ore",
 "members": [{
 "userId": 6602,
 "name": "windy",
 "roles": ["Owner"],
 "headRole": "Owner"
 }],
 "channels": [{
 "name": "Beta",
 "color": "#B400FF"
 }],
 "recommended": {
 "id": 221,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "1.0.0",
 "dependencies": [],
 "pluginId": "ore",
 "channel": {
 "name": "Beta",
 "color": "#B400FF"
 },
 "fileSize": 52807
 },
 "category": {
 "title": "Admin Tools",
 "icon": "fa-server"
 },
 "views": 275,
 "downloads": 28,
 "stars": 9
 }]
}

 List Project Versions

List Project Versions

GET /projects/:pluginId/versions

Returns a list of versions for a project of a given plugin ID based on given criteria.

Query parameters:

	Name
	Data Type
	Description

	channels
	Comma Separated String List
	Filters versions by channels (inclusive).

	limit
	Integer
	Limits the amount of versions returned (max / default: 10).

	offset
	Integer
	Drops the first n versions from the result list.

Example output:

[{
 "id": 221,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "1.0.0",
 "dependencies": [],
 "pluginId": "ore",
 "channel": {
 "name": "Beta",
 "color": "#B400FF"
 },
 "fileSize": 52807
}]

 Download Project Version

Download Project Version

GET /api/projects/:pluginId/versions/:version/download

Returns a file stream for the specified version within the specified project. The :version parameter may be replaced
with recommended to download the project’s current recommended version.

 Get Project Version

Get Project Version

GET /api/projects/:pluginId/versions/:version

Returns a single project version for the project with the given plugin ID and the given version string. Note that there
are no two versions in a project with the same version string.

Example output:

{
 "id": 221,
 "createdAt": "2016-11-07 12:26:35.672",
 "name": "1.0.0",
 "dependencies": [],
 "pluginId": "ore",
 "channel": {
 "name": "Beta",
 "color": "#B400FF"
 },
 "fileSize": 52807
}

_static/comment-bright.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_images/help_2.png
PGP Public Key ©

PGP Public Key

Paste your PGP public key in its entirety to the text box below. The submitted key must
be associated with the email that is associated with your Sponge account.

LT O o T T S e T T e e S e A T T e e T

C D+XIWhVSK8ORAS]Heihl+RBNCOu8rBytu7a9WOgFrT] \
AImxYunO9vJOYka14LDKL33FgvZFeztGRoHIMETO2DMP9ZDewWaZ zp4sHDUsg
I

MLA9q/GDhEgkd8em6pQ7PfzvxN77iMnnLs2xf9S29¢CNKazae2KDAzvY/ChTXJZs

/nw6/NvBmzD9Qwip10Scrd +YQpQS+oAaxL.TOMfSE|nrixIVREY60q
Avhb9sEQOP30leFviPOHCKX5SeNrKafST

_images/optionals3.png
Hi there, please
give me Foo

This box may
contain a Foo, but
you need to check

That’s fine, as
long as your Foo
is gluten free

i

_images/optionals1.png
Hi there, please
give me Foo

No problem, here
is your Foo.

_images/logo-spongie.png

_images/optionals2.png
Hi there, please
give me Foo

This is probably a
Foo, meh IDK.

A=

Thanks! You are
such a great API.

_images/logo-spongepowered.png
GE

POWERED

nav.xhtml

 Table of Contents

 		Enoviah Documentation

 		Première Lecture

 		Commander un launcher

 		Installing Java

 		Migrating to Sponge

 		Choosing an Implementation

 		Creating a Launch Script

 		Port Forwarding

 		Using Sponge with BungeeCord

 		Configuring Sponge

 		Server Management

 		Managing the Whitelist

